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Abstract 
Algorithmic decision making is gaining popularity 

in today's business. The need for fast, accurate, and 

complex decisions forces decision-makers to take 

advantage of algorithms. However, algorithms can 

create unwanted bias or undesired consequences that 

can be averted. In this paper, we propose a MAX-MIN 

fair cross-efficiency data envelopment analysis (DEA) 

model that solves the problem of high variance cross-

efficiency scores. The MAX-MIN cross-efficiency 

procedure is in accordance with John Rawls’s Theory 

of justice by allowing efficiency and cross-efficiency 

estimation such that the greatest benefit of the least-

advantaged decision making unit is achieved. The 

proposed mathematical model is tested on a healthcare 

related dataset. The results suggest that the proposed 

method solves several issues of cross-efficiency scores. 

First, it enables full rankings by having the ability to 

discriminate between the efficiency scores of DMUs. 

Second, the variance of cross-efficiency scores is 

reduced, and finally, fairness is introduced through 

optimization of the minimal efficiency scores. 

 

 

1. Introduction  

In many business applications, the performance of 

an individual or company is estimated using the 

concepts of effectiveness and efficiency. While 

effectiveness presents the degree to which an 

individual is successful in producing the desired result, 

efficiency shows how much is achieved using different 

inputs. More specifically, efficiency can be presented 

as a ratio of generated outputs and selected inputs [1]. 

One of the most popular techniques for estimation 

of efficiency is DEA. It presents a non-parametric 

technique for relative efficiency estimation based on 

linear programming (LP). More specifically, one 

develops a LP model as a ratio of the weighted sum of 

outputs and the weighted sum of inputs. The 

optimization task is to find output and input weights 

such that the efficiency is maximized. [2] 

Efficiency estimation defined in DEA is deemed 

as a utilitarian approach. One individual obtains the 

best possible efficiency score for him/herself by 

adjusting input and output weights. Those weights 

might do not lead to the best efficiency scores for the 

other individuals. In other words, one obtains an 

optimistic estimate of the efficiency score. To get an 

efficiency score that is considered fairer, one can 

calculate a cross-efficiency score and use it in 

decision-making. The cross-efficiency score presents 

the average efficiency score obtained by one individual 

using weights of inputs and weights of outputs 

obtained for all individuals in the dataset. [3] 

With the rise of fairness issues and the need for 

justice in algorithmic decision-making tools, one tends 

to shift from utilitarian to (luck) egalitarian approaches 

[4], [5]. More specifically, one wants to be aware of 

inherited biases in the data and implement them in 

algorithms prior to decision-making [6]. In other 

words, missing the opportunity to tackle unwanted bias 

will result in algorithmic decision-making tools that 

inherit unwanted bias and most probably amplify it [7]. 

The problem one faces is an unknown source of 

unfairness (it may occur in data at hand, the algorithm 

itself, or decision rules made by decision-maker) [8], 

[9], as well as defining an appropriate notion of 

fairness in algorithmic decision-making tool. 

In this paper, we adopt the Rawlsian approach to 

fairness in DEA cross-efficiency estimation. More 

specifically, one seeks a DEA model that benefits the 

worst individual in the dataset. We propose a method 

that seeks such input and output weights that the 

minimum efficiency score of all the individuals is 

maximized in the cross-efficiency setting. Further, due 

to the nature of the optimization, the proposed model 

will still seek the best efficiency score for each 

individual. The proposed approach remains a LP 
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problem, and thus can be efficiently solved using 

methods like Simplex or interior point method.  

The effectiveness of the proposed approach is 

shown on a dataset regarding the efficiency of the 

healthcare systems. Different healthcare systems can 

seem inefficient because inputs or outputs are of 

different value in the context of a specific country (f.e. 

European countries are spending more on healthcare 

per capita due to availability of funding compared to 

Asian countries, but Asian countries compensate this 

with a greater quality of care). By using DEA to rank 

healthcare systems could yield a flawed ranking if 

cross-efficiency is used. The proposed approach for the 

calculation of cross-efficiency scores has lower 

variance, thus it presents a fairer and more stable 

efficiency estimation and consequently fairer ranking. 

To the best of our knowledge, adding fairness notions 

in DEA is a new area with very few papers regarding 

these issues. 

The remainder of the paper is structured as 

follows. In Section 2 we provide background to the 

DEA method, while in Section 3 we present current 

achievements regarding cross-efficiency in DEA 

method and lessons learned from the literature review. 

