
 False Positives in Credit Card Fraud Detection: Measurement and Mitigation

Florian Wallny

flo.wallny@gmail.com

Abstract
Credit Card Fraud Detection is a classification

problem where different types of classification errors

cause different costs. Previous works quantified the

financial impact of data-driven fraud detection

classifiers using a cost-matrix based evaluation

approach, however, none of them considered the

significant financial impact of false positives. Analysts

reported that fraud prediction in e-commerce still has to

deal with false positive rates of 30-70%, and many

cardholders reduce card usage after being wrongly

declined. In our paper, we propose a new method for

assessing the cost of false positives and evaluate several

state-of-the-art fraud detection classifiers using this

method. Further, we investigate the effectiveness of

ensemble learning as previous work supposed that a

combination of diverse, individual classifiers can

improve performance. Our results show that cost-based

evaluation yields valuable insights for practitioners and

that our ensemble learning strategy indeed cuts fraud

cost by almost 30%.

1. Introduction

Credit card fraud is a problem with strong economic

impact. Although a lot of effort has gone into the design

of secondary verification layers like 3D Secure or

biometric transaction authentication, credit cards are

still very susceptible to fraud, especially in e-commerce

transactions [1]. Worldwide losses due to credit card

fraud have been estimated to $28.65 billion in 2019, and

are projected to reach $32.04 billion in 2021 [2]. Credit

card fraud is commonly subdivided into Card-Present-

Fraud (CP), where the card is physically present at the

time of the fraudulent transaction, and Card-Not-

Present-Fraud (CNP), where it is not, like with online

transactions. According to recent data, 15 out of 100

online transactions are turned down compared to only

three out of 100 for in-store transactions [3].

Card issuers (mostly banks) and network providers

(e.g. VISA or MasterCard) rely on Machine Learning

(ML) for credit card fraud detection (CCFD). State-of-

the-art fraud detection systems combine a (confidential)

set of transaction blocking rules with a data-driven ML

model. This model typically employs a classifier,

trained by ML algorithms on examples of genuine and

fraudulent transactions, which can assign a

suspiciousness score to an incoming transaction.

Transactions exceeding a pre-set threshold are declined.

[4]. Due to the economic potential, ML for CCFD has

received a lot of attention, however, it remains

challenging to achieve satisfying performance in

practice. In particular, the susceptibility of the models to

generate false declines (or false positives) is a major

problem. They cause embarrassing situations for

customers, lost revenue for merchants, and

administrative overhead for issuers. Especially during

the ongoing COVID-19 pandemic and the connected

increase in online transactions, false positives became

an even bigger problem [3]. Analysts pointed out that

false positives might cost more than fraud itself:

Analysts estimated that in 2014 in the U.S., $9 billion

were lost due to card fraud while $118 billion – 3% of

the total U.S. retail market – of sales have been wrongly

declined due to the fear of fraud. 26% of the surveyed

customers reduced their card usage after being falsely

declined, and 32% completely abandoned the card

afterwards [5].

Previous work on CCFD did not take into account

the adverse financial impact of false positives. Most

publications report only standard classification metrics

such as accuracy, precision and recall [6,7,8]. Although

some attempts have been made to quantify the financial

impact of using ML for CCFD, all of them reduce the

cost of false positives to a fixed administrative

overhead, which heavily underestimates the true

financial damage they cause. Our study addresses this

gap by asking the following first research question

(RQ): RQ1: How can classifiers for CCFD be evaluated

in financial terms while incorporating the cost

connected with false positives?

Using statistical data on card usage from the Euro

area, we construct an evaluation function for CCFD

models that incorporates the operative cost as well as the

potentially lost revenue that false positive cause for card

issuers. We then evaluate the most prominent models for

CCFD using this evaluation function.

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 1572
URI: https://hdl.handle.net/10125/79527
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

mailto:flo.wallny@gmail.com

Ensemble learning showed to be effective for

reducing false positives in other domains [9,10,11].

However, no publication has yet investigated its

effectiveness in CCFD using state-of-the-art ML

algorithms. Only one recent publication by [12]

suggested combining a Random Forest with a Neural

Network classifier as the predictions differ in the kind

of frauds they detect. Following this call for further

research, we also investigate: RQ2: Can ensemble

learning help to mitigate the false positives problem?

We will demonstrate that already simple ensemble

learning strategies like majority voting can indeed help

to mitigate the false positive problem, even if the

participating models are already ensembles like

Random Forests.

The remainder of this paper is structured as follows.

In Section 2, we introduce the reader to the problem of

CCFD and name the most important approaches found

during our literature review for solving it. In Section 3,

we review existing cost-based CCFD model evaluation

strategies. Section 4 introduces the dataset used for

training our models and presents the associated feature

engineering steps. Section 5 describes the associated

models Random Forests, Gradient-Boosted Decision

Trees and Neural Networks. Further, we present our

model evaluation strategy, including our proposed cost-

based evaluation of false positives. Section 6 reports

results, while Section 7 discusses theoretical and

practical implications as well as limitations of our work.

2. Credit Card Fraud Detection

Credit card fraud can be defined as any illegitimate

use of a credit card against the interest of the cardholder,

and CCFD is defined as the task of identifying the

fraudulent transactions [13]. More formally, given a set

of credit card transactions 𝑋 = [𝑥1, … , 𝑥𝑁], where each

transaction 𝑥𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐾] contains details like

amount, currency, timestamp, etc., CCFD can be

formulated as a supervised learning problem [14]. Each

transaction has a class label 𝑦𝑖 ∈ {0,1} assigned, where

𝑦 = 1 denotes a fraudulent transaction and 𝑦 = 0 a

genuine one. The goal of a machine learning algorithm

for CCFD is to learn the class-conditional posterior

distribution 𝑃(𝑦|𝑋) and predict the label �̂�𝑁+1 of an

unseen transaction 𝑥𝑛+1.

