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Abstract 
Defect detection in industrial production processes 

is an important and necessary part of quality control. 
Many defects can occur during the manufacturing 
process, causing high manufacturing costs. Thus the 
inspection of screws, which represent an indispensable 
element of many mechanical components, is a critical 
process. To reduce manufacturing costs and increase 
efficiency, a reliable method for inspection is Deep 
Learning. It can help simplify the process of quality 
control and increase the velocity and volume of detected 
defects in screws. This approach uses a CNN model to 
classify non-defective and defective screws with 
different types of defects. Instead of manual quality 
control methods, which can be easily biased, our CNN 
approach is accurate, cost-efficient, and fast, with an 
accuracy of over 97 percent. With this approach 
corresponding to industrial production processes, 
different defects in screws and non-defective screws can 
be classified from images according to a real-world 
industrial inspection scenario. 

1. Introduction  

In the industrial production processes of the 
fastener industry, several defects can occur and cause 
high manufacturing costs as well as a high amount of 
rejects [1, 2]. The quality inspection of screws is a 
critical process due to the complex structure and variety 
of defects [2–4]. Screws are indispensable elements of 
many mechanical components, and it is crucial that 
those elements do not negatively affect the product. 
Therefore, it is necessary to inspect all manufactured 
screws [5].  

Screw parts like the threads are one of the most 
important components of machinery. Threaded 
elements amount to 15% of the mechanical parts in 
equipment and machines. In industrial production, the 
usage of screw threads is very high. Real-time and high-

precision measurement, as well as the improvement of 
accessories in this field, are important [6]. 

One of the most popular quality management 
systems globally is ISO 9001, which aims to improve 
processes, access to foreign markets, and increase 
competitiveness. Another goal is an optimum quality 
level which equals zero defects. Many manufacturers 
follow the zero-defect strategy for their products. 
Hence, the total cost of quality can be decreased with 
quality improvement processes [7–10].  

Thus, it is necessary to perform quality control to 
detect defect screws in order to reduce manufacturing 
costs and to improve the quality and yield [1, 2]. A high 
level of quality in products is necessary for 
manufacturers to be competitive globally and efficient 
[11]. The detection of defects by manual work is costly, 
time-consuming as well as low efficiency. It can also 
lead to a high error rate, and not all produced screws can 
be inspected [1, 2, 5, 12, 13]. Especially for a large 
number of screws that are produced in a short time, a 
high-speed inspection is necessary [1, 5]. For an 
automated classification and quality inspection of the 
produced goods, an Automated Visual Inspection (AVI) 
system is often used to replace the manual quality 
inspection [14, 15]. The system recognizes the products 
lying on the conveyor belt and uses an algorithm for 
object detection and recognition[15, 16].  

Automatic defect recognition is a reliable method 
for quality control in the production processes [2]. Thus, 
visual analysis for surface defect detection is a standard 
method [17]. This important part of quality control is 
becoming more interesting for industrial manufacturing 
processes [12]. Sensors and the Internet of Things cause 
an increase in data recorded in the manufacturing 
process. Machine learning approaches have proven to be 
an effective tool for the evaluation of different sensor 
data [18, 19]. Especially Deep Learning shows superior 
performance for the analysis of image data [20]. As 
industrial automation advances, Deep Learning can help 
simplify the process of quality control. Based on 
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images, defects in the manufactured objects can be 
detected, and defect products can be sorted out [2, 21]. 
Also, it contributes to more reliable and efficient defect 
detection in terms of the zero-defect strategy [7–10, 13]. 

Therefore, good results were already achieved with 
Deep Learning approaches such as the work by Song et 
al. [1], where a Convolutional Neural Network (CNN) 
approach was successfully used to detect micro defects 
of metal screw surfaces with images collected from an 
industrial camera. However, no realistic production 
scenario was considered. Wu et al. [17] concentrated on 
surface defect detection and created an adaptable CNN-
based model. Nevertheless, the location of different 
defects was not considered like they can occur in the 
quality inspection [22].  

There are already CNN-based approaches for the 
defect detection of small parts for manufacturing, which 
have considered more realistic images. The work by 
Yang et al. [23] considered the real-world 
manufacturing constraints and parameters for four 
different defect classes. However, separate models were 
used for the different defects, which is not suitable for 
real production conditions in quality control.  

