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Abstract

Money laundering is a serious problem worldwide,
especially in the crypto market. This is mostly because
of the anonymity that many cryptocurrencies offer. That
is one of the reasons why cryptocurrencies are a haven
for money laundering, because it is easier for criminal
entities to buy the currency and then trade it for real fiat
money. Detecting money laundering in cryptocurrency
can be tricky because the crypto network is large and
convoluted and nearly impossible to analyze by hand.
What we can do is look at addresses that took part in
transactions as actors and then use machine learning to
predict what addresses are possibly laundering money.
In this paper we intend to analyze methods that
can be used to detect money laundering in Bitcoin
using machine learning to empower investigators to
more accurately and efficiently determine whether a
suspicious activity is money laundering.

1. Introduction

Cryptocurrency has been increasing rapidly
in popularity since 2008 when Bitcoin, the first
peer-to-peer financial system by Satoshi Nakamoto
was first described [1]. As of the 26th of April 2021,
Bitcoin’s market capitalization is around 700 billion
dollars and the market value for all cryptocurrencies
is around 1.6 trillion dollars [2]. There is a significant
amount of money that goes through this system and
because of the general anonymity in cryptocurrencies
it is a haven for money laundering and other criminal
activities. A great example of this is the website
Silk road which was an online marketplace known
for facilitating sales of illegal products where the
only allowed currency was Bitcoin [3]. The congress
of the United States passed the National Defense
Authorisation Act in January 2021 which is intended
to improve corporate transparency and enhance
coordination among law enforcement and the federal
and state agencies responsible for taking anti money

laundering(AML) actions [4]. Because of this,
increased development of AML techniques is foreseen
in the coming years with substantial development in
the crypto market because of the high presence of
money laundering activity and the constant growth of
the crypto market.
In this paper, we investigate and describe in detail how
to start building an AML detection and investigation
tool for cryptocurrencies and blockchain assets.
We focus on the Bitcoin blockchain because of its
popularity and the easy access to the entire Bitcoin
blockchain through Bitcoin Core. In addition, much
research on Bitcoin already exists as well as publicly
available datasets with labeled addresses which we
utilize. Similar methods could be applied to different
cryptocurrencies. Our goal is to detect anomalous
addresses in the Bitcoin data, since anomalies can be
an indication of suspicious activity, such as money
laundering. Anomaly detection has been used before
to detect fraud and other threats in financial networks.
Paula et al. showed that anomaly detection using deep
learning models can predict fraud, including money
laundering, in Brazilian exports [5]. Such methods are
also common in the anti money laundering industry,
for example Lucinity1 uses anomaly detection, among
other approaches, to detect potential money laundering
in fiat environments with great success [6].
The methodology of this paper consists of two main
steps. Firstly, there is the data ingestion. This entails
extracting raw blockchain data and processing the
data into features for Bitcoin addresses. We focus on
manually defined and engineered features to facilitate
interpretability of our results. Included in these features
are results from supervised machine learning models
that predict whether or not an address is owned by a
cryptocurrency exchange, gambling entity or service
provider which is described more in section 3.2.
Secondly, there is a machine learning (ML) step where
we use unsupervised learning to detect anomalies

1Lucinity is an AML software company that uses advanced AI
systems to discover money laundering.
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in the data, which is a commonly used approach to
detect fraudulent behaviours [7]. We use local feature
importance to explain why an address is an anomaly and
then we dig deeper to verify whether or not particular
anomalous addresses are possible instances of money
laundering.
The rest of this paper is organized as follows. In the
next section, we discuss related work on analysis of the
blockchain and money laundering methods. Then we
describe our methodology in terms of data ingestion,
feature engineering and machine learning, followed
by the results of the machine learning models. We
conclude the paper with a discussion on the implication
of our work and suggest directions for future work.

2. Related projects and topics

In this section we discuss related ML approaches to
AML as well as research on Bitcoin.