Seminal publications on algorithmic CCFD

exclusively used Neural Networks [15 – 18]. Since the

mid-2000s, a vast set of models has been applied to

solve the CCFD problem.1 The most prominent ML

model for CCFD in research and practice nowadays is

Random Forests [4,8]. Several studies have reported

1 [6, 19,20] have carried out systematic literature reviews.

their superior performance when compared to others [7,

14, 21]. Another effective model for CCFD is Gradient-

Boosted Decision Trees [22]. Although this algorithm

has not yet received broad attention in academic

research on CCFD, it is heavily used in competitive

machine learning. In the IEEE-CIS Fraud Detection

Competition on kaggle2, for example, all top-ranked

teams that reported on their solutions used some

implementation of Gradient Boosting.

Breiman [23] firstly introduced Ensemble Learning,

the aggregation of multiple classification outcomes into

one single prediction as Bagging. He proposed an

ensemble consisting of individual classifiers built on

random subsamples of the training set. Ensemble

methods received broad attention with the 2006 awarded

Netflix prize, where the winning solution was a

classifier ensemble [24]. However, in CCFD,

ensembling has received little attention so far. The only

work that found a performance boost after ensembling

Random Forests with Neural Networks was carried out

by [25].

3. Cost-Based Evaluation of Credit Card

Fraud Detection Models

Cost-based evaluation is an appropriate method of

evaluating a CCFD classifier, because firstly, businesses

are usually interested in minimizing the cost

accountable to card fraud and therefore need to trade off

costs and potential savings when using an automated

fraud detection system. Second, it is easier to compare a

data-driven model to a human investigators team if both

are evaluated in terms of financial savings. Third, CCFD

is an instance of cost-sensitive learning problems [26],

where different classification outcomes have a different

financial impact. Table 1 shows a cost matrix, which

assigns each classification result (true positive, false

positive, true negative, false negative) a cost value

(𝐶𝑇𝑃, 𝐶𝐹𝑃 , 𝐶𝑇𝑁, 𝐶𝐹𝑁).

Table 1. Cost Matrix.

 𝑦 = 1 (Fraud) 𝑦 = 0 (Genuine)

�̂� = 1 𝐶𝑇𝑃 𝐶𝐹𝑃

�̂� = 0 𝐶𝐹𝑁 𝐶𝑇𝑁

Table 2 gives an overview of how previous studies

populated this cost matrix. Cost-based evaluation for

CCFD has been proposed firstly in the paper by Chan et

al (1999) [27]. They assume no cost for true negatives

and full cardholder imbursement in case of a missed

fraud. If a transaction is wrongly declined or a fraud

2 https://www.kaggle.com/c/ieee-fraud-detection/overview

Page 1573

https://www.kaggle.com/c/ieee-fraud-detection/overview

caught, they assume a constant administrative overhead

𝐶𝑎 between $50 and $100 to incur, because in both

cases, the cardholder must be contacted, the transaction

must be investigated, a new card must be issued, et

cetera. A transaction with a lower amount than 𝐶𝑎 is,

however, not worth investigating.

Table 2: Cost Matrices of Previous Work.

 The study by Hand, et al. (2008) [28] does not use

example-dependent costs because of the “fraud breeds

fraud” argument − fraudsters getting away with small-

scale frauds are likely to continue in the future, and

therefore all frauds have to be prevented. To illustrate

magnitudes, they assume a false negative cost 100 times

of 𝐶𝑎. Bahnsen, et al. (2013, 2015, 2016) [29, 30, 31]

assume a constant 𝐶𝑎 for both false positives and false

negatives and an example-dependent 𝐶𝐹𝑁 (the

respective transaction amount) in their work on cost-

sensitive algorithms for CCFD. Wedge, et al. (2018)

[32] is the only study so far that uses an example-

dependent 𝐶𝐹𝑃. They assume that a wrongly declined

transaction goes through with 50% probability with the

second try. If it doesn’t, then the issuer loses a

transaction processing fee assessed at 1.75% of the

transaction amount. Their evaluation approach,

however, doesn’t include overheads. We argue that none

of the previously explained approaches captures all

aspects of the true cost, especially for false positives.

Clearly, administrative costs occur with both false

positives and false negatives. However, reducing 𝑪𝑭𝑷 to

a fixed administrative overhead ignores the variable cost

for the issuer caused by the lost processing fee. Taking

a fixed percentage only of the current transaction

amount is also too short-sighted.

As the study [5] reported, 32% of cardholders stop

using a card after being falsely declined. Therefore, if a

cardholder decides to switch the issuer because of too

many wrong declines, the card issuer loses not the

transaction amount of this transaction, but also all other

future transactions that this cardholder could have made.

If the issuer charges service fees or a fixed yearly credit

card cost, this money is lost as well.

3 https://www.kaggle.com/mlg-ulb/creditcardfraud

4. Data

Because of the intrinsically private nature of credit

card data, publicly available, real-world credit card

transaction datasets are scarce. To the best of our

knowledge, there are currently only two: The first

dataset was released together with the Ph.D. thesis of

Dal Pozzolo (2015) [4]. It consists of 284,807 credit

card and is available on kaggle3. The second dataset was

issued as a part of the 2019 IEEE-CIS Fraud Detection

competition on kaggle. It contains 590,540 labeled

credit card transactions and was extracted from a

production fraud detection system. We decided to use

the latter dataset in our study because of the larger size

and feature set. We don’t present a full feature list here

for space reasons, but it is available online.4 Table 3

reports a set of aggregated descriptive metrics (‘#’

denotes numbers, and ‘%’ percentages).

