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Abstract 
Credit Card Fraud Detection is a classification 

problem where different types of classification errors 

cause different costs. Previous works quantified the 

financial impact of data-driven fraud detection 

classifiers using a cost-matrix based evaluation 

approach, however, none of them considered the 

significant financial impact of false positives. Analysts 

reported that fraud prediction in e-commerce still has to 

deal with false positive rates of 30-70%, and many 

cardholders reduce card usage after being wrongly 

declined. In our paper, we propose a new method for 

assessing the cost of false positives and evaluate several 

state-of-the-art fraud detection classifiers using this 

method. Further, we investigate the effectiveness of 

ensemble learning as previous work supposed that a 

combination of diverse, individual classifiers can 

improve performance. Our results show that cost-based 

evaluation yields valuable insights for practitioners and 

that our ensemble learning strategy indeed cuts fraud 

cost by almost 30%. 

 

 

1. Introduction  

Credit card fraud is a problem with strong economic 

impact. Although a lot of effort has gone into the design 

of secondary verification layers like 3D Secure or 

biometric transaction authentication, credit cards are 

still very susceptible to fraud, especially in e-commerce 

transactions [1]. Worldwide losses due to credit card 

fraud have been estimated to $28.65 billion in 2019, and 

are projected to reach $32.04 billion in 2021 [2]. Credit 

card fraud is commonly subdivided into Card-Present-

Fraud (CP), where the card is physically present at the 

time of the fraudulent transaction, and Card-Not-

Present-Fraud (CNP), where it is not, like with online 

transactions. According to recent data, 15 out of 100 

online transactions are turned down compared to only 

three out of 100 for in-store transactions [3]. 

Card issuers (mostly banks) and network providers 

(e.g. VISA or MasterCard) rely on Machine Learning 

(ML) for credit card fraud detection (CCFD). State-of-

the-art fraud detection systems combine a (confidential) 

set of transaction blocking rules with a data-driven ML 

model. This model typically employs a classifier, 

trained by ML algorithms on examples of genuine and 

fraudulent transactions, which can assign a 

suspiciousness score to an incoming transaction. 

Transactions exceeding a pre-set threshold are declined. 

[4]. Due to the economic potential, ML for CCFD has 

received a lot of attention, however, it remains 

challenging to achieve satisfying performance in 

practice. In particular, the susceptibility of the models to 

generate false declines (or false positives) is a major 

problem. They cause embarrassing situations for 

customers, lost revenue for merchants, and 

administrative overhead for issuers. Especially during 

the ongoing COVID-19 pandemic and the connected 

increase in online transactions, false positives became 

an even bigger problem [3]. Analysts pointed out that 

false positives might cost more than fraud itself: 

Analysts estimated that in 2014 in the U.S., $9 billion 

were lost due to card fraud while $118 billion – 3% of 

the total U.S. retail market – of sales have been wrongly 

declined due to the fear of fraud. 26% of the surveyed 

customers reduced their card usage after being falsely 

declined, and 32% completely abandoned the card 

afterwards [5].  

Previous work on CCFD did not take into account 

the adverse financial impact of false positives. Most 

publications report only standard classification metrics 

such as accuracy, precision and recall [6,7,8]. Although 

some attempts have been made to quantify the financial 

impact of using ML for CCFD, all of them reduce the 

cost of false positives to a fixed administrative 

overhead, which heavily underestimates the true 

financial damage they cause. Our study addresses this 

gap by asking the following first research question 

(RQ): RQ1: How can classifiers for CCFD be evaluated 

in financial terms while incorporating the cost 

connected with false positives?  

Using statistical data on card usage from the Euro 

area, we construct an evaluation function for CCFD 

models that incorporates the operative cost as well as the 

potentially lost revenue that false positive cause for card 

issuers. We then evaluate the most prominent models for 

CCFD using this evaluation function. 
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Ensemble learning showed to be effective for 

reducing false positives in other domains [9,10,11]. 

However, no publication has yet investigated its 

effectiveness in CCFD using state-of-the-art ML 

algorithms. Only one recent publication by [12] 

suggested combining a Random Forest with a Neural 

Network classifier as the predictions differ in the kind 

of frauds they detect. Following this call for further 

research, we also investigate: RQ2: Can ensemble 

learning help to mitigate the false positives problem? 

We will demonstrate that already simple ensemble 

learning strategies like majority voting can indeed help 

to mitigate the false positive problem, even if the 

participating models are already ensembles like 

Random Forests.  

The remainder of this paper is structured as follows. 