2.1. Characterization in the crypto network

Many researchers have investigated which features
are important in the cryptocurrency network. Ron et
al. found that a large amount of addresses, transactions
and Bitcoins were controlled by a few entities in the
Bitcoin network [8]. An example of this kind of entity
is a cryptocurrency exchange. Hu et al. discovered that
money laundering transactions tend to have a higher
in-degree/out-degree ratio, and a more uniform sum,
mean and standard deviation of outputs and a slightly
smaller number of weakly connected components
compared to regular transactions [9]. Based on this
work, we included some of these suggested features in
our unsupervised models.

2.2. FATF virtual assets red flag indicators

Late in 2020, the FATF (Financial Action Task
Force) published a document with an overview of
possible red flag behaviours in virtual assets that can
indicate illicit behaviours. They talk about a few general
classes of behaviours that will be of guidance when
detecting outliers. Transaction size and frequency are
one of the mentioned behaviours. They also point out
that if an actor sends multiple transactions with values
under the FATF limit (which is a 1000$) or is sending
high value transactions it is an example of a behavior
that should be flagged. Unusual transaction patterns are
also considered to be suspicious. This includes, but is
not limited to, frequent transactions to the same VASP
(Virtual Asset Service Provider) and making a large
initial deposit with a VASP. These are the behaviours

that we will be taking a look at when detecting outliers
[10].

2.3. Anomaly detection in blockchains and
other environments

A stream of research is focused on anomalies and
suspicious behaviour in the Bitcoin blockchain using
data science and machine learning. In an attempt to
find anomalous transactions, Pham and Lee extracted
features from the transaction network, from the origin
until 2014, and applied k-means clustering to find
outliers [11]. Similar approaches have been proposed
by other researchers [12, 13]. Some studies investigate
certain types of suspicious behaviours. Firstly, to
identify Ponzi schemes, transactions and wallets related
to known schemes were extracted and compared to
regular transactions and wallets in a supervised learning
setting [14]. Secondly, researchers have looked
into money laundering specifically, using network
methods, in particular network representation learning
and supervised machine learning models [9]. Recently,
Elliptic2 introduced a public dataset that contains
several sub-networks for the blockchain transaction
network, with rich node features and labels for licit
and illicit transactions. Researchers have trained several
supervised learning methods to detect illicit transactions
and compared their performance [15]. Others have
also worked with the Elliptic dataset [16, 17, 18], for
example using active learning to address the high class
imbalance in the dataset [18]. Although useful, the
main drawback of the Elliptic dataset is that it is very
poor in terms of feature labeling. In a similar way,
Goldberg et al. used anomaly detection to identify
insider threats in user data. They also did temporal
aggregation experimentation to find the most unusual
user in a time period [19].

3. Methodology

In this section we describe the methodology and
processes that we used to detect anomalies in the
blockchain data. First, we explain the data sources
that were used for the raw data and the labeling of
the addresses in the Bitcoin network. In section 3.3
we detail the process of finding anomalies or possible
money laundering and describe the unsupervised models
we deployed.

2Elliptic is a cryptocurrency intelligence company focused on
safeguarding cryptocurrency ecosystems from criminal activity.
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3.1. Data sources

Our goal was to create a dataset with easily
interpretable features so we could later use those
features to explain our anomaly detection models. To
do that we first had to get our hands on the raw Bitcoin
data. The raw dataset we found is included in the
Bitcoin Core open source software. Bitcoin Core runs
a local server that hosts the entire Bitcoin blockchain
and allows API requests with bitcoin-cli commands.
We created a python program that sent bitoin-cli API
requests with the appropriate commands and received
JSON strings back from Bitcoin Core with all the
information stored on a single block. The next step
was to get labeled data scraped from Walletexplorer3.
This data is composed of around 30 million Bitcoin
addresses, labeled as belonging to a cryptocurrency
exchange, gambling entity, service, miner or historic
[20, 21]. We did not use the labels mining and historic
since the historic label was badly defined and the mining
label was too sparse. Exchanges offer a way to buy
and sell Bitcoin or other cryptocurrencies [22]. The
gambling label marks known addresses that are owned
by a gambling entity. Lastly there was the service label,
the definition of a service is broad and unclear since
it includes exchanges, mixers and anything that offers
some kind of service on the Bitcoin network. Some
exchanges are also labeled as service in this dataset [23].
Because most of the labeled addresses were focused on
a period in January 2017, we decided to study a part of
this period specifically, and thus limited the blockchain
data to the same period.