4.1 Feature Engineering

Because spending behavior varies from cardholder

to cardholder, transactions that do not look outstanding

from a global point of view might be unusual for a

certain cardholder and indicate fraud. It is therefore

helpful to add a set of derived features which form a

cardholder profile. Here, we will use three feature sets:

a baseline feature set containing only original features,

an augmented feature set containing engineered features

and a reduced feature set that removes correlated and

unimportant features. Feature engineering for credit

card fraud detection is a widely discussed topic, and

many studies use a strategy that aggregates transaction

data over a pre-defined timeframe [7,12,14,21,31] in a

Recency-Frequency-Monetary style. The normal

4 https://www.kaggle.com/c/ieee-fraud-detection/discussion/101203

𝐶𝑇𝑃 𝐶𝐹𝑃 𝐶𝑇𝑁 𝐶𝐹𝑁

Chan, et al. (1999) [27]
𝐶𝑎 if 𝑇𝐴𝑚𝑡 > 𝐶𝑎,

else 𝑇𝐴𝑚𝑡
𝐶𝑎 if 𝑇𝐴𝑚𝑡 > 𝐶𝑎, else 0 0 𝑇𝐴𝑚𝑡

Hand, et al. (2008) [28] 𝐶𝑎 𝐶𝑎 0 100𝐶𝑎

Bahnsen, et al. (2016) [29] 𝐶𝑎 𝐶𝑎 0 𝑇𝐴𝑚𝑡

Wedge, et al. (2018) [32] 0 0.5 × 1,75% × 𝑇𝐴𝑚𝑡 0 𝑇𝐴𝑚𝑡

Page 1574

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/c/ieee-fraud-detection/discussion/101203

cardholder behavior is characterized by the (1) Recency

or the average time between previous transactions, by

the (2) Frequency or the average amount spent in a given

timeframe and the (3) Monetary value or the average

amount spent in a given timeframe.

Let 𝑆𝑡,𝑖𝑑 be the set of transactions made by a

specific cardholder (named with an 𝑖𝑑) in the timeframe

𝑡 ∈ {1ℎ, 3ℎ, 6ℎ, 12ℎ, 18ℎ, 24ℎ, 72ℎ, 168ℎ}.

Table 3. Essential Descriptive Metrics.

#Transactions Timespan #Features #Genuine #Fraudulent

590,540 6 Months 434 569,877 20,663

%Genuine %Fraud Total Amount Fraudulent Amount %Fraudulent Amt

96.5 3.5 $79,738,948.74 $3,083,844.86 3.87

Our derived features are (where 𝑇𝑥𝐷𝑇 is a Timedelta

in seconds from a given reference datetime and denotes

the point of time when the transaction was made):

- Average timespan (𝐴𝑣𝑔𝑇𝑠𝑝) between the

transactions in the given timeframe (Recency):

𝐴𝑣g𝑇𝑠𝑝 =
1

|𝑆𝑖𝑑,𝑡 − 1|
∑ 𝑥𝑖+1

𝑇𝑥𝐷𝑇 − 𝑥𝑖
𝑇𝑥𝐷𝑇

|𝑆𝑖𝑑,𝑡|−1

𝑖=0

- Number of transactions (𝑇𝑥 𝐶𝑜𝑢𝑛𝑡) in the given

timeframe (Frequency):

𝑇𝑥𝐶𝑜𝑢𝑛𝑡 = |𝑆𝑖𝑑,𝑡|

- Average transaction amount (𝐴𝑣𝑔 𝑇𝑥𝐴𝑚𝑡) in the

past 𝑡 hours for cardholder 𝑖𝑑 (Monetary Value):

𝐴𝑣𝑔𝑇𝑥𝐴𝑚𝑡 =
1

|𝑆𝑖𝑑,𝑡|
∑ 𝑥𝑖

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑚𝑡
|𝑆𝑖𝑑,𝑡|

𝑖=0

To calculate the aggregated features, we firstly

engineered a cardholder identifier by using adversarial

validation5. In real-world datasets, this identifier is

given by the card number, but in the dataset at hand, the

card number has been removed for privacy reasons.

Next, we added time-based features based on the 𝑇𝑥𝐷𝑇

field to track transaction month, day and hour. Finally,

we calculated the aggregation values separately for each

of the 8 timeframes and obtained 28 engineered features

in total, therefore, we have 452 features in the

augmented feature set.

4.2 Feature Selection

To remove unimportant features, we use two

techniques: correlation analysis and a modified version

of backward feature selection (for tree-based models

only). For correlation analysis, we identified groups of

correlated features (𝜌 > 0.9) and replaced the whole

group by one feature. For backward feature selection,

we reviewed the feature importances of the tree-based

5 http://fastml.com/adversarial-validation-part-two/

models, and removed zero-importance features as well

as the least important 5% of the features. As soon as

performance decreased, we stopped eliminating

features. This process removed 26 features for Random

Forests, 206 features for CatBoost and 17 features for

XGBoost

5. Model

This section briefly introduces the individual

classifiers Random Forests, Neural Networks, and the

two Gradient Boosting variants XGBoost and CatBoost

together with the parameterizations we used for training.

Subsequently, we will outline the ensembling strategy

to combine the predictions of the individual classifiers.

Finally, we describe conventional and cost-based

metrics to evaluate the models as well as the ensemble.

5.1 Random Forests

As described in Section 2, Random Forests are the

industry standard in CCFD. Random Forests were

introduced by [34] and are an ensemble method that

combines predictions of multiple, de-correlated decision

trees by majority vote. We used the implementation and

the hyperparameter tuning strategy by scikit-learn [35].

Firstly, we successively increased the number of trees in

the forest and did not find any further improvements for

more than 1000 trees. Afterwards, we performed a grid

search (an exhaustive search over a manually specified

subset of the hyperparameter space) over different

subsampling ratios and found the best results with

training each tree on 20% of the features and 80% of the

rows. To address the fact that fraudulent transaction

represent only a tiny fraction of all transactions, we used

the inverse of the imbalance ratio as class weights.

Page 1575

http://fastml.com/adversarial-validation-part-two/

Random Forests cannot deal with categorical features

natively, so we mapped each category to an integer.