In Section 2, we introduce the reader to the problem of 

CCFD and name the most important approaches found 

during our literature review for solving it. In Section 3, 

we review existing cost-based CCFD model evaluation 

strategies. Section 4 introduces the dataset used for 

training our models and presents the associated feature 

engineering steps. Section 5 describes the associated 

models Random Forests, Gradient-Boosted Decision 

Trees and Neural Networks. Further, we present our 

model evaluation strategy, including our proposed cost-

based evaluation of false positives. Section 6 reports 

results, while Section 7 discusses theoretical and 

practical implications as well as limitations of our work.  

 

2. Credit Card Fraud Detection 
 

Credit card fraud can be defined as any illegitimate 

use of a credit card against the interest of the cardholder, 

and CCFD is defined as the task of identifying the 

fraudulent transactions [13]. More formally, given a set 

of credit card transactions  𝑋 = [𝑥1, … , 𝑥𝑁], where each 

transaction 𝑥𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐾] contains details like 

amount, currency, timestamp, etc., CCFD can be 

formulated as a supervised learning problem [14]. Each 

transaction has a class label 𝑦𝑖 ∈ {0,1} assigned, where 

𝑦 = 1 denotes a fraudulent transaction and 𝑦 = 0 a 

genuine one. The goal of a machine learning algorithm 

for CCFD is to learn the class-conditional posterior 

distribution 𝑃(𝑦|𝑋) and predict the label �̂�𝑁+1 of an 

unseen transaction 𝑥𝑛+1.  

Seminal publications on algorithmic CCFD 

exclusively used Neural Networks [15 – 18]. Since the 

mid-2000s, a vast set of models has been applied to 

solve the CCFD problem.1 The most prominent ML 

model for CCFD in research and practice nowadays is 

Random Forests [4,8]. Several studies have reported 

                                                 
1 [6, 19,20] have carried out systematic literature reviews. 

their superior performance when compared to others [7, 

14, 21]. Another effective model for CCFD is Gradient-

Boosted Decision Trees [22]. Although this algorithm 

has not yet received broad attention in academic 

research on CCFD, it is heavily used in competitive 

machine learning. In the IEEE-CIS Fraud Detection 

Competition on kaggle2, for example, all top-ranked 

teams that reported on their solutions used some 

implementation of Gradient Boosting.   

Breiman [23] firstly introduced Ensemble Learning, 

the aggregation of multiple classification outcomes into 

one single prediction as Bagging. He proposed an 

ensemble consisting of individual classifiers built on 

random subsamples of the training set. Ensemble 

methods received broad attention with the 2006 awarded 

Netflix prize, where the winning solution was a 

classifier ensemble [24]. However, in CCFD, 

ensembling has received little attention so far. The only 

work that found a performance boost after ensembling 

Random Forests with Neural Networks was carried out 

by [25]. 

 

3. Cost-Based Evaluation of Credit Card 

Fraud Detection Models 

 
Cost-based evaluation is an appropriate method of 

evaluating a CCFD classifier, because firstly, businesses 

are usually interested in minimizing the cost 

accountable to card fraud and therefore need to trade off 

costs and potential savings when using an automated 

fraud detection system. Second, it is easier to compare a 

data-driven model to a human investigators team if both 

are evaluated in terms of financial savings. Third, CCFD 

is an instance of cost-sensitive learning problems [26], 

where different classification outcomes have a different 

financial impact. Table 1 shows a cost matrix, which 

assigns each classification result (true positive, false 

positive, true negative, false negative) a cost value 

(𝐶𝑇𝑃, 𝐶𝐹𝑃 , 𝐶𝑇𝑁, 𝐶𝐹𝑁). 

 

Table 1. Cost Matrix. 

 𝑦 = 1 (Fraud) 𝑦 = 0 (Genuine) 

�̂� = 1 𝐶𝑇𝑃 𝐶𝐹𝑃  

�̂� = 0 𝐶𝐹𝑁 𝐶𝑇𝑁 

Table 2 gives an overview of how previous studies 

populated this cost matrix. Cost-based evaluation for 

CCFD has been proposed firstly in the paper by Chan et 

al (1999) [27]. They assume no cost for true negatives 

and full cardholder imbursement in case of a missed 

fraud. If a transaction is wrongly declined or a fraud 

2 https://www.kaggle.com/c/ieee-fraud-detection/overview 
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caught, they assume a constant administrative overhead 

𝐶𝑎 between $50 and $100 to incur, because in both 

cases, the cardholder must be contacted, the transaction 

must be investigated, a new card must be issued, et 

cetera. A transaction with a lower amount than 𝐶𝑎 is, 

however, not worth investigating. 
 

