
Feature Extraction for Polish Language Named Entities Recognition in
Intelligent Office Assistant

Aleksander Denisiuk
University of Warmia and Mazury

Faculty of Mathematics and Computer
Science, Olsztyn, Poland

denisiuk@matman.uwm.edu.pl

Maria Ganzha,
Warsaw University of
Technology,Warsaw,

Poland,
maria.ganzha@pw.edu.pl

Marcin Paprzycki,
Katrzyna Wasielewska-Michniewska,

Systems Research Institute Polish
Academy of Sciences, Warsaw, Poland

firstname.lastname@ibspan.waw.pl

Abstract

The purpose of this contribution is to present a
feature extractor that was designed as a part of a Named
Entity Recognition (NER) system, which is to be used
in a Robotic Process Automation application with a
self-learning ability. The NER system has a screen of
the user interface as its input, and tries to recognize
and categorize all the named entities that can be located
within this screen. The set of features that can be
extracted from the input, is discussed in the article. The
local context features appear to be very important in the
considered problem. Experiments show that the entities
are recognized with a rate that is satisfactory from the
business perspective.

1. Introduction and related works

The aim of Robotic Process Automation (RPA) is
creation of software robots that can repeat (simple)
tasks performed by workers in application interfaces.
Examples of such actions are: logging into systems,
moving files, copying and pasting data across different
applications [1].

In our research we consider a next generation
intelligent office assistant. Besides standard facilities
provided by the RPA it is expected to have a
self-learning ability. Specifically, it should be able to
automatically understand, which user actions belong to
which routines, and which routines are good candidates
for the automation, as it is outlined, for instance, in [2].

Specifically, the assistant should understand what
kind of data is transferred by the user from one
application to another. In the developed system we
propose to use the Named Entity Recognition (NER)
techniques to implement this capability. To the best of
our knowledge, this is one of the first attempts to add
such capability to the RPA system. At least, none of
existing RPA tools analysed in most recent survey [2],
has a self-learning capability.

The Named Entity Recognition task consists of

locating and categorizing important fragments (called
named entities) in an unstructured text. Situations when
NER is applied include, but are not limited to, business
(administration) documents, customer comments, Web
pages, and XML files.

A typical NER pipeline is as follows (see, [3, 4] for
more details). First, if necessary, given text is turned
into a digital format and pre-processed. Pre-processing
may involve, for instance, removal of tags, removal of
stop-words, stemming, etc. Next, the resulting text is
divided into n-grams. Then, each n-gram is converted
into a feature vector. Finally, feature vectors are used
to train a classifier. Resulting classifier is then used to
categorize n-grams appearing in a “production system”.

Currently, NER-related methods are actively
developed in the context of various applications.
They are used, for instance, in Information
Retrieval [5, 6], Question Answering [7, 8], or Machine
Translation [9, 10]. It is worth noting that many works
adapt general NER methods to work with national
languages [11, 12], including Polish [13, 14, 15].

Here, let us observe that, in the RPA context, the only
available output from any application that the (RPA)
assistant is going to interact with is a screenshot. So, the
NER system, instead of a text document, has an image
as its input data. Obviously, there exist hybrid RPA
systems where screen-originating data is augmented by
old-fashioned text-data, but the focus of our work is
limited to the pure RPA scenario, where no such data
augmentation/hybridization takes place.

On other hand, note that the data presented within
the application screen is often organized in a structured
way, e.g. in a table: by rows, or by columns, with
appropriate headings. However, entities of interest can
also materialize (within the interface) as unformatted
text, preceded by a corresponding label. Moreover,
the specific format of this structure is likely to differ
between applications. Furthermore, it can change after
release of the next version of the same application.
Hence, to create a general NER system that is stable with
respect to changes of the interface, capabilities of the
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feature extraction sub-task become extremely important.
The purpose of this contribution is to show, on

the level of proof-of-concept, the potential of the NER
techniques that are to be used in the RPA context.
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Figure 1. NER pipeline

The Figure 1 shows the adopted NER pipeline.
We assume that any OCR software that produces the
standard hOCR format [16], can be used as the first step
of the pipeline. Moreover, any classifier can be used in
the recognition step. So, in this work we concentrate
on the feature extraction stage, which is known to
be at least as important as the choice of machine
learning algorithms in the NER task [3]. Specifically,
in Section 3 we introduce a new set of features that
describe a local context of an n-gram. These features
are screenshot-specific and, often, are not present or
lost in the general NER algorithms. The results of our
tests show that the local context is very important for
recognition and categorization of the entity. See, also,
recently published paper [17], where importance of the
local context, in the problem of gender recognition of
named entities, was considered.

