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Abstract 
Demand forecasting intermittent time series is a 

challenging business problem. Companies have 

difficulties in forecasting this particular form of demand 

pattern. On the one hand, it is characterized by many 

non-demand periods and therefore classical statistical 

forecasting algorithms, such as ARIMA, only work to a 

limited extent. On the other hand, companies often 

cannot meet the requirements for good forecasting 

models, such as providing sufficient training data. The 

recent major advances of artificial intelligence in 

applications are largely based on transfer learning. In 

this paper, we investigate whether this method, 

originating from computer vision, can improve the 

forecasting quality of intermittent demand time series 

using deep learning models. Our empirical results show 

that, in total, transfer learning can reduce the mean 

square error by 65 percent. We also show that 

especially short (65 percent reduction) and medium 

long (91 percent reduction) time series benefit from this 

approach. 

1. Introduction  

The latest developments in the field of artificial 

intelligence, specifically deep learning models and their 

subsequent applications, are highly impressive. For 

example, in certain areas cars drive fully autonomously 

[1] and artificial intelligence can generate human-like 

text [2]. Advances in autonomous driving and natural 

human-like text generators, such as the generative pre-

trained transformer 3 (GPT-3), are based on deep 

learning architectures [2, 3]. 

These latest improvements and applications in 

artificial intelligence were made possible, in part, by 

applying transfer learning [4]. In its simplest form, a 

deep learning model is pre-trained on a data set DS and 

then fine-tuned on the target data set DT. 

Modern deep learning architectures are now being 

successfully applied in areas such as healthcare [5], 

energy [6], financial markets [7], production [8] and 

logistics [9]. The predictions derived from these models 

often serve as a basis for human decision-making, for 

example in the area of demand forecasting for spare 

parts to support a company’s purchasing team [10]. 

Artificial intelligence is also gradually being 

implemented in supply chain management [9]. 

Companies can gain significant competitive advantages 

in production, procurement, and logistics through more 

accurate demand forecasts [11]. However, the use of 

neural networks, for example, requires good data quality 

on the one hand, and a sufficient quantity of data on the 

other [12]. Especially the latter requirement is difficult 

for small and medium-sized companies to fulfill, 

because they often start systematically collecting data 

later than large companies do [13]. For newly 

introduced products, where there is not yet a sufficiently 

long product history, the amount of available data is also 

often not sufficient. 

According to Syntetos et al. [14], demand time 

series, i.e., the temporal sequence of demand for a 

product, can be divided into the categories erratic, 

smooth, lumpy and intermittent, as shown in Figure 1. 

Lumpy and intermittent demand time series are 

particularly difficult to predict because they are 

characterized by many zero periods. This not only limits 

the use of measurement metrics, such as mean absolute 

percentage error (MAPE), but also of algorithms, such 

as some variants of holt-winters and auto-regressive 

integrated moving average (ARIMA) models. 

Machine learning and deep learning methods are 

therefore of particular interest for the prediction of these 

complex time series. For example, a hybrid method of 

exponential smoothing (ES) and a recurrent neural 
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network (RNN) won the M4-Competition1. In the M5-

Competition which included intermittent time series, a 

light gradient boosting machine (L-GBM) achieved the 

best overall result. Nevertheless, it is not clear whether 

artificial intelligence methods always produce better 

results in practice compared to statistical methods, for 

example, Kourentzes [15] and Kiefer et al. [16] showed 

that artificial intelligence methods did not necessarily 

always produce the best results. Nikolopoulos [17] also 

highlights the existing research gap in the field of 

intermittent and lumpy demand forecasting. At the same 

time, methods in information systems are rapidly 

advancing. Hence, new developments in the field of 

deep learning, such as transfer learning, should also be 

considered. 

