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Abstract

Traditionally, classification algorithms aim to
minimize the number of errors. However, this approach
can lead to sub-optimal results for the common case
where the actual goal is to minimize the total cost of
errors and not their number. To address this issue, a
variety of cost-sensitive machine learning techniques
has been suggested. Methods have been developed
for dealing with both class- and instance-dependent
costs. In this article, we ask whether we really
need instance-dependent rather than class-dependent
cost-sensitive learning? To this end, we compare
the effects of training cost-sensitive classifiers with
instance- and class-dependent costs in an extensive
empirical evaluation using real-world data from a
range of application areas. We find that using
instance-dependent costs instead of class-dependent
costs leads to improved performance for cost-sensitive
performance measures, but worse performance for
cost-insensitive metrics. These results confirm that
instance-dependent methods are useful for many
applications where the goal is to minimize costs.

1. Introduction

The goal of a classification model is to assign
the correct class label to instances based on their
characteristics by learning from a set of training
examples. Typically, the aim is to develop a model
that minimizes the number of incorrect decisions or
errors. However, such an approach implicitly assumes
that all errors are equally costly - an assumption that is
not realistic for many real-world applications [1]. In
disease diagnosis, for example, there is a larger risk
involved in wrongly predicting a sick patient to be
healthy than predicting a healthy one to be sick. In
this setting, costs are class-dependent. Other settings
are even more complex as the costs not only depend
on the predicted and actual class, but also on some
properties of the instance itself (e.g. the transaction

amount in credit card fraud detection). In the literature,
this has also been referred to as example-dependent or
observation-dependent costs.

Cost-sensitive learning is a subfield of machine
learning aimed at more effectively dealing with these
cases by including costs in the learning algorithms
and decision-making stage. This way, the goal of the
classification model becomes more aligned to the true
objectives. Even though most cost-sensitive approaches
aim to more effectively deal with class-dependent
cost, recently techniques have been proposed for
incorporating instance-dependent costs specifically.
Instance-dependent costs are a critical aspect of many
applications. However, taking instance-dependent costs
into account also brings additional complexity to the
learning problem as both the class and cost distributions
need to be considered simultaneously (see Figure 1).

Despite the conceptual differences, the benefits
and drawbacks of using instance- rather than
class-dependent costs on the performance of learning
algorithms has not yet been examined empirically.
Therefore, similar in spirit to the work of [2] on
class-dependent cost-sensitive boosting, we ask: Do we
really need instance-dependent cost-sensitive learning?
To this end, we present an extensive empirical evaluation
comparing models trained with class-dependent and
instance-dependent costs for different cost-sensitive
objective functions and types of classifiers.

2. Related work

In classification, different types of costs can be
formalized with the concept of a cost matrix [3].
Similar to how a confusion matrix differentiates between
outcomes depending on the actual and predicted class
(see Table 1a), a cost matrix associates a cost to these
different outcomes. In Table 1b, a cost matrix is
shown for the setting with class-dependent costs. When
costs are instance-dependent, each instance will have
a different cost matrix, denoted by the index i in
Table 1c. Note that this framework also allows the
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Table 1: Extension of the confusion matrix (1a) towards a cost matrix for class- (1b) and instance-dependent costs (1c)

(a) Confusion matrix

Actual
0 1

Predicted
0 TN FN
1 FP TP

(b) Class-dependent cost matrix

Actual
0 1

Predicted
0 cTN cFN

1 cFP cTP

(c) Instance-dependent cost matrix

Actual
0 1

Predicted
0 cTN

i cFN
i

1 cFP
i cTP

i

inclusion of benefits or profits in the form of negative
costs. Existing work on cost-sensitive learning can be
summarized based on whether the costs are class- or
instance-dependent (see Table 2).

2.1. Class- and instance-dependent
cost-sensitive learning

A variety of cost-sensitive machine learning
techniques have been proposed for dealing with
class-dependent costs. Class-dependent costs imply
that one class is more important in terms of costs and,
because of that, a cost-sensitive model should focus
more on correctly classifying this class compared
to a cost-insensitive model. In the simple case of a
linear model, class-dependent costs result in a parallel
shift of the decision boundary away from the more
costly class (see Figure 1). Note that the literature on
class-dependent cost-sensitive learning is intertwined
with the literature on learning with class imbalance and,
by using the appropriate costs, similar techniques can be
used (see [37] for a recent survey on class imbalance).