3.2. Feature engineering

Feature engineering was an important step in this
process, the more informative and rich features that
were created, the easier it would be to interpret the
models’ results. The first step in this process was
to get the raw data for all blocks in the desired time
period. Then important information was extracted and
stored in tables in a database. The data stored in the
previously mentioned database was extracted and from
it two feature tables were created, called tables A and B.
Feature table A is made up of rows, each row represents
all information for a single address for a single date, if
an address does not make any transaction on that day
that address - date pair does not appear in the table.
Each feature in the table is a list of values. Feature
table B is composed of rows, where each row represents
aggregated features from table A for an address in a
predetermined date range. This includes, but is not

3https://www.walletexplorer.com

limited to, mean, standard deviation, median, min and
max of input and output values along with frequency
of transactions in the given time period, time difference
between transactions and etc. Lastly one more feature
table was added, table C. Feature table C only consists
of features representing predictions of whether or not
an address was predicted to be a Bitcoin exchange,
gambling entity or service by supervised models. The
supervised model used was the XGBoost regressor
which we trained on feature table B. The supervised
model scored each address from a range of zero to one,
where one corresponds to an exchange, gambling entity
or service. However, the training of the supervised
models is out of scope for this research and will not be
described in detail.

3.3. Detecting money laundering with
unsupervised models

In this paper we use unsupervised learning to
detect anomalies among Bitcoin addresses. This works
since money launderers often behave abnormally which
appears as anomalies. Here, we explain the methods
used for the money laundering detection part of the
project.
To tailor the anomaly detection towards finding
money laundering addresses instead of other anomalous
behaviours we created another feature table, feature
table D. Feature table D consists of handpicked features
from table B, table C and aggregated features from table
B, that try to encapsulate behaviours outlined by the
FATF, see Section 2.2. These features were used to train
the unsupervised models, with the goal of reducing the
amount of addresses human investigators would need to
analyze and cut down the time needed to analyze each
address by focusing on the anomalies and the features
that define them.

3.3.1. Isolation Forest The first model used was
Isolation Forest. This model returns an anomaly score
based on how often features have to be randomly split
until each feature of an address is isolated from the
same feature of other addresses. This is repeated
multiple times for each feature or feature vector and
the final score is an aggregate score from all the
splits [24]. Isolation Forest is useful since there are
a couple of techniques that can be used to get the
local feature importance for the observations in the
model. While regular feature importance is used to
explain what features are important in a model, local
feature importance is used to explain what features are
important for a single prediction. The techniques that
are used for local and regular feature importance are
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called MI-local-DIFFI and SHAP respectively [25, 26].
We used the default parameters for this model since it
gave the best results.

3.3.2. Local-DIFFI and SHAP Carletti et al.
proposed a local feature importance measurement
called Local-DIFFI [25]. Local-DIFFI allows for
interpreting individual predictions made by an isolation
forest model. We used another implementation called
MI-Local-DIFFI which was shown to have better
runtime and performance [26]. The other feature
importance tool used was SHAP. The SHAP method
is used to explain individual model predictions by
computing individual feature contributions, it is based
on the game theory of optimal Shapley values. The
SHAP value is an estimation of the Shapley values
using either kernelSHAP or treeSHAP [27]. SHAP is
mostly model agnostic but works well with Isolation
Forest since the tree version of SHAP can be used with
it resulting in better speed and performance [28].

