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Abstract 
Health misinformation on social media devastates 

physical and mental health, invalidates health gains, 
and potentially costs lives. Deep learning methods have 
been deployed to predict the spread of misinformation, 
but they lack the interpretability due to their blackbox 
nature. To remedy this gap, this study proposes a novel 
interpretable deep learning, Generative Adversarial 
Network based Piecewise Wide and Attention Deep 
Learning (GAN-PiWAD), to predict health 
misinformation transmission in social media. GAN-
PiWAD captures the interactions among multi-modal 
data, offers unbiased estimation of the total effect of 
each feature, and models the dynamic total effect of 
each feature. Interpretation of GAN-PiWAD indicates 
video description, negative video content, and channel 
credibility are key features that drive viral transmission 
of misinformation. This study contributes to IS with a 
novel interpretable deep learning that is generalizable 
to understand human decisions. We provide direct 
implications to design interventions to identify 
misinformation, control transmissions, and manage 
infodemics.  

1. Introduction  

The misinformation transmitted on social media is 
detrimental to individual’s physical and mental health, 
elevates stigmatization and hate speech, threatens 
precious health gains, leads to poor observation of 
public health measures, and even costs lives (WHO 
2020). A recent study shows that more than 25% of the 
most viewed COVID-19 videos contain misinformation 
(Li et al. 2020). Among those misinformation videos, 
one myth – that highly concentrated alcohol 
consumption could disinfect the coronavirus – 
infiltrated the public’s belief and claimed over 800 lives 
(Islam et al. 2020). 

This study aims to predict health misinformation 
transmission on social media as well as to identify the 
driving factors of its transmission. We define the 
transmission of misinformation as the daily viewership 
of this misinformation. We leverage the social exchange 

theory, which is commonly used to explain human 
information sharing behavior, to build the theoretical 
foundation of this study (Liang et al. 2008). Among the 
social media platforms that transmit misinformation, 
YouTube receives the most concerning attention 
because of its easy-to-implement audio messages, visual 
presentations to spread misinformation, and extensive 
user base. We focus on the misinformation transmission 
on YouTube and attempt to predict the viewership of 
health misinformation videos and unveil the mechanism 
of their transmission. 

How does a video become viral? This is one of the 
well-known open research questions in social media 
analytics. Prior work has studied the relationship 
between content popularity and various factors, 
including network actor properties, content features, and 
effects of complex contagion, among others (Cheng et 
al. 2014, Romero et al. 2011). These video analytics 
studies rely on deep learning methods to predict an 
outcome of a video, for instance, the transmission of a 
video in this study. Despite the premier predictive power 
of deep learning, its blackbox nature falls short in 
interpreting the driving factors, thus failing to provide 
proactive and implementable plans to manage the 
transmission of those videos. In order to manage 
infodemics, it is essential to not only predict 
misinformation transmission, but also simultaneously 
understand the underlying factors that drive such a 
transmission. This objective necessitates fine-grained 
interpretable deep learning methods. 

An emerging stream of research that reconciles 
interpretability and accuracy is wide and deep learning 
(Cheng et al. 2016). This method incorporates an 
interpretable linear model in the deep learning model. 
The linear part and deep part are trained jointly. The 
linear part is capable of interpreting how the input 
contributes to the prediction. We define the effect 
interpreted by the linear part (weights of the linear part) 
as the main effect. Since the introduction of the wide and 
deep learning, numerous of its variants emerged to 
improve the prediction performance and minimize the 
biases of interpretation. Despite those efforts, the wide 
and deep learning and its variants fall short in producing 
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unbiased interpretations for deep learning predictions. 
When training the linear part and the deep part jointly, 
the deep part influences the weights of the linear part. 
Therefore, the final weights of the linear part (main 
effect) are not the total effect of the input on the output. 
Using those weights to interpret the prediction – as the 
existing interpretable methods do – introduces biases. In 
addition, the existing wide and deep learning and its 
variants neglect the interactions between the inputs, 
which is critical in this study. Media richness theory 
suggests that the interactions between the underlying 
factors are essential elements for explanatory 
information (Wheeler and Arunachalam 2009). 
Furthermore, the total effect of a feature on the outcome 
is not constant. It is dynamic when the value of the 
feature varies. For instance, the total effect of video 
duration on viewership is stronger if the video is short. 
This total effect gradually diminishes if the video is 
long. This is because when a video is very long, viewers 
do not have the incentive to watch it no matter its 
duration increases or decreases marginally or not. To 
address the limitations of the existing interpretable 
methods, we aim to propose a novel model-based 
interpretable method that captures the interaction 
effects, produces unbiased interpretation, and models 
the dynamic total effect of each feature. Our proposed 
method is called Generative Adversarial Network based 
Piecewise Wide and Attention Deep Learning (GAN-
PiWAD). 

