
Genetic Algorithm Approach for Casualty Processing Schedule

Marian Sorin Nistor
Universität der Bundeswehr

München,
85577 Neubiberg, Germany

sorin.nistor@unibw.de

Truong Son Pham
Universität der Bundeswehr

München,
85577 Neubiberg, Germany

son.pham@unibw.de

Stefan Wolfgang Pickl
Universität der Bundeswehr

München,
85577 Neubiberg, Germany

stefan.pickl@unibw.de

Abstract

Searching for an optimal casualty processing
schedule can be considered a key element in the
MCI response phase. Genetic algorithm (GA) has been
widely applied for solving this problem. In this paper,
it is proposed a GA-based optimization model for
addressing the casualty processing scheduling problem
(CPSP). It aims to develop a GA-based optimization
model in which only a part of the chromosome (solution)
involves in the evolutionary process. This can result in a
less complex training process than previous GA-based
approaches. Moreover, the study attempts to investigate
two common objectives in CPSP: maximizing the
number of survivals and minimizing the makespan.
The proposed GA-based model is evaluated on two
real-world scenarios in the Republic of Moldova, FIRE,
and FLOOD. The paper suggests that GA models with a
population size of 500 or smaller can be applied for MCI
scenarios. The first objective can help many casualties
receiving specialization treatments at hospitals.

1. Introduction

The response phase in a mass casualty incident
(MCI) can be considered as the most important in
mass casualty management (MCM). When a disaster
happens, MCI responders must carry out several urgent
responding actions, such as quickly assessing MCI
scenes, mobilizing available resources, making an
optimal schedule for processing casualties. The casualty
processing that provides treatments to injuries and sends
them to hospitals is the most significant stage among
these actions. This may involve a sequence of tasks (also
called operations) [1]. The first task is to rescue injuries
if they are trapped (i.e., caught in the ruins of their
houses), and provide stabilizing treatments if they are
in unstable health conditions. Secondly, collecting and
moving injuries to Casualty Clearing Station to classify
into proper triage category. Finally, medical treatments
are given to stabilize the victims during transportation to

hospitals.
The casualty processing aims to minimize the

number of victims. Thus, finding an optimal schedule
for casualty processing can be considered a key element
in achieving the objective. Generally, two common
objectives are often used to search for an optimal
casualty processing schedule, such as maximizing the
number of survivals and minimizing the total processing
time (makespan). In practice, an optimal schedule
obtained with the first objective is also relatively
satisfied with the second objective and vice versa [1,
2]. This means that minimizing the makespan can
result in many casualties sent to hospitals on time.
Maximizing the total number of survivals also leads
to many casualties receiving necessary treatments at
hospitals within their waiting time.

Recently, mathematically modeling the CPSP has
been received significant attention from the research
community. Many studies have attempted to develop
optimization algorithms to search for an optimal
schedule for processing casualties, such as GA,
NSGA-II, deep reinforcement learning (DRL) [1–6].
First, CPSP is modeled as a flexible Job Shop schedule
problem (FJSSP) [1, 2], and then optimization-based
algorithms are employed to search for an optimal
schedule. Amongst these algorithms, GA-based
optimization techniques are widely applied for this task.
However, the GA chromosomes (solutions) in previous
work [2, 3] are complex. More importantly, all parts
of the chromosome are involved in the evolutionary
process resulting in a complexity of the training process.

In this work, it is proposed a GA approach for
solving the casualty processing scheduling problem.
The approach is in two phases: (1) CPSP is modeled
as FJSSP, and (2) define the GA chromosome (solution)
and apply GA to evolve on the part of the chromosome.
The proposed GA model is evaluated on two real-world
MCI scenarios, FIRE and FLOOD, in the Republic
of Moldova. The optimal schedule is searched for
these scenarios concerning the two common objectives,
maximizing the number of survivals (the first objective)

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 1359
URI: https://hdl.handle.net/10125/79499
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

and minimizing makespan (the second objective).
The remainder of the paper is presented as follows.

Sections 2 and 3 describe shortly some backgrounds on
GA and FJSSP for understanding the followed sections.
Following this, the proposed GA approach for CPSP and
experimental descriptions are presented in Sections 4
and 5. Finally, Sections 6 and 7 provide the resulting
discussion, conclusion, and future direction for the
paper.

2. Background

In this section, the background of this paper is
presented by briefly introducing the GA followed by the
FJSSP.