Table 2: Cost Matrices of Previous Work. 

 The study by Hand, et al. (2008) [28] does not use 

example-dependent costs because of the “fraud breeds 

fraud” argument − fraudsters getting away with small-

scale frauds are likely to continue in the future, and 

therefore all frauds have to be prevented. To illustrate 

magnitudes, they assume a false negative cost 100 times 

of 𝐶𝑎. Bahnsen, et al. (2013, 2015, 2016) [29, 30, 31] 

assume a constant 𝐶𝑎 for both false positives and false 

negatives and an example-dependent 𝐶𝐹𝑁 (the 

respective transaction amount) in their work on cost-

sensitive algorithms for CCFD. Wedge, et al. (2018) 

[32] is the only study so far that uses an example-

dependent 𝐶𝐹𝑃. They assume that a wrongly declined 

transaction goes through with 50% probability with the 

second try. If it doesn’t, then the issuer loses a 

transaction processing fee assessed at 1.75% of the 

transaction amount. Their evaluation approach, 

however, doesn’t include overheads. We argue that none 

of the previously explained approaches captures all 

aspects of the true cost, especially for false positives. 

Clearly, administrative costs occur with both false 

positives and false negatives. However, reducing 𝑪𝑭𝑷 to 

a fixed administrative overhead ignores the variable cost 

for the issuer caused by the lost processing fee. Taking 

a fixed percentage only of the current transaction 

amount is also too short-sighted. 

As the study [5] reported, 32% of cardholders stop 

using a card after being falsely declined. Therefore, if a 

cardholder decides to switch the issuer because of too 

many wrong declines, the card issuer loses not the 

transaction amount of this transaction, but also all other 

future transactions that this cardholder could have made. 

If the issuer charges service fees or a fixed yearly credit 

card cost, this money is lost as well. 

                                                 
3 https://www.kaggle.com/mlg-ulb/creditcardfraud 

4. Data  

Because of the intrinsically private nature of credit 

card data, publicly available, real-world credit card 

transaction datasets are scarce. To the best of our 

knowledge, there are currently only two: The first 

dataset was released together with the Ph.D. thesis of 

Dal Pozzolo (2015) [4]. It consists of 284,807 credit 

card and is available on kaggle3. The second dataset was 

issued as a part of the 2019 IEEE-CIS Fraud Detection 

competition on kaggle. It contains 590,540 labeled 

credit card transactions and was extracted from a 

production fraud detection system. We decided to use 

the latter dataset in our study because of the larger size 

and feature set. We don’t present a full feature list here 

for space reasons, but it is available online.4 Table 3 

reports a set of aggregated descriptive metrics (‘#’ 

denotes numbers, and ‘%’ percentages).  

4.1 Feature Engineering  

Because spending behavior varies from cardholder 

to cardholder, transactions that do not look outstanding 

from a global point of view might be unusual for a 

certain cardholder and indicate fraud. It is therefore 

helpful to add a set of derived features which form a 

cardholder profile. Here, we will use three feature sets: 

a baseline feature set containing only original features, 

an augmented feature set containing engineered features 

and a reduced feature set that removes correlated and 

unimportant features. Feature engineering for credit 

card fraud detection is a widely discussed topic, and 

many studies use a strategy that aggregates transaction 

data over a pre-defined timeframe [7,12,14,21,31] in a 

Recency-Frequency-Monetary style. The normal 

4 https://www.kaggle.com/c/ieee-fraud-detection/discussion/101203 

 
𝐶𝑇𝑃 𝐶𝐹𝑃  𝐶𝑇𝑁 𝐶𝐹𝑁 

Chan, et al. (1999) [27] 
𝐶𝑎 if 𝑇𝐴𝑚𝑡 > 𝐶𝑎, 

else 𝑇𝐴𝑚𝑡  
𝐶𝑎 if 𝑇𝐴𝑚𝑡 > 𝐶𝑎, else 0 0 𝑇𝐴𝑚𝑡  

Hand, et al. (2008) [28] 𝐶𝑎 𝐶𝑎 0 100𝐶𝑎  

Bahnsen, et al. (2016) [29] 𝐶𝑎 𝐶𝑎 0 𝑇𝐴𝑚𝑡  

Wedge, et al. (2018) [32] 0 0.5 × 1,75% × 𝑇𝐴𝑚𝑡  0 𝑇𝐴𝑚𝑡  
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cardholder behavior is characterized by the (1) Recency 

or the average time between previous transactions, by 

the (2) Frequency or the average amount spent in a given 

timeframe and the (3) Monetary value or the average 

amount spent in a given timeframe. 

