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Abstract

Computer-generated imagery of car models has
become an indispensable part of car manufacturers’
advertisement concepts. They are for instance
used in car configurators to offer customers the
possibility to configure their car online according
to their personal preferences. However, human-led
quality assurance faces the challenge to keep up with
high-volume visual inspections due to the car models’
increasing complexity. Even though the application
of machine learning to many visual inspection tasks
has demonstrated great success, its need for large
labeled data sets remains a central barrier to using such
systems in practice. In this paper, we propose an active
machine learning-based quality assurance system that
requires significantly fewer labeled instances to identify
defective virtual car renderings without compromising
performance. By employing our system at a German
automotive manufacturer, start-up difficulties can be
overcome, the inspection process efficiency can be
increased, and thus economic advantages can be
realized.

1. Introduction

Computer-generated imagery (CGI) has become
a central element of leading car manufacturers’
advertisement and sales concepts. Virtual car renderings
are utilized for various marketing purposes as they
enable advertisement campaigns that are efficiently
customizable to different markets while not requiring
costly physical car prototypes for elaborate photo
shoots. Moreover, CGI introduces to customers
the possibility to configure a selected car model
in real-time online configurators according to their
personal preferences.

Similar to the physical car assembly, high-quality
standards are a central requirement for the long-term
success of all advertisement offerings. Thus, it is crucial
to avoid erroneous content creation. However, the

continuously growing number of design options of all
existing car variants including their derivatives poses
increasing challenges for currently human-led quality
assurance (QA), turning high-volume visual inspection
processes into procedural bottlenecks. Moreover,
multiple studies have indicated that the accuracy of
human visual inspections may decline with endlessly
repetitive routine jobs [1, 2, 3].

In this context, the continuously evolving
capabilities of machine learning (ML) algorithms
have led to the successful entry of this technology in
many industrial sectors over the last years. Particularly,
in the area of QA, artificial perception systems offer the
possibility to support humans through automatic visual
inspection [4]. Applications range from industrial tool
wear analysis [5] over printing quality control [6] to
quality estimation of porcelain [7]. However, one of the
major drawbacks of supervised ML is its dependency
on a vast amount of high-quality labeled training data,
constituting a major impediment for the launch of
such systems in practice [8]. Even though the amount
of available data has been constantly increasing [9],
labeling of data instances is costly because it often
requires the knowledge of domain experts.

To overcome these difficulties for the deployment
and operation of ML systems in practice, methods
to decrease the data labeling effort, particularly
when labeling resources are limited, can be applied,
e.g., transfer learning [10], multi-task learning [11],
few-shot learning [12], meta-learning [13] or active
(machine) learning (AL) [14]. The key idea of AL
is that a model can accomplish a certain performance
level requiring fewer training instances if the most
informative instances with regard to its learning process
are selected. Initially, a model is trained on a small
labeled data set. In each AL round, new data instances
are chosen by an acquisition function and labeled by
an expert. Subsequently, they are added to the labeled
data pool. This procedure is repeated until a specific
termination criterion is met [14].

In this work, we propose an active machine
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learning-based quality assurance (ALQA) system to
assist the manual QA process for the CGI content
production of virtual car renderings at Audi Business
Innovation GmbH, a subsidiary of AUDI AG. Our
ALQA system requires significantly less training data
and therefore contributes to overcoming the initial
start-up barrier of labeling a large number of data
instances. Specifically, our system is able to achieve
an average performance (measured in terms of the F2

metric) of 95.81%, while reducing the labeling overhead
by 35% on average. Identified defective configurations
are forwarded by the system to the responsible QA
managers for further root cause analysis.

With our research, we contribute to the body of
knowledge with the following five core aspects: First,
we propose a novel artifact—an ALQA system—to
automatically identify defects in CGI of virtual car
models as a support tool for human-led QA. Second, we
evaluate its performance and demonstrate its ability to
significantly reduce the manual labeling effort of image
data required to train the system while maintaining
its prediction accuracy. Third, we discuss possible
economic implications of the system and show its ability
to overcome start-up difficulties while increasing the
QA efficiency. Fourth, by illustrating the feasibility of
the artifact, we are the first to introduce deep learning
into the QA of CGI within an industrial context—as
similar approaches have (so far) only been utilized in
the area of video game streaming [15]. Finally, we
provide generalizable prescriptive design knowledge by
providing precise design principles to address the design
requirements of ALQA systems. These “blueprints” can
serve as a foundation for the design of future artifacts
within different domains.