 
Figure 1. Demand patterns according to 

Syntetos et al. [14] 

So far, the transfer learning method has not been 

extensively investigated or applied in the field of 

intermittent time series demand forecasting. There are, 

however, some first experiences in time series anomaly 

detection [15] and in forecasting of financial markets 

[16]. Therefore, this paper investigates whether the 

technique transfer learning, originating from computer 

vision, can be successfully applied to the specific 

problem of intermittent time series demand forecasting 

using deep learning methods, in accordance with the 

design science research (DSR) [17]. Based on the 

identified research gap in the following Chapter 2, the 

following research questions were derived: 

RQ 1: Can the method of transfer learning, from the 

computer vision domain, improve the forecasting 

quality in the field of intermittent time series demand 

forecasting? 

 
1 The makridakis competitions are a series of open competitions 

organized by Spyros Makridakis to evaluate and compare the 
accuracy of different forecasting methods. 

RQ 2: Can especially short time series with few data 

points benefit from transfer learning? 

RQ 3: Do time series with a long history benefit 

from transfer learning? 

The remainder of this paper is structured along seven 

Chapters. In Chapter 2, we explore existing literature 

about transfer learning as well as first attempts to use it 

in domains other than computer vision and natural 

language processing. Furthermore, the existing research 

gap regarding transfer learning for demand forecasting 

intermittent time series is highlighted. Chapter 3 

addresses the experimental design of this article to 

deliver answers to the identified research gap and the 

formulated research questions. In Chapter 4, the results 

of the benchmark and the transfer learning experiments 

are analyzed using a real-world data set. Special 

attention is devoted to the results of both short and long 

time series to gain further insights about when transfer 

learning is possibly useful. Finally, we provide a 

conclusion in Chapter 5. The references cited are shown 

in Chapter 6, while in Chapter 7, the appendix, the 

variables used in the deep learning architectures are 

provided in tabular form. 

2. Transfer Learning and Related Work 

The presented research work is related to areas of 

deep learning, transfer learning, and demand forecasting 

of intermittent time series. The following chapter 

explains the subject matter in more depth where 

necessary and refers to the relevant literature where a 

detailed explanation is not required. 

Over the past decades until now, along with the 

development of mathematics and machine learning 

theories, many algorithms with good performance for 

time series forecasting have been proposed, including 

ES [18], ARIMA [19] model, gradient boosting 

machines (GBM) [20], neural networks (NNs) [21], 

long short term memory (LSTM) [22], gated recurrent 

unit (GRU) [23], and several others [24]. 

However, linear models such as ARIMA, for 

example, can only handle linear and stationary time 

series data. For nonlinear and nonstationary data, 

practitioners attempt to convert them into smooth time 

series data to obtain relatively useful prediction results, 

e.g., in the ARIMA model. As time series data in real-

world applications are often nonlinear and 

nonstationary, traditional linear prediction techniques 

have difficulty adapting to these situations. Difference 

processing can partially achieve stationary time series 
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data, which is usually insufficient to fully express the 

changes in time series data over time. At the same time, 

difference processing cannot be performed if the time 

series has missing or incorrect data have been 

introduced [24]. 

Empirical studies show that nonlinear models 

usually have better, and more reliable, performance 

compared to linear algorithms [24]. Therefore, in the 

subsequent work, we deliberately focus on deep 

learning methods in the form of artificial neural 

networks since these can recognize non-linear cause-

effect relationships. In the context of demand 

forecasting intermittent time series with deep learning 

methods, [25] and [26] have already achieved reliable 

results. 

Two important assumptions for traditional demand 

forecasting time series exist, namely [24]: 

i. The training data and testing data should 

come from the same feature space and 

follow the same probability distribution. 

ii. Sufficient training samples must be 

available to learn a good prediction model. 

In many practical application scenarios, the time 

series often change over time leading to a significant 

discrepancy between new and old data. At the same 

time, in real-world applications, the amount of available 

data is rather small, resulting in an insufficient amount 

of training data. In these cases, the two important 

assumptions cannot be met [24]. 