Let 𝑆𝑡,𝑖𝑑  be the set of transactions made by a 

specific cardholder (named with an 𝑖𝑑) in the timeframe 

𝑡 ∈ {1ℎ, 3ℎ, 6ℎ, 12ℎ, 18ℎ, 24ℎ, 72ℎ, 168ℎ}.

Table 3. Essential Descriptive Metrics. 

#Transactions Timespan #Features #Genuine #Fraudulent 

590,540 6 Months 434 569,877 20,663 

%Genuine %Fraud  Total Amount Fraudulent Amount %Fraudulent Amt 

96.5 3.5 $79,738,948.74 $3,083,844.86 3.87 

Our derived features are (where 𝑇𝑥𝐷𝑇 is a Timedelta 

in seconds from a given reference datetime and denotes 

the point of time when the transaction was made): 

- Average timespan (𝐴𝑣𝑔𝑇𝑠𝑝) between the 

transactions in the given timeframe (Recency): 

𝐴𝑣g𝑇𝑠𝑝 =
1

|𝑆𝑖𝑑,𝑡 − 1|
∑ 𝑥𝑖+1

𝑇𝑥𝐷𝑇 − 𝑥𝑖
𝑇𝑥𝐷𝑇

|𝑆𝑖𝑑,𝑡|−1

𝑖=0
   

- Number of transactions (𝑇𝑥 𝐶𝑜𝑢𝑛𝑡) in the given 

timeframe (Frequency): 

𝑇𝑥𝐶𝑜𝑢𝑛𝑡 = |𝑆𝑖𝑑,𝑡| 

- Average transaction amount (𝐴𝑣𝑔 𝑇𝑥𝐴𝑚𝑡) in the 

past 𝑡 hours for cardholder 𝑖𝑑 (Monetary Value): 

𝐴𝑣𝑔𝑇𝑥𝐴𝑚𝑡 =
1

|𝑆𝑖𝑑,𝑡|
∑ 𝑥𝑖

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝑚𝑡
|𝑆𝑖𝑑,𝑡|

𝑖=0
 

To calculate the aggregated features, we firstly 

engineered a cardholder identifier by using adversarial 

validation5. In real-world datasets, this identifier is 

given by the card number, but in the dataset at hand, the 

card number has been removed for privacy reasons. 

Next, we added time-based features based on the 𝑇𝑥𝐷𝑇 

field to track transaction month, day and hour. Finally, 

we calculated the aggregation values separately for each 

of the 8 timeframes and obtained 28 engineered features 

in total, therefore, we have 452 features in the 

augmented feature set. 

4.2 Feature Selection 

To remove unimportant features, we use two 

techniques: correlation analysis and a modified version 

of backward feature selection (for tree-based models 

only). For correlation analysis, we identified groups of 

correlated features (𝜌 > 0.9) and replaced the whole 

group by one feature. For backward feature selection, 

we reviewed the feature importances of the tree-based 

                                                 

5 http://fastml.com/adversarial-validation-part-two/ 

models, and removed zero-importance features as well 

as the least important 5% of the features. As soon as 

performance decreased, we stopped eliminating 

features. This process removed 26 features for Random 

Forests, 206 features for CatBoost and 17 features for 

XGBoost 

5. Model  

This section briefly introduces the individual 

classifiers Random Forests, Neural Networks, and the 

two Gradient Boosting variants XGBoost and CatBoost 

together with the parameterizations we used for training. 

Subsequently, we will outline the ensembling strategy 

to combine the predictions of the individual classifiers. 

Finally, we describe conventional and cost-based 

metrics to evaluate the models as well as the ensemble. 

5.1 Random Forests 

As described in Section 2, Random Forests are the 

industry standard in CCFD. Random Forests were 

introduced by [34] and are an ensemble method that 

combines predictions of multiple, de-correlated decision 

trees by majority vote. We used the implementation and 

the hyperparameter tuning strategy by scikit-learn [35]. 

Firstly, we successively increased the number of trees in 

the forest and did not find any further improvements for 

more than 1000 trees. Afterwards, we performed a grid 

search (an exhaustive search over a manually specified 

subset of the hyperparameter space) over different 

subsampling ratios and found the best results with 

training each tree on 20% of the features and 80% of the 

rows. To address the fact that fraudulent transaction 

represent only a tiny fraction of all transactions, we used 

the inverse of the imbalance ratio as class weights. 
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Random Forests cannot deal with categorical features 

natively, so we mapped each category to an integer.  