We utilize design science research (DSR) as an
overall research design and base our approach on
Hevner and Chatterjee [16]. They recommend that a
DSR project should consist of at least three cycles of
investigation: a relevance cycle (addressing the practical
problem, see Section 2), a rigor cycle (outlining the
existing knowledge base, see Section 4), and one or
multiple design cycles (instantiating and evaluating the
research artifact, see Sections 3 and 5). We finish
our work with a discussion of the potential economic
impact of our artifact (Section 6) as well as a conclusion
(Section 7).

2. Relevance Cycle: Defining the Problem

Advances in CGI over the last years have paved the
way for this technology’s applicability to a wide range
of use cases in practice. Many areas encompassing
visual experiences, such as 3D animation, visual

movie effects, or augmented and virtual reality, have
experienced great success due to the increasingly
realistic representation possibilities [17]. Today, car
manufacturers leverage CGI of their automotive fleet
especially in the context of advertisement purposes.
Digital 3D models of all vehicle types including
derivatives and vehicle configurations that customers
can purchase on the market are created and regularly
updated. Not only does this technology contribute
to efficiently scalable advertisement options, e.g.,
customization to different markets worldwide without
the need for real-world photo shoots, but it also offers
customers the possibility to compile and experience
their preferred car configuration before the purchase
decision. However, representing all car types including
all possible configurations as realistically as possible
without any defects while continuously updating them
is resource-intense and difficult to maintain by manual
means.

In the use case at hand, within the virtual production
process of 3D car models at the case company, specific
configurations can result in parts of the vehicle not being
displayed correctly, e.g., triggered by wiring errors of
the individual model components. In these cases, e.g.,
black areas appear instead. To readjust them, occurred
defects must first be identified, which is currently done
in manual random checks based on tacit knowledge.

Figure 1 depicts typical errors that can occur in
the model. The upper row displays correct model
configurations from four different camera perspectives,
while the lower row presents respective defects. In
the exterior front view, the wheel arch linings are not
displayed, in the exterior rear view the taillights are
missing. Moreover, in the interior front view, among
other parts, the upper part of the gear stick is not present,
and in the interior rear view the driver’s seat has no belt.

As the manual QA process on-site functions based
on randomly chosen configuration and is especially
driven by implicit knowledge of which configurations
tend to encounter errors, this procedure carries the risk
that newly occurring errors remain initially undetected.
However, the goal is to identify as many defects
as possible before a car model goes live to avoid
sub-optimal customer experiences.

3. Artifact Design

In line with the design science research paradigm,
we start by elaborating on our design choices [18]. First,
we are confronted with necessary design requirements
(DRs) for the artifact.

In the work at hand, we design an ALQA system
with the goal to support the identification of defects in
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Figure 1. Exemplary Audi Q3 Sportback configurations (from left to right: exterior front view, exterior rear

view, interior front view, interior rear view). The upper row displays correct configurations whereas the lower row

depicts defective ones. We remove the copyright sign during preprocessing.

Table 1. Overview of workshop participants.
Participant Focus Role
Alpha QA Senior Manager
Beta QA 3D Specialist
Gamma QA/ML Researcher
Delta ML ML Researcher
Epsilon ML ML Researcher

car renderings. We conducted an initial focus group
workshop [28] with two experts (Alpha, Beta) from our
case company as well as three ML researchers (Gamma,
Delta, Epsilon). An overview of the roles and foci is
depicted in Table 1. In the workshop, we discussed the
needs and specifications for the solution and decided on
the most important aspects. Based on the results of this
workshop as well as related literature, we now derive a
set of DRs for the proposed artifact.

We discovered that the case company needs the
artifact to require significantly fewer images than
conventional ML approaches like supervised ML (DR1).
While they have strategically decided to introduce ML
techniques to support QA in general, they are hesitant
because typically large data sets are required for training
[9]. The number of images rendered, the small rate
of errors in the images, and the fact that ground
truth images cannot automatically be generated with
respective labels at the beginning of the project require
that the artifact should need as little labeled input as
possible. Furthermore, as the task is currently performed
manually by humans with high accuracy rates, it is
important that performances are comparable. While
conventional approaches have shown to reach high
performances in similar tasks [29], it remains unclear
how other approaches perform. As a consequence, the
performance of conventional approaches must be at least
reached (DR2) and no or only a small fraction of images

should be missed (DR3). Finally, those images that are
identified as erroneous should be forwarded to a QA
manager for the final decision (DR4).