This study makes the following contributions to 
data analytics methodology, information systems (IS) 
literature, and social media analytics. First, we develop 
a novel GAN-PiWAD method that is capable of 
simultaneously predicting and interpreting health 
misinformation transmission. Our method addresses the 
deficiencies of post-hoc interpretable methods and 
innovatively designs a Wasserstein generative 
adversarial network with gradient penalty (WGAN-GP) 
and an attention-based second-order component. 
Empirical evaluations indicate that GAN-PiWAD 
outperforms all the strong baseline models. Each 
component of GAN-PiWAD significantly contributes to 
the performance gain, suggesting successful design 
choices. The superior performance of GAN-PiWAD not 
only contributes to the data analytics methodology, but 
also offers indispensable design principles for the design 
science paradigm of information systems research. Our 
method development and evaluations prove that 
designing a second-order component to capture the 
interactions among the multi-modal inputs could boost 
the predictive performance of interpretable methods. 
Our newly-added deep generative component in our 
method also offers a generalizable approach to estimate 
the unbiased total effect of prediction tasks. Our method 
outlines an innovative approach to model the dynamic 

total effect of each factor. The complex total effect is 
taken into consideration when the factor value changes. 
The proposed GAN-PiWAD is a generalizable 
interpretable deep learning model that can transit to 
many other predictive tasks, such as user engagement 
prediction, product sales prediction, and project 
investment prediction, among others. 

Second, we contribute to the computational 
information systems research (Abbasi et al. 2010, 2012, 
Fang et al. 2013, Mai et al. 2018, Saboo 2016, Stieglitz 
and Dang-Xuan 2013). We identified an societal 
problem and designed an analytics tool to predict and 
understand this problem. Empirical evaluations proved 
the efficacy of our method. The interpretation of the 
predictive method sets an examplar for other design 
science studies to not only predict an outcome, but offer 
invaluable interpretability as well. 

Third, our findings provide social media platforms 
with practical implications regarding infodemics 
control. Our method is capable of identifying 
misinformation sources that are on the edge of 
abruption. To help these platforms design actionable 
intervention plans, our model interpreted the prediction 
results. The interpretation indicates that video 
description features, negative video content, and 
channel credibility are critical features that drive the 
transmission of misinformation. Social media platforms 
could leverage our method to actively monitor these 
factors and prevent the transmission of misinformation.  

2. Literature Review 

2.1. Theoretical Background 

In order to understand the information transmission 
behavior, extensive studies in IS leveraged the social 
exchange theory. Social exchange theory is widely 
applied to explain individual behaviors across various 
domains, including information sharing (Kankanhalli et 
al. 2005), information technology adoption (Gefen and 
Keil 1998), consumer behavior (Ba and Pavlou 2002, 
Shiau and Luo 2012), and behavior in online 
communities (Jin et al. 2010). Social exchange theory is 
a broad conceptual paradigm that spans a number of 
social scientific disciplines, such as management, social 
psychology, and organization science (Cropanzano et al. 
2017). Despite its name, it is not a single theory but a 
family of conceptual models. All social exchange 
theories treat social life as a series of sequential 
transactions between groups as well as between 
individuals. Resources are exchanged through a process 
of reciprocity, whereby one party tends to repay the 
good (or sometimes bad) deeds of another party (Gergen 
1969).  
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In this research, we leverage the social exchange 
theory as our theoretical foundation to guide the feature 
selection of our interpretable computational model. 
Based on prior literature on the social exchange theory, 
we identify four essential constructs of a social 
exchange in the context of health misinformation 
transmission on social media platforms: cost, rewards, 
status, and emotion. 