5.2 Gradient-Boosted Decision Trees

Gradient-Boosted Decision Trees are another

method of ensembling single tree predictions where

each tree contributes a small “boost”, scaled by a

learning rate, to the output [22]. The state-of-the-art

implementation of gradient boosting is XGBoost

(“eXtreme Gradient Boosting”) [36]. Because of its

performance and scalability, XGBoost has quickly

become a dominating solution for a wide range of

problems, especially in competitive machine learning.

We used the python implementation together with the

parameters selected by the winning team of the kaggle

competition. They identified a learning rate of 𝜌 =
0.02, a row subsampling rate of 0.8 and an ensemble

size of 2000 estimators as optimal.6 We mapped each

categorical feature to an integer value since XGBoost

cannot handle categorical features natively. Another

novel, but already quite popular boosting solution is

CatBoost [37], a modified version of the standard

boosting algorithm that can handle categorical features

natively. It is interesting to see how CatBoost will

perform on our dataset, because it contains a lot of

categorical features, some of them with a high number

of unique values. We had to limit the ensemble size to

1000 because of RAM constraints. We set class weights

as with Random Forests because without, performance

decreased.

5.3 Neural Networks

Neural Networks (NNs) are a large family of

statistical models and learning methods. NNs are a

highly active area of machine learning research, and,

besides that, have already found a large variety of

applications from machine translation over medical

imaging to financial analysis. Our Neural Network

Architecture was adapted from a successful kaggle

submission.7 It consists of three hidden layers, 256

nodes each, with a learning rate of ρ=0,001 and a weight

decay coefficient of 𝜆 = 0,0005. Before training, we

standardized all numerical features and log-transformed

those with large value range. For categorical features,

we used One-Hot-Encoding, after reducing the

cardinality for high-cardinality features by replacing

infrequent categories with a uniform label. We tried to

use learned embeddings as alternative, but saw worse

results. As further regularization techniques, we use

6 https://www.kaggle.com/cdeotte/xgb-fraud-with-magic-0-9600

Batch Normalization [38] and Dropout [39] with 0.3

dropping probability. We also tried computations with

increased depth of the NN up to ten hidden layers, but

didn’t see any significant improvements.

5.4 Ensembling Strategy

Inspired by the work of [12], we investigate how

strong the true positives of our models overlap to see if

they detect different kinds of fraud. If they do so,

combining their predictions in an ensemble probably

improves the performance. We use the Jaccard Score to

measure the classifiers’ prediction similarity. Given two

classifiers’ predictions, it is defined as

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒 =
𝑁1,1

𝑁1,0 + 𝑁0,1 + 𝑁1,1

where 𝑁𝑖,𝑗 is the number of transactions for which

classifier 1 predicted class 𝑖 and classifier 2 predicted

class 𝑗 [40]. For 𝑖 = 𝑗, we therefore say that the

classifiers agree, and disagree otherwise. A Jaccard

Score of 1 means that both classifiers made identical

predictions on all transactions and a Jaccard Score of 0

means that the classifiers did not agree on a single

transaction. As we strive for maximum diversity within

the ensemble, we suspect that adding a classifier with

low prediction similarity to the models already in the

ensemble improves the score stronger than adding a

classifier with high similarity.

We use majority voting for combining predictions:

For a given transaction, the ensemble’s prediction is the

class that the majority of the models predicted.

5.5 Conventional Evaluation Metrics

We evaluate each model against a set of

conventional classification metrics (described in this

section) and in financial terms (described below).

Firstly, we report Precision and Recall for visualizing

the proportion between false positives and false

negatives. Like frequently found in the literature, as an

overall classification quality metric, we use Area under

the Precision-Recall Curve (AUPRC) instead of the

popular Area under the Receiver Operating Curve

(AUROC). It summarizes the trade-off between Recall

and False Positive Rate, while AUPRC summarizes the

trade-off between Precision and Recall [41]. Although

they look similar, AUPRC is more informative in

imbalanced classification settings. [42,43]. As a further

standard metric that captures the trade-off between

7 https://www.kaggle.com/c/ieee-fraud-

detection/discussion/111476

Page 1576

https://www.kaggle.com/cdeotte/xgb-fraud-with-magic-0-9600
https://www.kaggle.com/c/ieee-fraud-%20%20%20%20%20%20%20%20detection/discussion/111476
https://www.kaggle.com/c/ieee-fraud-%20%20%20%20%20%20%20%20detection/discussion/111476

precision and recall, we report the F1 score (harmonic

mean of precision and recall).

To measure the relative improvement or decline

ensembling yielded, we do the following: For a given

performance metric 𝑧, let 𝑧𝑎𝑣𝑔 be the average cross-

validated score of the individual classifiers participating

in the ensemble and 𝑧𝑒𝑛𝑠 be the cross-validated

ensemble score. We then report the relative

improvement score

%𝐶ℎ𝑎𝑛𝑔𝑒 = (𝑧𝑒𝑛𝑠 − 𝑧𝑎𝑣𝑔)/𝑧𝑎𝑣𝑔.

5.6 Financial Evaluation

For financial evaluation, we use the cost matrix

described in Section 3. Like in previous work, we

assume no cost in case of a true negative, and an

administrative overhead 𝐶𝑎 of $10 in case of false

positives and true positives. If a fraud remains

undetected, the lost amount is equal to the transaction

amount (𝐶𝐹𝑁 = 𝑇𝑟𝑎𝑛𝑠𝐴𝑚𝑡).

We quantify the additional financial impact of a false

positive as follows: From the Statistical Data

Warehouse of the ECB, we know that the number of

issued credit cards in the Euro area in 2018 was

108,071,580 and the total transaction value made with

them was 336,679.541 Mln. € [44, 45]. Therefore, by

dividing the total transaction value by the number of

cards, we obtain an average yearly transaction value per

card of 3,115.34 €. From the study by [5], we know that

32% of wrongly declined customers drop the card. Like

in the study by [32], we assume that that the issuer loses

a transaction processing fee of 1,75% on this and the

future potential transactions of this customer in 50% of

the cases. Summarizing, to assess the cost of a false

positive, we proceed as follows:

- If a false positive occurs, the transaction passes with

probability 50% at a second try. If it does, no cost

occurs

- If the transaction is rejected the second time as well,

the false positive causes the administrative cost

because the cardholder needs to be contacted. In

this case, the customer drops his card with a

probability of .32.