3.3.3. Deep Autoencoder Autoencoders are a type
of neural networks. They are often used for data
compression. They start with an input layer that has
the same number of neurons as features. After that
there is the encoder phase, where each layer has fewer
neurons than the previous one. This continues until the
layer called the bottleneck is hit, this is the layer with
the fewest neurons in the network. After this comes
the decoding phase where the neural network tries to
reconstruct the original data from the bottleneck. Each
layer has more neurons than the previous one until the
model reaches the output layer which has the same
number of neurons as the feature set and input layer.
Autoencoders can be used in anomaly detection by
viewing the mean squared error or the difference
between the input and output layer. If the difference
is low then the data is easily reconstructable from the
bottleneck layer and therefore not an outlier. However
if the difference is high then the Autoencoder has a
hard time reconstructing the data and that datapoint is
considered an outlier [29, Chapter 14]. When training
the Autoencoders, we experimented with the various
hyperparameters and the architecture, and found that the
following combination gave the best results: learning
rate= 0.0001, β1 = β2 = 0.9, batch size=128, 6 layers,
with a varying number of nodes per layer depending on
the number of features we trained on. The data was
scaled so the higher value features would not dominate
when training the models. To calculate the score of
each feature the difference between the original value

of the record and the predicted value from the model
is calculated. The distribution of this difference turned
out to be too large and the values were not all positive.
To solve this we took the absolute and log value of the
differences. This feature score was then calculated for
every record for each feature and the final score of each
prediction was the sum of these feature scores.

3.3.4. K-Means K-means is a clustering algorithm.
It starts by receiving the dataset and inputs x random
points called centroids. Then for each point in the
dataset, it calculates what the closest centroid is, using
Euclidean distance. After assigning each datapoint to
a centroid it calculates the center of those clusters and
sets the centroids to the center of the corresponding
cluster. This is repeated for n iterations. It is possible
to tune how many clusters the model has and how
many iterations it goes through. Since the centroids
are chosen at random at the beginning, this process is
repeated k times and chooses the best run based on
the sum of squared error from each point to the closest
centroid [30]. Running K-means on the outliers helps
to see if the anomalies are clustering together or not.
Another approach is combining the outliers with either
non-outliers or the rest of the data, in other words
running K-means on the combined data where we know
the outliers. The clusters would then show how many
data points it contains and how large the ratio between
outliers and non-outliers in each cluster is.

3.3.5. Unsupervised learning procedure The
models, Isolation Forest and Deep Autoencoder, were
trained on all the features in the Unsupervised features
table and receive an anomaly score for all rows in
the data. Then the fraction of the rows that received
the highest anomaly score were inspected, marked as
outliers and sent through a few local feature importance
tests. In a production setting all anomalies would
be flagged and sent to investigators along with an
explanation of why it is an anomaly, i.e. the features
it scored highly on in the feature importance test.
This process was repeated for different combinations
of features to see what sets of outliers get flagged.
This was done to see if the original outlier detection,
with all features, missed important outliers and to use
the feature combinations to define a certain money
laundering behavior. These outliers were saved in
different files to analyze the intersections of addresses
between different feature sets. The different feature
combinations and the money laundering behaviour they
define can be seen in Table 1.
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Table 1. Feature combinations and money laundering behaviours
Behaviour Description
Transacting in similar
amounts (SA)

This feature combination defines a money laundering behaviour that looks at
addresses that have a similar amount of income and outcome.

High Value Transactions
(HV)

This feature combination defines a money laundering behaviour that looks at
addresses that transact in high volumes.

Transaction patterns (P) This feature combination defines a money laundering behaviour that looks at
addresses that follow certain patterns when transacting.

4. Results

In this section the results of the unsupervised
learning models will be presented. First the distribution
of anomaly scores is shown and compared to the
anomaly scores of the outliers found by the two models
mentioned in Section 3.3. Then the feature importance
is shown, first for the models trained on all features
and then for the ones trained on feature combinations
mentioned in table 1. In Section 4.3 the results from
the clustering analysis are presented. Finally Section 4.4
shows a few addresses that were found to be outliers.

4.1. Outliers detected

The figures in this section show the distribution of
addresses based on the anomaly scores. The first figure
shows the anomaly score distribution for all of the rows
in the training set but the next figure shows the outliers,
or the 1% of the addresses with the highest anomaly
score, which sum up to 14661 outliers. The x-axis
on the graphs shows the amount of addresses in each
column while the y-axis shows the anomaly score. A
low anomaly score for the Isolation Forest model is
around or below 0.5. Higher values represent more
anomalous addresses.