In order to address the requirements, we select
relevant theories from the body of knowledge, which
are then incorporated into design principles (DPs).
We address DR1–3 with the kernel theory of active
(machine) learning (AL) [14]. AL is a special case of
ML in which the respective algorithm can interactively
query an information source (e.g., a human) to label
new data points with the desired outputs. As an
AL algorithm, we select DEAL [30]. We provide
more details on AL, possible implementation options,
and reasons for the choice of DEAL in the upcoming
Section 4. By utilizing AL, we aim to select those
instances within the data set which have the highest
contribution to the training process (DP1). This should
then result in a significant increase in the artifact’s
ability to learn faster (DP2). To evaluate the approach,
a performance metric that minimizes false negatives
is desired as our goal is to avoid defects remaining
undetected. Thus, we choose the F2 metric (see
Equation (1)) as it puts a focus on recall without
completely ignoring precision (DP3). As DR4 is rather a
procedural requirement than a technical one, we inform
our design by utilizing the theory of human-in-the-loop
[27]. Human-in-the-loop is a theory that prescribes
human interaction within decision processes that are
supported by ML. By providing the deployed artifact
with a forwarding mechanism, we allow QA managers
direct feedback of errors so they can investigate root
causes (DP4).

The resulting DPs, a summary of the DRs, as well
as the related theories are shown in Table 2. These
requirements are of general nature and are supported by
both interviews and literature.
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Table 2. Overview of design knowledge.

Design Requirement Interview
Source

Literature
Source Design Principle Design

Kernel Theory

DR1: The artifact should require
significantly fewer images than
a conventional machine learning
approach

Alpha, Beta,
Gamma, Delta,
Epsilon

[19, 20]

DP1: Provide the artifact with
active machine learning
capabilities to identify instances
with the highest contribution to
the training period

Active
machine
learning

[14]DR2: The artifact’s performance
should be equal to
a conventional machine
learning approach

Alpha, Beta,
Gamma, Delta,
Epsilon

[21, 22]

DP2: Provide the artifact with
active machine learning
capabilities to increase the
learning curve significantly

DR3: The artifact should
ensure no or only a fraction
of erroneous images are missed

Alpha, Beta,
Gamma, Delta,
Epsilon

[23, 24]
DP3: Choose a performance
metric with a focus on recall;
F2 metric

DR4: Identified images
that contain errors should
be forwarded to QA managers

Alpha, Beta, Gamma [25, 26]

DP4: Provide the artifact
with a forwarding mechanism
to allow QA managers
direct feedback

Human-in-the-loop
[27]

4. Rigor Cycle: Related Work and
Research Gap

In this section, we ensure rigorous research by
elaborating on related work. To that end, we specifically
focus on QA in CGI as well as AL.

4.1. Quality Assurance in Computer
Generated Imagery

The utilization of deep learning for computer vision
tasks has shown remarkable results, especially in the
area of image recognition [31]. Naturally, besides other
application cases, the technology found its application
soon within the area of QA tasks [32]. This field of
research is often also called image quality assessment
[33]. Computer vision in general and deep learning in
specific are already utilized for a large variety of QA
procedures. Examples include the control of printing
quality [6], quality estimation of porcelain [7], or wear
characteristics of machining tools [34].

Apart from traditional QA within physical industrial
processes, quality control of CGI is an especially
interesting area for our work—as we deal with digital
car renderings. Interestingly, the topic of QA in CGI is
little explored. While some works do generate images in
a synthetic way as a basis for training models [35], the
focused detection of errors in CGI is rare. The closest
work relevant in this regard is the area of video game
streaming [15]. As cloud gaming solutions like Google
Stadia, Playstation Now or Nvidia Geforce Now [36]
allow the streaming of video games via the internet, a
niche group of researchers aims to detect quality issues
in the generated video streams [37, 38, 39]. However, to
the best of our knowledge, no work previously explored

QA for CGI within an industrial context.

4.2. Active Machine Learning

Active (machine) learning (AL) has been intensively
researched over the past decades. In general, AL
methods can be divided into generative (e.g., [35, 40])
and pool-based (e.g., [30, 41, 42, 43, 44, 45, 46, 47])
approaches.

Generative methods employ generative adversarial
networks (GANs) to create informative samples which
are added to the training set [35, 40].

