
A GPU-Accelerated Approach to Static Stability Assessments for Pallet
Loading in Air Cargo

Philipp Gabriel Mazur
University of Cologne

mazur@wim.uni-koeln.de

No-San Lee
University of Cologne
lee@wim.uni-koeln.de

Detlef Schoder
University of Cologne

schoder@wim.uni-koeln.de

Abstract
The static stability constraint is one of the most

important constraints in pallet loading and plays a
substantial role when assembling safe and loadable
palletizing layouts. Current approaches reach their
limits as soon as additional complexity is added, which
is a given in the practice of air cargo logistics, or when
performance becomes important. As our central
objective, we explore a new approach to calculate static
stability more performantly and to cover more
complexity by relaxing several simplifying assumptions.
The approach is implemented in a prototype and builds
on the emerging technology of graphical processing unit
acceleration in combination with physics engines. We
propose a new artifact design and summarize the how-
to knowledge in the form of abstracted design
principles. Our results demonstrate an improvement in
terms of performance depending on the underlying
hardware. We develop a conceptual model to assist
future research in choosing a solution technology.

1. Introduction

In palletizing, an important process in air cargo
logistics involves palletizers placing cargo on so-called
unit loading devices (ULDs), which comprise pallets
and containers. Stability of the cargo arrangement
prevents damaged cargo and even personnel injuries [1–
4]. Static stability ensures that items maintain their
positions during loading, whereas dynamic stability
applies to situations in which the pallet is being moved
(e.g., in a vehicle). Static stability as a constraint is
particularly relevant [1] and highly significant in
practical usage [5] “yet [has been] inconsistently dealt
with” [2] in previous works. In comparison to other
static stability approaches (e.g., full base support, partial
base support, static mechanical equilibrium), physical
simulations can capture and process more practical
complexity of stability assessments for ULDs and items
as they build virtual images with real-world physical
laws, thereby relaxing simplifying assumptions [6].

Hence, simulations can cope with the complexity of a
broad variety of rigid or soft body shapes and can
include sub-pallets and additional physical properties,
such as non-uniform weight distribution.

Physical simulations with real-time physics engines
provide sufficient precision to approximate realistic
cargo-loading scenarios compared to high-precision
dedicated physical simulators but deliver results in a
fraction of time [7].

However, simulations are computationally
expensive and are thus hard to integrate in optimization
heuristics [8] used for searching for good palletizing
solutions (so-called layouts). An acceleration (e.g.,
through parallelization) of an underlying physical
simulation can help achieve faster stability evaluations
and, in consequence, increase overall solution quality.
General-purpose computation on graphics processing
units (GPGPU) massively parallelizes computations
based on modern graphical processing units’ (GPU)
computational capabilities [9] and can be utilized for
physical simulations [10]. To the best of our knowledge,
previous studies have neglected the opportunities
emerging from the field of GPGPU for this problem
context. For this study, our research goal is to propose a
new design for a GPGPU-based approach to assess
static stability. Consequently, we ask the following
research question: How can a static stability assessment
approach for air cargo palletizing be designed using
GPGPU?

To achieve our goal and to answer our research
question, we follow the design science research (DSR)
approach introduced by Peffers et al. [11]. We ground
our design in theoretical findings on simulation-based
static stability assessments and practical insights from
an ongoing collaboration with a major German cargo
carrier. Our contribution consists of a design for a new
approach to assess static stability for air cargo
palletizing that better meets practical requirements by
including substantially more real-world complexity and
improving performance. Further, we develop a
conceptual model that maps execution technology to
problem configuration. From a practitioner’s view, our
prototype could likely be employed in complex problem
cases that require significant compliance with

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 1646
URI: https://hdl.handle.net/10125/79536
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

transportation safety rules, as is the case in air cargo
operations.

The remainder of this work is as follows. In Section
2, we provide an overview of related work. Afterward,
we elaborate on our methodology in Section 3. We then
present our main results in Section 4, which are then
discussed and concluded in Section 5.

2. Related Work

Approaches to physical simulations can broadly be
classified into the categories of stand-alone and
integrated. The first category comprises approaches that
utilize physics engines to train or develop a model that
is deployed afterward in an optimization heuristic. The
latter represents approaches that directly execute the
simulation from within a heuristic.

The stand-alone approach is described and applied
in works by Ramos et al. [12]; Ramos et al. [8]; and
Martínez, Cuellar, and Álvarez-Martínez [13]. In most
cases a linear or mechanical model approximates the
physical outcome [13]. To evaluate such models, a
physics engine can be used. The studies of Ramos et al.
[8] and Ramos et al. [12] resulted in a stand-alone
simulation software prototype (StableCargo) for
calculating dynamic stability behavior for container
loading problems. The authors benchmarked their
physics engine–based stand-alone tool against a high
precision engineering simulator and analytical
solutions, thereby modeling typical transport forces and
velocities. StableCargo can approximate analytical and
high-precision solutions. However, the authors provided
no report about StableCargo’s integration into an
optimization heuristic. Martínez, Cuellar, and Álvarez-
Martínez [13] presented a mechanical model that
predicts the outcome of a physics engine in the case of
dynamic stability. Their developed algorithm calculates
the number of fallen boxes based on the mechanical
model.