Section 4 proposes the method and describes the 

experiment. In Section 5, we present the results and the 

discussion. Finally, we conclude the paper in Section 6. 

2. Background 

The usage of algorithms for algorithmic decision-

making had a promise of removing biases in a 

decision-making process [6]. Instead, it led to many 

injustices in real-world applications. A typical example 

is COMPAS tool that assesses the probability of an 

individual to perform a felony in the future. It has been 

shown that formula used is twice as likely to make a 

false positive error for black defendants compared to 

white defendants, leading to even greater racial 

disparities [10]. Another notable example of unfairness 

in algorithmic decision-making is Google, which 

offered male users higher-paid jobs [11]. Algorithm 

Google used found and replicated the bias that existed 

in the data thus amplifying the unfairness. 

Algorithms are unaware of the cultural and 

historical biases and injustices, and from the 

optimization point of view attributes like race, gender, 

or religion seems like a good property of an individual 

for making a distinction between good and bad 

outcome. While using such properties for decision-

making is forbidden (it is a disparate treatment), 

omitting them can result in unfair and unjust decisions. 

More specifically, information about gender, race, or 

religion can be visible through the so-called proxy 

attributes. For example, males have a higher average 

salary compared to females [11], or black people live 

in a certain part of the city [8]. To tackle this problem, 

one can restrict the utility (in this paper, efficiency) 

score of an alternative. This will reduce the 

amplification of the unfairness, thus reducing the 

disparate impact of the algorithmic decision-making. 

To assess the efficiency score of an individual or 

decision-making unit (DMU) in general, one can use 

several approaches. One can use stochastic frontier 

analysis (SFA) where an outcome 𝑦𝑖  of a DMU 𝑖 is 

estimated using the inputs 𝑋𝑖 and coefficients 𝛽 

associated with the inputs. More specifically, one uses 

the model (1): 

𝑦𝑖 =  𝛽0 + ∑(𝑥𝑖,𝑞𝛽𝑞)

𝑚

𝑞=1

+ 𝑣𝑖 − 𝑢𝑖 (1) 

where 𝑣𝑖 presents a stochastic component used to 

explain the effects of economic adversities or plain 

luck. These effects are assumed to occur at random and 

the effects for all DMUs share a common probability 

distribution (i.e. Normal distribution). Finally, 𝑢𝑖 

presents the score needed for a DMU to achieve an 

efficient score. Therefore, 𝑢𝑖 ≥ 0 [12]. Once one has a 

dataset having DMUs, their input values, and output 

score, SFA can be used to estimate efficiency score 

using gradient descent. 

Although SFA is used, especially in economic 

efficiency modeling, it has two downsides. First, it is a 

parametric model which means that one needs to 

assume the probability distribution function of random 

effects. Second, SFA can be used to access efficiency 

scores if only one output value exists. If multiple 

outputs jointly describe the output of the DMU, one 

would need to use multiple SFA models. 

To incorporate multiple outputs into efficiency 

estimation, one can opt for the DEA model [13]. The 

basic output-oriented DEA mathematical model is 

presented in (2) [14]. 

 

max 𝑒𝑑 = ∑ 𝑢𝑟𝑦𝑟𝑑

𝑠

𝑟=1
 

𝑠. 𝑡. 
 

∑ 𝑣𝑖𝑥𝑖𝑑 = 1
𝑚

𝑖=1
 

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0

𝑚

𝑖=1
,

𝑗 = 1, … , 𝑛 
𝑢𝑟 ≥ 𝜀, 𝑟 = 1, … , 𝑠 
𝑣𝑖 ≥ 𝜀, 𝑖 = 1, … , 𝑚 

(2) 

 

The description of the mathematical model is as 

follows. One seeks the best efficiency score 𝑒𝑑 for each 

DMU 𝑑, 𝑑 = 1, … , 𝑛 by calculating the weighted sum 

of outputs 𝑦𝑟𝑑 that 𝑑-th DMU produces. More 
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specifically, one tries to find the weights of output 𝑟 

denoted 𝑢𝑟 such that the sum of 𝑢𝑟𝑦𝑟𝑑 is maximized. 

However, one needs to restrict this linear function to 

get an efficiency score. First, one needs to set that 

weighted sum of inputs (∑ 𝑣𝑖𝑥𝑖𝑑
𝑚
𝑖=1 ) should be exactly 

one. This constraint uses as a trick to convert the ratio 

of the weighted sum of outputs and the weighted sum 

of inputs into a linear form. By setting the weighted 

sum of inputs to a constant, the mathematical model 

can focus on finding the best weighted sum of outputs. 

