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Abstract 
The static stability constraint is one of the most 

important constraints in pallet loading and plays a 
substantial role when assembling safe and loadable 
palletizing layouts. Current approaches reach their 
limits as soon as additional complexity is added, which 
is a given in the practice of air cargo logistics, or when 
performance becomes important. As our central 
objective, we explore a new approach to calculate static 
stability more performantly and to cover more 
complexity by relaxing several simplifying assumptions. 
The approach is implemented in a prototype and builds 
on the emerging technology of graphical processing unit 
acceleration in combination with physics engines. We 
propose a new artifact design and summarize the how-
to knowledge in the form of abstracted design 
principles. Our results demonstrate an improvement in 
terms of performance depending on the underlying 
hardware. We develop a conceptual model to assist 
future research in choosing a solution technology. 

 
 

1. Introduction  

In palletizing, an important process in air cargo 
logistics involves palletizers placing cargo on so-called 
unit loading devices (ULDs), which comprise pallets 
and containers. Stability of the cargo arrangement 
prevents damaged cargo and even personnel injuries [1–
4]. Static stability ensures that items maintain their 
positions during loading, whereas dynamic stability 
applies to situations in which the pallet is being moved 
(e.g., in a vehicle). Static stability as a constraint is 
particularly relevant [1] and highly significant in 
practical usage [5] “yet [has been] inconsistently dealt 
with” [2] in previous works. In comparison to other 
static stability approaches (e.g., full base support, partial 
base support, static mechanical equilibrium), physical 
simulations can capture and process more practical 
complexity of stability assessments for ULDs and items 
as they build virtual images with real-world physical 
laws, thereby relaxing simplifying assumptions [6]. 

Hence, simulations can cope with the complexity of a 
broad variety of rigid or soft body shapes and can 
include sub-pallets and additional physical properties, 
such as non-uniform weight distribution.  

Physical simulations with real-time physics engines 
provide sufficient precision to approximate realistic 
cargo-loading scenarios compared to high-precision 
dedicated physical simulators but deliver results in a 
fraction of time [7]. 

However, simulations are computationally 
expensive and are thus hard to integrate in optimization 
heuristics [8] used for searching for good palletizing 
solutions (so-called layouts). An acceleration (e.g., 
through parallelization) of an underlying physical 
simulation can help achieve faster stability evaluations 
and, in consequence, increase overall solution quality. 
General-purpose computation on graphics processing 
units (GPGPU) massively parallelizes computations 
based on modern graphical processing units’ (GPU) 
computational capabilities [9] and can be utilized for 
physical simulations [10]. To the best of our knowledge, 
previous studies have neglected the opportunities 
emerging from the field of GPGPU for this problem 
context. For this study, our research goal is to propose a 
new design for a GPGPU-based approach to assess 
static stability. Consequently, we ask the following 
research question: How can a static stability assessment 
approach for air cargo palletizing be designed using 
GPGPU?  

To achieve our goal and to answer our research 
question, we follow the design science research (DSR) 
approach introduced by Peffers et al. [11]. We ground 
our design in theoretical findings on simulation-based 
static stability assessments and practical insights from 
an ongoing collaboration with a major German cargo 
carrier. Our contribution consists of a design for a new 
approach to assess static stability for air cargo 
palletizing that better meets practical requirements by 
including substantially more real-world complexity and 
improving performance. Further, we develop a 
conceptual model that maps execution technology to 
problem configuration. From a practitioner’s view, our 
prototype could likely be employed in complex problem 
cases that require significant compliance with 
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transportation safety rules, as is the case in air cargo 
operations.  

The remainder of this work is as follows. In Section 
2, we provide an overview of related work. Afterward, 
we elaborate on our methodology in Section 3. We then 
present our main results in Section 4, which are then 
discussed and concluded in Section 5.  

2. Related Work 

Approaches to physical simulations can broadly be 
classified into the categories of stand-alone and 
integrated. The first category comprises approaches that 
utilize physics engines to train or develop a model that 
is deployed afterward in an optimization heuristic. The 
latter represents approaches that directly execute the 
simulation from within a heuristic.  

The stand-alone approach is described and applied 
in works by Ramos et al. [12]; Ramos et al. [8]; and 
Martínez, Cuellar, and Álvarez-Martínez [13]. In most 
cases a linear or mechanical model approximates the 
physical outcome [13]. To evaluate such models, a 
physics engine can be used. The studies of Ramos et al. 
[8] and Ramos et al. [12] resulted in a stand-alone 
simulation software prototype (StableCargo) for 
calculating dynamic stability behavior for container 
loading problems. The authors benchmarked their 
physics engine–based stand-alone tool against a high 
precision engineering simulator and analytical 
solutions, thereby modeling typical transport forces and 
velocities. StableCargo can approximate analytical and 
high-precision solutions. However, the authors provided 
no report about StableCargo’s integration into an 
optimization heuristic. Martínez, Cuellar, and Álvarez-
Martínez [13] presented a mechanical model that 
predicts the outcome of a physics engine in the case of 
dynamic stability. Their developed algorithm calculates 
the number of fallen boxes based on the mechanical 
model. 