In the past, capturing stability within a model
frequently requires imposing simplifying assumptions
(e.g., uniform mass distribution, box-shaped items),
which can make it difficult to adapt to new or
unexpected data. This issue is particularly relevant in the
air cargo context, which combines substantial cargo and
ULD heterogeneity [14, 15].

This problem has been addressed with the
integrated approach, which can be found in Bracht et al.
[16] and Mazur et al. [6]. Physical simulations are a
versatile technique that support a broad spectrum of
shapes and include meta-characteristics, such as
displaced mass distributions and material properties.
Real-time physics engines operate sufficiently precisely
to overcome simplifications. They obtain realistic
physical feedback as they build virtual images with

similar physical laws and behavior as in real-world
contexts (e.g., gravity, friction, collisions). They also
provide enough interfaces and sufficient runtime
performance to be generally used in heuristic search
processes, although they heavily slow down the
application. However, studies on their integration within
solution-generating heuristics are scarce. The results
from Bracht et al.’s work [16] demonstrated the
integration of dynamic stability verification into a
genetic algorithm (GA) meta-heuristic using a physics
engine. The authors performed two stability tests: (1)
one local stability test that is executed for every single
box in a layout and verifies if the center of gravity of a
box is supported by the supporting convex hull of
previously packed boxes and (2) one static and dynamic
stability verification test using simulations. Their results
revealed that physics simulations consumed most of the
total processing time, prevented the meta-heuristic from
reaching a high solution quality level, and decreased its
convergence with satisfactory layouts. Similar results
were reported from Mazur et al. [6], who demonstrated
the integration of physical simulations in an
optimization heuristic for pallet loading in air cargo.
Their prototype employed a physics engine to iteratively
load a cargo layout within a GA with aviation safety
constraints. The authors reported long runtimes with
moderate solution qualities. In both studies, an
optimization heuristic executes simulations with a
physics engines, which return information about the
spatial positions of cargo items for a given time interval.
Further, both approaches draw attention to the problem
of accelerating simulations since underlying heuristics
heavily depend on fast evaluations of their candidate
solutions. The more runtime a heuristic spends in a
candidate solution’s fitness evaluation, the less runtime
it can spend searching for better solutions

One option to accelerate physical simulations is to
parallelize and distribute problem calculations upon
many-core processors, such as GPUs. GPGPU refers to
GPU employment for non-graphics computation [17].
Today, researchers and practitioners choose GPGPU to
achieve high computational performance at low costs.
Specifically, GPU computations are considerably faster
at floating-point calculations and can allocate work to
the GPU to balance loads [18]. The compute unified
device architecture (CUDA) includes a unified shader
pipeline, enabling all shading multiprocessors to be used
for general-purpose computations with single-precision
floating-point arithmetic and general computation
instruction sets. Due to the hardware design, not all
computational tasks are well suited for GPU processing.
GPGPU is efficiently applicable if the problem is data
parallel and can be decomposed into smaller
independent sub-problems [18]. In general, applications
that contain a high ratio of mathematical operations

Page 1647

compared to memory access achieve good performance
[19]. Examples for GPGPU applications range from
sorting, database operations, and image processing [17]
to physically based simulations and illumination
models, such as raytracing and volume processing. In
rigid body simulation cases, GPGPU can help accelerate
and parallelize computations. As an application, Harada
[10] demonstrated the rigid body physics calculation for
a large number of bodies entirely on the GPU.

3. Approach

We base our approach on the DSR framework,
which focuses on “(1) creation of knowledge through
design of novel or innovative artifacts and (2) the
analysis of the artifact’s use and/or performance with
reflection and abstraction” [20]. Within this framework,
we present a new approach (accelerated, integrated GPU
physical simulations) for an already-known problem
(static stability assessment in pallet loading), which
marks an improvement compared to the state of the art.
An improvement aims to “create better solutions in the
form of more efficient and effective products, processes,
or ideas” [21]. The differences of an improvement from
already existing solutions must be clearly presented
along with an extensive evaluation, thereby delivering
evidence for increased “efficiency, productivity or other
quality measures” [21].

Specifically, we employ the (DSR) methodology by
Peffers et al. [11]. This methodology’s core component
consists of the nominal process sequence for conducting
DSR, which is composed of six phases: problem
identification and motivation, objectives of a solution,
design and development, demonstration, evaluation, and
communication.

Multiple sources, including new technological
developments, can act as starting points for problem
awareness [20]. We first provide a description from a
practitioner’s perspective. During our research project,
we collaborated with a major German air cargo carrier.
For several months, our team, which consisted of up to
eight researchers, conducted joint workshops with two
experts from the air cargo operations field, met two
palletizers, and visited palletizing operations and
aircraft-loading operations at a large German cargo hub
multiple times. Over the course of more than eight
workshops, we developed a common problem
understanding and received an impression of the
practical implications of loading stability and its impact
on safe air transportation. Consequently, we allow our
understanding of the identified problem to flow into the
identified problem and gave special consideration to
practical requirements. In the solution objectives
definition phase, solution requirements are inferred
from problem specification in terms of their feasibility.

