
Visual Interpretability of Image-based Real Estate Appraisal

Jan-Peter Kucklick
Paderborn University (UPB)

jan.kucklick@upb.de

Abstract

Explainability for machine learning gets more and
more important in high-stakes decisions like real estate
appraisal. While traditional hedonic house pricing
models are fed with hard information based on housing
attributes, recently also soft information has been
incorporated to increase the predictive performance.
This soft information can be extracted from image data
by complex models like Convolutional Neural Networks
(CNNs). However, these are intransparent which
excludes their use for high-stakes financial decisions.
To overcome this limitation, we examine if a two-stage
modeling approach can provide explainability. We
combine visual interpretability by Regression Activation
Maps (RAM) for the CNN and a linear regression for
the overall prediction. Our experiments are based
on 62.000 family homes in Philadelphia and the
results indicate that the CNN learns aspects related to
vegetation and quality aspects of the house from exterior
images, improving the predictive accuracy of real estate
appraisal by up to 5.4%.

1. Introduction

In the financial industry, real estate appraisal is
one essential application [1] and refers to the price
estimation of properties or parcels. Many different
stakeholders like real estate customers, agents, financial
lenders, and local municipalities are interested in a
fast and accurate estimation process supported by
computer-assisted mass appraisal (CAMA) [1, 2, 3,
4]. Recently, the data structures got more advanced
by including image data in addition to numerical and
categorical features, and the algorithms applied got
more sophisticated by using deep convolutional neural
networks (CNNs). This type of neural network has
the ability to spatially decompose images into edges
and textures for an analysis. Both resulted in an
increased predictive performance [1, 3, 5, 6, 7, 8,
9]. Nevertheless, the use of these algorithms led

to more intransparency, limiting the interpretability of
CAMA systems. Interpretability refers to providing a
human understandable algorithm [10]. Nevertheless,
interpretability has been identified as a vital factor in
financial machine learning. Three circumstances foster
the need for explainability: First, interactions between
humans and machines rely on trust. While black-box
systems decrease trust because of a missing explanation,
interpretability methods can establish open-mindedness
about innovative technologies [11]. In a real estate
transaction process, many different stakeholders are
involved, and trust between parties as well as trust in
the CAMA system is essential for a successful real
estate sales process. Second, financial transactions are
high-stake decisions as a significant monetary loss can
be expected when they fail [10, 11, 12]. Therefore, to
prevent serious negative effects and to ensure overall
quality, CAMA supported by machine learning needs to
be controlled by using explainability techniques. Third,
governments have regularized the usage of machine
learning systems for high-stake decisions by new laws.
One example is the right to explanation in the General
Data Protection Regulation (GDPR) of the European
Union. Therefore, decisions made by machine learning
need to be explainable to the customer [11, 13].

Consequently, interpretability is necessary for a real
estate appraisal, and there are two ways to establish
it: On the one hand, one can make use of inherently
interpretable models like linear regressions or decision
trees, which the user can read [14] — on the other hand,
one can use post-hoc interpretability methods to explain
the decision of a black-box algorithm [10]. The choice
between inherently and post-hoc interpretable models
corresponds to the often stated accuracy-interpretability
trade-off because black-box models often perform better
in terms of accuracy, but they are opaque in their
decision-making [14].

To reduce the stated trade-off, we examine visual
interpretability methods for regression tasks to answer
the research call of Law et al. [3] for improved
explainability in real estate appraisal. We analyze
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62.000 single-family homes in Philadelphia, PA, and
identify visual aspects for price prediction.

While the study by Bin et al. [15] is closely
related to ours due to the same geographic location,
we go beyond predictive performance by focusing
on visual interpretability methods for exterior images.
Furthermore, we differ in the choice of dataset, using
open data as opposed to a realtor-provided dataset.

Our results show that the predictive performance
improves by up to 5.4% when exterior images are used
in addition to housing attributes. We notice that the
selected CNN architecture has a great influence on
the performance and that attention mechanisms do not
improve the accuracy in our experiments. Important
aspects gathered from the image are information related
to the vegetation like trees within the street and yards
as well as aspects related to quality like damages on the
housing structure.