As a model example we consider extraction of
information about business organizations registered in
Poland. However, the proposed approach can be easily
adopted to any other semantic domain, e.g. to medical
data, student exam grades, etc. In fact, in the considered
algorithms, the only domain-specific aspects are the set
of entities and the extracted rule-based feature, isa, that
reflects the internal format of the entity (see, Section 3
for more details).

The same remark concerns the language. Besides
the language-specific set of entities and rules for the
isa feature, we used a list of Polish stop words [18]
and a Polish stemmer [19]. However, the stemmer
and the list of stop words can be replaced by
comparable tools for any other language. Moreover,
the rules for the isa feature can be formulated for
any language. In this way, the proposed approach is
language independent. Nevertheless, we admit that
the results of applied machine learning are very likely
to differ considerably for each language. Therefore,
development of, for instance, Turkish NER, is not
a straightforward task of replacing Polish-language
modules with Turkish-language modules. Even
more interesting and complex would be design

of a NER for a business working in a global
environment, where documents in multiple languages
have to be processed. There, as an additional step,
language/country recognition module would have to be
added to the pipeline. However, as soon as a country
of origin of a given document was established, such
document could be directed to a country-specific NER
(sub-)pipeline for processing. Hence, the key problem
remains the development of a flexible NER module,
which is the actual focus of this work.

The remaining parts of the paper are organized as
follows. The Section 2 presents the data, specifically
we describe attributes of a business organization that are
recognized by the considered approach. Next, (in the
same Section) the features of n-grams that are extracted
from the hOCR data are summarized. The Section 4
summarizes the data preparation (note that, in our
work, the experimental setup is rather straightforward).
Results of computer experiments are presented and
discussed Section 5. Additional discussion and final
conclusions are placed, respectively, in Sections 5.5
and 6.

2. Data model

In our work we consider the business organization
data as a knowledge domain. As a set of attributes
to be recognized we choose ones from the popular
public Schema.org dictionary https://schema.
org/Organization that are commonly present in
considered databases. Specifically, we consider the
following attributes:

name — the name of the organization.

taxID — the Tax/Fiscal ID of the organization, NIP in
Poland. For example, 123-456-32-18.

address — the postal address of the organization.
Here, we assume that it consists of the following
components:

postalCode — the postal code. For example,
82-300.

streetAddress — the street address. For
example, ul. Anhellego 26.

addressLocality — the locality in which the
street address is, and which is in the region.
For example, Szczecin.

addressRegion — the region in which the
locality is, and which is in the country.
The voivodeship in Poland. For example,
Zachodniopomorskie.

As the input data we used selected Internet sources,
instead of a data generated by the actual office software.
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This was done for two reasons. First, we wanted
to be sure that the available data is correctly labelled
(by comparing the result with the original data input).
Second, the only way to generate data in-house was to
use data originating from processing of actual business
documents, which was not open to reporting. Therefore,
as the source of the data we used screenshots originating
from three different sources:

1. Regon Internet Database — official database
of business organizations registered in Poland.
It is maintained by the Statistics Poland. In
what follows we will refer to that data as
400 series. The main address of this dataset
is https://wyszukiwarkaregon.stat.
gov.pl/appBIR/index.aspx

2. Rejestr.io — alternative database of Polish
business organizations maintained by the
Foundation ePaństwo. In what follows we will
refer to that data as 500 series. It is available at
https://rejestr.io/

3. Arbitrarily chosen web pages, containing basic
information about Polish business organizations,
mainly the organizational home pages.