5.2 Gradient-Boosted Decision Trees 

Gradient-Boosted Decision Trees are another 

method of ensembling single tree predictions where 

each tree contributes a small “boost”, scaled by a 

learning rate, to the output [22]. The state-of-the-art 

implementation of gradient boosting is XGBoost 

(“eXtreme Gradient Boosting”) [36]. Because of its 

performance and scalability, XGBoost has quickly 

become a dominating solution for a wide range of 

problems, especially in competitive machine learning. 

We used the python implementation together with the 

parameters selected by the winning team of the kaggle 

competition. They identified a learning rate of 𝜌 =
0.02, a row subsampling rate of 0.8 and an ensemble 

size of 2000 estimators as optimal.6 We mapped each 

categorical feature to an integer value since XGBoost 

cannot handle categorical features natively. Another 

novel, but already quite popular boosting solution is 

CatBoost [37], a modified version of the standard 

boosting algorithm that can handle categorical features 

natively. It is interesting to see how CatBoost will 

perform on our dataset, because it contains a lot of 

categorical features, some of them with a high number 

of unique values. We had to limit the ensemble size to 

1000 because of RAM constraints. We set class weights 

as with Random Forests because without, performance 

decreased. 

5.3 Neural Networks 

Neural Networks (NNs) are a large family of 

statistical models and learning methods. NNs are a 

highly active area of machine learning research, and, 

besides that, have already found a large variety of 

applications from machine translation over medical 

imaging to financial analysis. Our Neural Network 

Architecture was adapted from a successful kaggle 

submission.7 It consists of three hidden layers, 256 

nodes each, with a learning rate of ρ=0,001 and a weight 

decay coefficient of 𝜆 = 0,0005. Before training, we 

standardized all numerical features and log-transformed 

those with large value range. For categorical features, 

we used One-Hot-Encoding, after reducing the 

cardinality for high-cardinality features by replacing 

infrequent categories with a uniform label. We tried to 

use learned embeddings as alternative, but saw worse 

results. As further regularization techniques, we use 

                                                 

6 https://www.kaggle.com/cdeotte/xgb-fraud-with-magic-0-9600 

Batch Normalization [38] and Dropout [39] with 0.3 

dropping probability. We also tried computations with 

increased depth of the NN up to ten hidden layers, but 

didn’t see any significant improvements. 

5.4 Ensembling Strategy 

Inspired by the work of [12], we investigate how 

strong the true positives of our models overlap to see if 

they detect different kinds of fraud. If they do so, 

combining their predictions in an ensemble probably 

improves the performance. We use the Jaccard Score to 

measure the classifiers’ prediction similarity. Given two 

classifiers’ predictions, it is defined as 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒 =
𝑁1,1

𝑁1,0 + 𝑁0,1 + 𝑁1,1

 

where 𝑁𝑖,𝑗  is the number of transactions for which 

classifier 1 predicted class 𝑖 and classifier 2 predicted 

class 𝑗 [40]. For 𝑖 = 𝑗, we therefore say that the 

classifiers agree, and disagree otherwise. A Jaccard 

Score of 1 means that both classifiers made identical 

predictions on all transactions and a Jaccard Score of 0 

means that the classifiers did not agree on a single 

transaction. As we strive for maximum diversity within 

the ensemble, we suspect that adding a classifier with 

low prediction similarity to the models already in the 

ensemble improves the score stronger than adding a 

classifier with high similarity. 

We use majority voting for combining predictions: 

For a given transaction, the ensemble’s prediction is the 

class that the majority of the models predicted.  

5.5 Conventional Evaluation Metrics 

We evaluate each model against a set of 

conventional classification metrics (described in this 

section) and in financial terms (described below). 

Firstly, we report Precision and Recall for visualizing 

the proportion between false positives and false 

negatives. Like frequently found in the literature, as an 

overall classification quality metric, we use Area under 

the Precision-Recall Curve (AUPRC) instead of the 

popular Area under the Receiver Operating Curve 

(AUROC). It summarizes the trade-off between Recall 

and False Positive Rate, while AUPRC summarizes the 

trade-off between Precision and Recall [41]. Although 

they look similar, AUPRC is more informative in 

imbalanced classification settings. [42,43]. As a further 

standard metric that captures the trade-off between 

7 https://www.kaggle.com/c/ieee-fraud-        

detection/discussion/111476 
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precision and recall, we report the F1 score (harmonic 

mean of precision and recall). 

To measure the relative improvement or decline 

ensembling yielded, we do the following: For a given 

performance metric 𝑧, let 𝑧𝑎𝑣𝑔 be the average cross-

validated score of the individual classifiers participating 

in the ensemble and 𝑧𝑒𝑛𝑠 be the cross-validated 

ensemble score. We then report the relative 

improvement score 

 

%𝐶ℎ𝑎𝑛𝑔𝑒 = (𝑧𝑒𝑛𝑠 − 𝑧𝑎𝑣𝑔)/𝑧𝑎𝑣𝑔. 