They can be of quantitative or qualitative nature [11,
20]. At the heart of the DSR methodology in the design
and development phase, our artifact is constructed [11].
During the phase, we first developed both a target
functionality and a high-level architecture. Afterward,
we searched for relevant libraries that provided out-of-
the-box functionalities (e.g., API and physics engine).
We grounded our selection of a physics engine in
published comparisons of freely available engines.
Finally, we incrementally built the artifact using agile
software development. During the demonstration phase,
one or multiple problem instances are solved. In this
study, we demonstrate and evaluate our artifact’s
functionality using one problem instance derived from a
benchmark dataset [14]. The evaluation stage addresses
the comparison of an artifact’s desired goodness of fit to
its actual goodness of fit (e.g., through hypothesis tests
about the artifact’s behavior or benchmarking).
Deviations from this comparison must be tentatively
explained and might result in a successive iteration of
the DSR cycle [20]. Primarily, we evaluate if our artifact
marks an improvement with respect to the quality
dimensions obtained from the solution objectives
definition. We compare our loading algorithms’
performance for varying problem sizes. Furthermore,
we deploy a set of one-sided two-sample Welch’s t-tests
[22] to test performance improvements. Welch’s t-tests
are well suited to compare means of multiple samples
and are specifically robust when it comes to deviating
variances and sample sizes. We select Cohen’s d as a
measure of effect sizes.

4. Results

4.1. Problem Identification and Motivation

From a practitioner’s perspective, the need to
improve performance arises due to multiple factors. In
the time-critical air cargo sector, approaches to
accelerate and reduce execution time help carriers meet
strict flight-departure deadlines. Given the runtime of
integrated simulation-based approaches, overall
solution quality might be insufficient to achieve desired
volume-utilization goals and service levels. As a key
driver of runtime, stability assessments and their
accuracies are substantial issues encountered in practice.
In air cargo operations, carriers transport vastly
heterogeneous items [14, 15]. Simplifying assumptions
about cargo or insufficiently modeling cargo or ULD
characteristics is likely to produce inaccurate or wrong
stability predictions. In light of the presented
motivation, we shape the DSR problem as follows. In
the air cargo context, given a pallet-loading
optimization heuristic, we need to find a better
performing but equally accurate solution to static

Page 1648

stability assessments than previous approaches and to
capture more complexity in terms of meta-information.
The main input from the heuristic is multiple cargo
layouts, which span different ULDs and item-
arrangement information. Furthermore, items are
characterized by their specific shape, weight, center of
mass, and sub-pallet. Every item is assigned a final 3D
position on a ULD and a loading sequence, which
determines the loading order. The artifact must return a
quantified numerical static stability assessment value
reflecting a layout’s amount of static stability.

4.2. Solution Objectives

Since our research goal is to create an improvement,
we need to derive relevant characteristics to enable
qualitative comparison between approaches.
Accordingly, we use two main characteristics. (1)
Increased performance: our artifact should evaluate
static stability considerably faster (in terms of wall-
clock time) for a given set of cargo layouts. (2) Cover
more complexity: to increase the practical relevance of
palletizing solutions, we opt to cover as much
complexity found in practice as possible, resulting in
more realistic evaluations of static stability. In this
study, we operationalize complexity using enhanced
modeling of items and ULDs.

4.3. Design Requirements and Principles

GPUs require different data structures and flows
than central processing units (CPUs). We design our
system’s workflow and its corresponding simulation
such that it considers GPU characteristics (e.g., high
throughput, high latency) and GPGPU specifications
(e.g., stream processing, data parallelism,
independence) (Design Requirement, DR1). We
acknowledge a tradeoff between simulation resolution
and performance that meets practical goals (DR2).
Together, a well-suited workflow and an optimized
tradeoff leads to good task-technology fit. One
substantial drawback of GPU-based applications is the
inherent dependence on dedicated graphics hardware.
This dependence affects virtualization and ultimately
portability. Therefore, our design pays attention to
hardware bindings (DR3). To track simulation
workflows and time steps to ensure simulation
correctness and to communicate solutions to
stakeholders, our design includes a visualization (DR4).
In air cargo logistics, palletizers cope with a broad range
of item shapes, combined with low identical shape
frequency. Therefore, our design must consider item
shape and support irregular forms (DR5). To achieve a
high amount of practical relevance and to overcome
simplifications with respect to cargo, we need to include

weight distributions (DR6) and sub-pallet (DR7)
information. Finally, different types of ULDs exists and
should be realistically modeled (DR8). To meet our
design requirements on an abstract level, we develop a
set of design principles:

DP1: Batch Processing. To exploit the parallelism
abilities and deep pipeline of GPU processing, a high
problem size needs to be transmitted and processed
concurrently on the GPU. It addresses DR1-2.

DP2: Loose Coupling. To overcome tight
dependency in terms of hardware and technology, the
stability evaluation should be decoupled from the
heuristic and dedicated physics engine. This principle
ensures a maximum level of portability and
interchangeability between the heuristic, stability
simulation, and physics engine. This decoupling enables
access using exposed interfaces and dedicated
platforms. Further, reusable and loosely coupled
components enable the system to be employed for non-
stability purposes. It addresses DR3.

DP3: Visualization. Placement, movement, and
simulation validation require visual insights into the
simulation world. Therefore, one or multiple
visualizations can help designers and users understand a
simulation’s mode of operation and facilitate validation
and common problem understanding. It addresses DR4.

DP4: Enriched Body Representation. To achieve
high practical relevance, item and ULD representations
should be as rich as possible in terms of meta-
information. Counter-intuitive to the object oriented
(OO) principle of information hiding, it is key to transfer
as much information about the physical attributes of an
item or ULD as possible to the physics engine. It
addresses DR5-DR8.