Our contribution is three-fold: First, to the best of
our knowledge, we are the first who use Regression
Activation Maps (RAM) and Convolutional Block
Attention Module (CBAM) in the field of real estate
appraisal for visual interpretability of the exterior image.
We derive insights that vegetation in the front yard
and housing conditions seem to be important image
features. Second, we estimate the value exterior images
have for the real estate appraisal process based on
a two-stage modeling approach. Finally, we add to
the existing body of real estate appraisal research and
provide additional empirical evidence that including
exterior images increases the predictive performance.

The remaining paper is structured as follows:
Chapter 2 summarizes the related work, while chapter
3 introduces the dataset and machine learning model.
Chapter 4 discusses the results, while chapter 5
concludes this paper with limitations, implications, and
an outlook for future research.

2. Related Work

This chapter will summarize essential research about
real estate appraisal, machine learning techniques used
for image-based appraisal, and available interpretability
methods for regression tasks.

2.1. Real estate appraisal

Lancaster [16] and later on Rosen [17] proposed
the hedonic pricing model, where the overall price of
an object is the total sum of the value contributions
of its utilities. The hedonic model is often
mathematically based on a linear regression and has
been the predominant model for real estate appraisal
due to its economic interpretability [3]. Through

this approach, technical characteristics like size, age,
location, condition, and different amenities like parking
spaces, fireplaces, and pools were used to estimate
the total price of a house [2, 3, 18]. These
features often capture hard facts about the property
and are stored in numerical or categorical variables
[19]. However, soft information relating to the house’s
appearance also has a considerable influence on the
price [3]. These factors include the perceived safety and
bustle of the neighborhood, social-economic status and
luxuriousness, privacy of the parcel or factors indicating
the possibilities for relaxation [3, 20, 21, 22, 23]. A
house is often sold when the buyer’s characteristics
match with the real estate style [21]. Nevertheless,
the soft information are implicit and context dependent
and therefore often enclosed in unstructured data [19].
Recent research used convolutional neural networks
(CNNs) to extract soft information from different image
types ranging from floorplans [24], streetmaps [25], and
satellite images [3, 5, 8, 26] to interior [7, 23] or exterior
images [1, 9, 15, 26]. Most information extracted from
exterior images relates to the real estate appeal. The
property’s aesthetics can be split into two subcategories
related to the house and the landscape [20]. Within
both subcategories, the style and quality perception are
of interest for the price estimation. A higher level of
greenness within the area indicates a larger yard and
therefore more possibilities for relaxation. This factor
indicates more expensive houses [26]. Other variables
corresponding to vegetation are trees on the lot and
within the street, both having a positive price influence
[27] because they can reduce traffic noise and spend
shadow in the summer [20]. Also, the lawn quality
[28] or trimmed vegetation on the parcel [29] are factors
that should be considered. They indicate that the house
owner has taken care of a high maintenance yard. The
absence of a yard and many concrete areas combined
with broken sideways are signs for a lower-priced home
[29]. One possible explanation could be that these visual
signs are often present in unpleasing and less prestigious
environments [20]. Likewise to style and quality aspects
of the yard, aspects about the aesthetics of the house
and the condition of the dwelling can influence the real
estate value. Style aspects such as the type of roof
affect the aesthetics and increase the price [1]. Similar
to the quality signs of the landscape, factors indicating
the house’s maintenance (e.g., fresh paint, no broken
objects) correspond to a higher real estate value [6].
In general, the condition and first impression of the
dwelling seem to correlate with the appeal and the price
[15]. All these soft factors can be extracted from image
data and enhance the feature space about real estate. As
previously omitted in the pricing process, they can now
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increase the predictive performance [29].

2.2. Real estate modeling strategies

Different machine learning approaches have been
used for integrating image data into the appraisal
process. Multi-view neural networks are models that
handle different data types (e.g., tabular and image
data) in an end-to-end fashion. In a multi-view neural
network, a CNN for the image data and a fully connected
network for the tabular data are combined [1, 3, 8, 9].

