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ABSTRACT 
    Visualizing cyclical spatio-temporal data is an important 

part of understanding how and why objects move in the 

context of motorsports, which is critical feedback for drivers 

to improve their performance. Current methods have 

problems such as occlusion and loss of context which 

significantly limit our ability to see and understand vehicle 

data. Here we demonstrate how the fingerprint matrix 

method (which is normally used in lexical analysis) can be 

applied in vehicle motion analysis to overcome these two 

problems. Compared to traditional methods using traction 

circle scatterplot displays of acceleration force data from a 

race car, our prototype design allows decision makers to see 

individual datapoints in a more concise display. We show 

that informative but previously-hidden anomalies and 

patterns become more easily recognized in the data. Our 

design generalizes to other cyclical spatio-temporal 

visualization problems involving transportation, medicine, 

and the natural world. 

 

1. INTRODUCTION 

 

    A critical step in vehicle-centered data analytics involves 

collecting and analyzing information about the car, track, 

and driver while the vehicle is in motion. Data about the 

dynamic handling characteristics of a race car provide 

critical information for drivers and race crews to understand 

and improve how a car reacts to mechanical changes meant 

to make the car faster [1][2]. So much engineering and 

physiological information is available to race teams that 

visualizing this information has become a critical part to 

understanding how a car [3] and driver [4] are reacting to 

stresses. In motorcar racing, the analysis process involves 

data about objects that move in recurring spatio-temporal 

cycles (i.e. laps on a track) [5]. 

    Interpreting spatio-temporal data visualizations is an 

example of a larger research problem in vehicle telemetry 

analytics and the development of multi-sensor autonomous 

vehicles. Research on data visualization techniques for 

developing multi-sensor vehicles involves both autonomous 

vehicle operation systems [6] [7] and human analyst systems 

[8] [9] where one goal is to minimize the visual interference 

that occurs when working with real-time multi-sensor data. 

In the context of human analyst systems there are two forms 

of visual interference, occlusion [10] [11] and loss of context 

when zooming in to reveal detail [12].  

    This paper presents a design study and prototype 

implementation of a decision-support visualization using the 

fingerprint matrix method [13] to show cyclical spatio-

temporal data in a way that avoids the problems of occlusion 

and loss of context for human analysts. This is a novel 

application of the fingerprint matrix method; to our 

knowledge, it is the first time it has been used to support the 

analysis of cyclical spatio-temporal data. In this research, 

motorsports serves as a representative example of a data-rich 

domain in which cyclical spatio-temporal data is prevalent, 

enabling us to experiment with and reason about different 

approaches for visualizing and analyzing such data. 

    The remainder of this paper is organized as follows. The 

next section explains the relevant prior work in spatio-

temporal visualization as well as a brief description of the 

fingerprint matrix design and its application in 

computational literary analysis. The third section presents 

the design thinking approach [14] for functional analysis and 

visualization development. Following a design thinking 

approach [15], we then present and analyze the design study. 

We conclude with a discussion on the generalizability of the 

design and its limitations.  

 

2. PRIOR WORK 
 

    Spatio-temporal data includes features that relate to both 

space and time, meaning that it is generally about moving 

objects [5]. Visualizing this type of data involves combining 

spatial information about physical location with temporal 

information about when each data point came into existence. 

The spatial representation can be a physical map, a diagram 

of the human body, or locations on some physical object. 

Temporal order can be chronological (e.g. clock time), 

relative (e.g. this happened, then three seconds later this 

happened), or sequential (e.g. this happened first, followed 

by something else) [16]. Interactive visualization tools and 

animation are often added to spatial displays such as a road 

map or diagram of the human circulatory system, to provide 
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analysts with the ability to view the temporal aspects of the 

data with a goal of searching for or confirming trends, rates 

of change, or contact [17]. Visualizing spatio-temporal data 

involves organizing a careful symphony of three streams of 

information (a position in space, a point in time, and a 

measure of something happening at that space and time) and 

then displaying that data point in a meaningful way to an 

analyst [18].  