In transfer learning, on the other hand, the domains, 

tasks, and distributions used in training and testing can 

be different. In particular, when there is limited data in 

the target data set, transfer learning can usually achieve 

good improvements and it is therefore a common 

method in deep learning applications [27]. 

In the real world, we can observe examples of 

transfer learning. For example, learning to play an 

electric guitar can facilitate learning to play drums. 

Research on transfer learning is motivated by the idea 

that people can intelligently apply previously learned 

knowledge to solve new challenges faster or with better 

solutions. The fundamental for transfer learning in the 

field of machine learning was set in a NIPS-95 

workshop on “Learning to Learn” [27]. 

Transfer learning is used to improve a learner from 

one domain by transferring information from a related 

domain. Figure 2 visualizes the difference between 

standard domain learning tasks and transfer learning. 

 
Figure 2. Comparison of the traditional domain 

specific learning and transfer learning 
approach [28] 

A simple explanation regarding the primary function 

of transfer learning and notation for this work follows, 

based on Pan [27]. 

Given a source domain DS and learning task TS, a 

target domain DT and learning task TT, transfer learning 

aims to help improve the learning of the target predictive 

function fT (•) in DT using the knowledge in DS and TS, 

where DS ≠ DT, or TS ≠ TT. Further and more detailed 

explanations are provided in the study of transfer 

learning by Pan [27]. 

The latest developments and applications – and their 

successful results in the field of artificial intelligence – 

are based on transfer learning [4]. Particularly 

noteworthy are recent developments in the areas of 

computer vision and natural language processing. 

Transfer learning has already been successfully applied 

in the context of time series analysis, including anomaly 

detection [15] and forecasting of financial markets [16], 

which correspond to smooth or erratic time series. 

In the area of intermittent time series demand 

forecasting, we could not find any research results. 

Therefore, in this paper we focus on investigating 

whether and how the transfer learning method can 

improve intermittent time series demand forecasting. Of 

particular interest is the behavior with different lengths, 

respectively amounts, of data of the target time series to 

be forecasted. 

3. Suggested Experimental Design 

To answer the research questions and expand on 

existing investigations, we propose an experimental 

design (Figure 3) that is adapted to the shortcomings 

mentioned in the previous chapters. 
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Figure 3. Suggested experimental design 

We have two data sets available to review the 

research questions posed. 

DS corresponds to the public M5 data set, which 

contains mainly intermittent and lumpy time series. The 

data is provided by Walmart and includes 30,490 SKU-

level hierarchical daily time series with a length of 1,941 

time steps for each series [29]. 

DT is provided by a technical business-to-business 

distributor and includes approximately 8,782 

hierarchical daily time series at the product level with 

varying lengths from 1 to 3,960 time steps for each time 

series. 

These time series were categorized using the 

approach described by [14]. Based on the calculated 

average demand interval (ADI) and the squared 

coefficient of variation (CV2), the time series were 

categorized according to their demand behavior. The 

ADI represents the average demand interval between 

two successive demands. This metric is a measure of 

intermittency; the higher it is, the more intermittent the 

time series. 

 
𝐴𝐷𝐼 =

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
 (1) 

CV2 describes the magnitude of demand variability 

in a time series [14]. If the value is high, this indicates 

that the demand variability in the series is also high. 

 
𝐶𝑉2 = (

𝐷𝑒𝑚𝑎𝑛𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐷𝑒𝑚𝑎𝑛𝑑 𝑀𝑒𝑎𝑛
)

2

 (2) 

In Figure 4, it can be seen that the distribution of the 

coefficient of variation from the M5 data set is slightly 

different to the distribution of the real data set of the 

technical trader. The median coefficient of variation 

value for M5 is 0.32 and for the real-world data set it is 

0.21, which means that the demand in the M5 data is 

more variating than the demand from the real-world data 

set. 

 
Figure 4. Distribution of the coefficient of 

variation 

Figure 5 shows that the distribution of the average 

demand interval of the M5 data set is different to the 

distribution of the real data set of the technical trader. 