In contrast to this one-stage approach, tabular and
image data can also be analyzed in separate models
forming a multi-step approach [8]. In this modeling
strategy, the CNN is used as a feature extractor,
transforming the image data to a tabular output, which
can be a final prediction (classification or regression) or
an intermediary output of the CNN. For example, the
CNN can be a place classifier trained on the Places365
dataset [30] with the aim to distinguish different places
(i.a. apartment block, street, church, yard, waterfall).
The exterior image is classified into these categories
and the probabilities of the images belonging to the
different classes are then used as additional variables
in a downstream hedonic model [6]. Alternatively,
one can label an own dataset as Poursaeed et al.
did [23]. The authors gathered interior and exterior
images and labeled them into different luxury classes.
The prediction was then later on used to estimate the
overall real estate price in a separate machine learning
model. Other authors did not use explicit features
like categories but implicit features by using the dense
feature representation of the image from the CNN,
which was previously trained to predict the price or
categories of prices (e.g., below average, average, above
average) [5, 15, 31]. Again other authors use a boosting
approach, first training a hedonic house price regression.
Then they train a CNN to predict the residuals of
this regression with the house images. Last, they
repeat the hedonic pricing model on the house price
and complement the house attributes with the residuals
predicted by the CNN [7].

These different approaches have separate strengths
and weaknesses. One does not need to select a
target variable for the feature extraction in one-stage
approaches like multi-view neural networks [3, 8].
However, they are also more intransparent as
these methods are black-boxes and no post-hoc
interpretability method exists that can deal with multiple
data types. Contrasting, multi-stage approaches have
the advantage that the complexity of the overall
process is split over multiple models. For each model,
interpretability can be incorporated by using inherently

transparent models for performing the regression [7] or
by using post-hoc interpretability methods like Feature
Importance [26]. Nevertheless, a suitable target variable
is necessary to train the CNN [8].

Besides the different modeling strategies, a recent
improvement in machine learning has been the attention
mechanism. Loosely speaking, this new type of layer
helps to focus the neural network on relevant features.
While this technique is often used in machine translation
models [32], some authors use it for real estate appraisal
[15, 25]. They implement the attention module as
a fully connected layer with a softmax activation for
the housing attributes [25] or for the globally pooled
image features [15]. While the attention mechanism was
applied on one dimensional data only, one advancement
for CNNs has been CBAM, which is a special attention
mechanism for image data. This method helps the
CNN to focus on important convolutional channels and
essential spatial dimensions in the image [33]. Thus, the
CBAM improves the predictive performance [33]. In
the next section, we will give an overview of different
interpretability techniques for regression tasks.

2.3. Interpretability methods of visual
regression tasks

Interpretability is one desired property of a
machine learning system and part of explainable
artificial intelligence (XAI). Accordingly, XAI aims
to create understandable, comprehensive, interpretable,
and transparent machine learning systems [12, 34].
Interpretability in this context describes the ability of a
human to understand the system. While interpretability
approaches exist for image classification, ranging from
input permutations [35] to the analysis of gradients [36]
or the usage of local approximations [37], methods
for continuous outcome variables (regressions) are
rare. Two different methods are available, namely
sliding-window heatmap (SWH) [38] and Regression
Activation Maps (RAM) [39]. Both can generate
saliency maps, indicating the most important parts
in the image according to the value contribution of
the region. In combination with the CBAM layers,
explainability should be increased. As CBAM helps to
focus on important spatial regions and essential features
(channels), derived saliency maps for interpretability
tend to be clearer, which was shown in exemplary
classification tasks [33].

2.3.1. Regression activation map (RAM) RAM
originates from the medical domain, but it is not
domain-specific [39]. This method is the counterpart to
Class Activation Maps (CAM) [40] and is its version
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for regression. In a CNN, the last convolutional layer
contains k feature maps denoted by gk, with spatial
coordinates (i,j). These feature maps are globally
averaged pooled and weighted by wk for regressing the
output Y (see Formula 1). Z denotes the number of
pixels in the feature map. Consequently the prediction
of the regression output is the weighted sum of the
feature maps, where each feature map contributes to the
prediction by wk.