The second constraint is crucial for the efficiency 

score. By setting that the difference between the 

weighted sum of outputs and the weighted sum of 

inputs should be lower than zero, one ensures that the 

efficiency score is bounded between zero and one. 

Finally, one employs lower bounds on inputs and 

outputs weights by setting a constraint that each weight 

should be at least 𝜀. 

The mathematical model presented in (2) is solved 

for each of 𝑛 DMUs. Therefore, one needs to solve 𝑛 

LP problems to obtain efficiency scores. DEA gained 

its popularity also from the fact that it can be obtained 

by solving LP tasks. One can use slack variables and 

calculate referent units by observing the solution of the 

dual formulation of the mathematical model presented 

in (2). Slack variables explain what needs to be 

changed to obtain an efficient score and referent units 

explain what DMU obtained better efficiency score 

with the same weights like the one being observed 

(thus, observed DMU can look up to them to get a 

better efficiency score). [13] 

Finally, cross-efficiency is obtained by when 

DMU weights are used to evaluate the efficiency of all 

other DMUs. Then, for each DMU one calculates the 

average efficiency score obtained using weights from 

all DMUs (including itself) as presented in (3). 

𝑐𝑑 =
1

𝑛
∑ ∑ 𝑢𝑟𝑞𝑦𝑟𝑑

𝑠

𝑟=1

𝑛

𝑞=1

 (3) 

A cross-efficiency score is being used as a self-

evaluation obtained by solving the model in (2) is 

criticized as an unfair comparison. It can be used to get 

the full ordering of DMUs (and thus further decision-

making) and more importantly it eliminates unrealistic 

weight combinations without the elicitation of weights 

from the domain experts and imposing the weight 

restrictions [15]. 

3. Literature Review 

Throughout the years, many works on cross-

efficiency have been done. By observing the literature, 

one can find different models with different 

assumptions and use cases. 

Most commonly used is the benevolent 

formulation of cross-efficiency proposed by [16]. That 

mathematical model aims at maximizing the cross-

efficiencies of all other DMUs with the idea that the 

best cross-efficiency model is the one that achieves the 

highest score of cross-efficiencies. The mathematical 

model is presented in (4). 

 

max 𝑒𝑘 = ∑ 𝑢𝑟𝑘 (∑ 𝑦𝑟𝑗

𝑛

𝑗=1,𝑗≠𝑘
)

𝑠

𝑟=1
 

𝑠. 𝑡. 
 

∑ 𝑣𝑖𝑘 ( ∑ 𝑥𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑘

) = 1
𝑚

𝑖=1
 

∑ 𝑢𝑟𝑘𝑦𝑟𝑘

𝑠

𝑟=1
− 𝜃𝑘𝑘

∗ ∑ 𝑣𝑖𝑘𝑥𝑖𝑘 ≤ 0
𝑚

𝑖=1
 

∑ 𝑢𝑟𝑗𝑦𝑟𝑗

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑗𝑥𝑖𝑗 ≤ 0

𝑚

𝑖=1
,

𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑘 
𝑢𝑟𝑘 ≥ 𝜀, 𝑟 = 1, … , 𝑠 
𝑣𝑖𝑘 ≥ 𝜀, 𝑖 = 1, … , 𝑚 

(4) 

 

The cross-efficiency estimation starts by 

calculating the best relative efficiency 𝜃𝑘𝑘
∗  that the 

DMU 𝑘 can achieve (i.e. solving the formula (2) for 

DMU 𝑘). Then, because solving (2) for each DMU can 

result in many alternatives having optimal solutions (in 

other words there exists non-uniqueness of the 

solution) it is proposed to optimize a secondary goal in 

such a manner to have the same efficiency score for the 

DMU being observed, but with greater efficiency 

scores for other DMUs in total. 

The downsides of this formulation are that one 

needs to solve multiple optimization models in a two-

step procedure. First, one needs to solve 𝑛 linear 

programming models to obtain initial efficiency scores, 

and then additional 𝑛 linear programming models to 

adjust weights such that cross-efficiency scores are 

increased. In addition, the changes in the weights 

obtained from this procedure are very small. More 

specifically, if a unique optimal solution exists (and 

most often it does) there are no changes that will result 

in the same value of the efficiency score. 