Figures 2 and 3 show sample screenshots from the
400 series and the 500 series, correspondingly. Both
screenshots were cut-down for presentation purposes.
Let us mention some differences that potentially can
cause problems in the named entity recognition process.
The 400 series splits address into four blocks: street,
region, city, and postal code, with separate labels.
However, the address in the 500 series data is given
in a single continuous fragment: street, postal code,
city with one label (“Adres siedziby”) placed above the
data, while the region is not present at all. Note that
the order of entities, represented on the screens/pages,
is also different. Moreover, the organization name
(and selected other information) in the 500 series is all
uppercase, while in the 400 series, it is not.

Figure 5 shows an example of column-major
screenshot from our data set. Note that the company
name and the street address are written in two lines,
contrary to the screenshots from Figures 2 and 3.
Obviously, this difference can bring additional difficulty
to the named entity recognition process.

The combination of data from the 400 series and the
500 series was used for both training a classifier, and for
tests. The third data set was used only for training. This
data set was found to be necessary to avoid over-fitting
of the classifier. Such over-fitting resulted from training
using only one, systematically structured data set.

All the screenshots from all data sets were converted
into hOCR format with the Tesseract software, and
correspondent entities were manually marked in the
JSON format (see, Figure 4).

3. Features extraction

Let us now summarize the process of feature
extraction that was applied in our work.

3.1. N-grams

The first step in feature extraction is dividing the
document into n-grams. Here, let us note that, despite
the fact that the Tesseract is known to have problems
with recognition of data from the tables [20], it turned
out that its segmentation abilities were good enough
for our purposes. In our work, we used the fact that
the hOCR standard [16] recognizes blocks of two levels
(see, [16] for more details):

• level 1 – ocr_blockquote, ocr_display,
ocr_par – an analog of a paragraph, in the
traditional typesetting.

• level 2 – ocr_line, ocr_header,
ocr_caption, ocr_textfloat – an
analog of a line in a paragraph, in the traditional
typesetting.

This allows one to construct n-grams from singe
words (hOCR ocrx_word elements) from (correctly
recognized) blocks of level 1. That is, in the proposed
approach, we do not combine words from different
paragraphs into an n-gram. This is based on the nature
of our data, in which different paragraphs represent
“different content”. Additionally, we have restricted the
maximal length of the n-gram to 11 (which represents
the maximal observed length of organization name in
our data). However, this is just a technical issue, again,
related to our specific application. This parameter can be
adjusted according to the needs of any other NER-based
application.

3.2. Features

The features that are used commonly in the NER task
are systematised in surveys [3, 4]. We chose the features
that are in our opinion appropriate in the NER task in
the RPA context, and introduced some new features that
catch a local context of an n-gram (described in details
at the end of Section 3.4). Note that these new features
are not present in standard NER setup.

Observe also that some commonly used features
are not applicable to the NER considered here. For
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Figure 2. A typical screenshot from 400 series

Figure 3. A typical screenshot from 500 series
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{
"@context": "https://schema.org",
"@type": "Organization",
"address": {
"@type": "PostalAddress",
"postalCode": {
"value": "71-037",
"elemId": ["word_1_172"]

},
"addressRegion": {

"value": "ZACHODNIOPOMORSKIE",
"elemId": ["word_1_157"]

},
"addressLocality": {
"value": "Szczecin",
"elemId": ["word_1_161"]

},
"streetAddress": {

"value": "ul. Anhellego 26",
"elemId": ["word_1_163",
"word_1_164", "word_1_165"]

}
},
"name": {
"value": "ISO-BUD - KAZIMIERZ KARPOWICZ",
"elemId": ["word_1_125",
"word_1_126", "word_1_127", "word_1_128"]

},
"taxID": {
"value": "8521848665",
"elemId": ["word_1_64"]

}
}

Figure 4. Example of entities markup resulting from
data preparation

instance, font size can depend on screen resolution and
user preferences. Hence, it is not used in the proposed
approach. Overall, we do not believe that this feature
is of much use in the case of extraction of business
name, address and tax-ID, when RPA software delivers
the input images (screenshots).