   Cyclical spatio-temporal refers to data that involves 

objects moving in recurring patterns. This context 

generalizes to an analysis problem that involves an object 

(e.g. a race car), a cyclical spatio-temporal activity (e.g. 

driving laps around a track), and information of interest to 

an analyst (e.g. peak acceleration forces on the car). 

Visualizing this type of data is an important tool in a wide 

variety of research domains, including human, animal, 

engineering, logistics, and social science research [19].  

When the object of interest is circling through a bounded 

space such as a race track, the individual data points begin 

to overlay in visual space and become difficult to perceive 

from one another. Prior designs have attempted to solve 

some of these problems with distortion-based designs such 

as the Hyperbolic Browser [20] and Fisheye Views [21] or 

projection-based designs such as the Magic Eye [22]. In this 

paper we use fingerprint matrices, a non-distortion, non-

projection approach, to provide a straightforward and 

concise way to visualize cyclical spatio-temporal data. 

Fingerprint matrices (FM) are an overview visualization 

that are meant to be matched with a detail visualization 

through multiple coordinated views [23]. An FM aggregates 

key data into a single value that is represented with a colour 

intensity that helps users identify and analyze important 

relationships in a dataset [24]. The design is typically used 

to visualize characteristics in two types of datasets: bodies 

of text (literary fingerprinting) and musical compositions 

(harmonic fingerprinting). 

Literary fingerprinting refers to the visualization of textual 

characteristics in order to compare writing styles of authors 

[25] or the content of a text to identify how themes evolve 

over time [26]. Prior work has shown that the FM is effective 

for identifying and comparing quantitative characteristics of 

text [27]–[29]. 

Musical analysis also uses the FM design. Harmonic 

fingerprinting [30] displays rhythm and harmony 

information for viewers in the same way as text analysts use 

an FM. Prior research has also used the FM as the overview 

component in an overview+detail design for visualizing 

harmony and melody for individual instruments in a musical 

score [31]. These studies show that the fingerprint matrix can 

be used for visualizing recurring patterns in data that have a 

spatial component (e.g. relative location of words/themes in 

a text) and a temporal component (e.g. ordering of notes in a 

score). 

3. DESIGN THINKING APPROACH 

 

Race teams are responsible for creating a competitive race 

car by managing the car, the driver, and the race track 

characteristics in ways that the car is always performing at 

the limits of physics. One of the most important analytical 

elements are the acceleration forces (g-forces) acting on a 

car as it races around a track. Data is collected by an 

accelerometer telemetry device inside the car that records 

forces as the car travels on the race track. Straight-line and 

lateral acceleration forces are exerted as the car accelerates, 

brakes, and turns, all acting in opposition to the friction force 

between the car’s tires and the surface of the race track. If 

the g-forces exceed the tires’ friction force with the race 

track then the tires will lose grip, spin, and possibly cause 

the car to go out of control. A common visualization 

approach for showing the forces acting on a race car is a 

traction circle (TC) which visualizes the straight-line and 

lateral forces on a car [32] (See Figure 1a).  

 

(a) Occlusion when dataset is plotted,  

arrow indicates current datapoint of interest 

 

(b) Loss of context when scatterplot is zoomed in to better 

see individual datapoints, can no longer see the pattern in 

the rest of the data 

Figure 1. Occlusion and context loss [33] 
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A TC is an x-y scatterplot where each data point contains an 

x (left or right lateral force) and y (accelerating or braking 

straight-line force) coordinate. 

  Traction circle visualizations are subject to occlusion 

problems when a series of overlaying points obscure 

individual datapoints (see Figure 1b). They are also subject 

to context loss when zooming in [17]. Human cognition is 

degraded when something goes out of view [27] so in cases 

such as racing where the total force picture over periods of 

time must be perceived and interpreted, loss of context 

makes it more difficult for race teams to analyze and identify 

patterns and trends. A better visualization approach would 

involve displaying the information in a way that minimizes 

or avoids both problems. 