In the past, capturing stability within a model 
frequently requires imposing simplifying assumptions 
(e.g., uniform mass distribution, box-shaped items), 
which can make it difficult to adapt to new or 
unexpected data. This issue is particularly relevant in the 
air cargo context, which combines substantial cargo and 
ULD heterogeneity [14, 15]. 

This problem has been addressed with the 
integrated approach, which can be found in Bracht et al. 
[16] and Mazur et al. [6]. Physical simulations are a 
versatile technique that support a broad spectrum of 
shapes and include meta-characteristics, such as 
displaced mass distributions and material properties. 
Real-time physics engines operate sufficiently precisely 
to overcome simplifications. They obtain realistic 
physical feedback as they build virtual images with 

similar physical laws and behavior as in real-world 
contexts (e.g., gravity, friction, collisions). They also 
provide enough interfaces and sufficient runtime 
performance to be generally used in heuristic search 
processes, although they heavily slow down the 
application. However, studies on their integration within 
solution-generating heuristics are scarce. The results 
from Bracht et al.’s work [16] demonstrated the 
integration of dynamic stability verification into a 
genetic algorithm (GA) meta-heuristic using a physics 
engine. The authors performed two stability tests: (1) 
one local stability test that is executed for every single 
box in a layout and verifies if the center of gravity of a 
box is supported by the supporting convex hull of 
previously packed boxes and (2) one static and dynamic 
stability verification test using simulations. Their results 
revealed that physics simulations consumed most of the 
total processing time, prevented the meta-heuristic from 
reaching a high solution quality level, and decreased its 
convergence with satisfactory layouts. Similar results 
were reported from Mazur et al. [6], who demonstrated 
the integration of physical simulations in an 
optimization heuristic for pallet loading in air cargo. 
Their prototype employed a physics engine to iteratively 
load a cargo layout within a GA with aviation safety 
constraints. The authors reported long runtimes with 
moderate solution qualities. In both studies, an 
optimization heuristic executes simulations with a 
physics engines, which return information about the 
spatial positions of cargo items for a given time interval. 
Further, both approaches draw attention to the problem 
of accelerating simulations since underlying heuristics 
heavily depend on fast evaluations of their candidate 
solutions. The more runtime a heuristic spends in a 
candidate solution’s fitness evaluation, the less runtime 
it can spend searching for better solutions  

One option to accelerate physical simulations is to 
parallelize and distribute problem calculations upon 
many-core processors, such as GPUs. GPGPU refers to 
GPU employment for non-graphics computation [17]. 
Today, researchers and practitioners choose GPGPU to 
achieve high computational performance at low costs. 
Specifically, GPU computations are considerably faster 
at floating-point calculations and can allocate work to 
the GPU to balance loads [18]. The compute unified 
device architecture (CUDA) includes a unified shader 
pipeline, enabling all shading multiprocessors to be used 
for general-purpose computations with single-precision 
floating-point arithmetic and general computation 
instruction sets. Due to the hardware design, not all 
computational tasks are well suited for GPU processing. 
GPGPU is efficiently applicable if the problem is data 
parallel and can be decomposed into smaller 
independent sub-problems [18]. In general, applications 
that contain a high ratio of mathematical operations 
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compared to memory access achieve good performance 
[19]. Examples for GPGPU applications range from 
sorting, database operations, and image processing [17] 
to physically based simulations and illumination 
models, such as raytracing and volume processing. In 
rigid body simulation cases, GPGPU can help accelerate 
and parallelize computations. As an application, Harada 
[10] demonstrated the rigid body physics calculation for 
a large number of bodies entirely on the GPU.  

3. Approach 

We base our approach on the DSR framework, 
which focuses on “(1) creation of knowledge through 
design of novel or innovative artifacts and (2) the 
analysis of the artifact’s use and/or performance with 
reflection and abstraction” [20]. Within this framework, 
we present a new approach (accelerated, integrated GPU 
physical simulations) for an already-known problem 
(static stability assessment in pallet loading), which 
marks an improvement compared to the state of the art. 
An improvement aims to “create better solutions in the 
form of more efficient and effective products, processes, 
or ideas” [21]. The differences of an improvement from 
already existing solutions must be clearly presented 
along with an extensive evaluation, thereby delivering 
evidence for increased “efficiency, productivity or other 
quality measures” [21].  