2.2. Video Analytics Features 

In this study, we examine the factors from prior 
literature according to a comprehensive video features 
from YouTube and investigate the respective as well as 
joint effects of these factors. Figure 1 depicts the 
theoretical framework we propose in the YouTube 
health misinformation research context. This work also 
adds to the existing literature in public health and health 
communication research by developing a research 
framework to explain the transmission of health 
misinformation and providing comprehensive 
guidelines for platforms and users to mitigate the harm 
of misinformation. 

 

2.3. Interpretable Deep Learning 

Recent video analytics studies heavily utilize deep 
learning models, which have shown successes in object 
detection, video classification, and traffic monitoring, 
among others (Arinaldi et al. 2018, Yaseen et al. 2019). 
Although these deep learning models pioneer predictive 
analytics, their low interpretability leaves the 
underlying factors untapped, failing to provide 
actionable insights for business decision-makings.  

In order to address these limitations, the 
interpretable component needs to be cohesively 
embedded in the prediction model, which is also called 
model-based interpretable methods. The model-based 
interpretable methods have a self-contained structure 
that not only makes accurate predictions with a single 
objective function, but also precisely characterizes the 
relationship between the input features and the outcome. 
State-of-the-art deep learning models make predictions 
through a deep neural network. The nonlinear relations 
between the input and output are captured in the hidden 
layers of this network. Because of the depth of such 
architecture, the relations in the hidden layers are not 
interpretable. To overcome this limitation, Cheng et al. 
(2016) proposed the wide and deep learning (W&D) that 
trains an interpretable linear component jointly with a 
deep neural network. The wide component of this 
method is a linear model. This wide component 
produces a weight for each feature (main effect) to 
interpret the prediction. The second joint component is 
a deep neural network. This deep component models 
high-order relations in the hierarchical network to 
improve prediction accuracy. The wide and deep 

learning combines the wide and deep components 
leveraging the weighted sum.  

Since the introduction of the wide and deep 
learning, a range of its variants have emerged. These 
variants fall into two categories. The first category 
attempts to improve the predictive power of wide and 
deep learning. Since the deep neural network offers the 
core predictive capability in wide and deep learning, 
studies in this category design new networks to replace 
the deep network, such as CNN, CRF, and attention 
mechanisms. The second category of variants aims to 
improve the interpretability of wide and deep learning. 
They attempt to tease out the influence of the deep 

 
Figure 1.  Operationalization of Constructs in the Theoretical Framework 
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component on the wide component, so that the bias of 
model interpretation from the wide component is 
mitigated.  

The wide and deep learning and its variants still fall 
short in the following aspects. First, the wide and deep 
learning could only interpret the first-order relationship 
between the input and the output via the wide 
component. Although some variants attempted to model 
more complex relationships using other networks, the 
interactions among the input features are negleced. The 
media richness theory suggests that multiple 
presentation modes and their interactions are essential to 
model human decision-makings (Wheeler and 
Arunachalam 2009). Similarly, Lim and Benbasat 
(2002) suggest that multiple input modalities and their 
interactions could facilitate processing explanative 
information, such as information concerning 
relationships between or functions underlying 
descriptive information. Our study aims to unveil the 
underlying factors of misinformation transmission using 
multiple data modalities, including videos, audios, and 
texts. Therefore, modeling the interactions among these 
data needs to be an integral part of the method. For 
instance, video features and audio features could 
interact with each other, because good visual 
presentation is helpful for understanding audio 
messages.  

Second, when training the wide and deep 
components jointly, the deep component affects the 
weights in the wide component during backpropogation. 
Consequently, the learned weights of the wide 
component (main effect) are not the total effect. Using 
those weights to interpret the model introduces bias 
caused by the deep component. Even though a few 
studies (e.g., Guo et al. 2020) attempted to minimize 
such a bias, their efforts still fail to interpret the actual 
and unbiased total effect.  

Third, most existing methods only estimate an 
constant total effect for each feature, assuming the total 
effect is insensitive to the value changes of the feature. 
This assumption does not hold in real settings. For 
instance, when a video is only a few minutes long, 
increasing one minute in duration would cost the video 
a considerable portion of viewers. When a video is hours 
long, increaseing one minute in duration does not have 
a visible effect on its viewership. This dynamic total 
effect applies to many other features, though with 
different directions and mechanisms. To address the 
abovementioned limitations, we aim to devise a novel 
interpretable deep learning method that accounts for the 
interactions among multi-modal inputs, produces the 
unbiased total effect, and models the dynamic total 
effect for each feature. Table 1 summarizes the 
differences of our proposed method and existing 
methods. 