   The analyst in this context is a race team consisting of a 

mechanic crew and a driver, whose goals are to adjust and 

drive the car to its maximum capacity, respectively. The 

analyst’s task is to find patterns in the TC scatterplot that 

indicate known operational patterns such as smooth driving 

through a sharp turn. Trained and experienced mechanics, 

engineers, and drivers can watch for key locations on a track, 

such as entries into corners, and watch how the forces on the 

car change, how much they change, and if the changes are 

consistent at the same places in each lap. In much the same 

way that a statistician examines a scatterplot to see if there 

are patterns indicating linear, quadratic, or exponential 

relationships in the data, race teams examine a TC scatterplot 

to see if there are indications of smooth corner entries and 

exits or unplanned tire spins [34]. Figure 1 shows how 

occlusion and context loss makes visual analysis difficult, 

which provided motivation for designing and developing an 

approach that avoids this problem. 

   Our goal in this research is to visualize acceleration force 

data that varies in intensity. In motorcar racing, drivers have 

a ‘traction budget’ [35] which represents the maximum 

acceleration force the car can experience before the tires lose 

grip with the track surface and the driver loses control of the 

car. As the name suggests, the ‘budget’ does not care what 

direction the acceleration force is coming from, only 

whether the total force vector is less than the maximum peak 

grip value. We propose that the optimal design for the 

analyst is to visualize the peak acceleration force data of a 

car as a single continuous value. The task requirements for 

the visualization are therefore (1) perceive the peak force 

acting on the car throughout a race; (2) identify known 

temporal patterns and trends in the force data; and (3), map 

these patterns and trends spatially and temporally to the race 

track in order to make sense of what is happening to the car 

and driver. 

   In order for the analyst to make sense of the force acting 

on the car we need to allow them to be able to see at least 

three coordinated views of the data: the peak-force values at 

specific track positions for a complete race (overview); the 

two-dimensional point-force on the car (detail); and the 

spatial position of the car on the track (detail). Visualizing 

the point-force data and the spatial position for a car can be 

represented by a standard traction circle scatterplot and a 

race track wireframe image, respectively. Our novel 

contribution in this work is to propose that the 

comprehensive peak-force information can be represented 

by a fingerprint matrix. Following the Gestalt Principle of 

Similarity [36], the mark on the track, traction circle, and FM 

have visually identical attributes for colour, outline, and 

motion to encourage the interpretation that they are all 

related.  

   Figure 2 shows a screen shot of the visualization prototype. 

The data for this prototype includes seven attributes; speed, 

engine RPM, latitude and longitude GPS coordinates, x- and 

y-force acceleration figures, and a timestamp. A synthetic 

dataset based on real-world motorsports characteristics was 

created to illustrate the prototype. 

   The right-hand top panel shows acceleration force data in 

an overview (fingerprint matrix) and detail (the more 

familiar traction circle) manner. The display to the left of the 

FM shows the car as a mark overlaid on a track. The car is 

represented as a green circle (track and TC) or rectangle 

(FM) with a black outline to represent to the analyst that the 

three marks are linked in order to support contextual 

awareness at each point in time. 

As an information overview, the FM is composed of rows 

of individual cells. Each row represents one lap of the track 

and the rows are arranged temporally from top to bottom to 

represent first lap to last lap. Each column (cell) in the row 

represents one acceleration force data point. The cells are 

arranged temporally from left to right to represent the first 

acceleration force data point for the lap to the last data point 

for the lap. Each cell is mapped to a segment of the track to 

represent the force on the car at that point. In this prototype 

there are 60 cells mapped to 60 evenly-divided physical 

segments of the track. The number of cells could be changed 

or created dynamically by design. An algorithm reads the 

data for a row/lap and uses the GPS coordinates to segment 

the data into an array that contains force readings for each 

segment. The x- and y-force values are used to calculate the 

total force vector magnitude for each datapoint in a segment 

and the maximum (peak) force value is used to represent 

total force for that cell/segment. Once each segment is 

represented by a peak force magnitude, the values are 

normalized to a 0-1 scale and the saturation value for each 

cell is set to the normalized value. This process creates cell 

colours that vary in intensity from low to high to correspond 

to total force values that similarly vary from low to high. 
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This use of colour intensity to represent the numerical value 