- If the customer decides to drop the card, the next

year’s revenue generated by this customer 1.75% ×
3,114.34€ = 54,51€ is lost.

Therefore, on average, each false positive costs the

issuer

8 We used the exchange rate of 12th of June, 2021 provided by Yahoo

Finance.

𝐶𝐹𝑃 = (0.5 × 10) + (0.5 × 0.32 × 0.175 ×
3.115,34€) = 15,63€.

As the currency of the transactions in the dataset and

in the literature are in USD, we use the dollar equivalent

amount of $18.938. After having derived the cost of a

single classification outcome, we can calculate the total

cost accountable to credit card fraud like in the study by

[31]:

𝑇𝑜𝑡𝑎𝑙𝐹𝑟𝑎𝑢𝑑𝐶𝑜𝑠𝑡 = ∑ 𝑦𝑖(�̂�𝑖𝐶𝑇𝑃 + (1 − �̂�𝑖)𝐶𝐹𝑁) +𝑁
𝑖=1

(1 − 𝑦𝑖)(�̂�𝑖𝐶𝐹𝑃 + (1 − �̂�𝑖)𝐶𝑇𝑁) ,

where 𝑦𝑖 is the class label and �̂�𝑖 is the predicted class

label of the transaction 𝑥𝑖 [31]. Because it is easier to

interpret, we report the financial savings after applying

this classifier by comparing it to a status quo where no

classifier is used. If a card issuer decides not to use a

fraud detection system at all, the lost amount on a given

transaction set is equal to the sum of the amounts of the

fraudulent transactions, that is

𝐶𝑁𝑜𝐹𝐷𝑆 = ∑ 𝑥𝑖
𝑇𝑟𝑎𝑛𝑠𝐴𝑚𝑡

𝑁

𝑖=1

 | 𝑦𝑖 = 1

[31]. We then define financial savings that could be

achieved after applying this classifier as the difference

between the cost when no fraud detection system is used

and 𝐹𝑟𝑎𝑢𝑑𝐶𝑜𝑠𝑡(𝑓):

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑆𝑎𝑣𝑖𝑛𝑔𝑠(𝑓) = 𝐶𝑁𝑜𝐹𝐷𝑆 − 𝐹𝑟𝑎𝑢𝑑𝐶𝑜𝑠𝑡(𝑓),

We also report savings as percentage of the total

transaction amount. For evaluating the ensemble, we

evaluate same as defined in Section 5.5.

6. Results

This section presents the results from evaluating the

individual classifiers and the respective ensemble. All

reported scores are results of a six-fold cross validation

with months as folds. We didn’t intend to use more

folds, as more folds would increase the computational

burden and may hurt the model performance as many

transactions recur on a regular, monthly basis. We

further tried time series cross validation with the same

number of folds and had hardly differing results.

Table 4 shows the results of Random Forests and

CatBoost, Table 5 of XGBoost and the NN. Firstly, we

note that all models performed better than if no classifier

was used. Even the worst classifier (CatBoost/Baseline)

would still save the card issuer $140,006.27, which is

approximately 0.9% of the total transaction amount. The

Page 1577

performance varies heavily for different models and

feature sets. Classification quality ranges from .465

AUPRC up to .665 AUPRC. Interestingly, the biggest

difference in terms of classification performance is

within one model: CatBoost achieves .465 AUPRC

without feature engineering, which is the worst result

among all models, and .665 after feature augmentation

and reduction, which is the best AUPRC seen across all

models. In financial terms, the worst model achieved

savings of $140,006.27 (CatBoost/Baseline), while the

best one (NN/Baseline) achieved savings of

$325,111.82. XGBoost and CatBoost achieve similar

scores in financial impact while they differ in the kind

of errors made: CatBoost yields more false positives and

less false negatives (lower precision), XGBoost yields

less false positives and more false negatives. This

difference reflects in the F1-Score: XGBoost has a

consistently higher F1-Score than CatBoost as the

number of false positives and false negatives is more

balanced.

A higher classification performance score does not

always coincide with higher financial savings. For

example, savings decrease with Random Forests after

feature augmentation, but at the same time, AUPRC

increases. The same observation holds for NNs.

NN/Baseline has a Precision (Recall) of .315 (.755),

while CatBoost/Reduced has precision (Recall) .276

(.793). Even though the NN detected less fraudulent

transactions (lower Recall), its cost accountable to false

negatives is lower in absolute terms. This suggests that

the NN successfully learned to classify high-value

fraudulent transactions correctly because the false

negative loss depends on the actual transaction amounts,

while the false positive cost is a fixed average amount

(see Section 5.6). Some models seem to profit more,

some less from feature engineering. For NNs, adding

derived features and removing correlated features hurts

the predictive power of the model: In comparison to the

baseline feature set, NNs on the reduced feature set

show a .007 decrease in AUPRC and achieve

$23,937.24 (8.2%) fewer savings. In contrast, all tree-

based models show a positive response to the feature

engineering. The most stunning result is for CatBoost:

Without derived features, the model performs worse

than all other models.

Adding derived features and removing correlated

ones boosts the savings by $131,457.73 (93,8%) and

increases AUPRC by 0.2. For XGBoost and Random

Forests, the effect is more moderate. Both models show

a steady increase in predictive performance after

augmentation and reduction. The savings decrease after

augmentation, but the decrease is more than offset by

the reduction. Quantitatively, Random Forests have

$5,761 (1.3%) higher savings and .043 higher AUPRC

on the reduced feature set than on the baseline feature

set. XGBoost shows with $6,441 (1.9%) increase in

savings and .024 increase in AUPRC the same

magnitude of response to feature engineering. We now

turn to investigate the ensembling results. Figure 1

shows the Jaccard similarity scores between the trained

models. We see that, unsurprisingly, most models from

the same family have high Jaccard scores over .5. One

exception is the CatBoost model with a strongly worse

performance, as described above: It shared only .38/.39

prediction similarity with the other CatBoost models.