One can divide the feature space, in the developed
NER system, into two parts: (1) internal format features
and (2) semantic environment features. The first group
contains features that are directly related to the n-gram
itself. The second group captures words/terms that are
located “in the semantic neighborhood” of an n-gram.
Let us now describe each of them in more detail.

3.3. Internal format features

The internal format features include:

• Numeric features:

1. the length (in words) of n-gram,
2. the length (in letters) of n-gram.

• Boolean features:

1. if the text of n-gram capitalized,
2. if the text of n-gram is uppercase,
3. if the text of n-gram is formatted as title.

• Nominal features:

1. isa – the rule-based feature that reflects the
internal format of n-gram,

2. the last character of the n-gram (we
distinguish the following categories: letter,
digit, and separate category for each
punctuation sign).

The nominal feature isa represents an internal
format of a n-gram. We used the following rules for the
considered entities:

postalCode – all postal codes in Poland have a format
XX-XXX, where X is a digit.

taxID – there are three forms of tax ID (NIP) in
Poland: XXX-XX-XX-XXX, XXX-XXX-XX-XX,
XXXXXXXXXX, where X is a digit. Here, the last
symbol is a control digit.

name – many company names end with one
of the following texts (converted to
lowercase): spółka z ograniczoną
odpowiedzialnością, sp. z
o.o., spółka akcyjna, sa, spółka
komandytowa.

streetAddress – in Poland, many street names begin
with one of the following texts (converted to
lowercase): ul., ulica, al., aleja, 1
maja, 3 maja.

addressRegion – administrative division of Poland has
16 voivodeships. We used a standard gazetteer to
test if an n-gram is the voivodeship’s name.

addressLocality – it is possible to create a gazetteer
that contains all Polish localities. However,
instead, we used a short list of several large polish
cities. As it was mentioned in [21] the usage
of huge gazetteers does not significantly improve
entity recognition.

The isa feature is the only domain and
language-specific feature in the proposed algorithm. In
the case of other language and/or domain of application,
the algorithm can be adapted by generating rules similar
to the ones above.

3.4. Context features

In this group, we distinguish the following features:

• Numeric feature:

1. the number of the first word of n-gram in the
level one block (see Section 3.1).
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Figure 5. A column-wise screenshot

• Boolean features:

1. if the n-gram is maximal in the level two of
blocks (see Section 3.1),

2. if n-gram is the last n-gram in level two
block.

• Nominal features:

1. the isa property of the word, previous to
the n-gram,

2. the isa property of the word, next to the
n-gram,

3. the character previous to the n-gram (we
distinguish the following categories: letter,
digit, and separate category for each
punctuation sign),

4. all the words previous to the n-gram,
5. all the words above the n-gram,
6. all the words to the left of n-gram,
7. four word that are previous to the n-gram

plus four words above plus four word to the
left of n-gram.

Combining previous words with words to the left,
and words above makes the system independent from
the specific form of data representation: column-major,
or row-major. Hence, classifier that was trained
on row-major data can also recognize entities in
column-major data and vice-versa. Here, note that even
though labels have mainly length of two-word, we used
four words to make the NER process more stable, with
respect to possible errors in the OCR software. This was
based on results of preliminary experiments.

The last three features describe the local context of
an n-gram. They turned out to be very important for the
NER. In Section 5.4 we report results of experiments

where we ran the same test as in the Section 5.1,
but instead of these features, we used only lists of
word before and after the n-gram to catch the context.
According to the literature, these two lists are usually
used as a context feature in NER. The reported results
show that the performance of standard (simplified)
approach is considerably worse.

4. Data preparation

To perform experiments we manually marked 106
screenshots, including 21 from 400 series, and 29 from
500 series, which generated the total of 85 598 n-grams
for training and testing. This data is available at: http:
//wmii.uwm.edu.pl/~denisjuk/uwm/OAD.

We used the Tesseract [22] verson 4.1.1 with Polish
language recognition feature, as the OCR program in
the pipeline (see, Figure 1). We used the following
command line parameters:

tesseract ... -l pol hocr

The output of the Tesseract was the standard hORC
file [16], with no further modifications.