of the peak force has a theoretical basis in the work by 

Mackinlay on matching visual variables to data types [37] 

representing the lightness/darkness channel in the Opponent 

Process Theory of Colour [38].  

The traction circle detail view is composed of an x-y plot 

with lateral (side-to-side) force displayed on the x-axis and 

acceleration/braking force displayed on the y-axis. The x-y 

origin represents zero force, while left-side lateral and 

braking forces are negative numbers and right-side lateral 

and acceleration forces are positive. Each mark in the plot 

represents one force data point. Each point is initially shown 

as a fully-opaque green mark when first displayed and then 

faded to 15% transparency in order to allow it to be seen if 

other data points later overlap it. When there are a small 

number of data points, this partially addresses the issue of 

occlusion, but does not scale well.  

The race track detail view is composed of a wireframe 

outline of the inner and outer boundaries of the track and are 

drawn using static latitude/longitude coordinates. The race 

car mark that travels around the wireframe track is 

positioned using a mapping function that transforms the 

latitude/longitude coordinates recorded with each data 

collection point into screen coordinates. Mark animation is 

done using a visual transition function that redraws the mark 

sequentially from one position to the next in order to create 

a visually pleasing motion. 

The overview and detail views are coordinated in three 

ways. The FM and race track views are coordinated spatially 

by mapping one lap of the track to one row of the matrix. 

The start/finish line of the track corresponds to the first and 

last cells in a row, a third of the way through the track is also 

a third of the way through the row, and so on. These two 

views are also coordinated temporally because the tempo of 

the mark on the race track view moves at the same tempo as 

the FM mark. Finally, the FM and traction circle are 

coordinated such that the TC shows the X and Y axis forces 

on the car at a given point while the FM shows the magnitude 

of the peak or maximum force vector of that same point. 

Taken together, the FM shows the peak force relevant for 

understanding the traction budget while the TC breaks down 

that peak to the x and y components relevant for 

understanding if traction is being lost to excessive braking, 

turning, or accelerating. Adding the race track view, the 

analyst can also see the track position where this is 

occurring. 

When used in replay mode, interaction controls are 

provided to change the animation speed and behaviour. 

Start/Stop controls are provided to freeze-frame and resume 

animation. Fast forward, rewind, and reset controls are 

provided to easily replay certain portions of the track, jump 

to specified places, or restart the animation. Two modes of 

operation exist, replay and real-time. In replay mode analysts 

are expected to watch the animation and evaluate the 

changes in force acting on the car as the laps proceed. In 

replay mode the full race would be represented immediately 

in the FM.  

   This prototype was initially designed for replay mode but 

could be extended to real-time in a design iteration to add a 

redraw() function that is initiated by the car crossing the 

start/finish line. This function would redraw the view with 

an additional row each time a new lap is recorded, continuing 

Figure 2. Prototype interface 
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to add rows until the race is complete. Figure 2 shows replay 

mode. 

This design was implemented using JavaScript, the D3.js 

libraries, and PHP. XAMPP was used for the local 

development environment (Apache 2.4.43, MariaDB 

10.4.13, PHP 7.2.32). JavaScript libraries were not available 

for track animation, traction circles, or the fingerprint matrix 

so these code libraries were developed new for this work. 