Pool-based approaches utilize various acquisition
strategies to select the most informative data instances.
The literature further distinguishes diversity- (e.g.,
core-set [41]) and uncertainty-based approaches, as
well as combinations of both (e.g., Batch BALD [42]
or BADGE [43]). For our work, uncertainty-based
techniques are most relevant. Here, the underlying
assumption is that the more uncertain a model is
with respect to a prediction, the more informative the
associated data point has to be. Uncertainty-based AL
approaches can be further divided into ensemble-based
(e.g., Deep Ensemble [46] or MC-Dropout [47])
or non-ensemble-based (e.g., Minimal Margin [44],
Learning Loss [45], or DEAL [30]) methods. Generally,
deriving uncertainty estimates via the softmax function
carries the risk that a model may be uncertain in its
predictions despite high softmax probabilities [48].

Approaches addressing this drawback, e.g.,
generate multiple predictions per instance, which are
subsequently aggregated, by using the technique of
MC-Dropout [47] or by employing a model ensemble
(Deep Ensemble [46]). Another approach is to add
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a separate loss prediction model to the network [45].
While the first two approaches are time-consuming
regarding the acquisition of new data instances, the
latter requires implementing an extra model.

In this work, we employ DEAL [30] as it allows
the selection of new data through uncertainty estimates
generated by only one forward pass of each instance
through the network. These uncertainty estimates are
derived by placing a Dirichlet distribution on the class
probabilities. Its parameters are set by the output of the
neural network [49].

5. Artifact Evaluation

In this section, we first describe the utilized data
(Section 5.1), implement the previously described
artifact design of the ALQA system (Section 5.2), and
evaluate it accordingly with a common AL procedure
[14] (Section 5.3). Here, the focus of the evaluation is
on the AL component of the ALQA system, i.e., whether
a performance comparable to a conventional ML
component can be achieved with fewer data instances
to-be-labeled and whether its classification performance
is sufficient for practical use. The human-in-the-loop
component is not evaluated because the only source of
error results from the AL component.

5.1. Data Set

During the initial focus group workshop, we chose
the 3D model of the Audi Q3 Sportback for the
evaluation of our artifact as we were able to draw on
a model status that had (at the time of the conducted
project) not yet undergone the QA process on site.
Thus, we can assess during the evaluation whether our
artifact is capable of detecting the defects that have been
identified in the manual QA process afterward. Since
ML approaches applied directly to 3D data, e.g., 3D
point clouds, are still in their infancy [50], we reduce
the problem complexity to 2D images [51]. However,
the artifact requires analyzing the largest possible area
visible to customers during the QA process in order to
ensure no visible key areas are missed. Thus, we select
the four camera perspectives introduced in Section 2 to
fulfill this requirement (see Figure 1).

As our computational resources are limited, we
randomly select a subset of 4,000 uniquely identifiable
vehicle configurations from a pool of customer orders.
As we employ an untested car model, it inherently
contains defective configurations. Furthermore, in
order to represent a large diversity of theoretically
manifestable defects, we randomly specify parts of the
vehicle not being displayed correctly by the rendering
engine in half of the subset. Subsequently, we render

the entire pool of car configurations for each camera
perspective. As the model inherently contains defective
configurations and the procedure of sampling additional
defects might affect parts invisible to the customer, we
cannot automatically generate ground truth labels for
the rendered data set. Consequently, each image must
be subjected to manual labeling. Thus, the entire data
set was labeled within the focus group over a period
of several weeks. Ambiguous instances were discarded.
Finally, for each camera perspective, we assign a fixed
number of 2,000 images to the training set and allocate
the remaining images to the test set after reserving 10%
of the data per camera perspective for the validation set.

5.2. Experimental Setup

To demonstrate the effectiveness and efficiency of
our approach, we evaluate it according to the following
AL scheme: Initially, a model is trained on a small
labeled data set. In each AL round, new data instances
are chosen by an acquisition function, labeled by an
expert, and added to the pool of labeled data. This
procedure is repeated until a predefined termination
criterion is met [14].

As a classification model, we choose a convolutional
neural network (CNN) using the ResNet-18 architecture
[31] with the modifications and acquisition function
as described by Hemmer et al. [30]. All images
are compressed to a resolution of 128×128 pixels.
Initially, for each camera perspective, we provide the
model with a small labeled data set consisting of 100
randomly sampled data instances. Hereupon, the model
is trained from scratch for 100 epochs while monitoring
the validation performance metric development. Early
stopping is applied once the performance metric of the
validation set does not increase within 20 epochs. We
choose a training batch size of 50, a learning rate of
5 ·10−4, and Adam [52] as optimizer. In each AL round,
a new batch with 100 images is selected and added to the
training data pool. Afterward, the model is re-trained
from scratch again.