Compared to the class-dependent setting, much less
research has looked at cost-sensitive learning when costs
are instance-dependent. Conceptually, many of the
techniques for dealing with class-dependent costs can
and have been transferred to the instance-dependent
setting. However, instance-dependent costs bring an
additional degree of complexity as costs not only
depend on the class but also on the characteristics of
the instance itself (e.g. on the transaction’s amount
in fraud detection). Whereas class-dependent costs
result in a parallel shift of a linear decision boundary
compared to the cost-insensitive optimal decision
boundary, instance-dependent costs can additionally
result in a rotation of this hyperplane (see Figure
1). This toy example illustrates that when costs are
instance-dependent, the learner needs to simultaneously
consider both the class distribution (explicitly) and the
cost distribution (implicitly).

2.2. Cost-sensitive objective functions

Cost-sensitive classification models can be obtained
by incorporating costs in the objective function that
is used for training. In this work, we focus
specifically on this type of method for several
reasons. This approach allows to directly optimize an
explicitly defined measure that can be easily connected
to theory or application-specific goals. Moreover,
objective functions are model-independent, making it
straightforward to compare performance across different
types of classifiers.

In general, machine learning algorithms can be
understood in terms of risk minimization [38]. In this
framework, the goal of a learning algorithm is to find
the classifier that minimizes the risk. Formally, for a
distribution p(x, y) and a classifier fθ : X → [0, 1] :
x 7→ fθ(x) defined by parameters θ ∈ Θ, the risk to be
minimized is:

R(θ) =

∫ ∫
L(y,x, θ)p(x, y)dxdy,

where L(y,x, θ) represents the loss or objective
function for a classifier fθ(x) and data (x, y) [21]. In
reality, the true joint probability distribution p(x, y)
is unknown. Consequently, the learner relies on
the empirical density to minimize the risk given the
available training data. This is the principle of empirical
risk minimization (ERM) [38]. For a dataset (xi, yi) ∈
D with i ∈ N , the empirical risk is defined as:

Remp(θ) = E
x,y∼D

[
L(yi,xi, θ)

]
=

1

N

N∑
i=1

L(yi,xi, θ).

Clearly, it is essential to choose an appropriate loss
function L. A first and straightforward candidate is
the zero-one loss comparing the actual y and predicted
label ŷ: L0/1(y, ŷ) = I(y 6= ŷ), though it is common
to use a convex surrogate for computational efficiency
[39]. A popular choice is the cross-entropy loss, which
is equivalent to the maximum likelihood (ML) method
[40]. In binary classification, we have LCE(yi,xi, θ):

yilog fθ(xi) + (1− yi)log
(
1− fθ(xi)

)
.
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Figure 1: Toy examples with class-dependent (top) and instance-dependent costs (bottom). (Left) Two
classes and the probability distribution are shown. The instance size is proportional to its misclassification cost.
(Middle) The decision-boundary for a cost-insensitive classifier mimics the probability distribution. (Right) For a
cost-sensitive classifier and class-dependent costs, the decision-boundary lies further from the more costly class. With
instance-dependent costs, the decision-boundary is related to both the probability and cost distributions.

However, as argued above, a disadvantage of the
maximum likelihood approach is that it does not
take into account the costs of different decisions.
Consequently, using this loss function, the empirical
risk fails to reflect the true risk. To solve this issue,
the ERM framework can be extended to include costs:
given a dataset (xi, yi, ci) ∈ D for i ∈ N with an
instance’s cost matrix denoted as ci, a cost-sensitive loss
function L(y,x, c, θ) can be defined [21]. This way, the
empirical risk can be made cost-sensitive.

A first cost-sensitive loss function is obtained
by weighting the training examples by their
misclassification cost [3, 29]. This can be formulated
in terms of a weighted cross-entropy loss function
LwCE(yi,xi, ci, θ) [21]:

cFNi yilog fθ(xi) + cFPi (1− yi)log
(
1− fθ(xi)

)
. (1)

Note that this approach is equivalent to oversampling
proportional to misclassification costs [21].

A second cost-sensitive loss function builds on the
idea that the optimal cost-sensitive prediction minimizes
the expected cost [3]. Using this, an alternative loss
function can be defined which equals the expected
cost [32, 36]. The corresponding empirical risk is the
average expected cost LAEC(yi,xi, ci, θ):

yi

(
fθ(xi)c

TP
i +

(
1− fθ(xi)

)
cFNi

)
+ (1− yi)

(
fθ(xi)c

FP
i +

(
1− fθ(xi)

)
cTNi

)
.