The various studies show that a CNN-based 
approach is an auspicious method for defect detection of 
screws in quality control. CNNs are able to identify 
defects based on automatically learned deep features 
and do not have to be designed by human engineers [24]. 

Therefore, this paper investigates if a CNN 
approach can classify different defects in screws and 
defect-free screw images with realistic angles of lying 
screws and five defect types according to a real-world 
industrial inspection scenario. To achieve this, the Deep 
Learning method CNN with a VGG16 architecture is 
applied to test and train the screw data set [22]. 

As several defects can occur in the manufacturing 
process, it is necessary to focus on defects that can 
happen in real-world manufacturing scenarios. The 
threads as an important part should therefore be 
considered as well as other common defects like 
scratches and dents on the screw head, top or neck [6, 
22]. In order to be able to detect realistic defects reliably, 
we chose a real-world scenario approach. 

Other approaches detect differences in the size of 
screws [25] or classify different screw types [26], as 
well as identify several similar items like screws, 
washers, and nuts [2]. Some focus on the detection of 
defects in different materials such as texture, metallic 
gasket, and screws but consider only one defect type 
[17] or detect defects of screw surfaces using only top 
view images [1]. We focus on recognizing five screw 
defects with side-view images like in a realistic 
production scenario. In this case, the screw front, head, 
neck, thread side, and thread top are considered, and 
defects like scratches and dents on the surface as well as 

distorted and missing object parts can be recognized. 
The most important results of this work are: 

1. We develop an automated classification 
method based on a CNN model with VGG16 
architecture for a reliable classification of 
defective and non-defective screws. 

2. Our accurate and robust CNN-based approach 
can automatically detect faulty screws as part 
of camera-based in-line inspection during 
production using only a single image of the 
object. This minimizes the negative impact of 
quality inspection on production logistics 
performance, being of high practical relevance. 

3. With a high level of accuracy (97.92%) based 
on real-world images, our approach 
outperforms previous studies. 

 
This paper is organized as follows: First, we 

provide an overview of the research background and the 
related work. Subsequently, the methodology is 
described with the used method as well as the used data 
set and the preprocessing. Then we present the results of 
our implemented method. Finally, we discuss our 
results, present the limitations, and propose ideas for 
future work. 

2. Research Background 

2.1 Quality Inspection of Screws 

During the production process of material 
components, cracks and scratches can occur. To prevent 
defective products from getting into the market a quality 
control after production is necessary. One of the 
difficulties of these inspections is the parts’ complex 
structure, resulting in various workpiece defects [2, 3].  

Many manufacturers use manual inspections to 
detect defects in the quality control process which is 
time-consuming and affected by the energy level and the 
worker’s experience [1, 27]. Quality control in the 
fastener industry is often carried out by measuring with 
calipers or optical amplifiers [1]. Some screw 
manufacturers use human resources to do manual 
inspections [28]. Trained workers are required during 
this process, which is costly in terms of time and labor 
[1, 29]. Also, the energy levels of employees are 
narrowed, which can cause reduced efficiency on long 
working hours [1]. Often, not every single product is 
inspected, and samples are used for quality control, 
resulting in defective parts leaving the manufacturing 
process [11]. Mistakes of manual methods then lead to 
the loss of economic efficiency [30].  

AVI is a quality control technique that utilizes 
cameras connected to computer systems. The AVI 
system enhances the quality of the produced goods. 
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Therefore, the inspection checks whether a product 
differs from specific production rules and 
specifications. The system captures images of the parts 
while the conveyor belt is moving. The images are 
filtered, objects are recognized, and features are 
extracted. Then the detected non-conforming parts are 
separated [14–16]. For this method, CNNs are 
promising because they are able to perform feature 
extraction and defect recognition on a single network. 
Hence, the preprocessing of images for certain 
applications is not necessary. Also, the transferability of 
the results is facilitated [31]. 

2.2 Quality Control via Machine Learning 

A more effective method is automated defect 
detection in production processes. For detecting surface 
defects, diverse image processing techniques have been 
developed [1, 12, 32]. An overview of the relevant 
related work is shown in Table 1. 