Ŷ =

K∑
k=1

wk ·

global average pooling︷ ︸︸ ︷
1

Z
·
∑
i,j

gk(i, j) (1)

The saliency map G contains the price influence
for each spatial coordinate (i,j). For RAM, the price
influence is the linear additive combination of each
feature map gk, weighted by the regression coefficient
wk, which can be expressed as:

G(i, j) =

K∑
k=1

gk(i, j) ∗ wk (2)

2.3.2. Sliding window heatmap (SWH) SWH is
a method based on occlusion sensitivity. Initially
proposed by Zeiler and Fergus [35] for classification,
it has been adapted for regression problems [38]. By
sliding a patch (x′) over an image, the difference
between the prediction without and the prediction with
the patch is calculated [14]. This can be formulated as:

G(i, j) = f̂(x)− ̂f(x′i,j) (3)

with G being the saliency map and G(i, j) the price
contribution of the (i,j)’s coordinate in the image. When
important aspects of the image are occluded, the final
prediction should change significantly.

Both methods, SWH, and RAM have advantages and
hurdles. SWH is model-agnostic because it does not
need to access the model’s weight, therefore it is useable
for a large variety of algorithm classes. Nevertheless, its
downside is its sensitivity towards the hyperparameters
patch size and color [14, 41], leading to inconsistent
results. Regression Activation Map is robust1, however
as it relies on global average pooled features for the
prediction, architectural limitations arise. The model
needs to include a global average pooling layer and can
not have any fully connected layers between the pooling
and output layers. Because the sensitivity towards the

1We test the robustness of RAM by using the Sanity Checks
proposed by Adebayo et al. [42] in chapter 4.3

hyperparameters of SWH can significantly change the
results [14], we will use RAM for this research paper to
get a visual explanation of the exterior images.

3. Dataset and Modeling

This chapter gives an overview of the used datasets
and tested models.

3.1. Data preparation

We use appraisal open data from 62,641 real
estates in Philadelphia, PA [43] for our experiments.
The dataset includes details about the size (lot area,
bedrooms, bathrooms), age, condition, technical details
like the type of heating system, view from the dwelling,
and location details in the form of the zip code.
Moreover, the dataset includes amenities like fireplaces
and garage spaces. We focus on family homes,
excluding condos and apartments from the dataset. We
delete observations with unlogical values, i.a. having a
size of 0 square feet or a price of 0 USD. We regroup rare
values in the categorical variables to the value ’others’.
The descriptive statistic is summarized in Table 1. The
mean value of a house is 81,303 USD. On average, it has
three bedrooms.

We download the exterior images from Bing Maps
[44] in a three step approach. As the geographical
coordinates are required for the download, we first
transform the address of the houses to latitude and
longitude with Bing Maps. In a second step, we
calculate the bearing from the street to the house, similar
to the approach from Johnson et al. [29]. We use the
direct neighbors on the opposite side of the street as
a reference. In a third step, based on the coordinates
and the bearing, we use the Bing Maps API to obtain a
512 by 512 pixels image for each house. We resize the
images to 256 by 256 pixels to reduce training times of
the CNN.

To pre-process the housing attributes, we use n-1
dummy variables for categorical variables. Numerical
variables like the size of the living area in square feet
or the age are standardized. We perform a logarithmic
transformation of the real estate appraisal value to get a
normal distribution of the target variable.