Specifically, we employ the (DSR) methodology by 
Peffers et al. [11]. This methodology’s core component 
consists of the nominal process sequence for conducting 
DSR, which is composed of six phases: problem 
identification and motivation, objectives of a solution, 
design and development, demonstration, evaluation, and 
communication.  

Multiple sources, including new technological 
developments, can act as starting points for problem 
awareness [20]. We first provide a description from a 
practitioner’s perspective. During our research project, 
we collaborated with a major German air cargo carrier. 
For several months, our team, which consisted of up to 
eight researchers, conducted joint workshops with two 
experts from the air cargo operations field, met two 
palletizers, and visited palletizing operations and 
aircraft-loading operations at a large German cargo hub 
multiple times. Over the course of more than eight 
workshops, we developed a common problem 
understanding and received an impression of the 
practical implications of loading stability and its impact 
on safe air transportation. Consequently, we allow our 
understanding of the identified problem to flow into the 
identified problem and gave special consideration to 
practical requirements. In the solution objectives 
definition phase, solution requirements are inferred 
from problem specification in terms of their feasibility. 

They can be of quantitative or qualitative nature [11, 
20]. At the heart of the DSR methodology in the design 
and development phase, our artifact is constructed [11]. 
During the phase, we first developed both a target 
functionality and a high-level architecture. Afterward, 
we searched for relevant libraries that provided out-of-
the-box functionalities (e.g., API and physics engine). 
We grounded our selection of a physics engine in 
published comparisons of freely available engines. 
Finally, we incrementally built the artifact using agile 
software development. During the demonstration phase, 
one or multiple problem instances are solved. In this 
study, we demonstrate and evaluate our artifact’s 
functionality using one problem instance derived from a 
benchmark dataset [14]. The evaluation stage addresses 
the comparison of an artifact’s desired goodness of fit to 
its actual goodness of fit (e.g., through hypothesis tests 
about the artifact’s behavior or benchmarking). 
Deviations from this comparison must be tentatively 
explained and might result in a successive iteration of 
the DSR cycle [20]. Primarily, we evaluate if our artifact 
marks an improvement with respect to the quality 
dimensions obtained from the solution objectives 
definition. We compare our loading algorithms’ 
performance for varying problem sizes. Furthermore, 
we deploy a set of one-sided two-sample Welch’s t-tests 
[22] to test performance improvements. Welch’s t-tests 
are well suited to compare means of multiple samples 
and are specifically robust when it comes to deviating 
variances and sample sizes. We select Cohen’s d as a 
measure of effect sizes.  

4. Results  

4.1. Problem Identification and Motivation 

From a practitioner’s perspective, the need to 
improve performance arises due to multiple factors. In 
the time-critical air cargo sector, approaches to 
accelerate and reduce execution time help carriers meet 
strict flight-departure deadlines. Given the runtime of 
integrated simulation-based approaches, overall 
solution quality might be insufficient to achieve desired 
volume-utilization goals and service levels. As a key 
driver of runtime, stability assessments and their 
accuracies are substantial issues encountered in practice. 
In air cargo operations, carriers transport  vastly 
heterogeneous items [14, 15]. Simplifying assumptions 
about cargo or insufficiently modeling cargo or ULD 
characteristics is likely to produce inaccurate or wrong 
stability predictions. In light of the presented 
motivation, we shape the DSR problem as follows. In 
the air cargo context, given a pallet-loading 
optimization heuristic, we need to find a better 
performing but equally accurate solution to static 
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stability assessments than previous approaches and to 
capture more complexity in terms of meta-information. 
The main input from the heuristic is multiple cargo 
layouts, which span different ULDs and item-
arrangement information. Furthermore, items are 
characterized by their specific shape, weight, center of 
mass, and sub-pallet. Every item is assigned a final 3D 
position on a ULD and a loading sequence, which 
determines the loading order. The artifact must return a 
quantified numerical static stability assessment value 
reflecting a layout’s amount of static stability. 

4.2. Solution Objectives 

Since our research goal is to create an improvement, 
we need to derive relevant characteristics to enable 
qualitative comparison between approaches. 
Accordingly, we use two main characteristics. (1) 
Increased performance: our artifact should evaluate 
static stability considerably faster (in terms of wall-
clock time) for a given set of cargo layouts. (2) Cover 
more complexity: to increase the practical relevance of 
palletizing solutions, we opt to cover as much 
complexity found in practice as possible, resulting in 
more realistic evaluations of static stability. In this 
study, we operationalize complexity using enhanced 
modeling of items and ULDs. 