 

4. DESIGN CRITIQUE & SCENARIO ANALYSIS 

 

Two important questions for evaluating whether this 

design improves upon current practice are: (1) how is the FM 

visualization different from the TC?, and (2) does the design 

create a more useful visualization for the analyst? Overall, 

Figure 3 shows that the FM’s novel design displays all the 

same data as the Traction panel but does not occlude 

datapoints. In addition, there is no need to zoom in to see 

detail with the FM design because the rectangular marks 

representing each datapoint occupy their own non-

overlapping space and can still be seen at full scale. Two 

scenarios are presented to illustrate how the fingerprinting 

visualization is different and more useful to an analyst. 

     Figure 3(a) shows two points on the racetrack, a and b, 

that represent a vehicle entering turns 1 and 3 respectively. 

These points are represented simultaneously in three 

coordinated views, allowing an analyst to choose which to 

observe depending on the type of information they are 

seeking. The fingerprint matrix provides an overview of the 

forces that were exerted on the car over the race, enabling 

high-level patterns to be observed. Detailed information 

about the specific direction and magnitude of forces are 

shown on the traction circle, enabling a comparison to 

previous data. Where the data was measured is shown on the 

track visualization, adding context to the analysis.  

    Vehicle motion and forces in corners are critical for 

analysts to visualize because they represent the point where 

a vehicle is most vulnerable to being passed by another car, 

hence wanting the car to move as fast and smooth as possible 

around turns. Over the course of a race the vehicle analysts 

would collect vehicle telemetry data such as forces on the 

car for each lap and visualize the data after the race for 

analysis purposes. Two scenarios illustrate how the 

fingerprinting design can be more useful to analysts in 

understanding their data. 

   The first scenario involves the driver and crew reviewing 

the data for anomaly detection such as determining if the 

vehicle operated within expected limits. Using the traction 

circle an analyst could compare the (x,y) datapoints that 

correspond to certain positions of interest on the racetrack.  

 

(a) Track Trace 

 

 

(b) Traction Circle Visualization 

 

 

(c) Fingerprint Matrix Visualization 

 

Figure 3. Comparing FM and TC 

However, as Figure 3(b) shows, because the forces are 

relatively similar at the same position on a track over 
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multiple laps, the datapoints on the traction circle are heavily 

overlaid and it’s not possible to see critical differences. 

Looking instead to the fingerprint matrix visual however we 

can see a different view of this same data. 

   When we map darker cell colors to higher force levels on 

the car, in Figure 3(c) we see first that the darker cells are 

starting and ending in cell 5 in each row (lap) which is 

expected as the car is being ‘loaded up’ with force at the 

same point in each lap. However, we see at the other end of 

the row in the “Turn 3” portion indicated in the FM that the 

cell colours change in a different way than in the “Turn 1” 

portion. We can therefore detect a visual anomaly between 

the forces in turns 1 and 3, possibly indicating that either the 

car or the driver is doing something different in one region 

of the track than the other. While this difference is readily 

apparent in the fingerprint matrix, it is not visible in the 

traction circle. 

   A second scenario involves pattern recognition tasks such 

as determining whether a critical point or anomaly repeats 

itself in recognizable patterns. Continuing the ‘turns 1 & 3’ 

example, an analyst might review the data to determine if the 

vehicle and driver are operating in expected ways throughout 

a race. Smooth and consistent g-force loading typically 

results in a faster lap time so analysts are looking for patterns 

in their data that suggest minimal variance from one lap to 

the next. Reviewing Figure 3(b), it is difficult to see 

recurring patterns at any detail, again because the datapoints 

are severely superimposed. Zooming in on specific regions 

does not solve the problem because the adjacent points 

needed to perceive lap-to-lap differences quickly go off-

screen.  

   The FM in Figure 3(c) again shows a better picture for 

analysts. The bottom panel shows a recurring pattern of 

irregular driving at the turn 3 end of the track that does not 

occur at the turn 1 end of the track. With this visualization, 

an analyst can immediately discern that, in this case, force 

changes are smooth and consistent in turn 1 (expectations 

met) but are neither smooth nor consistent in turn 3 

(abnormal pattern detected). Different reasons exist to 

explain why a pattern like this might occur, but most 

significantly the matrix approach allows an analyst to see the 

anomaly in the first place. This design encourages 

comparison and exploration of the data by identifying where 

and when things are unexpected and supporting inspection 

of this data to try to reveal the underlying circumstances. 