2.1. Genetic Algorithm

It is a metaheuristic inspired by the process of natural
selection that belongs to the larger class of evolutionary
algorithms (EA). Genetic algorithms are commonly
used to generate high-quality solutions to optimization
and search problems by relying on biologically inspired
operators such as mutation, crossover, and selection [7].
The evolutionary process iterates for several generations
until an optimal solution is found. The evolutionary
process starts with an initial population of individuals
in the first generation. Each individual is a candidate
solution for the schedule of the casualty processing. At
every generation, several solutions are selected from
the current population (called parent solutions). These
parent solutions are then operated by operators, such
as crossover and mutation, to create new candidate
solutions (called children). If these children are satisfied
with the constraints of GA, they are placed into a pool
for creating a new population in the next generation.
A fitness function is employed during the evolutionary
process to guide the process to reach the optimal target.
In other words, fitness value is used to evaluate the
performance of individuals. For a given solution, the
better the fitness value, the better performance it can
yield, and the more likely it can be selected as a parent
to produce new individuals for the next generation.
The basic GA components such as crossover, mutation,
selection, and fitness function are introduced in the
following sub-sections.

Crossover operator:
To create new solutions by the crossover operation,

two-parent solutions, (PS1) and (PS2), are chosen by
the selection operator concerning their fitness values.
These solutions can be processed by the OX crossover
operator that swaps a part of PS1 with a part of PS2.
As a result, two new candidate solutions are created. If
these child candidates are satisfied with the constraints

of the solution, they are new children, CS1 and CS2, in
the next generation.

Figure 1: An illustration of the OX crossover operator

Figure 1 shows two parents and their children
yielded by the XO crossover operator. A set of integer
numbers describes the solutions. Depending on a
specific problem, a real value can be used instead of an
integer. The operator swaps two random segments on
the parents PS1 and PS2 to create two new solutions
CS1 and CS2. In the figure, the first two rows represent
two parent solutions, and the second is the resulting
solutions of children.

Mutation operator: A parent solution can be
mutated by itself. The mutation process randomly
selects several items between two points on the parent
and then randomly swap them to create a new child
solution. In Figure 2, four elements from i =
3 to i = 6 are randomly swapped to create a
child solution. Crossover and mutations are operated
to create the next generation of solutions until the
convergence criteria met. When applying GA for CPSP,
the constraints of the solution defined in Section 4 is
applied to check wherever a new candidate satisfied or
not.

Figure 2: An illustration of the mutation operator

Selection operator: Chromosomes in a generation
can be selected based upon their fitness value. The
chromosomes satisfied with the fitness criteria are more
likely to be selected in each newer generation. Several
selection criteria include roulette wheel selection,
rank-based fitness assignment, elitism, and tournament
selection. Amongst these criteria, tournament selection
is widely used and is also employed in this work.

Fitness function: In this work, two fitness functions
are designed based on the two objective functions
mentioned in Section 4. They are maximizing the
number of survivals and minimizing the makespan.
These fitness functions are employed in two separate
optimization processes.

Page 1360

2.2. Flexible Job-Shop Scheduling Problem

The schedule of the casualty processing can be
modeled as a FJSSP. Some definitions of a classical
FJSSP can be found in earlier publications [2,4]. FJSSP
is briefly formulated as follows [2, 4]:

• Given a set of n jobs {Ji, 1 ≤ i ≤ n} and a set of
m machines {Mj , 1 ≤ j ≤ m}.

• Each job Ji is represented by a sequence of ni

operations Oi,j .

• Each operation Oi,j can be processed on a subset
{Mi,j , 1 ≤ i ≤ n 1 ≤ j ≤ ni} of the available
machines.

• The time ti,j,k represents a fixed and
predetermined processing time for the operation
Oi,j on each machine.

It is essential to mention that the FJSSP works
under two assumptions. First, all machines are available
initially, and second, one machine can handle only one
job at a time [4].

Based on the definition above, it is modeled the
CPSP as an FJSSP in Section 4 by representing
casualties as the jobs, medical teams as the machines,
treatment tasks as the operations, and the treatment
duration as the processing time of the operation.
The goal is to optimize the model with GA by
minimizing the makespan or maximizing the total
number of surveillance. Compared to FJSSP, CPSP
is more complex to model and solve because it is
very challenging to determine the exact treatment time
initially, and some uncertainties may occur during the
process [4]. Therefore, it is one of the research directions
to be able to handle the uncertainties.