4.4. Design and Development: Architecture

In the following, we present an architectural
overview about the system’s components, interfaces,
and dependencies, which we illustrate in Figure 1. Our
core system comprises three components: Simulation,
WebServer, and ProcessControl. Simulation manages
the stability simulation workflows, interacts with the
physics engine, and obtains simulation results. It wraps
the communication with the physics engine in a way that
allows interchangeability between multiple engines as
they collectively require similar prerequisites
(simulation world buildup, item creation, and
placement) and workflow calls (step simulation). The
physics engine provides out-of-the-box support for GPU
acceleration using the CUDA API, which we adapt to
our requirements. For validation purposes, the
Simulation component provides a dynamic visualization
of items, ULDs, and their movement. The WebServer
makes the system reachable from outside by adding an

Page 1649

exposed API. The heuristic provides the cargo layouts
and loading sequences. The ProcessControl acts as a
middleware between WebServer and Simulation. Every
process is a newly created problem instance, which
simplifies memory management.

Figure 1: High-level architecture

4.5. Design and Development: Instantiation

We code the system in C++, a language specifically
designed for high-runtime performance as opposed to
compilation performance and developer
comprehensibility. It is widely used in robotics,
graphical applications, scientific simulations, and
games. Further, many physics engines are coded in C++,
which facilitates our artifact’s integration with other
engines. We opt for PhysX [23] as our system’s physics
engine for multiple purposes. First, PhysX achieves
good performance along important use-case dependent
dimensions compared to other engines [24, 25]. Second,
PhysX is shipped with a GPU acceleration module. It is
specifically designed to be integrated with CUDA-
compatible GPUs. API and class structure between the
CPU and GPU remain the same. The module processes
all rigid bodies on the GPU using a CUDA program
[23]. GPU acceleration supports two substantial rigid
body pipeline components: broad phase and rigid body
dynamics. Both relate to contact generation, shape and
body management, and constraint solving. Furthermore,
PhysX employs object sleeping as internal optimization
to save computational effort [25]. When objects do not
move for a period of time, it is assumed they will not
move in the future except when they experience external
impact or forces, which fits our equilibrium state
condition well. During sleep, they are no longer
simulated [23].

4.5.1. Modeling ULDs and Items. A ULD belongs
to one of two types—a pallet or a container. Both have
a bottom area and a fixed contour. A pallet lacks walls

and is usually secured by a safety net. A container has
rigid walls and a loading door, both of which affect
support from the side and therefore static and dynamic
stability. Consequently, in our simulation, containers
have rigid walls while pallets receive no lateral support.
The container door is spared out. Items have a geometric
shape, loading sequence, weight specification, and
material-related properties. The loading sequence
determines the order in which items are placed on a
ULD. Based on the cargo shapes found in practice and
the selection of collision shapes supported by the
physics engine, we specify a set of eight supported
shapes (box with sub-pallet, box, cylinder, polygon
prism, sphere, convex, L-shape, capsule), which we
depict in Figure 2. Not all shapes found in practice can
be simulated; since we only consider rigid bodies, a
limited set of base shapes is supported and efficiently
processable (specifically concave bodies are hard to
collision test) or supported for GPU acceleration. The
selection is a tradeoff between flexibility and
computability. An item’s weight can be either uniformly
distributed, have a center of mass specified by a point in
the item’s coordinate system, or be modeled through a
weight-distribution function. In this work, we use the
GA-based smart palletizing information system [15, 26]
as the optimization metaheuristic. However, our
approach might be generalized to any kind of
metaheuristic that deals with the search for good layouts
by holding an entire population of solution candidates.

In contrast to common GA logic and in accordance
with DP1, we first collect all solution candidates in a
population and send them collectively to our artifact.

Figure 2: Supported item shapes

4.5.2. Loading Algorithms. We derive our first
design principle from GPU computing characteristics:
(1) there is a high communication latency between the
host (CPU) and device (GPU) and (2) if the memory is
allocated and data are transferred, the GPU heavily
parallelizes computations among CUDA cores. Hence,
a loading algorithm must minimize communication and
maximize computations on the device. On the other
hand, we need to minimize unnecessary simulations to
the greatest extent possible. Unnecessary simulations
occur for simulated layouts that have already been
proven to be unstable, for example, if a previously

Page 1650

placed item in the loading sequence is unstable. Both,
parallelization and minimization of unnecessary layouts
represents a tradeoff. To explore this tradeoff, we
incorporate three different loading algorithms into our
design: single-ULD, multi-ULD, and all-sequence-ULD
loading. Their theoretical complexity is depicted in
Table 1. 𝑃 equals the number of layouts in the
optimization heuristic’s iteration and 𝑁 equals the
highest loading sequence present in the population,
which equals the maximum number of items placed on
a ULD in this population. We ground our algorithms on
the Sim2 placement algorithm of Mazur et al. [6].