 

5. GENERALIZABILITY, LIMITATIONS, & FUTURE WORK  

The design for this prototype generalizes to contexts where 

an object of interest moves spatially and temporally within a 

bounded space, and where the analyst wants to see both 

overview and detail of that object’s characteristics free of  

Table1. Cyclical geo-temporal analysis contexts 

Race Car 

[1] 

Are the forces on a race car during laps 

in a race changing in predictable ways? 

Animals 

[39] 

What food source is being used each 

time they follow seasonal migration 

routes? 

Fishing 

[40] 

Do fishing vessels show anomalous 

behaviour as they cycle between port and 

fishing grounds?  

Delivery 

vehicles 

[41] 

How does fuel economy change as the 

delivery trucks become empty at 

different times of the day? 

Medicine 

[42] 

How does the absorption of imaging dye 

change as it cycles through the major 

arteries of the circulatory system? 

 

visual interference. The motivation for this research was to 

develop better human-centered visualization systems of 

moving vehicle data in racing or autonomous vehicle 

contexts. Table 1 shows additional examples of where 

analysts could benefit from seeing the overview+detail 

coordinated view of cyclical spatio-temporal data.  

Consider the avian example where food sources are being 

visualized during bird migration [39]. The Fingerprint 

Matrix design (paired with a geographic map instead of a 

racetrack) would allow for the display of food sources 

encountered over multiple migration cycles and show, 

perhaps, that food sources are changing from one migration 

cycle (one matrix row) to the next. This information would 

not be as clear if overlaid on a map, particularly when 

migration routes are highly consistent from one year to the 

next. In this situation the migration map would experience 

the same occlusion and context loss problems as the traction 

circle in the racing context. 

   As a concept prototype this design has several limitations 

that should be acknowledged. First, the underlying data was 

synthesized in order to operate the functionality of the 

interface. Care was taken to create the data using physics 

equations relating speed, mass, travel, and acceleration 

force, however using a synthetic dataset is not the same as 

capturing live data. We are currently developing a car-

mounted telemetry device for collecting force and position 

data during actual races.  
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   A second limitation is that the functional evaluation in this 

paper does not address whether the data visualization 

actually assists crews or drivers gaining faster lap times. 

User evaluation testing is needed to validate that analysts are 

in fact more effective at perceiving and interpreting 

acceleration force data and can translate that understanding 

into the practical outcome of going faster. In combination 

with telemetry device development we are planning user 

evaluation studies to examine how well this design works for 

anomaly detection and pattern recognition using real data. 

Our ultimate research goal is to develop a visual 

representation of spatio-temporal data for real-time analysis 

while the events of interest are occurring. 

   Future work should also include the development of new 

functionality that allows a user to perform spatial analysis 

tasks such as being able to select elements in the fingerprint 

matrix and have information about what was happening to 

the car and on the track at that time and location. This style 

of interactivity should also go in the other direction and 

allow users to select positions on the track and have those 

positions highlighted in the FM. In both cases, the selection 

of multiple data points could support comparative analysis 

of the data. With such features, users would be able to 

perform ‘what if’ analyses by selecting high-force areas of 

interest in the FM to see where on the track that cars are 

experiencing high g-loads, or selecting different start-stop 

positions on the track to find areas where cars are going the 

fastest or the slowest. 

   To conclude, our design intent was to bridge an existing 

shortcoming in how data is visualized in motorcar racing. 

Our novel design used the fingerprint matrix that is normally 

used for literary and musical analysis and extended this 

approach into the domain of analyzing cyclical spatio-

temporal data. This is our first step in applying the design 

into other similar areas of research. We hope that this 

visualization can be used to improve the presentation of data 

in better ways. 
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