However, models from different families show a

rather low prediction similarity. While the predictions

of Random Forests and XGBoost still are relatively

similar, CatBoost and NNs agree with other models

maximally in 37% of transactions, but mostly in less.

Among all possible combinations of our twelve models,

the ensemble consisting of CatBoost/Reduced,

NN/Baseline and XGBoost/Reduced showed the best

result. Table 6 shows the corresponding scores.

Interestingly, the ensemble yields benefits, even if some

participating models are already ensembles by

themselves (Random Forest and Gradient Boosting).

7. Discussion and Conclusion

This study evaluated multiple state-of-the-art ML

models and an ensemble consisting of three models

for CCFD. In contrast to previous studies, we

incorporated both the operational cost and the

threatened revenue of card issuers in case of false

positives in our cost-based evaluation model. By that,

Figure 1. Jaccard prediction similarity between

all models.

Page 1578

we answered RQ1. The evaluation showed that using

NNs yields the highest financial savings, despite not

showing the best classification performance by classical

means (AUPRC/F1-Score). During experimentation, we

also noted that the performance varied massively with

the model parameters and with the feature engineering

strategy.

Table 4: Cross-validated scores for Random Forests and CatBoost.

Feature Set
Random Forests CatBoost

Baseline Augmented Reduced Baseline Augmented Reduced

Precision 0,68 0,73 0,75 0,166 0,273 0,276

Recall 0,39 0,38 0,39 0,749 0,792 0,793

AUPRC 0,513 0,530 0,556 0,465 0,664 0,665

F1 0,492 0,491 0,508 0,271 0,402 0,404

Fraud Cost $449.523,19 $459.188,74 $443.762,39 $475.762,52 $347.353,91 $345.304,57

Savings $167.245,77 $157.580,23 $173.006,58 $140.006,27 $269.415,06 $271.464,00

%TotalTrans 1,05% 0,99% 1,09% 0,88% 1,69% 1,70%

Table 5: Cross-validated scores for XGBoost and the Neural Network.

Feature Set
XGBoost Neural Networks

Baseline Augmented Reduced Baseline Augmented Reduced

Precision 0,5 0,602 0,584 0,315 0,291 0,291

Recall 0,589 0,556 0,577 0,755 0,764 0,762

AUPRC 0,594 0,612 0,618 0,624 0,626 0,617

F1 0,526 0,566 0,562 0,441 0,419 0,416

Fraud Cost $344.342,60 $346.252,73 $337.900,90 $291.657,15 $301.391,46 $315.594,39

Savings $272.426,36 $270.516,24 $278.868,08 $325.111,82 $315.377,51 $301.174,58

%TotalTrans 2,16% 2,17% 2,12% 1,83% 1,89% 1,98%

Table 6: Scores of the ensemble consisting of CatBoost/Red, XGBoost/Red and NN/Baseline.

Precision Recall F1 AUPRC Fraud Cost Savings

0,486

(+24,1%)

0,735

(+3,8%)

0,58

(+23,7%)

0,663

(+4,3%)

$239,728.38

(−26,2%)

$377,040.59

(+29.2%)

This highlights the importance of extensive model

tuning and feature engineering. Different models

differ in the kind of errors made. In this regard,

although being superior in savings, NNs/CatBoost

generated more false positives than Random Forests

and XGBoost. This can be undesirable in a practical

setting. Especially when a bank has a shortage of card

fraud investigators, they are interested in receiving

few but precise suspicious transaction alerts [8].

Which algorithms are appropriate to use in a concrete

setting must be decided individually, given the

specific resources and requirements a fraud detection

system operator has: A card issuing fintech with a

small team might tolerate less false positives than an

established bank. Our developed cost-based classifier

evaluation method can provide valuable insights for

both.

Page 1579

We answered RQ2 by demonstrating that forming

an ensemble of multiple models with low prediction

similarity can significantly improve performance

through a reduction in false positives: Precision

increases by almost 25%, compared to the average

Precision of the individual models. This increase is

reflected in increased savings: By reducing the cost

accountable to false positives, our ensemble saves

almost 30% more than the average of savings achieved

by the individual models. Comparing to other

strategies for improving CCFD performance,

ensembling has an impact of similar magnitude. The

study by [31] observed a 35% increase in saving when

adding features that capture the periodic spending

patterns of cardholders. [32] found cost reduction

potential of approximately 40% when using a deep

feature synthesis algorithm (Both studies didn’t

consider the potentially lost revenue in their

evaluation, however).

As with every study, our work has some

limitations. First, our quantification of the cost

associated with false positives is an underestimation,

because a customer might switch to a new card issuer

permanently, not only for one year. Further, it is likely

that not only false positives have a deteriorating effect

on customer experience and therefore cause cost. Also

false negatives are likely to cause cost additional to the

lost transaction amount. A customer who repeatedly

found his card charged by fraudsters, without the

interference of his bank, might also consider

abandoning that card and switching to a new issuer

even if she gets reimbursed. Our study encourages

future research on the financial impacts of false

positives. Practitioners like banks and card issuers can

do such studies best because they have comprehensive

data about their customers available. It would be

interesting to see if some customers are more likely to

drop their card after a false decline and how high the

actual loss is, given that a cardholder decided

abandoning his card. These losses depend on details of

the invididual issuers’ business model.

Further, future studies should explore the potential

of ensemble learning for CCFD in greater detail. It

would be interesting to verify our results on a more

extended dataset with fully available features, and to

explore larger and/or more diverse ensembles

comprising models with different architecture.