The median ADI value for M5 is 1.60 and for the real-

world data set it is 9.30, which means that the data from 

M5 are less intermittent than those from the real-world 

data set. 

 
Figure 5. Distribution of the average demand 

interval 

For the cut-off values, we adopted the values 

proposed by [14]. Figure 6 shows the cut-off values and 

the resulting classes. The corresponding demand 

categories are: erratic (but not very intermittent), lumpy, 

smooth and intermittent (but not very erratic) [14]. 

 
Figure 6. Demand pattern categorization 

scheme [14] 
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By categorizing the M5 time series according to 

[14], 10,095 intermittent time series could be identified, 

which were used as DS for our transfer learning model. 

Within the real data set of the technical trader 3,470 

intermittent time series could be identified, which is the 

target domain DT to predict. 

The time series are present on a daily basis and are 

aggregated on a weekly basis. The aim of the forecast is 

to predict the next period, i.e., week. For this purpose, 

the last 52 weeks serve as input for the respective deep 

learning models. The input sequences are scaled with 

the MinMaxScaler (0-1) [30]. 

Of the target data set DT, 80 percent of the data is 

used to train the models, and the remaining 20 percent 

is used to evaluate the forecasts. 

The underlying benchmark deep learning model is a 

neural network based on 10 fully connected dense layers 

with a total of 953 neurons. More detailed specification 

of the architecture (Figure 7) and the hyperparameters 

(Table 5) can be found in Chapter 7. The model is 

trained univariately, i.e. on each time series individually 

with 80 percent of the data of this time series. The 

function fT (•) resulting from the learning process is then 

used to predict the remaining 20 percent of the data on 

a rolling basis. For this, an input sequence of the last 52 

weeks is used to predict the next week and so on. This 

is done for all time steps to be predicted in the time 

series. 

The transfer learning models are almost identical to 

the benchmark model. There are in total two 

experiments. 

In experiment 1, the benchmark model is trained on 

the source data set DS before it is fine-tuned on the target 

data set DT. The resulting model or learned content from 

DS in the form of weights within layers and neurons is 

“frozen” to ensure this knowledge. The last layer of this 

architecture is removed and added again without the 

stored weights. This allows the model to be fine-tuned 

respectively trained on the target data set DT with 80 

percent of this data in the next step. The remaining 20 

percent are predicted and evaluated as described above. 

Experiment 2 basically works like experiment 1 and 

is also based on the architecture of the benchmark neural 

network. While in the previous experiment 1 the last 

layer is removed to allow fine tuning in this layer, in 

experiment 2 the complete model trained on DS is used 

with the “frozen” weights of all layers. However, an 

additional dense layer, similar to the last corresponding 

layer of the architecture, is added to this model. In this 

specific layer the fine adjustment on the target data set 

DT takes place. In simplified terms, this does not remove 

any previously learned knowledge from DS. 

In the following, we present the error metrics used 

to evaluate the predictions on the out-of-sample area of 

the data. 

To assess the forecast quality, the mean squared 

error (MSE) is a commonly used metric in comparing 

time series models. Its nonnegativity as well as its 

symmetry are highly valuable features [31]. 

 

MSE =
1

𝑛
 ∑ (𝑋𝑖 − 𝑌𝑖)

2
𝑛

𝑖=1
 (3) 

with: 

• 𝑋𝑖, predicted target value at time step i 

• 𝑌𝑖, true target value at time step i 

• 𝑛, quantity of predicted time steps 

While the MSE has a symmetry, the root mean 

squared error (RMSE) evaluates larger errors stronger 

than smaller ones making it more sensitive to outliers 

and penalizing them [32]. This property must be kept in 

mind and can be beneficial as well as negative. 

Therefore, this metric is used in a context-specific 

manner. In the area of demand forecasting, it can be 

useful to use this metric to evaluate the models as well, 

since large errors in the forecast lead to major economic 

losses, for example in form of excessive inventory. 