Other approaches do exist, such as deviation from 

the ideal point [17]. Deviation from the ideal point is 

presented in terms of convex optimization, thus 

making it hard to implement nice properties of the 

basic DEA model such as slack variables and referent 

units. Another interesting approach is [18] where there 

is a guarantee that efficiency scores after adjustment 

are still at the Pareto frontier but moved such that other 

DMUs obtain better efficiency scores. 
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One of the issues with cross-efficiency is the need 

to achieve the best possible efficiency score for the 

DMU at hand. One can imagine a situation where a 

small increase in efficiency scores for one DMU 

reduces the efficiency score of other DMUs by a larger 

quantity, thus making the overall cross-efficiency 

smaller. In addition, needing to obtain the same 

efficiency score for a DMU will yield a high variance 

in cross-efficiency scores. Therefore, the ranking of 

DMUs perhaps could be flawed. 

In addition, one would like to foster the 

disadvantaged DMUs by giving them a greater score 

and provide them access to resources. 

4. Methodology 

One notion of justice in algorithmic decision-

making is lent from the political philosophy. The 

notion used in this paper is John Rawls’s theory of 

justice. The guiding idea is that justice is achieved by 

fairness, or more specifically, that 1) each individual 

(DMU) has the same full an adequate scheme of basic 

liberties, 2) there is equality of opportunity for 

obtaining the desired resources, and 3) resource 

allocation is divided to be to the greatest benefit of the 

least-advantaged individual (DMU) [19]. While usage 

of the same inputs and outputs will provide the same 

decision-making scheme, solving issues of equality of 

opportunity and fairer resource allocation in DEA is 

lacking. To the best of our knowledge, there are no 

papers regarding these issues. This paper aims at 

providing a fair ranking using cross-efficiency DEA by 

allocating the efficiency score to the greatest benefit of 

the least-advantaged DMU. 

4.1. MAX-MIN cross-efficiency DEA 

To enforce Rawls’s theory of justice in DEA 

cross-efficiency ranking, we introduce several 

differences compared to traditional cross-efficiency 

estimation. First, instead of a two-phased procedure 

(calculating the cross-efficiency matrix and adjusting 

the weights), our approach aims at solving a single 

mathematical model that will calculate the cross-

efficiency matrix such that the benefit of the worst off 

is maximized. 

First, the original DEA model from (2) should be 

implemented to solve 𝑛 linear programming tasks in 

one iteration. This is achieved by the summation of 

individual efficiency scores. Then, one should change 

the goal function to maximize the minimum efficiency 

score. The initial mathematical model is presented in 

(5). 

 

max min ∑ 𝑢𝑟𝑑𝑦𝑟𝑑 + 𝑢𝑟𝑗𝑦𝑟𝑗

𝑠

𝑟=1
, 𝑗 ≠ 𝑑 

𝑠. 𝑡. 
 

∑ 𝑣𝑖𝑑𝑥𝑖𝑑 = 1
𝑚

𝑖=1
, 𝑑 = 1, … , 𝑛 

∑ 𝑢𝑟𝑑𝑦𝑟𝑑

𝑠

𝑟=1
− ∑ 𝑣𝑖𝑑𝑥𝑖𝑑 ≤ 0

𝑚

𝑖=1
,

𝑑 = 1, … , 𝑛 
𝑢𝑟𝑑 ≥ 𝜀, 𝑟 = 1, … , 𝑠 
𝑣𝑖𝑑 ≥ 𝜀, 𝑖 = 1, … , 𝑚 

(5) 

 

The MAX-MIN formulation will seek to find the 

largest average efficiency score of the DMU at hand 𝑑 

and another DMU 𝑗. Since there are 𝑛 DMUs, this 

mathematical model will seek to find the largest 

average efficiency score from 𝑛(𝑛 − 1) combination of 

average efficiency scores. The remainder of the 

mathematical model remains as in (2) with a difference 

that the proposed model has many more variables 

(since 𝑛 mathematical models are joined into one). 

Solving the MAX-MIN linear programming model can 

be formulated as in (6) [20]. 

 

max 𝜃 
𝑠. 𝑡. 

 

∑ (𝑢𝑟𝑑𝑦𝑟𝑑 + 𝑢𝑟𝑗𝑦𝑟𝑗)
𝑠

𝑟=1
≥ 𝜃,

𝑑 = 1, … , 𝑚;  𝑗 ≠ 𝑑 

∑ (𝑣𝑖𝑑𝑥𝑖𝑑) = 1
𝑚

𝑖=1
, 𝑑 = 1, … , 𝑚 

∑ (𝑢𝑟𝑑𝑦𝑟𝑑)
𝑠

𝑟=1
− ∑ (𝑣𝑖𝑑𝑥𝑖𝑑) ≤ 0

𝑚

𝑖=1
,

𝑑 = 1, … , 𝑛 
𝑢𝑟𝑑 ≥ 𝜀, 𝑟 = 1, … , 𝑠 
𝑣𝑖𝑑 ≥ 𝜀, 𝑖 = 1, … , 𝑚 

(6) 

 

In other words, we introduce an additional variable 

𝜃 that is maximized in the goal function. This variable 

is interpreted as the lower bound of the efficiency 

score. 