3. The Proposed Approach  

3.1. Wasserstein GAN with Gradient Penalty 
Layer 

In addition to accurately predicting the transmission 
of health misinformation videos, we aim to estimate the 
total effect. GAN-PiWAD predicts the outcome variable 
using  
𝐴𝐷𝑉$ = 𝛽 + 𝛼!𝑋!+. . . +𝛼"𝑋" + 𝑆(𝑋!, . . . , 𝑋")

+ 𝐻(𝑋!, . . . , 𝑋"),																									(1) 
where 𝛽 + 𝛼!𝑋!+. . . +𝛼"𝑋" denotes the main 

effect, 𝑆(𝑋!, . . . , 𝑋") denotes the second-order effect, 
and 𝐻(𝑥!, . . . , 𝑥#) denotes the nonlinear higher-order 
effect. The total effect of 𝑋! equals to the change of 
𝐴𝐷𝑉$  when 𝑋! increases by one unit. In order to model 
the dynamic total effect of each feature, we predict the 
total effect of each feature at every value. Let 
𝐴𝐷𝑉$(𝑋! = 𝑐) denote the expected prediction 
conditioned on 𝑋! = 𝑐. The dynamic total effect of 𝑋! 
under the condition of 𝑋! = 𝑐 is given by 
Δ𝐴𝐷𝑉$(𝑋! = 𝑐) 
= 𝛼! + 𝑆(𝑋! = 𝑐 + 1,… , 𝑋")) 
−7𝑆(𝑋! = 𝑐,… , 𝑋") + 𝐻(𝑋! = 𝑐 + 1,… , 𝑋")8 
−(𝐻(𝑋! = 𝑐, . . . , 𝑋").			(2) 

The variable of interest is 𝑋!. Therefore, the 
dynamic total effect of 𝑋! is computed as 
Δ𝐴𝐷𝑉$(𝑋! = 𝑐) = Δ𝔼$!,…,$"𝐴𝐷𝑉$(𝑋! = 𝑐, 𝑋', … , 𝑋")

= Δ;. . . ; 𝐴𝐷𝑉$(𝑋! = 𝑐, 𝑋', … , 𝑋")𝑝(𝑋!
$!,…,$"

= 𝑐, 𝑋', … , 𝑋") 𝑑𝑋'. . . 𝑑𝑋" .																					(3) 
However, Equation 3 is intractable because of the 

integral computation. In order to facilitate the 
computation of Equation 3, we utilize the Monte Carlo 
method, where the integral of a function can be 
approximated as the sum of function values conditioned 
on the samples drawn from the integrated distribution. 
Using this approach, Equation 3 can be transformed to: 

Δ𝐴𝐷𝑉$(𝑋! = 𝑐) ≈
1
𝐾A 𝐴𝐷𝑉$(𝑥(,!

)

(*!
= 𝑐, 𝑥(,', … , 𝑥(,"),							(4) 

where (𝑥(,! = 𝑐, 𝑥(,', … , 𝑥(,") denotes the 𝑘-th 
sample drawn from the distribution 𝑝(𝑋! =
𝑐, 𝑋', … , 𝑋"). The total effect of 𝑋! varies as the value 
of 𝑋! changes. For visualization purposes, we also 
compute the average total effect of 𝑋! that averages over 
the total effects of 𝑋! during the value range of 𝑋!. 
Assume that 𝑋! ranges from 𝑐+,- to 𝑐+./, the average 
total effect of 𝑋! is estimated as 

𝛥𝐴𝐷𝑉$(𝑋!) =
1

𝑐+./ − 𝑐+,-
E𝛥𝐴𝐷𝑉$(𝑋! = 𝑐+./)

− 𝛥𝐴𝐷𝑉$(𝑋! = 𝑐+,-)F.																			(5) 
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In order to compute the unbiased estimation of the 

total effect of 𝑋!, it is necessary to learn the 
distribution	𝑝(𝑋! = 𝑐, 𝑋', … , 𝑋") so that samples can 
be drawn from it. Likewise, the dynamic total effect of 
𝑋', . . . , 𝑋" can be calculated using the same method 
described in Equations 1-5. 