We benchmark our approach against a conventional
ML component that is trained using the entire available
training set and serves as an upper performance
bound. Moreover, to compare the learning progress
to our approach, the conventional ML component
is additionally tested using the aforementioned AL
evaluation. However, new batches of images are
acquired uniformly at random. We terminate the
AL procedure for the conventional ML component
once its performance differs only marginally from its
performance on the complete training data set.

For each camera perspective, we apply the resulting
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Figure 2. F2 metric over the percentage of acquired labeled training data for exterior front view, exterior rear

view, interior front view, and interior rear view. We benchmark the performance of our AL component against a

conventional ML component that acquires new data uniformly at random. The solid horizontal line represents the

conventional ML component trained with all labeled training data. Shaded regions display standard deviations.

number of AL rounds equally to our AL component.
This allows us to determine if the AL component is
able to reach the final performance level of the ML
component with fewer labeled images.

We repeat each experiment five times and report
the F2 metric (see Equation (1)) including standard
deviation. As the artifact’s purpose is the identification
of defective configurations, minimizing false negatives
becomes more important than minimizing false
positives. Since the F2 metric places more focus on
recall, without neglecting precision [53], it is suitable
for our case.

F2 = 5 · precision · recall
4 · precision+ recall

(1)

5.3. Performance Evaluation

We conduct the experimental evaluation as described
in Section 5.2. The results for all four camera
perspectives as a function of the number of training
instances are depicted in Figure 2. The horizontal
lines represent the performance of a conventional ML

component trained on the entire training data set. For
the exterior views, F2 scores of 96.20% (front) and
93.58% (rear) can be achieved. The interior views
result in F2 scores of 94.86% (front) and 98.58%
(rear), respectively. While repeatedly adding new data
instances after each AL round to the initial training
data pool, we see that the AL component identifies new
data instances contributing to an overall steeper learning
curve in comparison to the conventional ML component.
For all camera perspectives, the AL component reaches
the upper bound in terms of F2 score using substantially
fewer training data instances. Thus, DR1, DR2, and
DR3 are addressed successfully.

The savings can be extracted from Figure 2 via the
distance of the touchpoints of the red and black learning
curves with the horizontal line. Specifically, a saving of
400 images can be achieved for the exterior front view,
500 for the exterior rear view, 600 for the interior front
view, and 400 for the interior rear view.

To substantiate these findings, we apply a paired
t-test assessing if the respective performance levels
differ significantly between the AL and ML component.

Page 1251



Its assumptions are validated beforehand. The criterion
of normally distributed differences of the pairs is
validated based on Shapiro and Wilk [54]. We note
that the null hypothesis that a sample comes from a
normal distribution cannot be rejected for the exterior
front view (Ws = 0.9106, p = 0.1606), exterior rear
view (Ws = 0.9244, p = 0.2540), and interior front
view (Ws = 0.9258, p = 0.2361). Performing the
paired t-test results in the null hypothesis to be rejected
for the exterior front view (t = 3.6355, p = 0.0030),
exterior rear view (t = 2.3617, p = 0.0345), and
interior front view (t = 3.0639, p = 0.0084). As the
null hypothesis for the Shapiro-Wilk test is to be rejected
for the interior rear view (Ws = 0.6671, p = 0.0002),
following literature, we perform a Wilcoxon signed-rank
test [55]. Here, the null hypothesis that two related
paired samples come from the same distribution can be
rejected (Ww = 11.0, p = 0.0537).

Finally, we briefly discuss the observed results. A
possible reason explaining both the performances of
the conventional ML and the AL component might be
the image quality. Unlike most real-world use cases,
the rendering engine provides the ability to render any
vehicle configuration with the same quality and camera
angle. Another aspect we want to highlight is the quality
of the labeled instances. Potential errors in the labeling
process by human annotators can negatively influence
the overall model performance. This might explain the
upper performance bounds of the models trained with
the entire available training set and the observed decline
in the performance of the AL component between
individual AL rounds (see Figure 2).