 
RMSE = √∑

(𝑋𝑖 − 𝑌𝑖)
2

𝑛

𝑛

𝑖=1
 (4) 

with: 

• 𝑋𝑖, predicted target value at time step i 

• 𝑌𝑖, true target value at time step i 

• 𝑛, quantity of predicted time steps 

Since both of the previously mentioned metrics are 

not scaled, it is difficult to compare the metrics from 

time series to time series and across multiple models. 

Kolossa and Siemsen [33] suggest for intermittent time 

series, to scale the RMSE by the series overall mean of 

the test set to obtain a scaled error measure that is 

comparable between time series. In the following we use 

the notation for this metric S-RMSE. 

 

S − RMSE =
𝑅𝑀𝑆𝐸

1
𝑛

 ∑ 𝑌𝑖
𝑛
𝑖=1

 (5) 

with: 

• 𝑌𝑖, true target value at time step i 

• 𝑛, quantity of predicted time steps 

4. Results 

In the following, the forecasting results of the 

benchmark model and the two transfer learning 

experiments are presented. We only report out of sample 

(i.e., test set) results, because superior results on the in-
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sample (i.e., training set) can be misleading regarding 

overfitting. 

Overall: Table 1 shows the results of the benchmark 

deep learning model and the experiments with transfer 

learning. Considering the Ø MSE, both experiments 

outperformed the benchmark. The evaluation metric 

was reduced by 65 percent. Regarding the Ø RMSE, 

which is more sensitive to outliers, experiment 2 could 

improve the forecasting result by 23 percent. The 

proposed metric for the evaluation of intermittent 

demand forecasting by [33], the Ø S-RMSE, again 

shows that experiment 2 achieved the best result. The 

benchmark model without transfer learning has a 10 

percent higher value. Looking at experiment 1, and 

considering the Ø S-RMSE, it achieved a slightly worse 

result than the benchmark model. In the other metrics, 

the experiment 1 is clearly better than the benchmark. 

Table 1. Results of all time series of DT 

 Ø MSE Ø RMSE Ø S-RMSE 

Benchmark 5.89 - 0.31 - 3.77 - 

Exp. 1 2.08 (-65%) 0.25 (-18%) 3.85 (+2%) 

Exp. 2 2.07 (-65%) 0.24 (-23%) 3.40 (-10%) 

In 2,708 time series, the experiment 2 model 

achieved a better prediction result across all metrics than 

the benchmark model did without transfer learning. This 

corresponds to about 78 percent. In 762 time series, the 

benchmark achieved a better result than the transfer 

learning experiment 2, which corresponds to 

approximately 22 percent. 

Short time series: Table 2 shows the results of the 

benchmark deep learning model and the experiments 

with transfer learning on short time series. Short time 

series are defined in cases where the model can only 

learn from a history of less than 2 years of data. Overall, 

the results strongly support the findings from literature 

that transfer learning can achieve strong improvements 

when few data points are available. Regarding the Ø S-

RMSE, both experiments could improve the forecast by 

71 percent. Considering the Ø MSE, both experiments 

reduced this error metric by 65 percent, while on the Ø 

RMSE, the experiments reduced the error by roughly 55 

percent. 

Table 2. Results of short time2 series of DT 

 Ø MSE Ø RMSE Ø S-RMSE 

Benchmark 171.36 - 2.80 - 6.66 - 

Exp. 1 60.54 (-65%) 1.24 (-56%) 1.96 (-71%) 

Exp. 2 60.53 (-65%) 1.25 (-55%) 1.92 (-71%) 

2 short time series <= 2 years of data 

In 86 time series, the experiment 2 model achieved 

a better prediction result across all metrics than the 

benchmark model without transfer learning, which 

corresponds to about 75 percent. In 28 time series, the 

benchmark achieved a better result than the transfer 

learning experiment 2, which corresponds to about 25 

percent. 

Long time series: The results of the benchmark 

deep learning model and the experiments with transfer 

learning on long time series are shown in Table 3. Long 

time series are defined in cases where the model can 

learn from a history of more than 5 years of data. 