4.3. Design Requirements and Principles  

GPUs require different data structures and flows 
than central processing units (CPUs). We design our 
system’s workflow and its corresponding simulation 
such that it considers GPU characteristics (e.g., high 
throughput, high latency) and GPGPU specifications 
(e.g., stream processing, data parallelism, 
independence) (Design Requirement, DR1). We 
acknowledge a tradeoff between simulation resolution 
and performance that meets practical goals (DR2). 
Together, a well-suited workflow and an optimized 
tradeoff leads to good task-technology fit. One 
substantial drawback of GPU-based applications is the 
inherent dependence on dedicated graphics hardware. 
This dependence affects virtualization and ultimately 
portability. Therefore, our design pays attention to 
hardware bindings (DR3). To track simulation 
workflows and time steps to ensure simulation 
correctness and to communicate solutions to 
stakeholders, our design includes a visualization (DR4). 
In air cargo logistics, palletizers cope with a broad range 
of item shapes, combined with low identical shape 
frequency. Therefore, our design must consider item 
shape and support irregular forms (DR5). To achieve a 
high amount of practical relevance and to overcome 
simplifications with respect to cargo, we need to include 

weight distributions (DR6) and sub-pallet (DR7) 
information. Finally, different types of ULDs exists and 
should be realistically modeled (DR8). To meet our 
design requirements on an abstract level, we develop a 
set of design principles: 

DP1: Batch Processing. To exploit the parallelism 
abilities and deep pipeline of GPU processing, a high 
problem size needs to be transmitted and processed 
concurrently on the GPU. It addresses DR1-2. 

DP2: Loose Coupling. To overcome tight 
dependency in terms of hardware and technology, the 
stability evaluation should be decoupled from the 
heuristic and dedicated physics engine. This principle 
ensures a maximum level of portability and 
interchangeability between the heuristic, stability 
simulation, and physics engine. This decoupling enables 
access using exposed interfaces and dedicated 
platforms. Further, reusable and loosely coupled 
components enable the system to be employed for non-
stability purposes. It addresses DR3. 

DP3: Visualization. Placement, movement, and 
simulation validation require visual insights into the 
simulation world. Therefore, one or multiple 
visualizations can help designers and users understand a 
simulation’s mode of operation and facilitate validation 
and common problem understanding. It addresses DR4. 

DP4: Enriched Body Representation. To achieve 
high practical relevance, item and ULD representations 
should be as rich as possible in terms of meta-
information. Counter-intuitive to the object oriented 
(OO) principle of information hiding, it is key to transfer 
as much information about the physical attributes of an 
item or ULD as possible to the physics engine. It 
addresses DR5-DR8. 

4.4. Design and Development: Architecture 

In the following, we present an architectural 
overview about the system’s components, interfaces, 
and dependencies, which we illustrate in Figure 1. Our 
core system comprises three components: Simulation, 
WebServer, and ProcessControl. Simulation manages 
the stability simulation workflows, interacts with the 
physics engine, and obtains simulation results. It wraps 
the communication with the physics engine in a way that 
allows interchangeability between multiple engines as 
they collectively require similar prerequisites 
(simulation world buildup, item creation, and 
placement) and workflow calls (step simulation). The 
physics engine provides out-of-the-box support for GPU 
acceleration using the CUDA API, which we adapt to 
our requirements. For validation purposes, the 
Simulation component provides a dynamic visualization 
of items, ULDs, and their movement. The WebServer 
makes the system reachable from outside by adding an 
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exposed API. The heuristic provides the cargo layouts 
and loading sequences. The ProcessControl acts as a 
middleware between WebServer and Simulation. Every 
process is a newly created problem instance, which 
simplifies memory management.  

 

 
Figure 1: High-level architecture 

4.5. Design and Development: Instantiation 

We code the system in C++, a language specifically 
designed for high-runtime performance as opposed to 
compilation performance and developer 
comprehensibility. It is widely used in robotics, 
graphical applications, scientific simulations, and 
games. Further, many physics engines are coded in C++, 
which facilitates our artifact’s integration with other 
engines. We opt for PhysX [23] as our system’s physics 
engine for multiple purposes. First, PhysX achieves 
good performance along important use-case dependent 
dimensions compared to other engines [24, 25]. Second, 
PhysX is shipped with a GPU acceleration module. It is 
specifically designed to be integrated with CUDA-
compatible GPUs. API and class structure between the 
CPU and GPU remain the same. The module processes 
all rigid bodies on the GPU using a CUDA program 
[23]. GPU acceleration supports two substantial rigid 
body pipeline components: broad phase and rigid body 
dynamics. Both relate to contact generation, shape and 
body management, and constraint solving. Furthermore, 
PhysX employs object sleeping as internal optimization 
to save computational effort [25]. When objects do not 
move for a period of time, it is assumed they will not 
move in the future except when they experience external 
impact or forces, which fits our equilibrium state 
condition well. During sleep, they are no longer 
simulated [23]. 