4.1.1. Isolation Forest The figures in this section
show the graphs from the Isolation Forests. Figure 1 is
a histogram of all anomaly scores when it was run with
all features and Figure 2 shows the same histogram but
with a cutoff so it only shows the top 1% of outliers with
the highest anomaly score.

Similar histograms were created for the money
laundering behaviors that were defined in Table 1 but
we decided not to include them in this paper4. The
results from those models were comparable to the ones
shown in Figure 2, with the main difference being that
the outliers from the feature combination models had a
more uniform distribution. This is most likely because
each outlier in the all features model might have a lot

4Authors are happy to share those figures on request.

Figure 1. Anomaly scores w. All features for all rows

Figure 2. Anomaly scores w. All features for outliers

of anomalous features but they might also have features
that are not anomalous that "pull" them back towards
the non-outliers. This does not happen as much for the
other three feature combination models since they have
fewer features and the features they do have are more
correlated, i.e an address with an anomalous value in one
feature is likely to also have them in the other features.

4.1.2. Deep Autoencoder The figures in this
section, Figures 3 and 4 show the distribution of the
anomaly score for the addresses trained on the deep
Autoencoder model. It is important to note that the
anomaly scores for Isolation Forest and Autoencoder
are not related. i.e. an address with a 0.8 anomaly score
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for Autoencoder is not explicitly more anomalous than
an address with a 0.7 in the Isolation Forest model and
vice versa. However, we noticed that the shape of the
histograms is similar for both models where most of the
addresses have a low score and tend to group together
while only a few addresses receive higher anomaly
scores. The number of addresses in figure 4 decreases
as the model score increases. This means that the model
can predict the behavior of most addresses quite easily
but there are a few outliers that are harder to predict and
they receive higher scores than the others. This was also
done for the 3 feature combinations described in table
1. This was similar to the results in section 4.1.1, where
we can see the same patterns in the figures.

Figure 3. Anomaly scores w. All features for All rows

Figure 4. Anomaly scores w. All features for outliers

4.2. Feature Importance

Figures 5 and 6 show the distribution and the most
important features, according to SHAP, for a sub-sample
of addresses and outlier addresses, respectively. The
sample in the SHAP plot in figure 5 contains all 14661
outliers and 73305 non-outliers chosen at random while
the SHAP plot in figure 6 only includes the 14661
outliers. Each dot on the plot represents a single feature
for a single address. The y-axis represents the most

important features with the most important feature at
the top and the least important at the bottom while the
x-axis represents the SHAP values. A low SHAP value
implies that the corresponding feature was anomalous
for that address. Blue dots represent low feature values
while red dots represent high feature values for the
corresponding features.

Figure 5. SHAP summary plots, for all features in the
whole sample

Figure 6. SHAP summary plots, for all features for the
outliers

The SHAP values for the sample set (see Figure 5)
clearly favor high feature values as more anomalous,
meanwhile the outlier set (see Figure 6) contains mostly
blue dots, representing low feature values compared
to other outliers. The red dots on the outlier sets
presumably have really high feature values compared to
other outliers. This means high feature values have a
strong correlation to outliers. The SHAP plots for the
all features model(AF) show that the features that seem
to be the most correlated to anomalous behaviour are
value related, i.e a high value transaction is anomalous.
This was further confirmed when taking a look at
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the intersection of outliers for the different feature
combinations.

As can be seen in Table 2, which shows
the intersection of outliers between different feature
combinations, the high value feature combination has
the largest intersection with AF which means that the
AF model leans towards high value related anomalies.