Table 1: Loading algorithm complexities

Approach Max.
number of
simulations

Max. number of
concurrently
simulated bodies

Single-ULD 𝑂(𝑃 × 𝑁) 𝑂(𝑁)
Multi-ULD 𝑂(𝑁) 𝑂(𝑃 × 𝑁)
All-sequence-
ULD 𝑂(1) 𝑂(𝑃 ×

𝑁 × (𝑁 + 1)
2)

Single-ULD loading operates on the single-layout

level. All layouts are processed sequentially, and all
items in the sequence are placed sequentially. The
outcome of the subsequent process step (loading of an
item with the sequence 𝑁 + 1) depends on the outcome
of the previous step (loading of item 𝑁). The simulation
number equals the ULD frequency times the amount of
sequences for every ULD. It refers to the smallest
amount of concurrent calculations. Using multi-
threading, single-ULD loading can be executed on
multiple cores concurrently; however, no interaction or
synchronization occurs between loadings. The
characteristics map well to CPU execution. For GPU
execution, the problem is not well suited since only one
concurrent simulation context is feasible and therefore
no multi-threading is possible at this level.

Multi-ULD loading operates on the population
level. The algorithm places all layouts and processes
each loading sequence for every layout concurrently.
For example, all layouts in the population, along with
the first item in each layout’s loading sequence, are
placed and simulated together. In the next iteration, all
layouts place their second item according to their
loading sequence. This process is repeated until no more
sequences are present. This approach minimizes
unnecessary simulation to the greatest extent possible.

In general, a loading algorithm whereby all items
are placed and simulated alternatingly includes
synchronization between loading sequences. Mazur et
al. [6] employed this step to sort out unstable layouts.

1 https://developer.nvidia.com/physx-visual-debugger
2 https://www.opengl.org/

This is called the “early-out” test. The number of
simulations equals the highest number of loading
sequences in the population. The number of
concurrently simulated rigid bodies equals the number
of layouts times the current sequence. The multi-ULD
loading algorithm directly maps to the physical loading
procedure and is the only algorithm that ensures static
stability at each sequence step. It enables parallel
processing of all loaded items of the same loading
sequence; thus, within one loading sequence, operations
on the entire population can be distributed between GPU
cores. Each layout is an independent sub-problem,
which fits GPU execution well.

The all-sequence-ULD loading operates on the
population level. Our algorithm places all layouts, along
with all sequences, separately at the same time without
synchronization. The number of simulations equals one.
The number of simulated bodies equals the number of
ULDs times the number of sequences. This algorithm
heavily exploits parallelization but also includes
unnecessary layouts. The problem becomes broader,
which fits GPU execution well. Within only one
simulation, it processes all possible ULD sequence
combinations, which might decrease performance.
Although GPUs are parallel processors, the number of
cores is limited; thus, parallelism and unnecessary
computations must be carefully balanced.

4.5.3. Visualization. Our system comprises two
visualizations: an all-purpose simulation sampler and an
extendible placement visualization. For the all-purpose
simulation sampler, we employ PhysX Visual Debugger
(PvD).1 It samples simulation meta-data, such as
memory usage, object collisions, and positional data for
varying time frames (Figure 3 and Figure 4). We employ
PvD to develop an understanding of our loading
algorithms’ workflows and correctness. It illustrates
artifact workflows to stakeholders and practitioners and
samples generation progress for the solution-generating
heuristic. As PvD is shipped closed source, we develop
a custom visualization based on OpenGL2 such that it
enables interactive dynamic item placement,
displacement measurements, and tools for time stepping
(Figure 2). We employ this visualization to achieve an
understanding of displacement behavior and physical
shape construction.

4.6. Demonstration

To demonstrate our design, we use the dataset
published by Brandt and Nickel [14], which provides a
high amount of realism and richness in terms of meta-
information (e.g., item availability, ULD contour,

Page 1651

allowed rotations, offload penalties, and commodities).
In terms of shape, the dataset only contains boxes;
hence, we assign fixed shares of irregular items. Typical
irregularity ratios range between 5% or 20% [15]. We
use one ULD and 50 items out of the flight at random to
create an input shortage and limit the item pool size for
our heuristic (single knapsack problem). Further, we
assign meta-information as follows. We randomly add a
sub-pallet to box items in 50% of cases. According to
our experts, approximately every second item arrives
pre-palletized on a wooden pallet. We assign each item
a center of mass. For the majority of items, we assume
a fixed density throughout the item’s body (80%); for
the remaining items, we randomly assign a point in the
3D item space as the center of mass, following a uniform
random distribution over the items’ dimensions. We use
two randomly selected jobs: one pallet job (LH8080-
23NOV15-FRASIN-PMC-F) and one container job
(LH8164-24NOV15-FRA-OR-AKE). We set the
population size to 10,000 and generations to 300. The
optimization heuristic incorporates our GPGPU-
accelerated static stability criterion as an assessment
criterion. We track overall runtime of the heuristic,
which mainly drives our solution’s capability in terms
of performance. We measure runtimes for each
generation to observe the development over time for
both job configurations. Exemplary in-between buildup
states are visualized in Figures 5 and 6.

Figure 3: Buildup of
PMC-F (simulation

sampler)

Figure 4: Buildup of

AKE (simulation
sampler)

We can see considerable differences between both

jobs. While the stability simulations for pallets cause an
overall heuristic runtime of about 35 minutes, the
container simulations take considerably longer—over
90 minutes. An explanation for this deviation might be
the collision tests of the cargo with the container walls.
We model container walls as static rigid objects in the
simulation world, which affects the items’ number
collisions. Not only can they collide with each other, but
they can also collide with the static container walls.
Further, the final container solution places more items
(13 vs. four) compared to the pallet solution, which
increases the number of sequences and ultimately the
number of collisions. Moreover, an increased number of
items attached to sub-pallets and items with displaced
centers of masses are present.