8. References

[1] Wang, D.; Chen, B.and Chen, J.: “Credit card fraud

detection strategies with consumer incentives”, Omega,

88, 2019, pp. 179-95.

[2] The Nilson Report: “The Nilson Report”, 1187,

https://nilsonreport.com/publication_newsletter_archiv

e_issue.php?issue=1187, 2020.

[3] Crawshaw, James: “COVID-19 Increase in Card

Payments is leading to an increase in Adapted Fraud

Schemes”, PaymentsJournal,,

https://www.paymentsjournal.com/covid-19-increase-

in-card-payments-is-leading-to-an-increase-in-

adapted-fraud-schemes/, 2021

[4] Dal Pozzolo, A.: “Adaptive Machine Learning for

Credit Card Fraud Detection”. PhD thesis, University

of Brussels, 2015.

[5] Javelin Research: “Overcoming False Positives: Saving

the Sale and the Customer Relationship”, Javelin

Research Whitepaper, 2015,

https://www.javelinstrategy.com/coverage-

area/overcoming-false-positives-saving-sale-and-

customer-relationship

[6] Bhattacharyya, S., Jha, S.,Tharakunnel, K. & Westland,

J. C.: “Data mining for credit card fraud: A comparative

study”, Decision Support Systems, 50 (3), 2011,

pp.602-13.

[7] Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad,

T., Akoglu, L., Snoeck, M. & Baesens, B.: “APATE: A

novel approach for automated credit card transaction

fraud detection using network-based extensions”,

Decision Support Systems, 75, 2015, pp. 38-48.

[8] Dal Pozzolo, A., Bontempi, G., Caelen, O., Alippi, C.

and Boracchi, G.: “Credit Card Fraud Detection: A

Realistic Modeling and a Novel Learning Strategy”,

IEEE Transactions on Neural Networks and Learning

Systems, 29 (8), 2018, pp. 3784-3797.

[9] Khasawneh, K., Ozsoy, M., Donovick, C., Abu-

Ghzaleh, N. and Ponomarev, D.: “Ensemble Learning

for Low-Level Hardware-Supported Malware

Detection”, International Symposium on Recent

Advances in Intrusion Detection RAID ,2015, pp. 3-25.

[10] Bejani, M. M. and Ghatee, M.G.: “A context aware

system for driving style evaluation by an ensemble

learning on smartphone sensors data”, Transportation

Research 89, 2018, pp. 303-320.

[11] Liu, S., Wang, Y., Zhang, J., Chen, C. and Xiang, Y.:

“Adressing the class imbalance problem in Twitter

spam detection using ensemble learning”,

Computers&Security 69, 2017,pp. 35-49.

[12] Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S.,

Portier, P., He-Guelton, L. and Caelen, Olivier:

“Sequence classification for credit-card fraud

detection”, Expert Systems with Applications 100,

2018, pp. 234-45.

[13] Maes, Sam; Tuyls, Karl; Vanschoenwinkel, Bram &

Manderick, Bernard : “Credit Card Fraud Detection.

Applying Bayesian and Neural networks”, 2002,

https://www.researchgate.net/publication/248809471_

Credit_Card_Fraud_Detection_Applying_Bayesian_a

nd_Neural_networks

[14] Dal Pozzolo, A., Caelen, O., Bontempi, G. and

Waterschoolt, S.: “Learned lessons in credit card fraud

detection from a practitioner prespective”, Expert

Systems with Applications 41 (10), 2014, pp. 4915-28.

Page 1580

https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1187
https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1187
https://www.paymentsjournal.com/covid-19-increase-in-card-payments-is-leading-to-an-increase-in-adapted-fraud-schemes/
https://www.paymentsjournal.com/covid-19-increase-in-card-payments-is-leading-to-an-increase-in-adapted-fraud-schemes/
https://www.paymentsjournal.com/covid-19-increase-in-card-payments-is-leading-to-an-increase-in-adapted-fraud-schemes/
https://www.javelinstrategy.com/coverage-area/overcoming-false-positives-saving-sale-and-customer-relationship
https://www.javelinstrategy.com/coverage-area/overcoming-false-positives-saving-sale-and-customer-relationship
https://www.javelinstrategy.com/coverage-area/overcoming-false-positives-saving-sale-and-customer-relationship
https://www.researchgate.net/publication/248809471_Credit_Card_Fraud_Detection_Applying_Bayesian_and_Neural_networks
https://www.researchgate.net/publication/248809471_Credit_Card_Fraud_Detection_Applying_Bayesian_and_Neural_networks
https://www.researchgate.net/publication/248809471_Credit_Card_Fraud_Detection_Applying_Bayesian_and_Neural_networks

[15] Ghosh, S. and Reilly, D.: “Credit Card fraud detection

with a neural-network”, Proceedings of the Twenty-

Seventh Hawaii International Conference on System

Sciences 3, 1994, pp. 621-30.

[16] Aleskerov, E., Freisleben, B. and Rao, B.:

CARDWATCH: a neural network based database

mining system for credit card fraud detection”,

IEEE/IAFE 1997 Computational Intelligence for

Financial Engineering (CIFEr), 1997.

[17] Dorronsoro, J.R., Ginel, F., Sgnchez, C. and Cruz, C.S.:

“Neural fraud detection in credit card operations”,

IEEE Transactions on Neural Networks 8 (4), 1997.

[18] Brause, R, Langsdorf, T. and Hepp, M.: “Neural data

mining for credit card fraud detection, 11th

International Conference on Tools with Artificial

Intelligence”, Chicago, USA, 1999.

[19] Priscilla C.V., Prabha D.P. “Credit Card Fraud

Detection: A Systematic Review.”, Intelligent

Computing Paradigm and Cutting-edge Technologies,

2020.

[20] Delamaire, L., Abdou, H. and Potinon, J.: “Credit card

fraud and detection techniques: a review.”, Banks and

Bank Systems 4 (2), 2009, pp. 57-68.