Table 2. Intersection between behaviors for Isolated
Forest

Intersection Count
Count(AF ∩ SA) 2929
Count(AF ∩HV ) 9386
Count(AF ∩ P ) 1273
Count(SA ∩HV ) 3504
Count(SA ∩ P ) 94
Count(HV ∩ P ) 2929

4.3. K-Means

The goal of the K-means model was to see if our
outliers would cluster together. The dataset consisted of
186974 datapoints that were not marked as outliers by
the Autoencoder models, and 56698 outlier datapoints,
consisting of the union of outliers found by all
Autoencoder models. The outlier datapoints are around
23% of all the datapoints. The K-means clustering
algorithm was set up with 10 centroids, the number of
different iterations was 20 and the max iterations for
each iteration was set at 600. The results can be seen
in Table 3 in a way that shows the total number of
datapoints in each cluster and how many outliers are in
the cluster. The table shows that most of the clusters
contain either high or low percentages of outliers. The
results are particularly interesting for clusters 6 and 4,
where over 80% of the datapoints are outliers. It implies
that these datapoints have some distinct behaviour that
defines them. The non-outlier datapoints in the outlier
heavy clusters could be investigated further since they
share commonalities with the outliers. An avenue
of research would be to see what distinguishes these
datapoints from the outliers.

4.4. Suspicious individual addresses

This section takes a closer look at four interesting
addresses, their feature importance scores and their
feature values. These addresses were all marked as
outliers in one or more models described above. In
Table 4 we can see the address id5 of the 4 addresses
we analyzed.

5Unique identifier used to identify a particular address

Table 3. Results from K means
Label Count Outliers (%)
1 43460 28010(64.5%)
2 55723 3568(6.4%)
3 5248 1962(37.4%)
4 12438 10286(82.7%)
5 43013 505(1.2%)
6 9275 8214(88.6%)
7 51683 849(1.6%)
8 8963 467(5.2%)
9 7669 28(0.4%)
10 6200 2809(45.3%)

Table 4. Addresses
Address nr. Address id
Address 1 1KwA4fS4uVuCNjCtMivE7m5ATbv93UZg8V

Address 2 17W4PZ2PS3KksDy5T6yE7FaJsgjmnYMXuP

Address 3 356fU64uSTydGcu87cBEnLtSDseVA785KV

Address 4 17gR9ybNYTWA1W1br8QYH3RoQuYU95Bn22

4.4.1. Address 1 The first address we discuss is the
most anomalous address found by the Isolation Forest
model with all features with an anomaly score of 0.786.

Figure 7. Feature importance scores for address 1

We can see from table 5 that this address transacts
high values during the three day examination period.
It is still active today6. This address has transacted
around 73.000 times. This behavior is considered
suspicious, and the address would be flagged and sent
to an investigator.

6See blockchain.com
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Table 5. Values for address 1
Feature Value
std. dev. value to 688.24btc
median value from 1602.3btc
avg. value from 4380.0btc
std. dev. value from 5713.99btc
relative dif. 17351.7btc
total value from 17520.23btc

4.4.2. Address 2 The next address we take a closer
look at is the most anomalous address found by the
Isolation Forest model with transaction pattern features
with an anomaly score of 0.865. Figure 8 shows the
local feature importance of this address according to the
MI Local DIFFI method.

Figure 8. Feature importance scores for address 2

Table 6. Values for address 2
Feature Value
total value under FATF limit from 10841$
total transactions from 33
number of transactions under limit from 29
number of transactions under limit to 136
total value under FATF limit to 4281$
total transactions to 146

Table 6, shows the values of the 6 most important
features for this address. As can be seen this address
is transacting quite often and almost always under the
FATF threshold of a 1000$ as mentioned in Section
2.2. This could mean they are exploiting the limit
by transacting often in amounts below the limit and
avoiding binary detection methods that only look at one
transaction at a time. As with the other addresses this
would be flagged as a potential money launderer for
further investigation.

4.4.3. Address 3 The third address is one of the most
anomalous addresses found by the Autoencoder model
with all features.