Since our main goal was the development of the
feature extractor, only the decision tree classifier was
used as the last step of the pipeline. This classifier is
widely used (and suggested to be used) in NER systems
(see [23]). We utilized the standard implementation
of decision tree from the Scikit-learn bundle [24],
version 0.23.2. We used the default parameters of
the constructor: DecisionTreeClassifier().
Exploring other possible classifiers will be the content
of further work.

The bounding box attribute (ocrx_word) of the
hOCR elements was used to check if the word is to
the left to or above given block. The last four features
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were processed using the bag-of-words model. All the
words were stemmed with the Stempel Stemmer [19]
before being included to the lists. We also used the
hashing trick [25, 26] for representation of word lists.
The scikit-learn implementation [24] (version 0.23.2)
of the hashing trick was used in the experiments. The
following parameters were passed to the constructor:

FeatureHasher(n_features = 2**20,
input_type='string' )

Let us recall that the input data from the RPA system
consists of screenshots of application programs. So,
generally, input does not carry any global linguistic
semantic. Instead, the impact of local context seems
to be more important. So, we considered simple bag
of words model at this stage. Investigation of more
sophisticated models, i.g. Word2Vec, is planned for the
future.

5. Testing

We performed four groups of tests. As a measure
of correctness of recognition we used the standard F1
score. This measure is commonly used in evaluation
of accuracy of NER approaches (as discussed in [3]).
To calculate the average rate, we used the total true
positives, false negatives and false positives.

5.1. 20-fold cross-validation test

The first experiment was a 20-fold cross-validation
test. We split the data from screenshots randomly into
two groups: one for training (80%), another one for
testing (20%). The second group contained only data
from 400 and 500 series. This reflects the fact that the
application of the trained classifier is to be in intelligent
assistant that processess data from a computer program
interface.

The Figure 6 contains average results of 20 tests.
One can see that addressRegion, postalCode
and taxID entities are stably recognized with 100%
rate. This is mainly due to the rigid structure of the
data (re)presentation, and the fact that these entities
were labeled with the same text in all the screenshots
(see Section 2). The remaining entities also have high
recognition rate. It can be stipulated that the recognition
rate can be improved by using a more sophisticated
classifier (for instance, XGBoost, or random forest).
However, in our application, the recognition should
be performed in real-time, so the usage of more
complicated classifiers may not be feasible. Checking
this pathway will become one of future research
directions.

100% 100% 100% 88.2% 83.4% 78.8%

F1score

0
20

40
60

80
10

0

addressRegion
postalCode
taxID
addressLocality
streetAddress
name

average for entities:  90.91 %

Figure 6. Results of the 20-fold cross-validation test

5.2. Change of the interface

The second set of tests emulates the change of the
interface that the intelligent assistant receives the data
from. In one experiment we use data from the 400
series for testing while the remaining data was used for
training. The second experiment does the same with
the 500 series data for testing and the remaining data
used for training. In this way, in both experiments, the
classifier is tested on screenshots that it has never seen.
In both experiments the tests where repeated 20 times
(and we report averaged results).

The results of these experiments are depicted in
Figures 7 and 8. We see that addressRegion,
postalCode and taxID entities are still stably
recognized, with 100% success rate (note that
addressRegion is not present in the 500 series data).

Let us also notice very poor performance of the
classification of the streetAddress entity in the
500 series data. This was expected. As mentioned in
Section 2, in most training data this entity has different
format and different label(s).

5.3. Adaptive tests

In this set of experiments we tested ability of the
system to adapt itself to change of interface of the
user application. Here, let us assume that the user
corrects mistakes of the intelligent assistant. Next, after
such correction, the NER system is retrained taking
into account new knowledge. The main question is:
how many corrections should the user make before the
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100% 100% 100% 68.1% 55.8% 55.7%

F1score
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name
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average for entities:  81.68 %

Figure 7. Recognition of entities on 400 series data

100% 100% 93.2% 84.6% 23.8%

F1score

0
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postalCode
taxID
addressLocality
name
streetAddress

average for entities:  79.62 %

Figure 8. Recognition of entities on 500 series data

system achieves (almost) the previous recognition rate.
In this set of tests, we moved consequently from one

to ten randomly chosen screenshots of the series from
the test set to the train set and repeated the recognition.