The standard wide and deep learning cannot 
provide an unbiased estimation of the total effect. The 
standard models use the main effect from the linear part 
to interpret the total effect. However, the change of each 
feature influences the prediction from both the wide part 
and the deep part. Therefore, the main effect is a biased 
approximation of the total effect. We proposed a new 
method for an unbiased estimation as described above. 
As described above, the complexity and intractability of 
𝑝(𝑋! = 𝑐, 𝑋', … , 𝑋") hinder the learning of the data 
distribution to draw samples. To address this limitation, 
we modify wide and deep learning by integrating a 
novel generative adversarial network (GAN) to learn the 
distribution 𝑝(𝑋! = 𝑐, 𝑋', … , 𝑋"). GANs are a powerful 
class of deep generative models consisting of two 
networks: a generative network (generator) and a 
discriminative network (discriminator). These two 
networks form a contest where the generator produces 
high-quality synthetic data to fool the discriminator, and 
the discriminator distinguishes the generator’s output 
from the real data. Through recurrent learning from this 
contest, the generator is capable of approximating the 
distribution of the real data. Deep learning literature 
suggests that the generator could learn the precise and 
unbiased real data distribution as long as those two 
networks are sufficiently powerful [2]. In order to 
empower those two networks and overcome the learning 
unstability issues of GANs, we introduce the 
Wasserstein GAN with gradient penalty (WGAN-GP) 
in this study [3]. We cohesively integrate WGAN-GP as 
the first layer in GAN-PiWAD. The learning loss of the 
discriminator (critic) in our proposed method is given 
by 
	𝐿0 = 𝔼𝒙2~ℙ#[D(𝒙L)] − 𝔼𝒙~ℙ$[D(𝒙)]

+ 𝜆𝔼𝒙5~ℙ𝒙&[(‖∇𝒙5D(𝒙Q)‖' − 1)
'],					(6) 

where D(∙) is a score that measures the quality of 
the input sample. ℙ6 is the real distribution. ℙ7 is the 
learned distribution by the generator. 𝑥U is sampled 
uniformly along the straight lines between pairs of 
points sampled from ℙ6 and ℙ7. The distribution of 𝑥U is 
denoted as ℙ89.	𝔼89~ℙ'&[(‖∇89D(𝒙Q)‖' − 1)

'] is the 
gradient penalty. 𝜆 is a positive scalar to control the 
degree of the penalty. The loss of the generator is: 

𝐿7 = −𝔼8~ℙ#[D(𝒙L)].																																							(7) 
The contest between the discriminator and the 

generator is achieved by training Equations 6 and 7 

jointly. The resulting model of this layer is a generator 
whose ℙ7 closely approximates the real distribution ℙ6. 
This generator can generate samples to compute the 
unbiased total effect and dynamic total effect according 
to Equations 1-5. 

3.2. Piecewise Linear Component 

The video features 𝑿	are passed into the piecewise 
linear component, second-order component, and the 
higher-order component. Each feature 𝑋: captures 
different aspects of a video. Within each feature, 
heterogeneity between different values exists as well. 
For instance, video creator credibility is a feature in 𝑿. 
Videos with low creator credibility not only influence 
the outcome variable (misinformation transmission), but 
these videos may have low quality as well, which 
indirectly influences the outcome variable. Therefore, it 
is essential to consider the homogeneity among similar 
feature values and the heterogeneity across different 
feature values. Specifically, we need to differentiate the 
varied feature effects when the feature is at different 
values. Motivatied by this objective, we introduce a 
piecewise linear function in the linear component. For 
the 𝑗-th feature, let 𝛽: = max{𝑥;,:|𝑖 = 1, . . . , 𝑁} and 
𝛿: = min{𝑥;,:|𝑖 = 1, . . . , 𝑁}. We partition each feature 
into 𝛾: intervals: [𝜑:<, 𝜑:!], . . . , [𝜑:

=(>!, 𝜑:
=(], where 𝜑:( =

𝛿: +
(
=(
(𝛽: − 𝛿:).  