Since this approach optimizes for the minimum 

average efficiency score it will seek that the minimum 

score is greater, but still optimizing the efficiency score 

of the DMU being observed. This is in accordance with 

the definition of justice by fairness by John Rawls. 

More specifically, efficiency scores are calculated to 

the greatest benefit of the least-advantaged DMU. 

Because of such an approach, we argue that the 

variance of the model is going to be lower. More 

specifically, during the optimization process variables 

are not going to be overfitted to the best possible 

efficiency score for one alternative but regularized for 

the efficiency score of the worst-off. This will lower 
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the efficiency score of the observed DMU, thus reduce 

variance (overfitting) of the model, reducing the need 

for human experts and weight restrictions. An 

additional benefit of the proposed approach is that the 

procedure of getting the cross-efficiency scores that are 

to be considered fair is solved using only one 

mathematical model. 

However, the downside is that compensation 

exists. DMUs must adjust their weights in such a 

manner that it will not result in the best possible score 

for all observed DMUs. This can be justified as 

positive discrimination in algorithmic decision-making, 

and that achieving fairness and more equitable results 

have a cost [21], [22]. 

4.2. Data 

To test the proposed mathematical model, we use 

data regarding healthcare systems [23]. The dataset 

explains the state of healthcare in 41 countries in the 

year 2015. Countries included in this research are 

OECD and BRICS countries. It is worth noticing that 

Brazil was excluded from the research due to data 

unavailability. 

The choice of inputs and outputs was guided by 

the literature review conducted by [23]. More 

specifically, two outputs were commonly used for 

accessing the efficiency of the healthcare systems. 

Those are:  

(O1) life expectancy – Expected number of years 

of life for a newborn if the mortality rate does not 

change. These values include both male and female 

populations, and  

(O2) infant survival rate – Presents the ratio of 

children who survived the first year of life, and the 

number of children who died at birth or within the first 

year of life. 

The inputs in this study are:  

(I1) health expenditure per capita – This value 

explains health costs that include the cost of healthcare 

products and services. It is measured as dollars per 

capita using the current pricing index and the current 

purchasing power parity of the population. 

(I2) number of medical doctors per 1000 

inhabitants – Refers to all doctors that provide direct 

care to patients and those doctors that act as managers, 

or educators. The number of medical doctors is 

normalized to 1000 inhabitants. 

(I3) number nurses per 1000 inhabitants – This 

number represents medical technicians who provide 

direct care to patients. The number of nurses is 

normalized to 1000 inhabitants. 

(I4) number of hospital beds per 1000 inhabitants 

– This value presents the available number of hospital 

beds that are maintained and available to use. It is 

measured per 1000 inhabitants. 

The values for the inputs and outputs are obtained 

from the World Bank (https://data.worldbank.org/) and 

the OECD database (https://stats.oecd.org/). 

4.3. Experimental Setup 

The effectiveness of the proposed approach is 

tested by comparing with the cross-efficiency scores 

obtained from the plain DEA model (as provided in 

(2)), as well as Doyle & Green cross-efficiency model 

(as provided in (4)). The choice of parameter 𝜀 is set to 

0.001 for all of the proposed models. This parameter 

value aims at including all inputs and outputs during 

the efficiency calculation. 

The cross-efficiency score is calculated using the 

average efficiency score as presented (3). Since cross-

efficiency is used for DMU ranking, greater efficiency 

scores show better utility, thus better ranking. 

However, the value of the cross-efficiency score is 

irrelevant. The best DMU is going to be the one with 

the highest cross-efficiency score regardless if the 

score is close to one, or close to 0.5.  

The issue with a cross-efficiency score is in the 

certainty of ranking. High variance in the decision 

model, especially the one with high degrees of freedom 

can artificially increase or decrease the ranking [24]. 

Therefore, we present standard deviations of the cross-

efficiency scores as well. One can understand the 

standard deviations as the sensitivity analysis of the 

proposed approach. More specifically, by changing the 

values of the inputs and outputs by smaller intensities 

the efficiency score should not differ a lot. If the 

efficiency score of a DMU changes a lot, it is an 

indicator that DMU is unstable and could change the 

efficiency score with a small perturbation in underlying 

data. Additionally, since the proposed approach 

minimized the lowest average efficiency score, we 

present the minimum efficiency score obtained by the 

DMU. 