Often, manufacturers work with inspection systems 
like high-speed inspection machines using a conveyor 
and vision cameras to detect surface defects [33]. 
Challenges of visual defect detection with images are 
the greatly heterogeneous appearances of the object 
surfaces and the defective areas, as well as different 
rotations and angles of the parts in the inspection 
process [16, 34]. All parameters can influence the visual 
defect detection results [16, 35], whereas a robust 
solution is CNN [35–37]. 

Song et al. [1] developed a deep CNN-based 
method to detect micro defects of metal screw surfaces 
while first locating the screw surface. The data set 
contained 3,000 samples of defect-free screws, stripped 
screws, surface-damaged and surface-dirty screws. The 
model achieved an accuracy of 98.40% and showed the 
superiority of the DCNN-based approach compared to 
traditional template matching methods and the LeNet-5-
based method. The limitation of their work is that only 
images of mounted screws with a top view were 
considered. So, this approach is only suitable for special 
applications like ready-made products with mounted 
screws. 

One study used a detection method based on CNN 
with automatic image feature extraction to detect 
surface defects in industry production. The study of Wu 
et al. [17] was able to achieve 90.00% accuracy for 
screw images with a CNN approach, completed with a 
voting mechanism for final classification and location. 
CNN was applied to detect defects in texture images, 
special structural images such as metallic gasket and 
screw images. The result was an adaptable model to 
different data sets. The main limitation of this work is 
that only single defects were considered, which is not 
the case in a real-work quality control scenario.  

Also, an accurate real-time defect detection system 
for tiny parts was developed for manufacturing using an 
end-to-end CNN algorithm. The data set includes four 
different defect classes of 0.8 cm darning needles and 
one class of defect-free needles. They use side-view 
images of the darning needles on a conveyor belt taken 
from an industrial camera. The different accuracies refer 
to the different defect types: 98.00%, 99.00%, 97.80%, 
and 79.40%, so each defect corresponds to a separate 
model. In contrast to this study, our approach aims to 
detect all screw defects [23]. The separate models limit 
the suitability of this approach for a realistic quality 
inspection process. 

Bergmann et al. [22] proposed a method for an 
automated and real-time image classification for 
different defect types on screws. A variety of defects 
such as scratches, dents, structural defects like distorted 
objects, and the absence of parts were considered. 
Several approaches were tested to improve the results. 
AnoGan, L2 Autoencoder (AE), SSIM AE, CNN 
feature dictionary, and variation model were considered. 
The best result was achieved with the L2 AE with a ratio 
of 98.00% for correctly classified defect-free screws and 
39.00% for defect screws. This corresponds to an 
accuracy of 83.37%. For accurate quality control in the 
industrial field, the accuracy is a very important 
indicator and could be considered as a limitation for this 
model. 

Another anomaly detection approach on the 
MVTec Anomaly Detection data set of Bergmann et al. 
[22] uses a technique to visually explain variational AEs 
via gradient-based attention. By using attention maps, 
they can localize anomalies in images. They reported the 
area under the receiver operating characteristic curve 
(ROC-AUC) with 0.97 for the screw data set [38]. 
Furthermore, a third approach on the same data set was 
made by Bergmann et al. [39]. They present a student-
teacher framework for unsupervised anomaly detection 
as well as pixel-precise anomaly segmentation. They 
report the normalized area under the PRO-curve of 
0.928 for the screw anomaly detection. The best result 
achieved by those anomaly detection approaches is a 
ROC AUC of 0.97, which is shown in Table 1. 

 
Table 1. Approaches for automated defect 

detection of screws. 

Year Reference Method Performance 
2018 Song et al. [1] DCNN 98.40% 
2017 Wu et al. [17] CNN 90.00% 
2019 Yang et al. [23] CNN 79.40% -99.00% 

2019 Bergmann et al. 
[22] L2 AE 83.37% 

2020 Liu et al. [38] Variationa
l AE AUC-ROC: 0.97 
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In conclusion, Song et al. [1] applied a deep CNN-
based method to detect micro defects of metal screw 
surfaces from a top view of mounted screws. An 
adaptable model was created by Wu et al. [17] by using 
a CNN approach to detect defects in texture images, 
special structural images such as metallic gasket and 
screw images. Only one defect type was taken into 
account for this approach. Defect darning needles can be 
detected using several single models with the approach 
by Yang et al. [23], which is not practical in an industrial 
process. 

3. Methodology 

For the Deep Learning approach, we carried out 
detailed literature research [40, 41] and considered the 
specific machine learning guidelines [24, 42] to be able 
to evaluate the results thoroughly. 