3.3. Attention-based Second-Order Component 

In parallel with the piecewise linear component, we 
devise an attention-based second-order component to 
model the interaction effects among the multi-modal 
features, as stressed by the media richness theory. The 
input to this component is 𝑿. For each video feature 𝒙;, 
the interaction term of 𝑥;,: and 𝑥;,:) is denoted as 
𝑠;,(:,:)) = 𝑥;,: ∙ 𝑥;,:). Each interaction term has a 
parameter [1]. A set of 𝑀 features will generate 𝑀' 
interaction terms. This will cause the learnable 
parameters in the second-order component to grow 
exponentially as the feature set increases. To prevent 
such an exponential growth, we propose a self-attention 
mechanism in the second-order component where the 
number of parameters is fixed. The attention-based 
component could scale to large number of interactions 
while salient interaction terms still stand out. The 
attention mechanism assigns a score 𝑎;,(:,:)) to each 
interaction term 𝑠;,(:,:)). 
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3.4. Nonlinear Higher-Order Component 

The third parallel component is the nonlinear 
higher-order component. This component is a deep 
neural network that could capture higher-order effects. 
This network contains multiple fully-connected layers. 
The number of hidden layers is determined using a grid 
seach in the empirical analyses. The purpose of the 
higher-order component is to leverage the superior 
predictive power of deep learning to reconcile 
predictability and interpretability. Different from the 
dynamic total effect described above, the higher-order 
effect is a hidden component that is not interpretable, 
but only serves the predictive purpose. The dynamic 
total effect is able to delineate the magnitude of each 
feature’s total effect at each feature value.  

4. Empirical Analyses 

4.1. Data Preparation 

Our research testbed is collected from YouTube. A 
number of trusted news outlets and journal articles have 
identified a set of videos with health misinformation on 
YouTube. The topics of these videos range from 
COVID-19, Ebola, and cancer treatment, to vaccination. 
We crawled all the videos with misinformation reported 
by the factchecking sources. A web crawler is developed 
to crawl YouTube webpages of these videos for the 
video descriptions, video metadata, channel statistics, 
and detailed comments. In the end, we generated a 
multi-modal dataset (over 297 GB) consisting of 4,445 
misinformation videos, their audios, and textual 
information from their webpages. 

We adopt the state-of-the-art video analytics 
methods to extract features from each category. These 
features come from six data sources: video content, 
audio tracks, transcripts, video description, webpages, 
and video creators’ channels. The video features are 
generated using the BRISQUE measurement, a widely 
adopted video quality measure [8]. In order to generate 
video features in a scalable and timely manner, we 
developed a python-based parallel processing method 
with 12 CPUs, which significantly reduced the expected 
computational time from 39 days to 7 days. To generate 
the acoustic features, we seperated the audio tracks from 
the videos. We utilize the Liborosa tool to compute the 
acoustic features [7]. In order to generate transcripts 
from the audio data, we developed a speech recognition 
model based on DeepSpeech [5]. This speech 
recognition model is trained on American English with 
synthetic noise augmentation that achieves an 7.06% 
word error rate on the LibriSpeech clean test corpus [9]. 
The trained speech recognition model was able to 

translate audio data into text data (transcript). The 
description, webpage, and channel features are extracted 
directly from the webpage source data. In total, we 
generated 854 features for each video. 

4.2 Evaluation of GAN-PiWAD 

We first compare with conventional machine 
learning methods. We repeat the training procedure of 
each method 10 times and report the average 
performance and t-test significant levels (baseline 
versus ours) in Table 1. We use 70% of the data for 
training, 20% for test, and 10% for validation. All the 
hyperparameters were tuned using grid search. 

Our proposed GAN-PiWAD outperforms all the 
baseline machine learning methods in all four metrics. 
Compared to the best machine learning baseline model 
(KNN-3), GAN-PiWAD drops MSE by 5.539, MAE by 
0.908, MSLE by 1.350, and MALE by 0.018. Even 
though KNN achieves relatively good performance 
among the baseline models, it is a model-free method 
which does not provide interpretation of the feature 
importance and contribution. GAN-PiWAD 
outperforms all the conventional machine learning 
models in predicting health misinformation 
transmission. 

We, then, compare GAN-PiWAD with deep 
learning methods. We also test them with different 
hidden layers. The average performance of 10 times is 
reported in Table 2. GAN-PiWAD outperforms all the 
other deep learning methods. Compared with the best 
deep learning method (CNN-3), GAN-PiWAD reduces 
MAE by 0.90, MSLE by 0.046, and MALE by 0.093. 
Our proposed GAN-PiWAD remains the best in 
prediction accuracy when the hidden layers of the 
baseline models change.  