5.6 Financial Evaluation 

For financial evaluation, we use the cost matrix 

described in Section 3. Like in previous work, we 

assume no cost in case of a true negative, and an 

administrative overhead 𝐶𝑎 of $10 in case of false 

positives and true positives. If a fraud remains 

undetected, the lost amount is equal to the transaction 

amount (𝐶𝐹𝑁 = 𝑇𝑟𝑎𝑛𝑠𝐴𝑚𝑡). 

We quantify the additional financial impact of a false 

positive as follows: From the Statistical Data 

Warehouse of the ECB, we know that the number of 

issued credit cards in the Euro area in 2018 was 

108,071,580 and the total transaction value made with 

them was 336,679.541 Mln. € [44, 45]. Therefore, by 

dividing the total transaction value by the number of 

cards, we obtain an average yearly transaction value per 

card of 3,115.34 €. From the study by [5], we know that 

32% of wrongly declined customers drop the card. Like 

in the study by [32], we assume that that the issuer loses 

a transaction processing fee of 1,75% on this and the 

future potential transactions of this customer in 50% of 

the cases. Summarizing, to assess the cost of a false 

positive, we proceed as follows:  

- If a false positive occurs, the transaction passes with 

probability 50% at a second try. If it does, no cost 

occurs 

- If the transaction is rejected the second time as well, 

the false positive causes the administrative cost 

because the cardholder needs to be contacted. In 

this case, the customer drops his card with a 

probability of .32. 

- If the customer decides to drop the card, the next 

year’s revenue generated by this customer 1.75% ×
3,114.34€ = 54,51€ is lost. 

Therefore, on average, each false positive costs the 

issuer  

                                                 

8 We used the exchange rate of 12th of June, 2021 provided by Yahoo 

Finance. 

𝐶𝐹𝑃 = (0.5 × 10) + (0.5 × 0.32 × 0.175 ×
3.115,34€ ) = 15,63€. 

As the currency of the transactions in the dataset and 

in the literature are in USD, we use the dollar equivalent 

amount of $18.938. After having derived the cost of a 

single classification outcome, we can calculate the total 

cost accountable to credit card fraud like in the study by 

[31]: 

 

𝑇𝑜𝑡𝑎𝑙𝐹𝑟𝑎𝑢𝑑𝐶𝑜𝑠𝑡 = ∑ 𝑦𝑖(�̂�𝑖𝐶𝑇𝑃 + (1 − �̂�𝑖)𝐶𝐹𝑁) +𝑁
𝑖=1

(1 − 𝑦𝑖)(�̂�𝑖𝐶𝐹𝑃 + (1 − �̂�𝑖)𝐶𝑇𝑁) , 

where 𝑦𝑖 is the class label and �̂�𝑖 is the predicted class 

label of the transaction 𝑥𝑖  [31]. Because it is easier to 

interpret, we report the financial savings after applying 

this classifier by comparing it to a status quo where no 

classifier is used. If a card issuer decides not to use a 

fraud detection system at all, the lost amount on a given 

transaction set is equal to the sum of the amounts of the 

fraudulent transactions, that is 

𝐶𝑁𝑜𝐹𝐷𝑆 = ∑ 𝑥𝑖
𝑇𝑟𝑎𝑛𝑠𝐴𝑚𝑡

𝑁

𝑖=1

 | 𝑦𝑖 = 1 

[31]. We then define financial savings that could be 

achieved after applying this classifier as the difference 

between the cost when no fraud detection system is used 

and 𝐹𝑟𝑎𝑢𝑑𝐶𝑜𝑠𝑡(𝑓): 

𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙𝑆𝑎𝑣𝑖𝑛𝑔𝑠(𝑓) = 𝐶𝑁𝑜𝐹𝐷𝑆 − 𝐹𝑟𝑎𝑢𝑑𝐶𝑜𝑠𝑡(𝑓), 

We also report savings as percentage of the total 

transaction amount. For evaluating the ensemble, we 

evaluate same as defined in Section 5.5. 

6. Results  

This section presents the results from evaluating the 

individual classifiers and the respective ensemble. All 

reported scores are results of a six-fold cross validation 

with months as folds. We didn’t intend to use more 

folds, as more folds would increase the computational 

burden and may hurt the model performance as many 

transactions recur on a regular, monthly basis. We 

further tried time series cross validation with the same 

number of folds and had hardly differing results. 