3.1 Model Architecture 

Our network architecture is based on VGG16 CNN 
network architecture, which was presented by 
Simonyan and Zissermann [36]. We adjusted the 
VGG16 base model to achieve the best result. We chose 
the VGG16 architecture because of its ability to solve 
complicated object detection problems, and because of 
its representation depth, it is suitable for the accuracy of 
classification. As a result of the depth and number of 
fully connected nodes, the architecture requires much 
memory, but this does not pose a problem as powerful 
hardware is available for industrial inspection and 
manufacturing [43]. The architecture consists of five 
blocks of convolutional layers. They all have a kernel 
size of 3 × 3. After every block, a max pooling 2D is 
applied to sample down the input. By using pooling 
layers, the resolution of the feature maps is decreased, 
allowing a spatial invariance to be generated [44]. We 
used two dense layers before the classifier, one with a 
filter size of 128 and the other one with 32. In addition, 
two dropout layers were applied, both with a rate of 0.5, 
to prevent the model from overfitting [45]. For the 
layers, the activation function rectified linear unit 
(ReLU) was used. With layer weights, regularizers 
penalties are imposed on the layer parameters. Using the 
kernel regularizer L2, penalties are applied to the layer’s 
kernel. The regularizer was set to the default value of 
l2=0.01 [32]. For the output layer, which is a dense 
layer, the sigmoid activation function was applied, 
which is commonly used for binary classification as it 
returns a value in the range of 0 to 1. The filter size of 
the output layer is 1. 

For the training, the layers of our network were 
frozen so that the weights do not differ. The Adam 
optimizer [46] is applied because the optimizer has the 

benefits of two other optimizers, which are the 
RMSprop [45] and Adagrad [46]. Our architecture has a 
total of 14,784,513 parameters. After the training, the 
model can be optimized with Fine Tuning methods. For 
our model, we unfroze the last ten layers to make small 
adjustments to improve the performance. Furthermore, 
the Adam optimizer was set to a learning rate of 5×10-
5. The training and Fine Tuning were done with 200 
epochs and a batch size of 32. Subsequently to the Fine 
Tuning, the model can be evaluated by calculating 
several performance indicators such as balanced 
accuracy, kappa, and precision of the model and 
providing a confusion matrix. 

3.2 Convolutional Neural Network and 
Transfer Learning 

A widely used Deep Learning method are CNNs. In 
the past, CNNs already achieved outstanding results in 
the detection, segmentation, and recognition of objects 
and areas in images [49, 50]. This approach is also cost-
efficient, robust, and fast [2]. CNNs are used to convert 
data that is in the form of multiple arrays, such as a color 
picture consisting of 2D arrays containing pixel 
intensities in the three-color channels.  

A CNN is organized into several stages. These 
stages consist of different convolutional and pooling 
layers. The units of convolutional layers are organized 
into feature maps. Each unit is connected to local 
patches in the feature map of the previous layer by a 
filter bank. The result of this locally weighted sum is 
then passed through a non-linearity, e.g., a ReLU [24]. 

CNNs need a large number of images to be able to 
classify reliably. This has the effect that training an 
architecture requires a lot of processing capacity and 
time. Sometimes it is not possible to collect a large 
quantity of training data. With the help of high-
performance learners, it is possible to train a CNN 
successfully even with only a small amount of data. This 
technique is called Transfer Learning [51]. Transfer 
Learning has already been effectively applied for image 
classification [52, 53]. 

The training of a CNN consists of two steps. First, 
the relevant structures and shapes are learned, from 
which more abstract objects can be derived and 
recognized. In the second step, a fully trained network 
is established based on the features already learned. 
Here Transfer Learning is being applied. During this 
process, Fine Tuning is utilized. Here, a transfer of the 
trained layers only occurs on the output layer. The 
output layer is adapted by adjusting the number of object 
classes of the new model to be detected and newly 
trained [54, 55]. Successful implementation of Fine 
Tuning has already been taken place in several 
applications [56, 57]. 
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For the CNN architecture, we used the network 
architecture VGG16. This network was introduced by 
Simonyan and Zissermann [36]. The architecture 
consists of a total of 16 weighted layers and is used for 
large image recognition. The size of the convolutional 
filters is only 3 × 3, and the depth of the network can be 
increased. All convolutional layers have the same filter 
size. The five max pooling layers are in a kernel size of 
2 × 2. The activation of all hidden layers takes place 
with ReLU. In total, the network consists of 13 
convolutional layers and two fully connected layers, 
each of which has a total of 4,096 units. The final layer 
is activated with softmax and with 1,000 nodes. The 
default input size for the VGG16 architecture is 224 × 
224 × 3 [58, 59]. 