(2)

3. Methodology

The goal of this work is to empirically analyze the
difference in training with class- and instance-dependent
costs on the resulting classification model. To compare
performance across a range of methodologies, we
use a variety of models obtained by combining a
cost-sensitive objective function with a type of classifier.
To this end, we use two cost-sensitive objective
functions the weighted cross-entropy LwCE and the
average expected cost LAEC (see equations 1 and 2
respectively). These will be implemented using three
different types of classifiers: logistic regression, neural
network and gradient boosting. These classifiers are
popular choices and are representative for the prominent
families of machine learning techniques: linear and
non-linear models are compared, as well as single
classifiers and ensembles. This choice is also motivated
by various benchmarking studies (e.g. [41, 42]).
This results in a total of 6 cost-sensitive models (see
Table 3). For neural networks and gradient boosting,
hyperparameter selection is based on the best value of
the objective function on a validation set.

3.1. Experimental procedure and evaluation
metrics

For the empirical evaluation, a 2 × 5-fold stratified
cross-validation procedure is used (see Algorithm 1).
This is repeated for each dataset. We use a variety
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Table 2: An overview of cost-sensitive learning
methodologies. We present an overview summary of
various cost-sensitive learning methods with respect to
costs and (when applicable) the used classifier.

Ref Costs Classifier
Class Instance

[4] 3 7 DR
[5] 3 7 DT
[6] 3 7 DR, NN
[7] 3 7 BO
[8] 3 7 DT
[9] 3 7 NN
[10] 3 7 NN
[11] 3 7 BO
[12] 3 7 -
[13] 3 7 SVM
[14] 3 7 DT
[15] 3 7 NB
[16] 3 7 DT
[17] 3 7 NN
[18] 3 7 -
[19] 3 7 BO
[20] 3 7 -
[21] 3 7 -
[22] 3 7 SVM
[23] 3 7 BO
[24] 3 7 BO
[25] 3 7 LR
[26] 3 7 DT

[27] 7 3 BO
[28] 7 3 -
[29] 7 3 BO
[30] 7 3 SVM
[31] 7 3 DT
[32] 7 3 LR
[33] 7 3 -
[34] 7 3 DT
[35] 7 3 BO
[36] 7 3 LR, BO

Costs CD: class-dependent, ID: instance-dependent
Classifier BO: boosting, DR: decision rule, DT: decision tree,

LR: logistic regression, NB: Naive Bayes,
NN: neural network, SVM: support vector machine

of metrics to evaluate the models. On the one hand,
several cost-insensitive metrics will be used to assess
the models’ ability to accurately classify instances.
First, the area under the ROC curve (AUC) and
average precision (AP) are used; these respectively
summarize the ROC and precision-recall curves. The

Table 3: Overview of the different models. We
combine different objective functions and types of
classifiers. Each model will be trained once with
instance- and once with class-dependent costs.

Logistic Neural Gradient
regression network boosting

LwCE wlogit wnet wboost
LAEC cslogit csnet csboost

Algorithm 1: Experimental procedure
Result: Evaluation metrics
Load data;
Initialize cost matrix;
Split data in 5 stratified folds;
for each fold i ∈ 1 : 5 do

for each repetition j ∈ 1 : 2 do
Test data = fold i;
Training data = 75% of remaining data;
Validation data = 25% remaining data;

# Preprocess data:
Convert categorical features (using WoE

encoding);
Standardize data: z = x−µ

σ ;
if training with class-dependent costs

then
Average cost matrix over training
and validation set;

end

# Train and evaluate models:
Train models;
Set decision thresholds;
Evaluate model outputs and predictions

for different thresholds;
end

end
Summarize evaluation metrics over all folds;

latter may be more informative given the high degree
of class imbalance [43] that is typically encountered in
cost-sensitive applications. To evaluate the accuracy of
predictions, we also use the F1-score.

On the other hand, performance will also be judged
in terms of costs. First, the average expected cost (AEC,
see equation 2) will be used. Second, Spearman’s rank
correlation coefficient ρ will be used to look at the
correlation between probabilities and costs for positive
instances. The aim of this metric is to analyze whether
cost-sensitive models prioritize correctly classifying
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costlier instances. Finally, we also look at the cost
savings incurred by the model. These compare the total
costs incurred by the model to classifying all instances
as the cheapest default class (either 0 or 1) [32]:

Savings =
Cost

(
fθ(x)

)
−min{Cost

(
f0(x)

)
,Cost

(
f1(x)

)
}

Cost
(
fθ(x)

)
(3)

The domain of this ratio is [−∞, 1] where 1 is the perfect
model, but when the model does better than predicting a
default class we obtain savings in ]0, 1].

To test the statistical significance of the results,
we use the Wilcoxon Signed-Ranks Test for pairwise
comparison to compare two versions of each model: one
trained by incorporating class-dependent costs and one
with instance-dependent costs [44]. Significance levels
of 5% and 10% are used.