Setting our experiment in the context of related
work, instead of using a one-stage modeling approach
[3, 8], we use a two-stage modeling approach like in [6].
The reasons for using a two-stage approach is that visual
interpretability techniques like RAM can be applied on
the CNN to increase its interpretability. Additionally,
to explain price effects from the structured data, we use
a Linear Regression for the price estimation, following
the traditional hedonic pricing model [17]. By this
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Table 1. Summary description of the dataset
Variable Mean Standard Deviation Minimum Maximum

Price 81,302.82 58,554.22 3,400.00 1,004,300.00
Garage Space 0.12 0.33 0.00 3.00

Total Living Area 1,140.04 275.30 500.00 7,262.00
Full bath 1.03 0.19 1.00 4.00

Bedrooms 3.03 0.40 2.00 6.00
Age 90.74 11.43 1.00 132.00

combination, we ensure interpretability for both data
types in the multi-view learning model, which is hard
to achieve in a one-stage model. Instead of using an
intermediary target variable for training the CNN [5, 6],
we use the real estate price to ensure a meaningful
feature extraction. Therefore, we model the real estate
appraisal process as:

y = α+ βf̂θ(I) + γX + ε (4)

with X being the housing attributes and f̂ being the
price estimate based on the exterior image I . In a first
step, the CNN f is trained to predict the overall real
estate price by using the exterior image. We do not
model this step as a classification task, as price classes
like above and below average are often too generic to
capture fine granular image features. The same holds
true for using a place classifier as these models can often
only distinguish between places like park, apartment
block or house, however, are not specific enough to
capture factors like the quality and appearance of the
house and the lot as described in chapter 2.1. The overall
real estate price is estimated in a second step (Formula
4), by combining the house characteristics X and the
price estimate of the image f̂ . Our modeling approach
has the advantage that the coefficients α (Intercept), β
(influence of the price estimate based on the image) and
γ (price influence of the house characteristics) remain
interpretable.

As a baseline, we use a hedonic pricing model
without interaction effects [2].

For the CNN f , we use different architectures.
Model 1a and 1b are based on the VGG-16 architecture
[45] following previous related research [6, 7]. We
customize the VGG-16 model by deleting its fully
connected layers, to be able to apply RAM. Model
2a and 2b use the ResNet50v2 architecture [46]. We
select the ResNet model because it has previously
been stated to be a better-performing CNN architecture
due to its robustness against vanishing gradients [46].
Despite the two different architectures, we also test
whether additional CBAM layers can improve the real
estate appraisal performance. Therefore, after each

convolutional block in the VGG-16 and ResNet50v2
architecture, we implement a CBAM layer with the
parameters described in [33]. Our tested models are
Model 1a (VGG), Model 1b (VGG with CBAM), Model
2a (ResNet), Model 2b (ResNet with CBAM)2. To the
best of our knowledge, we are among the first to use
CBAM attention mechanisms for real estate appraisal.

We train our models with a batch size of 32, Adam
optimizer with a learning rate of 0.001, a maximum
of 80 epochs with an early stopping applied on the
validation loss. We perform five-fold cross-validation to
check the robustness of the model performance. We split
the data randomly into 80% training, 10% validation,
and 10% test set. The next chapter will report the results
in detail.

Table 2. Mean performance of the tested models

from the 5-fold cross validation. Standard Deviations

are reported in brackets. Best model results marked

in bold.
Modelname MAE RMSE

Baseline 18,533 33,413
[342] [2,909]

Model 1a 18,540 33,521
[342] [2,923]

Model 1b 18,533 33,412
[342] [2,909]

Model 2a 17,894 31,586
[344] [2,185]

Model 2b 18,115 32,186
[416] [2,783]

4. Results

In this section, we summarize our results concerning
the metrical performance and interpretability of the
tested models.

4.1. Metrical evaluation

Based on our metrical results stated in Table 2, we
conclude that adding additional information from the

2Figure available via: bit.ly/visual_XAI
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exterior image of a real estate improves the appraisal
performance, which supports previous research [6, 9, 26,
29]. However, we find varying performance between
the used architectures. Model 1a and 1b based on
VGG-16 could not outperform the baseline estimate
of the linear regression without an image based price
estimate. Model 2a and 2b based on ResNet50v2
are 5.4%, respectively 3.6% better in RMSE than the
baseline. Surprisingly, the additional CBAM layers
could not improve the performance compared to the
standard ResNet50v2 architecture.