4.5.1. Modeling ULDs and Items. A ULD belongs 
to one of two types—a pallet or a container. Both have 
a bottom area and a fixed contour. A pallet lacks walls 

and is usually secured by a safety net. A container has 
rigid walls and a loading door, both of which affect 
support from the side and therefore static and dynamic 
stability. Consequently, in our simulation, containers 
have rigid walls while pallets receive no lateral support. 
The container door is spared out. Items have a geometric 
shape, loading sequence, weight specification, and 
material-related properties. The loading sequence 
determines the order in which items are placed on a 
ULD. Based on the cargo shapes found in practice and 
the selection of collision shapes supported by the 
physics engine, we specify a set of eight supported 
shapes (box with sub-pallet, box, cylinder, polygon 
prism, sphere, convex, L-shape, capsule), which we 
depict in Figure 2. Not all shapes found in practice can 
be simulated; since we only consider rigid bodies, a 
limited set of base shapes is supported and efficiently 
processable (specifically concave bodies are hard to 
collision test) or supported for GPU acceleration. The 
selection is a tradeoff between flexibility and 
computability. An item’s weight can be either uniformly 
distributed, have a center of mass specified by a point in 
the item’s coordinate system, or be modeled through a 
weight-distribution function. In this work, we use the 
GA-based smart palletizing information system [15, 26] 
as the optimization metaheuristic. However, our 
approach might be generalized to any kind of 
metaheuristic that deals with the search for good layouts 
by holding an entire population of solution candidates. 

In contrast to common GA logic and in accordance 
with DP1, we first collect all solution candidates in a 
population and send them collectively to our artifact.  
 

 
Figure 2: Supported item shapes  

 

4.5.2. Loading Algorithms. We derive our first 
design principle from GPU computing characteristics: 
(1) there is a high communication latency between the 
host (CPU) and device (GPU) and (2) if the memory is 
allocated and data are transferred, the GPU heavily 
parallelizes computations among CUDA cores. Hence, 
a loading algorithm must minimize communication and 
maximize computations on the device. On the other 
hand, we need to minimize unnecessary simulations to 
the greatest extent possible. Unnecessary simulations 
occur for simulated layouts that have already been 
proven to be unstable, for example, if a previously 
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placed item in the loading sequence is unstable. Both, 
parallelization and minimization of unnecessary layouts 
represents a tradeoff. To explore this tradeoff, we 
incorporate three different loading algorithms into our 
design: single-ULD, multi-ULD, and all-sequence-ULD 
loading. Their theoretical complexity is depicted in 
Table 1. 𝑃 equals the number of layouts in the 
optimization heuristic’s iteration and 𝑁 equals the 
highest loading sequence present in the population, 
which equals the maximum number of items placed on 
a ULD in this population. We ground our algorithms on 
the Sim2 placement algorithm of Mazur et al. [6].  

 
Table 1: Loading algorithm complexities 

Approach Max. 
number of 
simulations 

Max. number of 
concurrently 
simulated bodies 

Single-ULD 𝑂(𝑃 × 𝑁) 𝑂(𝑁) 
Multi-ULD 𝑂(𝑁) 𝑂(𝑃 × 𝑁) 
All-sequence-
ULD 𝑂(1) 𝑂(𝑃 ×

𝑁 × (𝑁 + 1)
2 ) 

 
Single-ULD loading operates on the single-layout 

level. All layouts are processed sequentially, and all 
items in the sequence are placed sequentially. The 
outcome of the subsequent process step (loading of an 
item with the sequence 𝑁 + 1) depends on the outcome 
of the previous step (loading of item 𝑁). The simulation 
number equals the ULD frequency times the amount of 
sequences for every ULD. It refers to the smallest 
amount of concurrent calculations. Using multi-
threading, single-ULD loading can be executed on 
multiple cores concurrently; however, no interaction or 
synchronization occurs between loadings. The 
characteristics map well to CPU execution. For GPU 
execution, the problem is not well suited since only one 
concurrent simulation context is feasible and therefore 
no multi-threading is possible at this level.  

Multi-ULD loading operates on the population 
level. The algorithm places all layouts and processes 
each loading sequence for every layout concurrently. 
For example, all layouts in the population, along with 
the first item in each layout’s loading sequence, are 
placed and simulated together. In the next iteration, all 
layouts place their second item according to their 
loading sequence. This process is repeated until no more 
sequences are present. This approach minimizes 
unnecessary simulation to the greatest extent possible.  

In general, a loading algorithm whereby all items 
are placed and simulated alternatingly includes 
synchronization between loading sequences. Mazur et 
al. [6] employed this step to sort out unstable layouts. 