4. Empirical results

In this section, the empirical results of are presented.
First, the data sets are presented and the cost matrices
corresponding to each application area are described.
Second, the experimental results are presented and
these findings are used to answer the proposed research
question.

4.1. Data

The data come from a diverse set of classification
tasks with instance-dependent costs: fraud detection,
direct marketing, customer churn and credit scoring (see
Table 4). In each data set, there is class imbalance
with the positive class being the minority, though some
cases are more extreme than others. All data sets are
publicly available (see Appendix A). The cost matrices
depend on the application area and are adopted from
earlier work (for an overview, see Table 5). The intuition
behind these is provided below.

Fraud detection In fraud detection, a positive
prediction triggers an investigation that has a fixed cost
cf , while a missed fraudulent transaction incurs a cost
equal to its amount Ai (see Table 5a). For both data
sets, cf is set to 10 following [36].

Direct marketing A similar reasoning applies here:
any direct marketing action results in a fixed cost cf and
missing a potential success incurs an instance-dependent
cost (see Table 5b). Whereas marketing1 uses the
amount Ai and cf = 0.68 following both [28] and [45],
marketing2 instead uses the expected interest given Ai
and cf = 1, following [34].

Customer churn For customer churn prediction, cFPi

and cFNi are respectively set at 2 and 12 times the
monthly amountAi for churn1 following [45] (see Table
5c). For churn2, the cost matrix provided with the data
set is used (not shown here, see [46]).

Credit scoring Finally, for credit scoring, the costs of
a FP and FN are calculated following [32] with both a
function of the loan amount Ai.

4.2. Results

To look at the effect of using instance-dependent
costs during training as opposed to training with
class-dependent costs, we start by measuring
performance in terms of cost-insensitive metrics (see
Tables 6 and A2). Although the results are fairly similar
for the two settings, training with class-dependent costs
gives better results for these metrics for almost all
cases. Based on this observation, it can be concluded
that training with instance-dependent costs may be
disadvantageous in terms of errors. This effect is
observed in particular for wlogit, wnet, wboost and
csboost.

Next, we look at performance in terms of
cost-sensitive metrics (see Tables 7 and A1).
Here, training with instance-dependent costs gives
comparatively better results. Using instance-dependent
costs consistently leads to lower average expected costs
(though the difference is not always significant). Also
in terms of Spearman’s ρ, it is better for all models, and
this difference is significant except for csnet. In terms
of savings, instance-dependent costs give better results.
The only exception is csnet which has very similar
performance for the two types of costs.

5. Conclusion

In this work, we presented an extensive empirical
evaluation comparing different instance-dependent and
class-dependent cost-sensitive learning methods. We
observed that using instance-dependent instead of
class-dependent costs during gives better results in terms
of cost-sensitive metrics, though not for traditional
accuracy metrics. These results highlight the importance
of considering the right objective for an application.

Future work will look at the inclusion of
cost-sensitive decision-making thresholds, which can
also incorporate both instance- or class-dependent
costs. Additionally, it would be interesting to
investigate the influence of the characteristics of
the cost distribution and cost matrix on the performance
of different instance-dependent cost-sensitive learning
methodologies.
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Table 4: Overview of the different datasets: size (N ), dimensionality (D) and degree of class imbalance (% Pos)

Application Dataset Abbr. N D % Pos

Fraud detection Kaggle Credit Card Fraud KCCF 282982 29 0.16
Kaggle IEEE Fraud Detection KIFD 590540 431 3.50

Direct marketing KDD Cup 1998 KDD 191779 22 5.07
UCI Bank Marketing UBM 45211 15 11.70

Churn prediction Kaggle Telco Customer Churn KTCC 7032 19 26.58
TV Subscription Churn TSC 9379 46 4.79

Credit scoring Kaggle Give Me Some Credit GMSC 112915 10 6.74
UCI Default of Credit Card Clients DCCC 30000 23 22.12
VUB Credit Scoring VSC 18917 16 16.95

Table 5: Cost matrices for the different application areas. For each application, different costs are associated with
different outcomes. These are presented here. Ai and Inti represent an instance-dependent amount; cf is a fixed cost.

(a) Fraud detection

y
0 1

ŷ
0 0 Ai
1 cf cf

(b) Direct marketing

y
0 1

ŷ
0 0 Ai/Inti
1 cf cf

(c) Customer churn

y
0 1

ŷ
0 0 12Ai
1 2Ai 0

(d) Credit scoring

y
0 1

ŷ
0 0 cFNi
1 cFPi 0

Table 6: Instance-dependent or class-dependent costs: cost-insensitive metrics per model. Significantly better
results are denoted in bold (5%) and italic (10%).