5. Results and discussion 

After performing the experiments on the 

previously described dataset, we obtained the results 

presented in Table 1. Column DEA represents classical 

DEA cross-efficiency score, D&G represents a Doyle 

& Green adaptation of classical DEA cross-efficiency 

scores explained in the previous section, and finally, 

column MAX-MIN is the proposed approach. The table 

is divided into three parts. In the first section mean 

cross-efficiency score is presented, while in the second 

standard deviation, and finally in the third part 

minimum efficiency score is obtained. The best 
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performances for each DMU are presented in bold 

letters. 

As one can observe from Table 1 the cross-

efficiency scores (first three columns) obtained with 

the Doyle & Green approach generated the highest 

average cross-efficiency scores. By observing the 

results, we can see that Slovenia (SVN), India (IND), 

and Indonesia (IDN) have score one, thus one cannot 

discriminate between these alternatives. Our proposed 

approach can discriminate between the proposed 

approach. However, as a result, our MAX-MIN 

approach has generally lower cross-efficiency scores. 

This is due to the regularization strategy during the 

DEA model learning.  

 

 
Table 1. Comparison of the cross-efficiency results 

DMU 

Mean cross-efficiency score Standard deviation Minimum efficiency score 

DEA D&G MAX-

MIN 

DEA D&G MAX-

MIN 

DEA D&G MAX-

MIN 

AUS 0.428 0.528 0.434 0.091 0.183 0.052 0.310 0.310 0.336 

AUT 0.387 0.454 0.324 0.119 0.188 0.040 0.282 0.282 0.240 

BEL 0.369 0.465 0.377 0.055 0.183 0.035 0.283 0.283 0.278 

CAN 0.387 0.521 0.423 0.137 0.227 0.083 0.214 0.214 0.246 

CZE 0.593 0.664 0.484 0.124 0.174 0.063 0.418 0.446 0.336 

DNK 0.373 0.451 0.349 0.189 0.228 0.085 0.223 0.227 0.237 

FIN 0.733 0.799 0.707 0.171 0.178 0.081 0.541 0.555 0.567 

FRA 0.340 0.441 0.344 0.047 0.191 0.028 0.268 0.268 0.256 

DEU 0.294 0.368 0.292 0.033 0.178 0.023 0.251 0.253 0.211 

GRC 0.613 0.660 0.348 0.310 0.294 0.098 0.171 0.179 0.165 

HUN 0.419 0.519 0.344 0.128 0.221 0.056 0.233 0.253 0.203 

ISL 0.626 0.701 0.587 0.238 0.241 0.101 0.406 0.415 0.436 

IRL 0.449 0.555 0.469 0.165 0.215 0.088 0.249 0.249 0.281 

ITA 0.660 0.763 0.567 0.144 0.184 0.067 0.413 0.423 0.384 

JPN 0.539 0.590 0.448 0.208 0.224 0.110 0.276 0.298 0.215 

KOR 0.589 0.658 0.417 0.256 0.271 0.117 0.223 0.243 0.182 

LUX 0.435 0.524 0.452 0.117 0.181 0.065 0.233 0.233 0.262 

MEX 0.363 0.622 0.388 0.072 0.263 0.070 0.171 0.199 0.184 

NLD 0.409 0.507 0.415 0.089 0.182 0.050 0.255 0.256 0.283 

NZL 0.353 0.488 0.384 0.105 0.224 0.068 0.257 0.257 0.284 

NOR 0.492 0.556 0.471 0.193 0.213 0.084 0.310 0.310 0.337 

POL 0.519 0.638 0.418 0.173 0.253 0.076 0.259 0.283 0.224 

PRT 0.651 0.738 0.523 0.123 0.167 0.073 0.344 0.352 0.321 

SVK 0.372 0.485 0.318 0.104 0.226 0.045 0.232 0.247 0.211 

ESP 0.774 0.872 0.633 0.195 0.191 0.083 0.441 0.451 0.410 

SWE 0.618 0.694 0.549 0.273 0.269 0.109 0.336 0.336 0.372 

CHE 0.263 0.341 0.284 0.094 0.193 0.055 0.153 0.153 0.173 

TUR 0.447 0.727 0.414 0.180 0.280 0.069 0.236 0.248 0.268 

GBR 0.489 0.623 0.499 0.140 0.219 0.077 0.280 0.280 0.316 

USA 0.273 0.371 0.304 0.128 0.209 0.083 0.086 0.086 0.106 

CHL 0.579 0.810 0.508 0.241 0.274 0.082 0.310 0.339 0.310 

EST 0.770 0.851 0.605 0.178 0.185 0.089 0.534 0.542 0.438 

ISR 0.723 0.841 0.606 0.168 0.183 0.075 0.432 0.444 0.403 

SVN 0.997 1.000 0.998 0.012 0.000 0.055 0.928 1.000 0.930 

CHN 0.486 0.711 0.381 0.230 0.298 0.082 0.193 0.207 0.208 

IND 0.428 1.000 0.683 0.218 0.292 0.148 0.225 0.288 0.298 

IDN 0.648 1.000 0.816 0.299 0.312 0.114 0.249 0.273 0.391 

LVA 0.553 0.653 0.409 0.203 0.253 0.082 0.293 0.312 0.253 