3. Related Work

Researchers often model a CPSP as a FJSSP. They
then solve the problem with meta-heuristic algorithms,
such as GA and Variable Neighborhood Descent (VND),
by minimizing the makespan and the mortality. The
GA-based approach is the most common one used in
literature. This section discusses some of the most
recently published and well-known papers in this field.

Wilson et al. [1] proposed a novel combinatorial
multi-objective optimization model of a CPSP by
employing a scheduling approach. The Variable
Neighborhood Descent is then implemented to optimize
the model, and a range of potential problems is used
to evaluate the model to confirm its effectiveness and
robustness. The results showed that, compared to the

constructive heuristic Φ, VND is less effective regarding
the makespan. However, its resulting total number of
arrivals during the first hour is higher [1].

In a paper recently published, Viana et al. [3]
proposed a modified GA for JSSP by generalizing
the concept of massive local search to develop a
new multi-crossover operator. It aims to optimize the
makespan in JSSP. The authors evaluated their proposed
method with three different case studies. The results
showed that mXLSGA is a robust method and performs
better than other GA methods with an even better
convergence rate [3].

Also, by improving the classical GA, Zhang et al. [8]
presented a novel approach to support a bi-directional
scheduling problem. The original GA was enhanced
to handle both the key and typical jobs. The authors
also applied a rolling window for rescheduling under
the effects of local dynamic disruptions. To do
that, they first classify the disorders into three levels:
First-level events require a complete rescheduling, a
local rescheduling is enough for the second-level one,
where a right shift rescheduling is necessary for the
third-level events. The approach was evaluated with
simulations and could show its effectiveness in this
domain.

4. Genetic Algorithm Approach for CPSP

This section provides some definitions of the
casualty processing scheduling problem and how to
model it as a FJSSP. Then, how to apply the GA-based
optimization method is described to search for an
optimal schedule of casualty processing.

4.1. Definitions

Definition 1: Casualty Processing Scheduling
Problem. The symbols to present notions for a given
MCI scenario are introduced. The details are as follows,

• Ci: i-th casualty, 1 ≤ i ≤ n, where n is the total
number of casualties.

• Oi,j : the operation j-th on the casualty Ci, 1 ≤
i ≤ n, 1 ≤ j ≤ ni.

• Li: the triage level of casualty Ci, Li ∈ {P3, P2,
P1, D/M}. D and M refer to dead and missing
situations respectively.

• Rk: the responding team k, 1 ≤ k ≤ m, where m
is the number of responding teams.

• no: the maximum number of operations
that can be applied for any casualties if

Page 1361

needed. The possible operations can be
presented by O = {rescue, first −
aid treatment, transport to hospitals}

• ti,j,k: the time duration for the responding team
Rk needs to complete j-th operation on the
casualty Ci.

Definition 2: Constrains on the casualty
processing schedule. A set of constraints on the
casualty processing are also defined as follows,

1. Operations on casualties are performed following
the order of rescue, first-aid treatment, and
transport to hospitals.

2. At a time, a responding team Rk can process only
one operation Oi,j on one casualty Ci.

3. The operations rescue, first-aid treatment,
transport to hospitals can be performed on any
casualties. Some casualties may not need some
treatments, such as rescue and first-aid treatment.
If so, the processing time is equal to zero.

4. Responding teams are assumed to consist of
doctors, nurses, ambulances, firemen, and
police. Thus, responding teams can perform any
operations on any casualties.

5. If a responding team Rk performs the operation
Oi,j on the casualty Ci after finishing the
operation of transporting casualty Cq to a
hospital, the starting time of Oi,j should be added
to the time duration Rk come back from the
hospital to the scene.

4.2. GA representation

As mentioned before, the schedule of the casualty
processing can be modeled as a Flexible Job Shop
Scheduling. GA is then employed to search for an
optimal solution. This section presents how to formulate
CPSP in the form of the GA-based solution, and how to
use the GA-based optimization to solve CPSP.

Chromosome representation: For a given MCI
scenario with n casualties, the maximum number of
operations on a casualty no, and m responding teams,
the given problem in a format of the GA-based solution
is represented as follows.

• Chromosome: a sequence of operations from
n casualties in a casualty processing schedule
can be presented as a GA chromosome. Each
chromosome is denoted by two matrixes: a Gene
matrix (G) of n x no, and a Position matrix (P)
with the same size.