Since GAN-PiWAD is an interpretable method, we 
select the state-of-the-art interpretable methods for 
comparison. The average performance of 10 times is 
reported in Table 3. Compared with the best 
interpretable model (W&D), our GAN-PiWAD reduces 
the MSE by 23.347, MAE by 0.436, MSLE by 0.09, and 
MALE by 0.08. Compared with other interpretable 
methods, GAN-PiWAD consistantly obtains the best 
performance. The performance improvement is 
attributed by the architecture of GAN-PiWAD.  
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5. Interpretation of GAN-PiWAD 

Following the standard approach from previous 
studies, we plot the main effect of the baseline methods 
to interpret their predictions. Such an interpretation 
from the main effect is a biased approximation because 
of the influence from the high-order component. For 
visualization simplicity, we average over all the video 
features into one feature, as they all represent the video 
quality with the same scale. We also average over all the 
acoustic features into one feature, because they measure 
the audio quality with the same scale. In order to 
compare all the features in the same scale, we 
normalized the effect values in Figure 2. 

As shown in Figure 2, the rewards features have the 
most salient influence on the prediction, especially the 
description features. The description is a brief paragraph 
presented below a video describing an overview of the 
video content. This is usually the first content a viewer 

would read about the video, which directly influences 
whether the viewer will actually watch the video. The 
description features are the number of medical terms in 
the description, informativeness, readability, and 
complexity of the description, among others. The results 
show that one unit of increase in description readability 
results in 88.57 units of increase in average daily views. 
The number of medical terms has the most influence on 
the prediction. One unit of increase in the number of 
medical terms in the description will raise the average 
daily views by 138.69 units. These features measure 
how well the description can be perceived and how 
much medical information it contains. A easy-to-read 
and medically informative description leads to more 
transmission of health misinformation as the viewers 
attempt to seek medical information from the videos. 
Conveying the medical information that the viewers 
wanted to the largest extent could entertain the viewers 
and retain them to watch the rest of the video. If the 
medical information is easy to comprehend, the viewers 

Table 1. Comparison of GAN-PiWAD with Conventional Machine Learning 
Method MSE MAE MSLE MALE 
GAN-PiWAD (Ours) 157.522 5.579 0.977 0.739 
Linear regression 881.027*** 12.812*** 3.184*** 0.891*** 
KNN 180.479 6.309* 2.264*** 0.758 
DT 284.387*** 8.433*** 3.362*** 0.901*** 
SVR 185.644 9.483*** 4.924*** 1.267*** 
Gaussian Process 1291.331*** 23.791*** 8.508*** 1.579*** 

Table 2. Comparison of GAN-PiWAD with Deep Learning Methods 
Method-Layer MSE MAE MSLE MALE 
GAN-PiWAD (Ours) 157.522 5.579 0.977 0.739 
MLP 181.192 6.128 0.932 0.854* 
CNN 169.584 6.633** 1.065 0.849** 
LSTM 341.301*** 9.715*** 1.718*** 0.973*** 
BLSTM 367.261** 9.728*** 1.661*** 0.973*** 

Table 3. Comparison of GAN-PiWAD with Interpretable Deep Learning 
Method MSE MAE MSLE MALE 
GAN-PiWAD (Ours) 157.522 5.579 0.977 0.739 
W&D [1] 180.869 6.015 1.067 0.819* 
W&D-CNN [6] 186.773 6.304* 1.866* 1.039** 
W&D-LSTM [10] 183.719 6.141 1.598 0.943 
W&D-BLSTM [11] 206.321 6.648* 2.454*** 1.210*** 
Piecewise W&D-10 [4] 227.633* 7.126*** 3.116*** 1.420*** 
Piecewise W&D-20 [4] 206.792* 6.805** 3.016*** 1.395*** 
*: p < 0.05; **: p < 0.01; ***: p < 0.001 
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have a better understanding of the video topic, which 
motivates them to watch the details from the video. 