4.7. Evaluation

In the following, we evaluate if our system marks
an improvement in terms of performance. We refer to
CPU execution as the CPU-only Sim2 of Mazur et al. [6]
and GPU execution as the GPGPU-accelerated
approach presented in this study. We first develop a
conceptual mapping between the loading algorithm and
approach (CPU, GPU). This model is then evaluated on
a benchmark with all three loading algorithms for two
different population sizes (1000, 8000). As a result, we
come up with an empirically validated conceptual
mapping. Our operationalized hypothesis is

𝐻!: 𝜇"#$ ≤ 𝜇%#$ vs. 𝐻&: 𝜇"#$ > 𝜇	%#$,

where 𝜇	%#$ and 𝜇"#$ represent mean performance in
terms of the runtime of the GPU and CPU execution,
respectively. Performance is a measure highly
dependent on the underlying hardware. To overcome a
bias toward a dedicated hardware configuration, we run
benchmarks on three different hardware configurations
(M1, M2, M3). Their technical specifications can be
found in Table 2. Note that GPU execution is an
acceleration technique and means no independence
from the host CPU configuration.

Table 2: Hardware platform configuration
 M1 M2 M3
CPU cores/
threads

16/32 24/48 4/8

CPU base/boost
clock (GHz)

3.5/4.4 3.8/4.5 2.8/3.8

GPU CUDA
cores

4608 3584 640

GPU base/boost
clock (GHz)

1.35/
1.77

1.48/1.58 1.35/
1.45

GPU memory 24 GB
GDDR6

11GB
GDDR5X

2 GB
GDDR5

Figure 5: CPU
benchmark results

Figure 6: GPU
benchmark results

We use three different cargo complexity scenarios.

Scenario A represents a loading scenario with only
homogeneous boxes, Scenario B includes different

Page 1652

heterogeneous box dimensions, and Scenario C mirrors
loading situations found in practice with 5% irregular
shapes. Further, for every complexity scenario, we
evaluate three different population sizes (1,000, 8,000,
20,000). We let problem complexity (in the form of
scenario) and problem size (in the form of population
size) vary to illustrate scaling behavior with respect to
problem size and problem complexity. Furthermore, to
preserve comparability between approaches, we remove
deviating information (e.g., centers of mass, sub-pallets)
and set generation size to one. GA outcomes are
statistically dependent on the previous generation and
are therefore not Gaussian distributed [27]. Since the
heuristic employs a random populator, the first
generation is randomly sampled, which preserves the iid
assumption we need to employ t-tests.

4.7.1. Conceptual Model. The results of our
loading algorithm evaluation are displayed in Figures 7
and 8.

Figure 7: Conceptual model of loading

approach and technology

Facing CPU execution, the single-ULD loading
algorithm performs best. For GPU-execution, all-
sequence-ULD loading and multi-ULD loading perform
considerably better than single-ULD loading. For the
smaller population size (1,000), all-sequence-ULD
loading outperforms multi-ULD loading, whereas for
the larger population size (8,000), multi-ULD loading
proves better on the GPU.

These results may be due to a limited optimal
number of parallel executions (i.e., problem size), which
is determined by the limited number of GPU cores. The
higher the number of parallel processing units, the more
rigid bodies might be simulated concurrently. Because
of this tradeoff, we expect that for increasing population
sizes, the difference between all-sequence-ULD loading
and multi-ULD loading becomes even larger. For small
population sizes, we recommend using all-sequence-
ULD loading, while for medium to large sizes, we prefer
multi-ULD loading. For CPU execution, only single-
ULD loading provides reasonable performance. The

conceptual model is depicted in Figure 7. 𝑁 refers to the
problem size (number of parallel executions).

4.7.2. Performance Evaluation. We present our
results for the Welch’s t-tests for performance in Table
3. For most platforms and problem combinations, we
can reject the null hypothesis, always at a highly
significant level (p < 0.001). This is not surprising as we
consider large sample sizes. For M3, we can uniformly
reject the null with large effect sizes (Cohen’s d > 0.8)
except for the A-8000 and C-8000 scenarios. For M1,
we can observe that GPU execution outperforms CPU
execution for moderate to large problem sizes. For small
problem sizes, GPU proves to be inferior. For small
problem sizes, the ratio of calculations to
communicational and memory access overhead
(arithmetic intensity) on the device is low. This situation
is not well suited for GPGPU. For larger problem sizes,
the ratio increases, so GPU scales better than CPU. The
larger the problem size, the larger the effect, which we
can observe in the increasing effect sizes of the Cohen’s
d. For M2, CPU keeps up and scales roughly as good as
GPU. This result may be due to the hardware
configuration for M2, in which the CPU is composed of
48 cores. In our hardware configuration set, this CPU
has the highest clock rate and the highest number of
cores. Having more cores implies better parallelization
capabilities even for multi-threaded single-ULD loading
algorithms. In general, we can observe the tendency that
larger problem sizes imply longer absolute runtimes.
When we set the effect in relation to problem size, we
see a scaling effect. We calculate the ratio of mean
runtime and problem size for the M1 case and visually
depict them in Figure 8. The CPU scaling curve is flatter
in comparison to the GPU scaling curve, whereas GPU
converges faster.