4.2. Regression coefficients

By using a two-stage modeling approach, the
interpretability of coefficients is maintained. In the
following, we perform the coefficient analysis for the
best model, Model 2a. For example, increasing the
living area by one standard deviation, c.p., raises the
real estate value by exp0.15 −1 ≈ 16%. Increasing the
age by one standard deviation, c.p., reduces the price by
approximately 1.4%. When an air condition system is
added to the real estate, the estimated price increases
by 12%. Compared to the exterior condition above
average, the condition average results in a price decrease
of approximately 9.4%. When the house is located in the
Zip Code Area 19119 (Mount Airy), the price increases
by 46% (Figure 1). This effect seems natural, when
taken in consideration that Mount Airy was awarded of
one of the most attractive big-city neighborhoods to live
in [47].

We estimate a price increase between 15%
(Model 2b) and 23% (Model 2a) for each standard
deviation increase of the value estimate of the CNN.
Consequently, the exterior image has a stronger price
influence than adding an air condition or equally or
stronger effect than increasing the living area by one
standard deviation (approx. 275 square feet). The
price estimation of the exterior image is obviously one
important feature in the final price estimation. The
coefficients show that our model extracts latent aspects
related to the price. Nevertheless, without visual
interpretability methods, the CNN remains a black box.
In the next section, we apply RAM to identify important
image features which are influencing the price.

4.3. Visual interpretability results by RAM

RAM highlights important aspects in the image (see
Figure 2), where price increasing areas are indicated in
red, areas decreasing the price in blue and neutral areas
in green. We find that trees within the street (Image
A), as well as a nice front yard including a lawn and
vegetation seem to increase the price (Image B). Both

Figure 1. Selected regression coefficients for the

linear regression with either using Model 2a or 2b for

the CNN

factors have been previously identified as important
aspects in real estate appraisal literature [20, 26, 27, 29].
Additionally, the quality and aesthetics of the house can
have a price influence. For example, the poor condition
of neighboring houses (broken down front, no roof etc.)
lowers the price of a house (Image D). Not only the pure
condition, but also the dwelling aesthetics can influence
the price, where a marquee is raising the price, while
the empty entrance of the neighbor decreases the price
(Image C). These factors match previous research on
price influencing factors [1, 6, 15, 20]. However, we
notice that the influence of aesthetics might go beyond
the house and the yard because the neighboring houses
and their condition also seem to influence the real estate
price.

Despite the content wise analysis of the saliency
maps, we noticed that for some examples the sky (Model
2b) or cars (Model 2a) were activated as an influential
factor (e.g. Image B, D). It seems that the CNN (mostly
Model 2b) might have learned noise from the image like
clouds, or doors of a car.

In the past, post-hoc explainability methods got
also criticized because they do not necessarily explain
anything about the model. A truthful interpretation is
dependent on the model and the data - in other words,
if the model or the data changes, the explanation should
change too. Adebayo et al. [42] detected that different
interpretability methods violate this assumption and
are invariant to the dataset or to weights of the
neural network. Therefore, the authors formulated
two sanity checks, to assess the explainability. The
first one inspects the explanation with respect to
the model weights, while the second one tests the
explanation against the data invariance. Testing the
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Figure 2. Regression activation maps for Model 2a and 2b. Red/blue indicates areas increasing/decreasing the

price. The scale is measuring the price change in percent. Original images: ©Microsoft Inc. [44].

explainability method against weight invariance can
be performed by calculating the Spearman correlation,
the absolute Spearman correlation and the Structured
Similarity Index Measure (SSIM) between two sets
of explainations. The first ones are gathered from

the original model. For the second set, the model
weights are randomly reinitialized step by step from
output layer to input layer. The post-hoc explainability
method passes the test when the explanation changes
for a changing model, leading to a sharp drop in the
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correlation and SSIM, beginning in the top layers. To
the best of our knowledge, we are the first performing
this sanity check for RAM. For RAM for both models 2a
and 2b, the correlation, absolute correlation and SSIM
drop with the start of the weight randomization (black
dotted line) (Figure 4). Therefore, RAM is variant to the
model’s weights and passes the test.