3.3 Dataset and Preprocessing 

The data set used for our training and evaluation of 
our Deep Learning approach is the MVTec Anomaly 
Detection data set by Bergmann et al. [22]. The data set 
was collected in 2019 and consists of 15 categories, 
including images of several objects and textures. The 
data set contains a total of 3,354 images of several 
objects and textures. Out of the 15 categories, we 
consider the screw images to detect defective and non-
defective parts. The screw images can be categorized 
into two classes. The first class consists of correct 
screws, whereas the second class includes screws that 
have defects on the surface of the objects, like scratches 
and dents. 

 
Figure 1. Defective screws with defects of the 
front a), head b), thread side c), neck d), and 
thread top e), and a non-defective screw f). 

The defects were created manually with the aim to 
produce realistic anomalies similar to real-world 
industrial inspection scenarios. The images were 
acquired with a high-resolution industrial RGB sensor 
with 2,048 × 2,048 pixels. The screws have different 
damage types, which can be seen in Figure 1. The 
damage types on the screws include: a) the screw front, 
b) the screw head, c) the screw thread side, d) the screw 

neck, e) the screw thread top. Image f) shows an 
example of a defect-free screw. 

The data set for screws consists of 119 images of 
defective and 361 images of non-defective screws. For 
preprocessing, a balanced data set of 119 images for 
each class has been selected. Therefore, all images of 
the defect class were used, and 119 images out of the 
non-defective screw class were chosen randomly. 
Afterward, a split into a train, test, and validation set was 
carried out. The data set was split into a ratio of 
60:20:20. Thus, the number of training images is n=142, 
the number of validation images is n=48, and the 
number of test images is n=48. The model was trained 
with the training and validation images. For the 
calculation of the performance indicators, only the 
unseen test images were used. 

The RGB-colored images were resized to 224 × 224 
pixels and normalized into the range of [-1,1]. Resize 
and rescale were applied to all images of the balanced 
data set. Furthermore, Data Augmentation was used to 
prevent overfitting and to improve the performance of 
the classification. Therefore, only the training images 
were rotated [37]. 

4. Results  

For the training of the CNN, Keras 2.3.1 was used 
with Tensorflow 2.0 backend. For training of the model, 
we used the publicly available Google Collaboration 
service. It uses an Nvidia Tesla K80 12 GB GPU. To be 
able to detect the defect screw, the model was trained 
with 200 epochs and a batch size of 32. For the Fine 
Tuning, the learning rate was set to 5×10-5. To evaluate 
the model, a confusion matrix has been calculated as 
well as several performance indicators like the balanced 
accuracy, kappa, precision, recall and the area under the 
receiver operating characteristic curve (AUC-ROC).  

Thus, it was possible to achieve a balanced 
accuracy of 97.92%. The model predicted all 24 
defective screws right. Unfortunately, one screw was 
wrong classified as a defective screw, and 23 were 
correctly predicted as defect-free screws. Table 2. shows 
the summarized classification results in a confusion 
matrix. 

 
Table 2. Confusion matrix. 

 Reference 

Defective Non-
Defective 

Prediction 
Defective 50.00% 

(24) 
2.08% 

(1) 
Non-

Defective 
0.00% 

(0) 
47.92% 

(23) 
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In Table 3., the performance indicators are 
presented. Cohen’s kappa has a value of 93.96%, and 
the model reached a true positive rate of 100.00%. The 
positive predictive value is 96.00% and the AUC-ROC 
equals 0.990. These results prove a good performance 
of the model. 

 
Table 3. Performance indicators. 

Performance Indicator Value 
Accuracy 97.92% 
True positive rate 100.00% 
Positive predictive value 96.00% 
Prevalence 50.00% 
Balanced Accuracy 97.92% 
Kappa 93.96% 
AUC-ROC 0.990 

 

 
 

Figure 2. Examples of a false classified 
non-defective screw (image a) and heatmap 
b)), correctly classified non-defective screw 

(image c) and heatmap d)), and correctly 
classified defective screw (image e) and 

heatmap f)). 
 