 
The transcript and description sentiments also 

significantly affect the transmission of misinformation. 
Notably, the negative sentiment expressed in the 
description and transcript has the most significant 
influence. A unit of increase in the description negative 
sentiment score (indicating stronger negative sentiment) 
leads to an increase of 0.36 units in average daily views. 
A unit of increase in the transcript negative sentiment 
score increases the average daily views by 0.67 units. 
Negative sentiments in video content increase the 
transmission. In the context of health misinformation, 
many videos contain very emotional messages from 
narrators who report their experience of using medical 
products. For instance, some described the autism 
diagnosis of their children after receiving vaccination. 
Others reported the risk of using WiFi as they believe it 
is linked to coronavirus infection. The myth that eating 
certain food would cause cancer is also commonly 
shared in the misinformation videos. These negative 
emotions and personal narratives escalate the viewers’ 
opposition to vaccines and food types without a factual 
base. 

The status features of the channel have a critical 
influence on the transmission as well. In particular, if a 

channel is verified, the transmisibility of 
misinformation is higher (increase the average daily 
views by 0.8 units). YouTube collects information from 
verified channels, such as phone numbers. Verified 
channels signal authenticity and credability to viewers. 
Therefore, the viewers are more likely to watch the 
videos posted by these channels, regardless of whether 
they are misinformation or not. 

The interpretation of the prediction sheds light on 
the management of infodemics for video platforms. 
These platforms could utilize our method to monitor the 
description features. Medical-related videos whose 
description is well perceived should be under scrunity. 
When a video shows overwhelmingly negative content, 
it needs to be closely monitored as well to prevent 
misinformation spread widely. Special consideration 
should be given to verified video channels, because their 
videos have higher likelihood to transmit easily than 
other channels. 

 
Figure 2.  The Effect of Each Feature on the Prediction (Normalized) 

Page 1477



6. Discussion 

6.1. Methodological Implications 

We devise a novel GAN-PiWAD method to predict 
health misinformation transmission and interpret such a 
prediction. GAN-PiWAD innovatively incorporates the 
interaction effect into the model, unlocks the possibility 
to estimate the unbiased total effect, and captures the 
dynamic total effect for each feature. Our method 
augments an attention-based interaction branch to the 
wide and deep framework. The new framework learns 
three components jointly (piecewise linear, attention-
based interaction, and higher-order components). In 
order to tease out the influence from the high-order 
component, we introduce a Wasserstein generative 
adversarial network with gradient penalty (WGAN-GP) 
within the wide and deep model. Our proposed method 
outperforms strong baseline models. GAN-PiWAD is 
not restricted to the misinformation transmission 
prediction context. It is an generalizable interpretable 
method to understand the underlying factors of human 
behavior, including healthcare, cybersecurity, and 
technology acceptatnce, among others.  

6.2. Practical Implications 

This study offers many practical implications for 
the stakeholders. For the social media platforms, our 
method is an implementable analytics tool that can 
predict widely transmissible misinformation. Our 
method also offers the interpretation of the prediction. 
Critical features are identified to understand the 
transmission. To prevent this misinformation from 
spreading, the social media platforms could utilize our 
research findings to design intervention measures. For 
instance, negative videos from verified channels with 
easy-to-read descriptions need to be specially monitored 
for misinformation. For the health sectors, our method 
and research findings open a door to manage 
infodemics. Containing infodemics could significantly 
alleviate the burden of the health sectors to control 
pandemics. For the policymakers, we offer an 
automated tool to identify misinformation. The 
policymakers could utilize our method to trace major 
misinformation sources and hold them accountable. 

6.3. Limitations and Future Directions 

First, besides understanding misinformation 
transmission, our method could also understand other 
human behaviors in healthcare, cybersecurity, and 
technology acceptance. Future work could test the 
efficacy of our method in other research contexts. 

Second, we focused our empirical analyses on YouTube 
misinformation vidoes. Other social media platforms, 
such as Facebook and Twitter, are also popular outlets 
for misinformation. To confirm our research findings, 
more ground truth data could be collected from 
Facebook and Twitter to perform the empirical analyses. 
Fourth, since there is no standardized quantitative 
measurement of interpretability, we visualized the 
model interpretation of our method and other 
interpretable methods. Future studies could design 
theoretical and empirical frameworks to quantify the 
interpretability of a method, so that the comparison 
between interpretable methods is clearer. 
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