Experiment 2 again outperformed the benchmark on the 

Ø MSE, with an 11 percent better result. The gain of 

prediction accuracy from the experiment 2 on the long 

time series was considerably smaller than on the short 

time series. 

Regarding the Ø RMSE, which is more sensitive to 

outliers, experiment 2 could improve the forecasting 

result by 5 percent. The Ø S-RMSE, shows that the 

experiment 2 again achieved the best result. The 

benchmark model without transfer learning has a 4 

percent higher error metric value. Looking at 

experiment 1, it becomes evident that on long time 

series it cannot gain in prediction accuracy against the 

overall benchmark. 

Table 3. Results of long3 time series of DT 

 Ø MSE Ø RMSE Ø S-RMSE 

Benchmark 0.09 - 0.20 - 3.75 - 

Exp. 1 0.10 (+8%) 0.20 (+4%) 4.05 (+8%) 

Exp. 2 0.08 (-11%) 0.19 (-5%) 3.61 (-4%) 

3 long time series > 5 years of data 

In 2,103 time series, the experiment 2 model 

achieved a better prediction result across all metrics than 

did the benchmark model without transfer learning. This 

corresponds to about 78 percent. In 598 time series, the 

benchmark achieved a better result than the transfer 

learning experiment 2, which corresponds to about 22 

percent. 

Medium time series: Table 4 shows the results of 

the benchmark deep learning model and the experiments 

with transfer learning on medium time series. Medium 

time series are characterized by a data history that is 

longer than 2 years but shorter than 5 years. Considering 

the Ø MSE, both experiments considerably 

outperformed the benchmark, with approximately 90 

percent. Regarding the strong outlier sensitive metric Ø 

RMSE, transfer learning experiment 1 reduced the error 

by 17 percent and experiment 2 by 21 percent. On Ø S-

RMSE, experiment 1 had a slightly higher error metric 

than the benchmark model. However, experiment 2 

reduced this error by 15 percent. 
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Table 4. Results of medium time4 series of DT 
 Ø MSE Ø RMSE Ø S-RMSE 

Benchmark 1.04 - 0.34 - 3.33 - 

Exp. 1 0.11 (-90%) 0.28 (-17%) 3.38 (+2%) 

Exp. 2 0.09 (-91%) 0.26 (-21%) 2.82 (-15%) 

4 medium time series 2 < x <= 5 years of data 

In 519 time series, the experiment 2 model achieved 

a better prediction result across all metrics than the 

benchmark model without transfer learning. This 

corresponds to about 79 percent. In 136 time series, the 

benchmark achieved a better result than the transfer 

learning experiment 2. This corresponds to about 21 

percent. 

Based on the presented results, it is evident that deep 

learning methods benefit from the transfer learning 

approach for forecasting demand of intermittent time 

series. Especially on short and on medium time series, 

the transfer learning experiments, primarily experiment 

2, considerably outperformed the benchmark deep 

learning architecture without transfer learning. 

5. Conclusion 

According to the current state of research it is 

unclear if transfer learning, which is a technique to 

improve deep learning models from the computer vision 

domain, also improves results on tabular data such as 

demand forecasting intermittent time series. Research 

on transfer learning is mostly conducted in the domains 

of computer vision and natural language processing. 

Time series analysis and especially forecasting demand 

transfer learning research is rare, even though almost 

every company works with forecasts and better forecasts 

are a competitive advantage. 

One main contribution of this work is the analysis of 

the transfer learning approach in combination with deep 

learning methods to forecast demand of intermittent 

time series. To evaluate the performance, the MSE, the 

RMSE and the S-RMSE were used. The same deep 

learning architecture, but without the transfer learning 

methodology, was used as a benchmark. In total, 3,470 

intermittent time series of a technical retailer (DT) were 

forecast and evaluated on the test set. To deliver more 

insights about the behavior of the transfer learning 

experiments, the time series were divided into short, 

medium, and long time series. 