• Gene matrix (G): each row represents each
casualty, and each column represents operations
in each casualty. An item gij ∈ G is a responding
team Rk that carries out the operation Oi,j .

• Position matrix (P): The format of P is the same
as G. However, each element pij ∈ P represents
the processing order of operation Oi,j (the j-th
operation on the casualty Ci) in the responding
team Rk.

• G is evolved by GA while P can be generated by
traversing on a resulting G concerning the waiting
time of casualties and the order of the operations
in casualties. The shorter waiting time a casualty
has, the sooner operations of the casualty are
scheduled. Only a part of a chromosome, the G
matrix, involves in the GA evolutionary process.
Thus, the complexity of this evolution process is
less than that of the GA model introduced in [2].

An example is taken to explain more about the
proposed chromosome. Let a MCI scenario has the
number of casualties n = 4, the maximum number of
operations in each casualty no = 3 and the number of
responding teams m = 3. The gene (G) matrix and the
Position (P) matrix for this scenario can be described as
follow,

Gene(G) =

1 2 2
2 1 1
1 1 1
2 2 1

 Position(P) =

1 3 5
1 3 5
2 4 6
2 4 7

The value of g2,1 = 1 indicates that the operation O2,1

of the casualty C2 is processed by the responding team
R1. Corresponding to g2,1 ∈ G, p2,1 = 4 indicates that
the operation O2,1 of casualty C2 has a processing order
of 4 in the responding team R1.

Generate P matrix: P matrix does not involve in
the GA evolutionary process. Instead, this matrix is
created when a new candidate G is generated. In other
words, once a G matrix is yielded by the crossover
or mutation process, the items of G are traversed to
determine the processing order of each operation in
responding teams. The values of these processing orders
are used to create P. Traversing G is followed two rules
such as (1) the shorter waiting time a casualty has,
the sooner it is visited; (2) in a casualty, the operation
order is the rescue, first-aid treatment, and transport to
suitable hospitals.

Evaluate solutions: Once G and P are created, the
processing time, ti,j,k, for all operations of casualties,
and the completed time points of all casualties are
calculated. If a responding team Rk processes Oi,j of
Ci after sending Cp to a hospital, the starting time point

Page 1362

of Oi,j should be added the traveling time of Rk from
the hospital to the scene. The fitness value of solutions
can be estimated using the total number of casualties
arriving hospitals within their waiting time when using
the first objective, and the completed time point of the
last casualty arriving hospitals (makespan) when using
the second objective.

5. Experiments

This section presents two real-world MCI scenarios
and their corresponding processed data tables. Then,
two main experiments and the parameter settings for the
GA algorithm and the two MCI scenarios are described.

5.1. Data scenarios

Table 1: Processed data for the first scenario

Casualty Triage
level

Processing time Waiting
timeO1 O2 O3

1 3 5 5 33.2358 600
2 3 0 5 33.2358 600
3 3 5 0 33.2358 600
4 3 0 5 33.2358 600
5 3 7 0 33.2358 600
6 3 0 5 33.2358 600
7 3 5 6 33.2358 600
8 3 0 5 33.2358 600
9 3 5 6 33.2358 600

10 3 0 7 36.6296 600
11 3 5 0 36.6296 600
12 3 0 5 36.6296 600
13 3 5 0 36.6296 600
14 3 0 6 36.6296 600
15 3 5 0 36.6296 600
16 3 0 7 36.6296 600
17 3 6 6 36.6296 600
18 3 5 0 36.6296 600
19 3 0 7 36.6296 600
20 3 5 0 36.6296 600
21 2 20 10 33.2358 120
22 2 10 8 33.2358 120
23 2 15 5 33.2358 120
24 2 22 15 36.6296 120
25 2 14 8 36.6296 120
26 M 120 30 33.2358 720
27 M 120 30 33.2358 720

FLOOD scenario: It has been raining heavily
for the past few days in the North of Republic of
Moldova. Three villages are flooded because the
Costesti-Stanca Lake, Reservoir Lake on Prut River,

Table 2: Processed data for scenario 2

Casualty Triage
level

Processing time Waiting
timeO1 O2 O3

1 3 0 5 39.2057 600
2 3 6 0 39.2057 600
3 3 0 6 39.2057 600
4 3 6 0 39.2057 600
5 3 0 7 39.2057 600
6 3 7 0 39.2057 600
7 3 8 5 39.2057 600
8 3 0 0 39.2057 600
9 3 5 6 39.2057 600