Figure 9. Feature importance for address 3

Table 7. Values for address 3
Feature Value
number of transactions under limit from 5534
total value under FATF limit to 2452236$
total value under FATF limit from 2439177$
total has transacted to service 1256
Number of transaction under limit to 5731$
Total transaction from 11681
Total transaction to 11891
total has transacted to exchange 923
total number of input transactions 27738
exchange prediction 0.0216

Figure 9 shows the most important features of this
address, i.e the features the Autoencoder had the most
difficulty predicting. The most important features
center around how many times it is transacting and
the total value of transactions. That is not surprising
as the address has transacted over 66,022 times and
received a total of 154.514 BTC and has sent a total
of 154.514 BTC7. By looking at table 7 we suspect
that this address could be an exchange or service since
a lot of the transactions are small and the address is
transacting often, it is also transacting frequently with
other exchanges which is a typical behaviour of an
exchange. This address is however not labeled as an
exchange or service in the walletexplorer dataset and
neither was it predicted to be one by our supervise
models. This does not exclude the possibility that it is

7See blockchain.com
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doing something illegal since transacting to VASP’s in
large amounts can be seen as a suspicious behaviour as
can be seen in section 2.2.

4.4.4. Address 4 The last address we examine in this
paper was one of the most anomalous addresses found
by the Autoencoder model with all features.

Figure 10. Feature importance for address 4

Table 8. Values for address 4
feature value
Std. dev. value from 4163 btc
Std. dev. value to 4163 btc
Higest value from 5887 btc
Higest value to 5887 btc

Post-hoc analysis of this address revealed suspicious
behavior. It has only transacted 4 times8. On the first
transaction it receives a small amount of Bitcoin. A
few minutes later a second transaction comes in where
the address receives a large sum of Bitcoin. It then
immediately sends the low value to another address and
then the high value transaction to a different address.
After these transactions this address is never used again.
Because it is transacting in both low and high values
we can see that the feature, "stdev. value from", has
the highest feature importance in Figure 10. The total
value of these transactions is 5887 Bitcoin, as can be
seen in Table 8, that go in and out in just 40 minutes.
This address is clearly transacting in ways that merits
further investigation.

8see blockchain.com

5. Conclusion

Cryptocurrencies are an ever growing part of the
financial market. With new currencies emerging and
existing ones growing larger the need for investigating
the legitimacy of the source of the funds is imperative.
Through our research, we argue that using unsupervised
models to find anomalous behaviours in the bitcoin
network can lead to a better way of discovering illicit
actors. We used two different models to find anomalous
bitcoin addresses, Isolation Forest and Autoencoder,
with 3 days’ worth of data. We took the 1% of addresses
with the highest anomaly scores and labeled them as
outliers, giving a total of 14661 addresses. Out of the 1.5
million addresses in this dataset the two models found
7000 of the same addresses as anomalies when training
on the same feature set. With this process we have
decreased the total amount of addresses investigators
would need to analyze to look for money laundering and
other suspicious activities on the Bitcoin blockchain.
Investigators can use the local feature importance scores
to get a better idea of why an address is anomalous.
Explainable AI gives investigators a powerful tool
to understand the specific elements of an actor’s
behaviour that may be suspicious and requires additional
examination. Section 4.4 shows small examples of the
data investigators would receive to conclude whether or
not the address is laundering money.
The methods detailed in this paper have been shown to
work to detect money laundering in fiat environments
and similar methods are currently in use at Lucinity
[5, 6]. We have shown that using these methods on the
bitcoin network shows promising results on detecting
addresses that should be investigated and can therefore
conclude that using unsupervised models on the Bitcoin
blockchain helps detect potential money laundering and
empowers investigators with intelligent insights that
improve the accuracy and efficiency of an investigation.

Our research shows that anomaly detection is
a feasible approach for detecting possible money
laundering in Bitcoin. However, our methods could be
extended in several ways to improve such anti money
laundering detection methods. One approach would be
to group addresses by wallets since according to Reid
et al.it is common practice for users of Bitcoin to own
multiple addresses stored in one wallet in a one to many
relationships between private and public keys. With this
approach the feature set could more accurately represent
the behavior of a singular actor [31].
Graph based approaches have also shown promise in
anomaly detection with blockchain data. It would be
interesting to see the results of a graph based model on
this dataset [15].
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