For checking the model’s explanation against
invariance to the data, a new model is trained with the
same architecture and input data, however, the training
labels are randomly shuffled [42]. Many modern
machine learning algorithms still perform very well on
the training set with shuffled data as these models can
remember the true label. However, they will perform
poorly on the test data. Similar to the sanity check
of the weights, the Spearman correlation and absolute
Spearman correlation between the explanations for the
test data of the original model and the new model which
was trained on shuffled training data are calculated. If
the explainability method is invariant to the data, in
other words, if the explanation does not change when the
label changes, the explanation method does not explain
anything about the true label. It fails the check if both
correlation measures are high, indicating no difference
between the explanations. For both models, we see only
a weak (absolute) correlation (Figure 3), indicating that
the RAM is sensitive to the data and thus passes the test.
Concluding from the sanity checks, RAM seems to be a
suitable explainability method for regression problems.

Figure 3. Sanity checks for data variance for Model

2a and 2b based on Adebayo et al. [42].

5. Discussion

Our results indicate that by using a two-stage
modeling approach, interpretability of the regression
coefficients can be maintained, while through using
post-hoc explainability methods like RAM, visual
features detected by the CNN can be identified. This
answers the call from Law et al. [3] for image
based interpretability in real estate appraisal. Moreover,

visual interpretability helps to use sophisticated CAMA
systems because the user’s trust can be generated.
Additionally, the application can be made GDPR
compliant, because it supports the right to explanation.
Finally, CAMA systems can be inspected and debugged
by using RAM. These results support the research of
[10, 13] for advancing on XAI in financial high-stakes
decision.

Important factors derived from the image relate to
the vegetation and quality aspects of the house, which
supports previous related research [6, 15, 20, 26, 27, 29].
However, while these factors relating to soft information
were previously identified by manually labeling all
observations or at least some images to train a CNN
[3, 20, 29], we show as first authors that these variables
can be extracted automatically by the CNN with training
only on the real estate price. No additional labeling
of vegetation or house quality is required. While
the performance gain in RMSE is similar compared
to related research [6, 26], we found that the used
CNN architecture strongly influences the predictive
power. A possible explanation why VGG-16 did not
outperforme the baseline could be that by omitting the
last two fully connected layers to apply RAM lowered
the performance significantly. Otherwise, it is possible
that this algorithm had issues with the vanishing gradient
problem, while the ResNet50v2 architecture is less
prone to this phenomenon [46]. Additionally, it remains
unclear why using additional CBAM layers did not
improve the accuracy of the models. Finally, performing
the sanity checks for saliency maps [42] revealed that
RAM is variant to the model’s parameters and the
label and thus being a reliable post-hoc interpretability
methods for regression problems.

6. Conclusion

The performed study progresses on visual
interpretability for image-based real estate appraisal by
answering the research call from Law et al. [3] for more
explainability. Nevertheless, it does not come without
limitations. Our analysis is based on one geographical
region (Philadelphia) and one image data type (exterior
images) only. Thus, ablation and replication studies
should be performed across cities and image data types
like interior images or floorplans to examine the results
in other settings. Additionally, it should be examined,
why using CBAM did not boost the accuracy of the
models. Moreover, advances should be made in the
field of visual explainability methods for regression
tasks. Currently, only SWH and RAM are available
for this application, where both have different pros and
cons. One large limitation of RAM is its architectural
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Figure 4. Sanity checks for Model 2a and 2b based

on Adebayo et al. [42], repeated 5 times for the

selected models. The black dotted line indicates the

layer from which the randomization was performed.

constraints, limiting the use for more advanced neural
network architectures with multiple fully connected
layers after the global average pooling as well as
the use for other multi-view learning strategies like
multi-input neural networks. Finally, while we used
the sanity checks to technically evaluate RAM, it
still remains open, whether the different stakeholder
groups within real estate appraisal evaluate the saliency
maps as helpful and trustworthy. Therefore, future
research should perform user-group based experiments.
Despite these limitations, implications for research and
practice are that by using the right modeling approach
in combination with suitable post-hoc interpretability
methods, the combination of hard information and
soft information in form of images can be made
interpretable. All stakeholders within the appraisal
process can benefit from the increased explainablility.
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