LTU 0.381 0.459 0.301 0.124 0.205 0.051 0.232 0.246 0.201 

RUS 0.260 0.341 0.202 0.140 0.230 0.040 0.124 0.134 0.118 

ZAF 0.226 0.597 0.312 0.113 0.330 0.049 0.095 0.101 0.168 

 

As it is of immense importance for ranking using 

DEA approach, the variance of the cross-efficiency 

score is much lower. The proposed MAX-MIN 

approach has a lower standard deviation by a factor of 

even 5 that indicates that the efficiency score is stable 
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over the DEA models, thus making ranking stable 

regardless of the DMU being observed. In risk-averse  

 

decision-making problems, one would like to be 

certain that the decision being made is not wrong, and 

we argue that our MAX-MIN approach is better in 

those cases. 

If we observe the minimum efficiency score we 

can see that Doyle & Green and the proposed MAX-

MIN score are always obtaining the best possible 

score. Doyle & Green obtained the best possible score 

for 22 countries, while the proposed MAX-MIN 

approach obtained the best minimum efficiency score 

for 19 countries. This is due to the compensation 

procedure we used for each DEA model. In other 

words, there is a trade-off between a good efficiency 

score and the best minimum efficiency score. Some 

DMU obtained a good efficiency score at the expense 

of the DMU with a lower efficiency score. In addition, 

there is a trade-off between standard deviation and 

mean (and minimum) efficiency score. The level of 

regularization we utilized resulted in generally lower 

efficiency scores (thus in lower values of minimum 

efficiency scores) but also resulted in a more stable 

ranking.  

By inspecting the standard deviation of the cross-

efficiency scores, we inspect the sensitivity of the 

proposed approach. We can note that the standard 

deviation is the lowest for the proposed approach 

majority of the DMUs. The decrease of standard 

deviation indicates that the proposed approach is not 

sensitive to smaller changes in the values of input and 

output attributes, and consequently more stable in 

efficiency scores. For some DMUs, Doyle & Green 

cross-efficiency procedure can result in standard 

deviations greater than 0.200. Even though that 

efficiency scores (for a single DMU) do not fit some 

known distribution, a high standard deviation indicates 

that the real efficiency score can be either very high or 

very low, making the average efficiency score less 

usable for decision-making. 

Finally, we can say that MAX-MIN fairness 

resulted in a fairer ranking. Some DMU obtained 

unfair high (or low) efficiency scores due to unfair 

comparison by belonging to the majority group (or 

minority group i.e. outliers). For example, Greece 

(GRC), Japan (JPN), Sweden (SWE), Latvia (LVA), 

and Estonia (EST) performed well using DEA and 

D&G because those countries belong to a group of 

countries that are specific and differ a lot from the rest 

of the dataset. Their score is very high. However, when 

the efficiency score is calculated using weights of other 

DMUs, the efficiency score reduces results in a high 

variance estimation of the efficiency score. However, 

there are different examples. For example, Belgium 

(BEL), Canada (CAN), Czech Republic (CHE), the 

USA, or Indonesia (IDN) benefited from the MAX-

MIN cross-efficiency model. In those cases, both 

efficiency scores improved (compared to DEA model) 

and variance as well. For those countries, the proposed 

approach increased minimum efficiency scores as well. 

This situation can be explained that compensation for 

those was greater than the reduction of efficiency score 

of other DMUs. Therefore, the optimization procedure 

opted for increasing their efficiency score for a lower 

reduction in efficiency scores of other DMUs. 