10 3 0 0 39.2057 600
11 3 5 5 39.2057 600
12 3 5 0 104.5747 600
13 3 0 6 104.5747 600
14 3 5 6 104.5747 600
15 3 7 0 104.5747 600
16 3 0 5 104.5747 600
17 3 7 0 104.5747 600
18 3 0 5 104.5747 600
19 3 5 0 104.5747 600
20 3 0 6 115.1097 600
21 3 5 7 115.1097 600
22 3 0 0 128.4802 600
23 3 5 5 128.4802 600
24 3 0 0 128.4802 600
25 3 0 5 128.4802 600
26 3 5 0 128.4802 600
27 3 0 6 128.4802 600
28 3 6 0 128.4802 600
29 3 0 5 128.4802 600
30 3 6 0 128.4802 600
31 3 0 5 128.4802 600
32 3 7 0 128.4802 600
33 3 0 6 128.4802 600
34 3 8 0 128.4802 600
35 3 0 5 128.4802 600
36 3 5 5 39.2057 480
37 3 5 0 46.4784 480
38 3 0 8 39.609 480
39 3 6 0 46.4784 480
40 3 8 6 39.609 480
41 2 0 5 4.0013 120
42 2 10 12 4.0013 120
43 2 0 0 39.2057 120
44 D 10 15 4.0013 720

exceeded water level considered dangerous according
to the representatives from the Hydro-technical
Node. The affected villages are Costesti, Proscureni and

Page 1363

Duruitoarea. Twenty persons* are injured because of
the powerful flood streams in the villages, and five**
more are caught in the ruins of their houses, and two***
others are reported missing1. The objective is to send
the red code victims to the nearest available hospitals
with Traumatology specialization and the yellow code
victims to the nearest available hospitals for acute
medical treatment.

FIRE scenario: A fire started from burning the
dried vegetation went out of control and affected the
outskirt area of Floresti City. The firefighters from the
city tried to contain the fire from the extension, but
unfortunately, due to the limited intervention resources,
several houses are reported to be on fire. Thirty-five*
persons are suffering from smoke intoxication and
require medical attention, five* persons suffered from
second-degree burns, three** persons suffered from
fourth-degree burns that are in a critical state and
need immediate surgical treatment, and one*** person
is declared dead1. The objective is to send the red
code victims to the nearest available hospitals with
surgical specialization; the second priority is given
to the victims with burns from the yellow code.
Finally, transport the yellow code victims intoxicated
with smoke to the nearest available hospitals with
pneumology specialization.

Processed data tables for two scenarios: Based
on the triage code and specialization treatments of
casualties, and available resources of nearest hospitals,
processed data tables for these scenarios are created as
shown in Tables 1 and 2. The processing time for rescue
O1 and first-aid treatment O2 can vary in the range of
[5, 30] minutes. The transport time to hospitals depends
on the distance between the scene and the target hospital.
In this work, the speed of ambulances on all routes to
hospitals is assumed to be the same, and the resources of
hospitals can have availability of 30% every. Therefore,
only hospitals that satisfy the specialization treatments
and can be reached within 2 hours are chosen to send
casualties. Each casualty gets assigned a waiting time
depending on the triage code. Waiting time is the
maximum time a casualty can wait for a specialization
treatment at hospitals before casualty is dead.

5.2. Experimental Settings

Two main experiments for evaluating the proposed
GA model on the two real-world scenarios are
designed. The first is to investigate different GA settings
(population size) for the CPSP. This aims to find out a

1The notation *, **, and *** are used to refer the yellow triage
code, red triage code, red/black triage code respectively.

2In the first experiment, GA with different population sizes of 10,
100, 200, 500, and 1000 is investigated.

Table 3: Parameter settings for scenarios and GAs

No Parameters Values Notes
Scenario 1

1 No of casualties 27 Include
missing2 No of responding teams 4

3 No of treatment operations 3
4 Chromosome length 81 27x3

Scenario 2
1 Number of casualties 44 Include

deaths2 No of responding teams 8
3 No of treatment operations 3
4 Chromosome length 132 44x3

Optimiztion parameters
1 Crossover rate 0.9
2 Mutation rate 0.15
3 Tournament size 5
4 No of generations 300
5 Population size 5002

proper GA settings for deeper investigation later. In this
experiment, five different population sizes of 10, 100,
200, 500, and 1000 are examined. Five different GA
models evolves using the objective of maximizing the
number of survivals over 300 generations. The running
time, survivals, and makespan are reported. The second
experiment is to evaluate the performance of the GA
model with two fitness functions on the two scenarios.
Four aspects of the GA performance are observed: the
number of survivals, makespan, running time, and also
Gantt chart. Table 3 presents the brief information of the
two scenarios and the parameter setting of GA.