[21] Whitrow, C., Hand, D. J, Juszczak, P., Weston, D. and

Adams, N. M.: “Transaction aggregation as a strategy

for credit card fraud detection, Data Mining and

Knowledge Discovery” 18 (1), 2008, pp. 30-55.

[22] Friedman, Jerome H.: “Greedy Function

Approximation: A Gradient Boosting Machine”, The

Annals of Statistics 29 (5), 2001, pp. 1189-232.

[23] Breiman, L.: Bagging Predictors, Machine Learning 24,

1996, pp. 123-140.

[24] Kuncheva, L.: “Combining Pattern Classifiers:

Methods and Algorithms”: Wiley, 2014.

[25] Kim, E., Lee, J., Shin, H., Yang, H. Cho, S., Nam, S.,

Song, Y., Yoon, J and Kim, J.: “Champion-challenger

analysis for credit card fraud detection: Hybrid

ensemble and deep learning”, Expert Systems With

Applications 128, 2019, pp. 214-224.

[26] Elkan, C.: The Foundations of Cost-Sensitive Learning,

IJCAI'01: Proceedings of the 17th international joint

conference on Artificial intelligence, 2001, pp. 973-

978.

[27] Chan, Philip K.; Prodromis, A.; Fan, W. and Stoflo, S.

(1999): “Distributed Data Mining in Credit Card Fraud

Detection, IEEE Intelligent Systems” 14 (6), 1999, pp.

67-74.

[28] Hand, D. J., Whitrow, C., Adams, N. M., Juszczak, P.

and Weston, D.: “Performance criteria for plastic card

fraud detection tools”, Journal of the Operational

Research Society 59, 2008, pp. 956-62.

[29] Bahnsen, A.C., Stojanovic, A., Aouada, D. and

Ottersten, B.: “Cost Senitive Credit Card Fraud

Detection Using Bayes Minium Risk”,12th

International Conference on Machine Learning and

Appliacations, Miami, USA, 2013

[30] Bahnsen, A.C., Aouada, D. and Ottersten, B.:

“Ensemble of Example-Dependent Cost-Sensitive

Decision Trees”, arXiv 1505.04637, 2015.

[31] Bahnsen, A.C., Aouada, D., Stojanovic, A. and

Ottersten, B.: “Feature engineering strategies for credit

card fraud detection”, Expert Systems with

Applications 51, 2016, pp. 134-42.

[32] Wedge, R., Kanter, J. M., Veeramachaneni, K., Rubio,

S. M. and Perez, S. I.: “Solving the False Positives

Problem in Fraud Prediction Using Automated Feature

Engineering”, ECML 2018. In Proceedings of

European Conference on Machine Learning, Ireland,

2018.

[33] Molina, L. C., Belanche, L. and Nebot, A.: “Feature

selection algorithms: a survey and experimental

evaluation”, Proceedings of the 2002 IEEE

International Conference on Data Mining, 2002, pp.

306-313.

[34] Breiman, L.: Random Forests, Machine Learning 45,

2001, pp. 5-32.

[35] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,

V., and Thirion, B.: “Scikit-learn: Machine Learning in

Python”, Journal of Machine Learning Research 12,

2011, pp. 2825-30.

[36] Chen, Tianqi and Guestrin, Carlos: “XGBoost”,

Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

2016.

[37] Prokorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush,

A. V. & Gulin, A. (2019): CatBoost: unbiased boosting

with categorical features, arXiv Preprint 1706.09516v5

[38] Ioffe, S. and Szegedy, C.: ”Batch Normalization:

Accelerating Deep Network Training by Reducing

Internal Covariate Shift”, Proceedings of the 32nd

International Conference on Machine Learning, 2015,

pp. 448-456.

[39] Srivastava, N.; Hinton, G.; Krizhevsky, A., Sutskever,

I. & Salakhutdinov, R.: “Dropout: A Simple Way to

Prevent Neural Networks from Overfitting”, Journal of

Machine Learning Research 15 (56), 2014, pp. 1929-

58.

[40] Tan, P., Steinbach, M., Karpatne, A., Kumar, V.

(2019): “Introduction to Data Mining”, Second Edition:

Pearson.

[41] Carcillo, F., Le Borgne, Y. Caelen, O., Kessaci, Y.,

Oblé, F. and Bontempi, G.: “Combining unsupervised

and supervised learning in credit card fraud detection”,

Information Sciences 10 (22), 2019, pp. 10-27.

[42] Davis, J. and Goadrich, M.: “The relationship between

Precision-Recall and ROC curves”, Proceedings of the

23rd international conference on Machine Learning,

2006, pp. 233-240.

[43] Saito, T. and Rehmsmeier, M.: “The Precision-Recall

Plot Is More Informative than the ROC Plot When

Evaluating Binary Classifiers on Imbalanced Datasets”,

Plos One 10 (3), 2015.

[44] European Central Bank (2020a): Statistical Data

Warehouse: Number of payment cards with a credit

function - issued by resident PSPs

https://sdw.ecb.europa.eu/quickview.do?SERIES_KE

Y=169.PSS.A.D0.S101.I13.Z00Z.NT.X0.20.Z0Z.Z

[45] European Central Bank (2020b): Statistical Data

Warehouse: Value of payments with cards with a credit

function - cards issued by resident PSPs,

https://sdw.ecb.europa.eu/quickview.do?SERIES_KE

Y=169.PSS.A.D0.F000.I13.Z00Z.VT.X0.20.Z01.E

Page 1581

https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=169.PSS.A.D0.S101.I13.Z00Z.NT.X0.20.Z0Z.Z
https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=169.PSS.A.D0.S101.I13.Z00Z.NT.X0.20.Z0Z.Z
https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=169.PSS.A.D0.F000.I13.Z00Z.VT.X0.20.Z01.E
https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=169.PSS.A.D0.F000.I13.Z00Z.VT.X0.20.Z01.E