If we analyze the basic DEA scores, only eight 

countries we efficient. Those are Slovenia (SVN), 

Greece (GRC), Sweden (SWE), Japan (JPN), India 

(IDN), Spain (ESP), Chile (CHL), and Indonesia 

(IND). The reason why these countries resulted in 

efficient scores was the fact that they had a good 

combination of exactly one input and exactly one 

output. More specifically, the weight associated with 

one input is high, while weights associated with other 

inputs are at the constraint minimum (𝜀 = 0.001). This 

is not the property one would like to use for decision-

making. Cross-efficiency helps us dealing with that 

issue. Doyle & Green method regards only Slovenia, 

Spain, and Estonia as the efficient ones (using the best 

efficiency score, not the mean). The weights associated 

with the inputs and outputs are diversified in the sense 

that one DMU needs to have multiple inputs and 

multiple outputs with a weight greater than 𝜀. 

However, some of them remain at 0.001. The proposed 

MAX-MIN approach requires that all weights are 

greater than 0.001.  

Although it is not visible from the efficiency 

scores, the proposed approach has the advantage that it 

solves the problem at hand in a single optimization 

procedure. Other cross-efficiency methods must 

optimize the DEA mathematical model for each DMU, 

and then aggregate it. The downside of this approach is 

in larger optimization size with (𝑛(𝑚 × 𝑠) + 1) 

variables and (𝑛2 + 𝑛(𝑠 × 𝑚)) constraints. To make 

this benefit more clear, we measured the time needed 

for the execution of the process. The process is 

repeated 10 times using the same configuration. Basic 

DEA procedure needed on average 6.023 seconds, 

Doyle & Green 10.427 seconds, while the proposed 

approach 8.529 seconds. 

6. Conclusions 

In the spirit of recent events regarding social 

justice and fairness, we propose an approach for fair 

cross-efficiency estimation. The notion of fairness 

utilized in this paper is John Rawls’s theory of justice. 

More specifically, fairness is implemented such that 

efficiency scores are estimated to be to the greatest 
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benefit of the least-advantaged DMU. More 

specifically, we propose a MAX-MIN formulation of 

the cross-efficiency DEA model. MAX-MIN 

formulation of the efficiency score calculates the sum 

of efficiency scores of two DMUs, namely the one 

being observed and any other DMU in such a manner 

that the minimum sum of efficiency scores is 

maximized. This allows regularization of the efficiency 

scores, thus preventing overfitting and preventing the 

need for human expert intervention, and providing 

weight restrictions to the model. Consequently, the 

variance of the cross-efficiency score is lower, making 

ranking based on the efficiency score better. In 

addition, in contrast to traditional cross-efficiency 

DEA models, the proposed one is learned using a 

single pass on the dataset. The proposed approach does 

have some downsides. First, the optimization problem 

is set such that DMUs must adjust their weights not to 

get the best possible efficiency score, but to 

compensate their score if they hurt the efficiency score 

of other DMUs. This might seem counterintuitive, but 

it acts as a counterweight to the overoptimistic estimate 

of the efficiency score (overfitting the efficiency to the 

underlying data). Second, the optimization problem is 

much higher in dimensionality. The number of 

variables and the number of constraints are increased. 

For large datasets (f.e. 𝑚 > 10, 𝑠 > 10, and 𝑛 >
1000) the proposed approach will last longer than 

other cross-efficiency scores. 

The proposed approach is tested on the dataset 

regarding estimation of the healthcare. The efficiency 

of the healthcare system has been a subject of research 

for many years. Policymakers want to design the 

healthcare system such that it is self-improving by 

observing the best practices. To do so, efficiency must 

be estimated. After applying the proposed approach, 

one can see several benefits. First, discrimination 

between the scores of DMUs exists and rankings are 

enabled. Second, the variance of cross-efficiency 

scores is reduced, and finally, fairness is introduced 

through minimal efficiency scores. 

In the future work, we plan to introduce fairness in 

DEA scores and cross-efficiency scores regarding the 

disparate impact, equal opportunity [25], and equal 

odds such as in [5]. By doing so, one can correct 

cultural injustices toward historically disadvantaged 

and underserved communities. More specifically, one 

can enforce the absence of disparate impact in the 

results of the efficiency and cross-efficiency scores 

through constraints or regularization functions. 

Another line of research is concerned with welfare 

efficiency estimation. Instead of learning solely 

efficiency scores of DMU, one would like to create a 

trade-off between benefits for the community (or a 

country as a whole) and individual benefits [6]. 
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