6. Results and Discussion

Figure 3 illustrates the performance of the GA model
on the five settings of the population size on the two
scenarios. Sub-figs 3(a) and 3(b) plots running time
(in a minute) against population size. It can be seen
that the running time has a linear correlation with
population size. In incident response, the running time
of the optimization models should be small enough.
Therefore, the GA models with a population size up to
500 are feasible for MCI because their running time is
short enough. Sub-figs 3(c), 3(d), 3(e) and 3(f)show that
the larger population size is, the better quality (larger
number of survivals and smaller makespan) resulting
schedules have. Thus, the setting of 500 individuals can
be considered as one of the best choices for these MCI
scenarios, and used for the second experiment.

Tables 4 and 5 present the results for the two
scenarios when using the two objectives. With the

Page 1364

(a) Running time for scenario 1 (b) Running time for scenario 2

(c) Survivals for scenario 1 (d) Survivals for scenario 2

(e) Makespan for scenario 1 (f) Makespan for scenario 2

Figure 3: Performance on five different population sizes

Table 4: Results on scenario 1 with two objectives

Obj
Res.
team Survival casualty Total

1

0 1, 6, 11, 14, 15, 18, 24
27 survivals
658 minutes

1 3, 9, 10, 13, 16, 19, 20
2 0, 4, 5, 7, 21, 22, 26
3 2, 8, 12, 17, 23, 25

2

0 0, 3, 7, 8, 9, 18
25 survivals
581 minutes

1 4, 5, 11, 21, 26
2 2, 6, 12, 15, 16, 19, 20
3 1, 10, 13, 14, 17, 23, 25

first objective, the resulting schedules can save the
life of 27 and 35 victims from scenarios 1 and 2,
respectively. The number of survivals reduces to 25 and
32 for the first and second scenarios separately. On the
other hand, the makespan for both scenarios decreases
considerably when applying the second objective, 1.3
and 2.0 hours on scenarios 1 and 2, individually.
Therefore, concerning the requirement of scenarios, the
first objective is more preferable. The details of the G
matrices when using the first objective on two scenarios
are also reported in Tables 6 and 7.

However, the results in Tables 4 and 5 also raise
the question of why optimizing with the first objective
producing a higher makespan still achieves a larger
number of survivals than that with the second objective.
This question can be answered by using the information

Table 5: Results on scenario 2 using two objectives

Obj
Res.
team Survival casualty Total

1

0 7, 12, 25, 38, 39

35 survivals
1103 minutes

1 21, 30, 36
2 0, 2, 3, 18, 41
3 24, 29, 35
4 6, 10, 13, 20, 42, 43
5 4, 9, 17, 19, 40
6 8, 11, 15, 37
7 1, 5, 14, 26

2

0 5, 12, 16

32 survivals
980 minutes

1 0, 1, 2, 4, 14, 39
2 6, 13, 22, 35
3 17, 24, 37, 40
4 7, 9, 15, 38, 41
5 3, 8, 10, 23, 42
6 18, 21
7 11, 19, 36

Table 6: G matrix for scenario 1 with survival objective

Casualty O1 O2 O3 Casualty O1 O2 O3

1 3 3 2 15 2 0 0
2 3 0 0 16 2 1 0
3 1 0 3 17 3 0 1
4 3 1 1 18 3 0 3
5 2 0 2 19 2 2 0
6 0 0 2 20 0 2 1
7 1 2 0 21 1 1 1
8 3 2 2 22 2 2 2
9 0 3 3 23 3 0 2

10 1 1 1 24 1 1 3
11 0 2 1 25 0 3 0
12 3 2 0 26 2 1 3
13 1 0 3 27 3 3 2
14 3 2 1

from Gantt charts in Figure 4. It can be seen from
Figures 4 that most of the responding teams complete
their task very soon while few of them last for a long
period. This means that the optimizer with the first
objective can save many survivals while accepting few
cases being processed late. On the other hand, the
completed time points on every responding team seem
to be very similar, as shown in Figure 5. In other words,
the makespan objective aims to finish all tasks as soon
as possible. Thus, operations can be assigned equally to
all responding teams resulting in many deaths.