Figure 8: Relative performance

Page 1653

5. Discussion and Conclusion

With this study, we tackled the research and
practical problem of improving integrated physical
simulations in optimization heuristics for pallet loading
using GPGPU. With the presented approach, research in
the area of pallet loading is equipped with an innovative
parallel method to evaluate static stability. Our design is
composed of eight design requirements and four design
principles. Our design principles can be further
employed in other problem classes that require fast but
precise physical feedback for artificial intelligence and
tackle the problem of employing modern GPUs’
compute capabilities while coping with large problem
sizes with thousands of physical bodies with
heterogeneous shapes. Our results demonstrate an
improvement in terms of complexity and, depending on
hardware platform, performance. For most platforms,
our approach outperforms the state-of-the-art CPU
approach.

Previous studies have presented methods that are
not integrated in the optimization heuristic or heavily
impact performance. With our approach, we accelerated
physical simulations, which can provide leverage for the
optimization to reach a higher solution quality. We took
a step toward a practically relevant pallet-loading
solution by intentionally setting our focus on the
inclusion of meta-information and shapes that mirror the
complexity found in cargo operations. We shed light on
the problem of sub-pallets and non-uniform gravity. We
modeled eight distinct item shapes and two ULD types,
which cover a broad spectrum of bodies found in cargo
operations.

In the following, we emphasize a set of our work’s
limitations, which is by no means complete. First, we
imposed the assumption of a valid physical simulation

as an outcome of the physics engine. Thus, our approach
primarily lacks validation against a ground truth, for
example, in the form of a validated test dataset or a high-
precision physical simulator. Second, we only included
a limited number of shapes. In many operational cases,
this might be sufficient, but during our onsite visits, we
observed a multitude of shapes that are not easily
assignable to one of the proposed simulation shapes
(e.g., cars or turbines). Further, we omitted concave
shapes. Collisions of concave bodies are harder to
evaluate for physics engines; thus, their inclusion would
likely slow down execution. Furthermore, our
assumption of rigid bodies might be challenged. During
our onsite visits, we observed multiple items with
deformable packing material (e.g., cardboard) and
loading security tools (e.g., nets and straps), which are
not captured by rigid body simulation. Finally, we tested
our approach on only a small sample of selected flights,
thus limiting our inferential conclusions. With respect to
stability assessments in pallet loading context, further
research should find a way to balance realism and
runtime, such that realistic stability approximations that
cope with practical complexity can be obtained in
shorter time frames. Although our approach marks an
improvement, runtimes still should be considerably
faster to meet practical goals.

Our conceptual model is a starting point as it
provides an approximation of the best fit between
approach and problem size. Our evaluation of
performance is restricted to the small set of hardware we
tested on. In terms of future opportunities, model
validation against a physically crafted and virtualized
layout is paramount. Another extension of our
simulation might be to evaluate other constraints apart
from static stability, for example, dynamic stability,
loading bearing capacity, or balancing.

Table 3: Performance evaluation results
 Scenario A B C
Platform 1000 8000 20000 1000 8000 20000 1000 8000 20000
 𝜇	"#$ 21.2 107.2 197 13.1 71.8 136.1 7.6 40.8 78.8
M1 𝜇	%#$ 39.9 101 181.5 39.9 61.4 118 14.1 36.4 72.5
 Cohens’ d -6.4 3.5*** 6.7*** -15 7.6*** 11.9*** -6.2 4.2*** 7.2***
 𝜇	"#$ 12.5 48.4 115.7 7.3 32.9 80.2 4 18.4 47
M2 𝜇	%#$ 15.5 50.2 117.6 15.5 30.5 79 5 17.7 47.1
 Cohens’ d -5.1 -2.2 -1 -15.3 3*** 0.5*** -6.3 1.3*** -0.1
 𝜇	"#$ 72.6 498.6 50.7 317.9 28.2 173.7
M3 𝜇	%#$ 37.3 142.2 22.2 73.2 13.3 49.5
 Cohens’ d 9.2*** 1.4*** 11.5*** 12*** 10.4*** 3.6***

Page 1654

6. References

[1] Bortfeldt, A. and G. Wäscher, "Constraints in container

loading – A state-of-the-art review", European Journal
of Operational Research, 229(1), 2013, pp. 1–20.

[2] Zhao, X., J.A. Bennell, T. Bektaş, and K. Dowsland, "A
comparative review of 3D container loading algorithms",
International Transactions in Operational Research,
23(1-2), 2016, pp. 287–320.

[3] Bischoff, E.E. and M. Ratcliff, "Issues in the development
of approaches to container loading", Omega, 23(4), 1995,
pp. 377–390.

[4] Ramos, A.G., J.F. Oliveira, J.F. Gonçalves, and M.P.
Lopes, "A container loading algorithm with static
mechanical equilibrium stability constraints",
Transportation Research Part B: Methodological, 91,
2016, pp. 565–581.

[5] Ramos, A.G. and J.F. Oliveira, "Cargo Stability in the
Container Loading Problem - State-of-the-Art and Future
Research Directions“, Operational Research, A.I.F. Vaz,
J.P. Almeida, J.F. Oliveira, and A.A. Pinto, Editors.
Springer International Publishing, Cham, 2018.