 
1 https://developer.nvidia.com/physx-visual-debugger 
2 https://www.opengl.org/ 

This is called the “early-out” test. The number of 
simulations equals the highest number of loading 
sequences in the population. The number of 
concurrently simulated rigid bodies equals the number 
of layouts times the current sequence. The multi-ULD 
loading algorithm directly maps to the physical loading 
procedure and is the only algorithm that ensures static 
stability at each sequence step. It enables parallel 
processing of all loaded items of the same loading 
sequence; thus, within one loading sequence, operations 
on the entire population can be distributed between GPU 
cores. Each layout is an independent sub-problem, 
which fits GPU execution well.  

The all-sequence-ULD loading operates on the 
population level. Our algorithm places all layouts, along 
with all sequences, separately at the same time without 
synchronization. The number of simulations equals one. 
The number of simulated bodies equals the number of 
ULDs times the number of sequences. This algorithm 
heavily exploits parallelization but also includes 
unnecessary layouts. The problem becomes broader, 
which fits GPU execution well. Within only one 
simulation, it processes all possible ULD sequence 
combinations, which might decrease performance. 
Although GPUs are parallel processors, the number of 
cores is limited; thus, parallelism and unnecessary 
computations must be carefully balanced.  

4.5.3. Visualization. Our system comprises two 
visualizations: an all-purpose simulation sampler and an 
extendible placement visualization. For the all-purpose 
simulation sampler, we employ PhysX Visual Debugger 
(PvD).1 It samples simulation meta-data, such as 
memory usage, object collisions, and positional data for 
varying time frames (Figure 3 and Figure 4). We employ 
PvD to develop an understanding of our loading 
algorithms’ workflows and correctness. It illustrates 
artifact workflows to stakeholders and practitioners and 
samples generation progress for the solution-generating 
heuristic. As PvD is shipped closed source, we develop 
a custom visualization based on OpenGL2 such that it 
enables interactive dynamic item placement, 
displacement measurements, and tools for time stepping 
(Figure 2). We employ this visualization to achieve an 
understanding of displacement behavior and physical 
shape construction. 

4.6. Demonstration 

To demonstrate our design, we use the dataset 
published by Brandt and Nickel [14], which provides a 
high amount of realism and richness in terms of meta-
information (e.g., item availability, ULD contour, 
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allowed rotations, offload penalties, and commodities). 
In terms of shape, the dataset only contains boxes; 
hence, we assign fixed shares of irregular items. Typical 
irregularity ratios range between 5% or 20% [15]. We 
use one ULD and 50 items out of the flight at random to 
create an input shortage and limit the item pool size for 
our heuristic (single knapsack problem). Further, we 
assign meta-information as follows. We randomly add a 
sub-pallet to box items in 50% of cases. According to 
our experts, approximately every second item arrives 
pre-palletized on a wooden pallet. We assign each item 
a center of mass. For the majority of items, we assume 
a fixed density throughout the item’s body (80%); for 
the remaining items, we randomly assign a point in the 
3D item space as the center of mass, following a uniform 
random distribution over the items’ dimensions. We use 
two randomly selected jobs: one pallet job (LH8080-
23NOV15-FRASIN-PMC-F) and one container job 
(LH8164-24NOV15-FRA-OR-AKE). We set the 
population size to 10,000 and generations to 300. The 
optimization heuristic incorporates our GPGPU-
accelerated static stability criterion as an assessment 
criterion. We track overall runtime of the heuristic, 
which mainly drives our solution’s capability in terms 
of performance. We measure runtimes for each 
generation to observe the development over time for 
both job configurations. Exemplary in-between buildup 
states are visualized in Figures 5 and 6. 

 

 
Figure 3: Buildup of 
PMC-F (simulation 

sampler) 

 
Figure 4: Buildup of 

AKE (simulation 
sampler) 

 
We can see considerable differences between both 

jobs. While the stability simulations for pallets cause an 
overall heuristic runtime of about 35 minutes, the 
container simulations take considerably longer—over 
90 minutes. An explanation for this deviation might be 
the collision tests of the cargo with the container walls. 
We model container walls as static rigid objects in the 
simulation world, which affects the items’ number 
collisions. Not only can they collide with each other, but 
they can also collide with the static container walls. 
Further, the final container solution places more items 
(13 vs. four) compared to the pallet solution, which 
increases the number of sequences and ultimately the 
number of collisions. Moreover, an increased number of 
items attached to sub-pallets and items with displaced 
centers of masses are present.  