6. Discussion

With the results at hand, we discuss a potential
economic impact. We analyze possible time savings
resulting from employing the ALQA system in
comparison to a conventional ML-based approach and
contemplate its embedding in the overall QA process.
Even though more and more data is becoming available
nowadays for catalyzing the usage of supervised
ML algorithms [9], necessary prerequisites, e.g.,
available labels are often not met in practice [8].
Therefore, we intend to demonstrate with the following
calculation-based example that AL-based approaches
have the potential to mitigate these issues. However,
our calculations are based on multiple assumptions, e.g.,
similar performances across all models and the same
labeling quality by respective annotators for all other
car types of the fleet. Thus, they should be interpreted
as indicative to illustrate the potential of ALQA and
similar approaches. In the case of the regarded model

(Audi Q3 Sportback), it was not possible to collect data
instances including ground truth labels. Thus, manual
labeling was inevitable and was conducted within the
focus group over several weeks (see Section 5.1). For
a randomly selected subset of images, we measured
the time it took each focus group member to label
each instance resulting in an average labeling time of
31 seconds (standard deviation 23 seconds) per image.
By incorporating the AL component in the artifact, an
average of 475 fewer images had to be labeled per
camera perspective compared to a conventional ML
component. The total savings of 1,900 images are
equivalent to an average reduction of 35%. Taking
into account the average labeling time per image and
a working day of 8 hours [56], the labeling effort is
reduced by approximately two full days per car model.
Now, let us imagine extending the ALQA system to the
entire fleet of the case company. Considering 18 vehicle
types [57] would increase the potential average savings
to 36 days, which emphasizes the potential to lower
initial barriers for the practical use of such a system.

Finally, we want to stress that the ALQA system’s
objective is to complement human capabilities in the QA
process, not to replace them [58]. As a large number of
configurations can be assessed by the artifact efficiently,
identified errors are passed to QA managers for further
root cause analysis fulfilling DR4. Unblocked capacities
taken up by the mere identification of defects can be
used more efficiently in tasks not covered by the system,
e.g., verifying that dynamic animations work properly.

7. Conclusion

Increasingly realistic representation possibilities
driven by technological advances in the field of
computer-generated imagery have made this technology
applicable to a continuously increasing number of
industrial use cases. Automotive manufacturers utilize
computer-generated imagery for scalable advertisement
campaigns and offer customers the possibility to
configure a selected car model in online configurators
according to their personal preferences. However,
human-led quality assurance based on visual inspection
faces the challenge to keep up with these scalable
concepts in terms of efficiency and effectiveness,
turning high-volume visual inspection processes into
procedural bottlenecks. Even though deep learning
approaches for computer vision tasks [31], and in
particular for quality assurance purposes [32], have
demonstrated promising results, their applicability
to computer-generated imagery within an industrial
context remains largely unexplored. To address this gap,
this work proposes an active machine learning-based
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quality assurance (ALQA) system for identifying visual
defects in computer-generated car imagery. The system
is capable of identifying defective configurations with
an average F2 metric of 95.81% for the Audi Q3
Sportback while requiring on average 35% fewer data
instances to-be-labeled a priori.

Through the design, implementation, and evaluation
of our artifact, we contribute to the body of knowledge
in the following ways: The proposed artifact can
be utilized as a support tool for human-led quality
assurance. Additionally, we demonstrate the artifact’s
ability to significantly reduce the manual labeling
effort while achieving a desired performance level.
This has the advantage of lowering initial start-up
difficulties for companies aiming to leverage the
economic potentials of machine learning. Moreover,
we contribute with generalizable prescriptive design
knowledge by providing precise design principles to
address the design requirements of ALQA systems.

However, the scope of this paper is subject to certain
limitations. One shortcoming is that the evaluation of
the proposed system is currently limited to one vehicle
model—namely the Audi Q3 Sportback. Furthermore,
the system is to be understood as a supporting tool
for quality assurance to increase its efficiency and
effectiveness. It does not claim to automate the entire
quality assurance process, as it does not cover the
verification of dynamic car model functionalities, such
as the opening of doors and trunk.

Apart from these limitations, the options for future
research are manifold. An obvious step may be to
extend the proposed system to the entire vehicle fleet.
Moreover, the system currently classifies configurations
based on the features extracted from 2D images. A
promising field of research to further improve its
performance could be to incorporate further information
provided by the rendering engine, e.g., camera distances
of pixels, to better recognize whether objects that
should be present are in fact present. Lastly, as new
configuration options come onto the market at regular
intervals, this could result in less accurate classifications
over time. Thus, it could be worthwhile to explore the
combination of the proposed system with approaches
from the field of concept drift.
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Vössing, and Niklas Kühl. Human-ai
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