Table 4 shows the results of Random Forests and 

CatBoost, Table 5 of XGBoost and the NN. Firstly, we 

note that all models performed better than if no classifier 

was used. Even the worst classifier (CatBoost/Baseline) 

would still save the card issuer $140,006.27, which is 

approximately 0.9% of the total transaction amount. The 
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performance varies heavily for different models and 

feature sets. Classification quality ranges from .465 

AUPRC up to .665 AUPRC. Interestingly, the biggest 

difference in terms of classification performance is 

within one model: CatBoost achieves .465 AUPRC 

without feature engineering, which is the worst result 

among all models, and .665 after feature augmentation 

and reduction, which is the best AUPRC seen across all 

models. In financial terms, the worst model achieved 

savings of $140,006.27 (CatBoost/Baseline), while the 

best one (NN/Baseline) achieved savings of 

$325,111.82. XGBoost and CatBoost achieve similar 

scores in financial impact while they differ in the kind 

of errors made: CatBoost yields more false positives and 

less false negatives (lower precision), XGBoost yields 

less false positives and more false negatives. This 

difference reflects in the F1-Score: XGBoost has a 

consistently higher F1-Score than CatBoost as the 

number of false positives and false negatives is more 

balanced.  

A higher classification performance score does not 

always coincide with higher financial savings. For 

example, savings decrease with Random Forests after 

feature augmentation, but at the same time, AUPRC 

increases. The same observation holds for NNs. 

NN/Baseline has a Precision (Recall) of .315 (.755), 

while CatBoost/Reduced has precision (Recall) .276 

(.793). Even though the NN detected less fraudulent 

transactions (lower Recall), its cost accountable to false 

negatives is lower in absolute terms. This suggests that 

the NN successfully learned to classify high-value 

fraudulent transactions correctly because the false 

negative loss depends on the actual transaction amounts, 

while the false positive cost is a fixed average amount 

(see Section 5.6). Some models seem to profit more, 

some less from feature engineering. For NNs, adding 

derived features and removing correlated features hurts 

the predictive power of the model: In comparison to the 

baseline feature set,  NNs on the reduced feature set 

show a .007 decrease in AUPRC and achieve 

$23,937.24 (8.2%) fewer savings. In contrast, all tree-

based models show a positive response to the feature 

engineering. The most stunning result is for CatBoost: 

Without derived features, the model performs worse 

than all other models. 

Adding derived features and removing correlated 

ones boosts the savings by $131,457.73 (93,8%) and 

increases AUPRC by 0.2. For XGBoost and Random 

Forests, the effect is more moderate. Both models show 

a steady increase in predictive performance after 

augmentation and reduction. The savings decrease after 

augmentation, but the decrease is more than offset by 

the reduction. Quantitatively, Random Forests have 

$5,761 (1.3%) higher savings and .043 higher AUPRC 

on the reduced feature set than on the baseline feature 

set. XGBoost shows with $6,441 (1.9%) increase in 

savings and .024 increase in AUPRC the same 

magnitude of response to feature engineering. We now 

turn to investigate the ensembling results. Figure 1 

shows the Jaccard similarity scores between the trained 

models. We see that, unsurprisingly, most models from 

the same family have high Jaccard scores over .5. One 

exception is the CatBoost model with a strongly worse 

performance, as described above: It shared only .38/.39 

prediction similarity with the other CatBoost models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
However, models from different families show a 

rather low prediction similarity. While the predictions 

of Random Forests and XGBoost still are relatively 

similar, CatBoost and NNs agree with other models 

maximally in 37% of transactions, but mostly in less. 

Among all possible combinations of our twelve models, 

the ensemble consisting of CatBoost/Reduced, 

NN/Baseline and XGBoost/Reduced showed the best 

result. Table 6 shows the corresponding scores. 

Interestingly, the ensemble yields benefits, even if some 

participating models are already ensembles by 

themselves (Random Forest and Gradient Boosting). 

7. Discussion and Conclusion 

This study evaluated multiple state-of-the-art ML 

models and an ensemble consisting of three models      

for CCFD. In contrast to previous studies, we 

incorporated both the operational cost and the 

threatened revenue of card issuers in case of false 

positives in our cost-based evaluation model. By that, 

Figure 1. Jaccard prediction similarity between 

all models. 
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we answered RQ1. The evaluation showed that using 

NNs yields the highest financial savings, despite not 

showing the best classification performance by classical 

means (AUPRC/F1-Score). During experimentation, we 

also noted that the performance varied massively with 

the model parameters and with the feature engineering 

strategy.  

 

Table 4: Cross-validated scores for Random Forests and CatBoost. 