Page 1365

Figure 4: Gantt chart for scenario 1 with survival objective

Figure 5: The Gantt chart for scenario 1 with makespan objective

Page 1366

Table 7: G matrix for scenario 2 with survival objective

Casualty O1 O2 O3 Casualty O1 O2 O3

1 4 5 2 23 4 2 2
2 0 4 7 24 6 5 5
3 0 6 2 25 7 3 3
4 2 2 2 26 5 1 0
5 4 2 5 27 5 3 7
6 2 4 7 28 6 1 0
7 5 5 4 29 1 6 5
8 1 0 0 30 4 7 3
9 1 2 6 31 5 1 1

10 3 2 5 32 7 5 2
11 1 4 4 33 3 4 7
12 3 0 6 34 7 2 6
13 2 1 0 35 1 7 7
14 2 1 4 36 3 1 3
15 2 7 7 37 4 7 1
16 2 7 6 38 1 7 6
17 6 3 6 39 3 3 0
18 2 1 5 40 1 3 0
19 2 4 2 41 7 1 5
20 2 4 5 42 5 5 2
21 4 5 4 43 5 4 4
22 7 7 1 44 3 1 4

7. Conclusion and Future Work

This paper presents the GA-based optimization
model for solving the casualty processing scheduling
problem from two real-world MCI scenarios in the
Republic of Moldova, FIRE, and FLOOD.

The novelty of the proposed GA-based model is
that only a part of the chromosome (solution) involves
in the GA evolutionary process, which results in less
complexity of the training process than the previous
GA-based approach. Two experiments are carried
out. The first is to examine the GA-based model
on five different population sizes to observe the GA
performance. The second is to extensively investigate
the performance of the proposed GA-based optimization
with two common objectives, and evaluate it on a metric
of survivals, makespan, and Gantt charts.

The experimental results suggest that the population
size of 500 or smaller can be feasible for solving CPSP.
Moreover, the objective of maximizing the number of
survivors is more preferable to minimizing makespan in
saving the lives of casualties. The task of dealing with a
dynamic CPSP is considered in future work.

8. Acknowledgments

This research was sponsored by the NATO Science
for Peace and Security Programme under grant SPS
MYP G5700.

References

[1] D. T. Wilson, G. I. Hawe, G. Coates, and R. S. Crouch,
“A multi-objective combinatorial model of casualty
processing in major incident response,” European Journal
of Operational Research, vol. 230, no. 3, pp. 643–655,
2013.

[2] X. Chu, Q.-Y. Zhong, and S. G. Khokhar, “Triage
scheduling optimization for mass casualty and disaster
response,” APJOR, vol. 32, no. 06, p. 1550041, 2015.

[3] M. S. Viana, O. Morandin Junior, and R. C. Contreras,
“A modified genetic algorithm with local search strategies
and multi-crossover operator for job shop scheduling
problem,” Sensors, vol. 20, no. 18, p. 5440, 2020.

[4] M. K. Amjad, S. I. Butt, R. Kousar, R. Ahmad, M. H.
Agha, Z. Faping, N. Anjum, and U. Asgher, “Recent
research trends in genetic algorithm based flexible job
shop scheduling problems,” Mathematical Problems in
Engineering, vol. 2018, 2018.

[5] G. Al Aqel, X. Li, and L. Gao, “A modified iterated greedy
algorithm for flexible job shop scheduling problem,”
CJME, vol. 32, no. 1, pp. 1–11, 2019.

[6] S. Ji, Y. Zheng, Z. Wang, and T. Li, “A deep
reinforcement learning-enabled dynamic redeployment
system for mobile ambulances,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 3, no. 1, pp. 1–20, 2019.

[7] M. Mitchell, An introduction to genetic algorithms. MIT
press, 1998.

[8] H. Zhang and Y. Zhang, “A discrete job-shop scheduling
algorithm based on improved genetic algorithm,” Int. J.
Simul. Model, vol. 19, pp. 517–528, 2020.

Page 1367

	Introduction
	Background
	Genetic Algorithm
	Flexible Job-Shop Scheduling Problem

	Related Work
	Genetic Algorithm Approach for CPSP
	Definitions
	GA representation

	Experiments
	Data scenarios
	Experimental Settings

	Results and Discussion
	Conclusion and Future Work
	Acknowledgments