Using this approach, it was possible to examine the 

results in more detail and to make statements about the 

gained improvement of the transfer learning methods 

depending on the data length. The M5 competition data 

set was used as domain source DS to improve the target 

predictive function fT (•) in DT using the knowledge in 

DS and TS. 

Referring to RQ 1 of Chapter 1, it could be seen that 

the transfer learning experiment 2 clearly outperformed 

the benchmark deep learning model. Depending on the 

error metric, the transfer learning approach could reduce 

the error of all time series of DT by between 65 to 10 

percent. Based on these results, it can be concluded that 

the transfer learning approach works on this specific 

problem and on the data. 

For RQ 2 in Chapter 2, the time series of DT were 

divided into short, medium, and long time series. In the 

analysis it becomes clear that short time series strongly 

benefit from the transfer learning approach. The 

improvement ranges from 71 to 55 percent depending 

on the error metric under consideration. In 75 percent of 

the short time series, it achieved a better forecast result. 

The medium time series could even be slightly better 

improved as the error metric could be reduced from 91 

to 15 percent with transfer learning. 

Regarding RQ 3 in Chapter 2, the transfer learning 

methods could not improve the long time series results 

in a meaningful way. Experiment 1 achieved worse 

results than the benchmark model in all error metrics. In 

contrast, experiment 2 could achieve slightly better 

results, but only in the range of 11 to 4 percent 

improvement. 

The results of this study help to better understand 

forecast methods in the context of demand forecasting 

intermittent time series. Demand forecasting is highly 

relevant in the area of logistics and supply chain 

management. Through the analysis of three deep 

learning models, it could be shown that deep learning 

methods with transfer learning achieve better results 

than those without, especially on short and medium time 

series lengths. 

Our work provides new and important insights, 

which are still partly limited and require further 

research. Additional investigations should be conducted 

to analyze the influence of similarity, considering 

distribution of DS in terms of ADI and CV2 in 

comparison to DT to find further improvement 

possibilities by means of a potentially improved data 

selection. 

Regarding the deep learning methods, we used a 

rather simple architecture, as shown in Chapter 7. Most 

recently developed architectures, such as transformer 

neural networks for example, could benefit even more 

from using a transfer learning approach. Furthermore, 

due to the limited data availability of intermittent time 

series data sets, only a rather simple transfer learning 

approach could be used. It is also possible to use multi 

source transfer learning with several DS 1, ..., DS n. 

This also leaves room to the idea of federated 

learning (also known as collaborative learning). By 

training a model on n DS n, all participating collaborators 

benefit from a better target predictive function fT (•) 
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without sharing the data directly. Particularly for small 

and medium enterprises, this can provide a path to better 

deep learning models. 
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7. Appendix 

Table 5 contains the selected parameters for the 

respective models to forecast the demand (for 

parameters that are not listed, the default value was 

used). 

Table 5. Selected parameters of the model 

Parameter Value 

Activation function Scaled exp. linear unit (selu) 

Batch size 32 

Dropout AlphaDropout (0.01) 

Early stopping False 

Epochs 300 

Input window width 52 time steps (weeks) 

Kernel initializer Lecun normal 

Loss Mean squared error 

Optimizer Adam (learning rate = 0.0001) 

Shuffle False 

Validation split 0.2 

The following figure visualizes the applied network 

architecture for the benchmark experiment, for the 

individual experiment model adaptions, please refer to 

Chapter 3. 

The chosen model consists of 10 fully connected 

dense layers. Each layer uses a lecun normal kernel 

initializer and is followed by a scaled exponential linear 

unit (selu) as activation function. As dropout, an 

AlphaDropout layer is placed between each dense layer, 

having a dropout rate of 0.01. The number of units can 

be seen in the following Figure 7. The implementation 

is realized using python 3 [34] and the keras 

implementation in tensorflow 2 [35]. 
 

Figure 7. Deep learning architecture of the 
benchmark model 
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