[6] Mazur, P.G., N.-S. Lee, and D. Schoder, "Integration of
Physical Simulations in Static Stability Assessments for
Pallet Loading in Air Cargo", Proceedings of the 2020
Winter Simulation Conference, 2020, pp. 1312-1323.

[7] Martinez-Franco, J.C. and D. Alvarez-Martinez, "PhysX as
a middleware for dynamic simulations in the container
loading problem", Proceedings of the 2018 Winter
Simulation Conference, 2018, pp. 2933–2940.

[8] Ramos, A.G., J.F. Oliveira, J.F. Gonçalves, and M.P.
Lopes, "Dynamic stability metrics for the container
loading problem", Transportation Research Part C:
Emerging Technologies, 60, 2015, pp. 480–497.

[9] Hennessy, J.L., D.A. Patterson, D. Goldberg, and K.
Asanovic, Computer architecture: A quantitative
approach, 5th edn., Morgan Kaufmann, Amsterdam,
2011.

[10] Harada, T., "Real-time Rigid Body Simulation using
GPUs", GPU Gems 3, H. Nguyen, Editor. Addison-
Wesley: Upper Saddle River, N.J., 2007.

[11] Peffers, K., T. Tuunanen, M.A. Rothenberger, and S.
Chatterjee, "A Design Science Research Methodology
for Information Systems Research", Journal of
Management Information Systems, 24(3), 2007, pp. 45–
77.

[12] Ramos, A.G., J. Jacob, J.F. Justo, J.F. Oliveira, R.
Rodrigues, and A.M. Gomes, "Cargo dynamic stability in
the container loading problem - a physics simulation tool
approach", International Journal of Simulation and
Process Modelling, 12(1), 2017, pp. 29–41.

[13] Martínez, J.C., D. Cuellar, and D. Álvarez-Martínez,
"Review of Dynamic Stability Metrics and a Mechanical
Model Integrated with Open Source Tools for the
Container Loading Problem", Electronic Notes in
Discrete Mathematics, 69, 2018, pp. 325–332.

[14] Brandt, F. and S. Nickel, "The air cargo load planning
problem - a consolidated problem definition and

literature review on related problems", European Journal
of Operational Research, 275(2), 2019, pp. 399–410.

[15] Lee, N.-S., P.G. Mazur, M. Bittner, and D. Schoder, "An
Intelligent Decision Support System for Air Cargo
Palletizing", Proceedings of the 54th Hawaii
International Conference on System Sciences, 2021, pp.
1405-1414.

[16] Bracht, E.C., T.A. de Queiroz, R.C.S. Schouery, and F.K.
Miyazawa, "Dynamic cargo stability in loading and
transportation of containers", 2016 IEEE International
Conference on Automation Science and Engineering
(CASE), IEEE, 2016, pp. 227-232.

[17] Nolan Goodnight, "Part VI: GPU Computing", in GPU
Gems 3, H. Nguyen, Editor. Addison-Wesley: Upper
Saddle River, N.J., 2007.

[18] Buck, I. and T. Purcell, "A Toolkit for Computation on
GPUs", GPU Gems: Programming techniques, tips, and
tricks for real-time graphics, R. Fernando, Editor. 2004.
Addison-Wesley: Boston, Mass.

[19] Green, S., "Part IV: General-Purpose Computation on
GPUS: A Primer", GPU Gems 2: Programming
techniques for high-performance graphics and general-
purpose computation, M. Pharr and R. Fernando, Editors.
2006. Addison-Wesley: Upper Saddle River, N.J.

[20] Vaishnavi, V., W. Kuechler, and S. Petter (Eds.), "Design
Science Research in Information Systems", 2004/19.
URL: http://www.desrist.org/design-research-in-
information-systems/.

[21] Gregor, S. and A.R. Hevner, "Positioning and Presenting
Design Science Research for Maximum Impact", MIS
Quarterly, 37(2), 2013, pp. 337–355.

[22] Welch, B.L., "The generalisation of student's problems
when several different population variances are
involved", Biometrika, 34(1-2), 1947, pp. 28–35.

[23] NVIDIA PhysX, NVIDIA PhysX SDK 4.1
Documentation, 2021. URL:
https://gameworksdocs.nvidia.com/PhysX/4.1/document
ation/physxguide/Index.html

[24] Boeing, A. and T. Bräunl, "Evaluation of real-time
physics simulation systems", Proceedings of the 5th
international conference on Computer graphics and
interactive techniques in Australia and Southeast Asia
(GRAPHITE '07), 2007, pp. 281–288.

[25] Hummel, J., R. Wolff, T. Stein, A. Gerndt, and T. Kuhlen,
"An Evaluation of Open Source Physics Engines for Use
in Virtual Reality Assembly Simulations", Advances in
Visual Computing, D. Hutchison, T. Kanade, and J.
Kittler, Editors. Springer Berlin Heidelberg: Berlin,
Heidelberg, 2012.

[26] Lee, N.-S., P.G. Mazur, C. Hovestadt, and D. Schoder,
"Designing a State-of-The-Art Information System for
Air Cargo Palletizing." 15th International Conference on
Design Science Research in Information Systems and
Technology, DESRIST 2020, Springer International
Publishing, 2020, pp. 382–387.

[27] Kramer, O., Genetic Algorithm Essentials, Springer
International Publishing, Cham, 2017.

Page 1655