Metric Costs wlogit cslogit wnet csnet wboost csboost

AUC ID 0.76 0.72 0.76 0.77 0.77 0.76
CD 0.77 0.73 0.78 0.77 0.78 0.79

AP ID 0.38 0.27 0.40 0.38 0.42 0.38
CD 0.42 0.27 0.45 0.36 0.45 0.44

F1 ID 0.39 0.39 0.39 0.43 0.43 0.38
CD 0.41 0.39 0.42 0.43 0.45 0.44

Significance levels: 5%, 10%

Table 7: Instance-dependent or class-dependent costs: cost-sensitive metrics per model. Significantly better
results are denoted in bold (5%) and italic (10%). AEC is normalized between 0 and 1 per dataset (lower is better).

Metric Costs wlogit cslogit wnet csnet wboost csboost

AEC ID 0.56 0.07 0.47 0.18 0.41 0.06
CD 0.68 0.25 0.59 0.18 0.48 0.21

Spearman’s ρ ID 0.09 0.11 0.16 -0.06 0.13 0.23
CD -0.10 -0.05 -0.10 -0.07 -0.07 -0.10

Savings ID 0.37 0.38 0.40 0.34 0.32 0.38
CD 0.33 0.31 0.35 0.34 0.29 0.34

Significance levels: 5%, 10%
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A. Data

The data sets that are used in the experiments presented
in this paper are publicly available online.

• Kaggle Credit Card Fraud (KCCF) [47]
https://www.kaggle.com/mlg-ulb/creditcardfraud

• Kaggle IEEE Fraud Detection (KIFD)
https://www.kaggle.com/c/ieee-fraud-detection

• UCI KDD98 Direct Mailing (KDD)
http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

• UCI Bank Marketing (UBM) [48]
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

• Kaggle Telco Customer Churn (KTCC)
https://www.kaggle.com/blastchar/telco-customer-churn

• TV Subscription Churn (TSC) [46]
https://github.com/albahnsen/CostSensitiveClassification/blob
/master/costcla/datasets/data/churn tv subscriptions.csv.gz

• Kaggle Give Me Some Credit (GMSC)
https://www.kaggle.com/c/GiveMeSomeCredit

• UCI Default of Credit Card Clients (DCCC) [49]
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+
clients

• VUB Credit Scoring (VSC) [50]
https://github.com/vub-dl/data-csl-pdcs

B. Additional results

Here we present the average results per dataset for the
models trained with instance- and class-dependent (see
Table A1 and A2) to complement the results averaged
per model in the main body. These results are in line
with earlier findings: training with instance-dependent
costs gives better results in terms of cost-sensitive
metrics compared to training with class-dependent costs,
but worse in terms of cost-insensitive metrics.
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Table A1: Instance-dependent or class-dependent costs: cost-sensitive metrics per dataset. Significantly better
results are denoted in bold (5%) and italic (10%).

Metric Costs KCCF GMSC KIFD KTCC KDD TSC UBM DCCC VSC

AEC ID 0.08 458.90 2.53 82.05 0.72 60.22 0.52 15674.65 0.08
CD 0.08 460.81 3.05 81.32 0.72 60.42 0.67 16724.90 0.09

Spearman’s ρ ID 0.17 -0.04 0.09 0.12 0.03 -0.35 0.55 0.05 0.36
CD -0.07 -0.15 -0.17 0.12 -0.14 -0.30 0.18 -0.30 0.11

Savings ID 0.66 0.47 0.59 0.20 -0.03 0.06 0.55 0.35 0.41
CD 0.66 0.47 0.49 0.21 -0.05 0.06 0.43 0.30 0.37

Significance levels: 5%, 10%

Table A2: Instance-dependent or class-dependent costs: cost-insensitive metrics per dataset. Significantly better
results are denoted in bold (5%) and italic (10%).

Metric Costs KCCF GMSC KIFD KTCC KDD TSC UBM DCCC VSC

AUC ID 0.96 0.81 0.89 0.82 0.51 0.61 0.73 0.72 0.76
CD 0.96 0.81 0.90 0.82 0.53 0.62 0.76 0.75 0.77

AP ID 0.72 0.30 0.45 0.61 0.05 0.08 0.29 0.46 0.38
CD 0.77 0.31 0.51 0.60 0.06 0.08 0.37 0.49 0.39

F1 0.5 ID 0.74 0.33 0.43 0.59 0.10 0.13 0.37 0.49 0.44
CD 0.81 0.33 0.47 0.59 0.10 0.14 0.41 0.51 0.45

Significance levels: 5%, 10%
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