4.7. Evaluation 

In the following, we evaluate if our system marks 
an improvement in terms of performance. We refer to 
CPU execution as the CPU-only Sim2 of Mazur et al. [6] 
and GPU execution as the GPGPU-accelerated 
approach presented in this study. We first develop a 
conceptual mapping between the loading algorithm and 
approach (CPU, GPU). This model is then evaluated on 
a benchmark with all three loading algorithms for two 
different population sizes (1000, 8000). As a result, we 
come up with an empirically validated conceptual 
mapping. Our operationalized hypothesis is 

 
𝐻!: 𝜇"#$ ≤ 𝜇%#$ vs. 𝐻&: 𝜇"#$ > 𝜇	%#$, 
 

where 𝜇	%#$ and 𝜇"#$ represent mean performance in 
terms of the runtime of the GPU and CPU execution, 
respectively. Performance is a measure highly 
dependent on the underlying hardware. To overcome a 
bias toward a dedicated hardware configuration, we run 
benchmarks on three different hardware configurations 
(M1, M2, M3). Their technical specifications can be 
found in Table 2. Note that GPU execution is an 
acceleration technique and means no independence 
from the host CPU configuration.  
 

Table 2: Hardware platform configuration 
 M1 M2 M3 
CPU cores/ 
threads 

16/32 24/48 4/8 

CPU base/boost 
clock (GHz) 

3.5/4.4 3.8/4.5 2.8/3.8 

GPU CUDA 
cores 

4608 3584 640 

GPU base/boost 
clock (GHz) 

1.35/ 
1.77 

1.48/1.58 1.35/ 
1.45 

GPU memory 24 GB 
GDDR6 

11GB 
GDDR5X 

2 GB 
GDDR5 

 

Figure 5: CPU 
benchmark results  

Figure 6: GPU 
benchmark results  

 
We use three different cargo complexity scenarios. 

Scenario A represents a loading scenario with only 
homogeneous boxes, Scenario B includes different 
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heterogeneous box dimensions, and Scenario C mirrors 
loading situations found in practice with 5% irregular 
shapes. Further, for every complexity scenario, we 
evaluate three different population sizes (1,000, 8,000, 
20,000). We let problem complexity (in the form of 
scenario) and problem size (in the form of population 
size) vary to illustrate scaling behavior with respect to 
problem size and problem complexity. Furthermore, to 
preserve comparability between approaches, we remove 
deviating information (e.g., centers of mass, sub-pallets) 
and set generation size to one. GA outcomes are 
statistically dependent on the previous generation and 
are therefore not Gaussian distributed [27]. Since the 
heuristic employs a random populator, the first 
generation is randomly sampled, which preserves the iid 
assumption we need to employ t-tests. 

4.7.1. Conceptual Model. The results of our 
loading algorithm evaluation are displayed in Figures 7 
and 8. 

 

 
Figure 7: Conceptual model of loading 

approach and technology 
 

Facing CPU execution, the single-ULD loading 
algorithm performs best. For GPU-execution, all-
sequence-ULD loading and multi-ULD loading perform 
considerably better than single-ULD loading. For the 
smaller population size (1,000), all-sequence-ULD 
loading outperforms multi-ULD loading, whereas for 
the larger population size (8,000), multi-ULD loading 
proves better on the GPU.  

These results may be due to a limited optimal 
number of parallel executions (i.e., problem size), which 
is determined by the limited number of GPU cores. The 
higher the number of parallel processing units, the more 
rigid bodies might be simulated concurrently. Because 
of this tradeoff, we expect that for increasing population 
sizes, the difference between all-sequence-ULD loading 
and multi-ULD loading becomes even larger. For small 
population sizes, we recommend using all-sequence-
ULD loading, while for medium to large sizes, we prefer 
multi-ULD loading. For CPU execution, only single-
ULD loading provides reasonable performance. The 

conceptual model is depicted in Figure 7. 𝑁 refers to the 
problem size (number of parallel executions). 

4.7.2. Performance Evaluation. We present our 
results for the Welch’s t-tests for performance in Table 
3. For most platforms and problem combinations, we 
can reject the null hypothesis, always at a highly 
significant level (p < 0.001). This is not surprising as we 
consider large sample sizes. For M3, we can uniformly 
reject the null with large effect sizes (Cohen’s d > 0.8) 
except for the A-8000 and C-8000 scenarios. For M1, 
we can observe that GPU execution outperforms CPU 
execution for moderate to large problem sizes. For small 
problem sizes, GPU proves to be inferior. For small 
problem sizes, the ratio of calculations to 
communicational and memory access overhead 
(arithmetic intensity) on the device is low. This situation 
is not well suited for GPGPU. For larger problem sizes, 
the ratio increases, so GPU scales better than CPU. The 
larger the problem size, the larger the effect, which we 
can observe in the increasing effect sizes of the Cohen’s 
d. For M2, CPU keeps up and scales roughly as good as 
GPU. This result may be due to the hardware 
configuration for M2, in which the CPU is composed of 
48 cores. In our hardware configuration set, this CPU 
has the highest clock rate and the highest number of 
cores. Having more cores implies better parallelization 
capabilities even for multi-threaded single-ULD loading 
algorithms. In general, we can observe the tendency that 
larger problem sizes imply longer absolute runtimes. 
When we set the effect in relation to problem size, we 
see a scaling effect. We calculate the ratio of mean 
runtime and problem size for the M1 case and visually 
depict them in Figure 8. The CPU scaling curve is flatter 
in comparison to the GPU scaling curve, whereas GPU 
converges faster.  