60
70

80
90

10
0

400+n

F
1s

co
re

, %

0 1 2 3 4 5 6 7 8 9 10

addressLocality
addressRegion
average

name
postalCode
streetAddress

taxID

Figure 9. Adaptive test for 400 series data

Figures 9 and 10 represent adaptive tests for data
from 400 and 500 series respectively. As in previous
experiments, each test was repeated 20 times, and the
average results are presented. The system shows a
clear adaptability trend. Especially, it is seen for the
streetAddress feature, which started with a very
low recognition rate.

Let us mention that the tests results reflect the
difference between address representation in 400 and
500 series screenshots (Figures 2 and 3 respectively).
Namely, 500 series screenshots contain data in the
“joined form”

streetAddress

+ postalCode+ addressLocality

while 400 series screenshots contain each part of address
separately. The first format is commonly used in
Poland and is present on most screenshots that do not
belong to 400 or 500 series. That is why one can
observe significant difference in recognition rate of
addressLocality and streetAddress.

5.4. Recognition without local context feature

Finally, to emphasize the importance of the local
context feature (see, Section 3.4), we repeat the 20-fold
cross-validation test (Section 5.1) without the local
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Figure 10. Adaptive test for 500 series data

context feature. Instead, as the features, we use the
previous and the following words. As noted above, these
features are typically used in standard NER to provide
context for unstructured cases.

As one can see from Figure 11, the F1 score of the
algorithm is considerably lower. The average value for
all entities is smaller by about 30%. Even the taxID,
that has a very rigid structure, and was always correctly
recognized, has recognition rate less than 100%.

5.5. Discussion

The presented solution shows a possible application
of NER techniques to solve real-life problem of feature
extraction. Our goal was to practically recognize
attributes that are necessary (and minimal) to describe a
business organization. Some of the attributes have rigid
structure and naturally their recognition is easier. Those
with varying format obtain lower scores, especially after
changes of interface. It is possible that the recognition
rate can be improved by using a more sophisticated
classifier, but such change needs to be balanced with
the need for performance in near-real-time. Last set
of described experiments proved that inclusion of local
context feature significantly improves the F1 score.
Note that, in the proposed solution, we tried to be as
language and domain agnostic as possible. Dropping
this design assumption, might bring about one more
possibility to improve performance, but will result in
lower adaptability of the solution.

100% 100% 99.9% 82.1% 47.2% 26.8%

F1score

0
20

40
60

80
10

0

addressRegion
postalCode
taxID
addressLocality
streetAddress
name

average for entities:  62.55 %

Figure 11. Recognition of entities without local
context features

6. Concluding remarks

In the paper we presented a NER system designed
for a Robotic Process Automation application with
self-learning ability. This system is to deal with Polish
language content. It has a screen of the user interface
as its input and tries to recognize and categorize all
(a’priori predefined) named entities contained within it.
We proposed the set of features that can be extracted
from the input data. Specifically, we defined the local
context featured that are screenshot specific and, often,
are not considered in standard general NER systems.
Experiments showed that application of local context
knowledge is very important in the considered problem.

The future work is planned in the following
directions. First, we will test our algorithm in
a different knowledge domain(s), e.g. in a medical
documentation application. The second task is
exploration of other possible classifiers, including the
ones using semi-supervised, or unsupervised, learning.
Specifically, we plan to adapt a new method of
clustering combinations of nominal-continuous data
based on automatic metric detection [27]. This method
has shorter time of classification in comparison with
decision trees, which is important in the RPA context.
Next, as mentioned in Section 4, usage of more
sophisticated model than a simple bag of words, may
improve the results. Finally, we plan to test the impact
of resolution and color settings, as well as segmentation
parameters on the quality of the OCR step.
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