Feature Set 
Random Forests CatBoost 

Baseline Augmented Reduced Baseline Augmented Reduced 

Precision 0,68 0,73 0,75 0,166 0,273 0,276 

Recall 0,39 0,38 0,39 0,749 0,792 0,793 

AUPRC 0,513 0,530 0,556 0,465 0,664 0,665 

F1 0,492 0,491 0,508 0,271 0,402 0,404 

Fraud Cost $449.523,19 $459.188,74 $443.762,39 $475.762,52 $347.353,91 $345.304,57 

Savings $167.245,77 $157.580,23 $173.006,58 $140.006,27 $269.415,06 $271.464,00 

%TotalTrans 1,05% 0,99% 1,09% 0,88% 1,69% 1,70% 

 
Table 5: Cross-validated scores for XGBoost and the Neural Network. 

Feature Set 
XGBoost Neural Networks 

Baseline Augmented Reduced Baseline Augmented Reduced 

Precision 0,5 0,602 0,584 0,315 0,291 0,291 

Recall 0,589 0,556 0,577 0,755 0,764 0,762 

AUPRC 0,594 0,612 0,618 0,624 0,626 0,617 

F1 0,526 0,566 0,562 0,441 0,419 0,416 

Fraud Cost $344.342,60 $346.252,73 $337.900,90 $291.657,15 $301.391,46 $315.594,39 

Savings $272.426,36 $270.516,24 $278.868,08 $325.111,82 $315.377,51 $301.174,58 

%TotalTrans 2,16% 2,17% 2,12% 1,83% 1,89% 1,98% 

 

Table 6: Scores of the ensemble consisting of CatBoost/Red, XGBoost/Red and NN/Baseline. 

Precision Recall F1 AUPRC Fraud Cost Savings 

0,486

(+24,1%) 

0,735

(+3,8%) 

0,58

(+23,7%) 

0,663

(+4,3%) 

$239,728.38

(−26,2%) 

$377,040.59

(+29.2%) 

 

This highlights the importance of extensive model 

tuning and feature engineering. Different models 

differ in the kind of errors made. In this regard, 

although being superior in savings, NNs/CatBoost 

generated more false positives than Random Forests 

and XGBoost. This can be undesirable in a practical 

setting. Especially when a bank has a shortage of card 

fraud investigators, they are interested in receiving 

few but precise suspicious transaction alerts [8]. 

Which algorithms are appropriate to use in a concrete 

setting must be decided individually, given the 

specific resources and requirements a fraud detection 

system operator has: A card issuing fintech with a 

small team might tolerate less false positives than an 

established bank. Our developed cost-based classifier 

evaluation method can provide valuable insights for 

both.  
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We answered RQ2 by demonstrating that forming 

an ensemble of multiple models with low prediction 

similarity can significantly improve performance 

through a reduction in false positives: Precision 

increases by almost 25%, compared to the average 

Precision of the individual models. This increase is 

reflected in increased savings: By reducing the cost 

accountable to false positives, our ensemble saves 

almost 30% more than the average of savings achieved 

by the individual models. Comparing to other 

strategies for improving CCFD performance, 

ensembling has an impact of similar magnitude. The 

study by [31] observed a 35% increase in saving when 

adding features that capture the periodic spending 

patterns of cardholders. [32] found cost reduction 

potential of approximately 40% when using a deep 

feature synthesis algorithm (Both studies didn’t 

consider the potentially lost revenue in their 

evaluation, however).  

As with every study, our work has some 

limitations. First, our quantification of the cost 

associated with false positives is an underestimation, 

because a customer might switch to a new card issuer 

permanently, not only for one year. Further, it is likely 

that not only false positives have a deteriorating effect 

on customer experience and therefore cause cost. Also 

false negatives are likely to cause cost additional to the 

lost transaction amount. A customer who repeatedly 

found his card charged by fraudsters, without the 

interference of his bank, might also consider 

abandoning that card and switching to a new issuer 

even if she gets reimbursed. Our study encourages 

future research on the financial impacts of false 

positives. Practitioners like banks and card issuers can 

do such studies best because they have comprehensive 

data about their customers available. It would be 

interesting to see if some customers are more likely to 

drop their card after a false decline and how high the 

actual loss is, given that a cardholder decided 

abandoning his card. These losses depend on details of 

the invididual issuers’ business model.  

Further, future studies should explore the potential 

of ensemble learning for CCFD in greater detail. It 

would be interesting to verify our results on a more 

extended dataset with fully available features, and to 

explore larger and/or more diverse ensembles 

comprising models with different architecture. 
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