 
Figure 8: Relative performance 
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5. Discussion and Conclusion 

With this study, we tackled the research and 
practical problem of improving integrated physical 
simulations in optimization heuristics for pallet loading 
using GPGPU. With the presented approach, research in 
the area of pallet loading is equipped with an innovative 
parallel method to evaluate static stability. Our design is 
composed of eight design requirements and four design 
principles. Our design principles can be further 
employed in other problem classes that require fast but 
precise physical feedback for artificial intelligence and 
tackle the problem of employing modern GPUs’ 
compute capabilities while coping with large problem 
sizes with thousands of physical bodies with 
heterogeneous shapes. Our results demonstrate an 
improvement in terms of complexity and, depending on 
hardware platform, performance. For most platforms, 
our approach outperforms the state-of-the-art CPU 
approach.  

Previous studies have presented methods that are 
not integrated in the optimization heuristic or heavily 
impact performance. With our approach, we accelerated 
physical simulations, which can provide leverage for the 
optimization to reach a higher solution quality. We took 
a step toward a practically relevant pallet-loading 
solution by intentionally setting our focus on the 
inclusion of meta-information and shapes that mirror the 
complexity found in cargo operations. We shed light on 
the problem of sub-pallets and non-uniform gravity. We 
modeled eight distinct item shapes and two ULD types, 
which cover a broad spectrum of bodies found in cargo 
operations.  

In the following, we emphasize a set of our work’s 
limitations, which is by no means complete. First, we 
imposed the assumption of a valid physical simulation 

as an outcome of the physics engine. Thus, our approach 
primarily lacks validation against a ground truth, for 
example, in the form of a validated test dataset or a high-
precision physical simulator. Second, we only included 
a limited number of shapes. In many operational cases, 
this might be sufficient, but during our onsite visits, we 
observed a multitude of shapes that are not easily 
assignable to one of the proposed simulation shapes 
(e.g., cars or turbines). Further, we omitted concave 
shapes. Collisions of concave bodies are harder to 
evaluate for physics engines; thus, their inclusion would 
likely slow down execution. Furthermore, our 
assumption of rigid bodies might be challenged. During 
our onsite visits, we observed multiple items with 
deformable packing material (e.g., cardboard) and 
loading security tools (e.g., nets and straps), which are 
not captured by rigid body simulation. Finally, we tested 
our approach on only a small sample of selected flights, 
thus limiting our inferential conclusions. With respect to 
stability assessments in pallet loading context, further 
research should find a way to balance realism and 
runtime, such that realistic stability approximations that 
cope with practical complexity can be obtained in 
shorter time frames. Although our approach marks an 
improvement, runtimes still should be considerably 
faster to meet practical goals. 

Our conceptual model is a starting point as it 
provides an approximation of the best fit between 
approach and problem size. Our evaluation of 
performance is restricted to the small set of hardware we 
tested on. In terms of future opportunities, model 
validation against a physically crafted and virtualized 
layout is paramount. Another extension of our 
simulation might be to evaluate other constraints apart 
from static stability, for example, dynamic stability, 
loading bearing capacity, or balancing. 

 
 

 

Table 3: Performance evaluation results 
 Scenario A    B   C   
Platform  1000 8000  20000 1000 8000 20000 1000 8000 20000 
 𝜇	"#$ 21.2 107.2  197 13.1 71.8 136.1 7.6 40.8 78.8 
M1 𝜇	%#$ 39.9 101  181.5 39.9 61.4 118 14.1 36.4 72.5 
 Cohens’ d -6.4 3.5***  6.7*** -15 7.6*** 11.9*** -6.2 4.2*** 7.2*** 
 𝜇	"#$ 12.5 48.4  115.7 7.3 32.9 80.2 4 18.4 47 
M2 𝜇	%#$ 15.5 50.2  117.6 15.5 30.5 79 5 17.7 47.1 
 Cohens’ d -5.1 -2.2  -1 -15.3 3*** 0.5*** -6.3 1.3*** -0.1 
 𝜇	"#$ 72.6 498.6   50.7 317.9  28.2 173.7  
M3 𝜇	%#$ 37.3 142.2   22.2 73.2  13.3 49.5  
 Cohens’ d 9.2*** 1.4***   11.5*** 12***  10.4*** 3.6***  
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