To understand why the model falsely predicted one 

defect-free screw as defective, we used the Grad-CAM 
heatmap algorithm [60] to visualize the important areas. 
In order to create the heatmaps, the images for the Grad-
CAM are up- and downscaled and therefore not pixel 
accurate [61]. 

The one falsely predicted screw image a) in Figure 
2. is defect-free but was predicted as defective. The 
heatmap b) in Figure 2. shows that the model mainly 
focused on the thread of the screw, which is colored in 
red. The rest of the image, which is colored in blue, is 
not predictive for the model. Image c) shows a correctly 
classified non-defective screw. Heatmap d) shows that 
the whole screw is recognized, but the focus is mainly 
on the neck of the screw. A correctly predicted defective 
screw is shown in image e) in Figure 2. The heatmap f) 
indicates the focus on the thread of the screw, where the 
defect is located. Thus, the area of the defect is clearly 
shown. 

5. Discussion 

As shown in Table 3., our CNN model performs 
efficiently and shows excellent classification outcomes. 
The performance is also shown in the confusion matrix 
in Table 2., supporting the good results. Further, the 
confusion matrix displays that all types of defective 
screws were correctly classified, while only one image 
out of 24 defect-free images is falsely classified. 

This might be because some of the screw defects 
are just slight defects. Furthermore, the lighting can 
make it appear as if the surface has been scratched [62, 
63]. Therefore, the model has probably classified the 
screw as faulty. The evaluation of the heatmaps shows 
that the network focuses especially on the parts where 
the defects are located. This includes the screw neck and 
thread, as shown in Figure 2.  

The related work shows that a CNN approach is 
highly promising for the defect detection of screws and 
tiny metal parts. Also, an anomaly detection with an L2 
AE approach was used to detect such defects in screws 
[22]. The current studies achieve an accuracy from the 
range of 79.40% to 99.00% for defect detection. 
However, those approaches rely on additional imaging 
techniques or simply focus on the detection of only 
single defect types [19]. If different defects are 
considered, several models were needed to detect those 
with a high level of accuracy [23].  

Therefore, with an accuracy of 97.92%, our model, 
which can detect different defect types, also shows clear 
advantages compared to models with better 
performance results like the work by Yang et al. [23]. 
Even though they considered realistic quality inspection 
scenarios in their experiment, the four defects could 
only be detected with separate models. This means that 
only one defect type could be predicted with a 99.00% 
accuracy, which might not be practicable in real-world 
manufacturing. 

Furthermore, with an accuracy of 98.40%, high-
performance results were also achieved by Song et al. 
[1]. However, they only considered very specific 
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perspectives. The top view perspective of mounted 
screws used in this work is not suitable for the realistic 
screw production process.  

We compared the prediction time of our model on 
CPU and GPU with different batch sizes to evaluate the 
suitability of our approach for an application during 
production. Table 4. shows good inference times for 
CPU as well as for GPU. With an increase of the batch 
size, the time the computer needs for each step is 
doubled. This applies to the performance speed of CPU 
and GPU. A fast performance speed enables the 
possibility to be used in real-time applications. 

Smaller and lighter models are very useful for 
portable solutions but less suitable for very complex 
models [64]. The larger model VGG16 is able to solve 
very complex object recognition problems. In industrial 
inspection and manufacturing, high-performance 
hardware is available, making our approach highly 
practicable [36, 43, 65]. 

 
Table 4. Comparison of inference time on 

CPU and GPU. 

Batch Size CPU GPU 
1 320 ms 24 ms 
2 614 ms 44 ms 
4 1166 ms 75 ms 
8 2104 ms 92 ms 
16 3225 ms 167 ms 

 
Table 5. Performance indicators of other 

transfer-learning architectures. 

Architecture Accuracy 
Xecption [42] 83.30% 
VGG19 [36] 71.67% 
InceptionResNetV2 [67] 61.65% 
ResNet50 [49] 55.00% 
EfficientNetB3 [68] 53.36% 
EfficientNetB4 [68] 52.81% 

 
Our model outperformed several other 

architectures, which were tested and evaluated for this 
approach. The pre-trained VGG16 network performed 
overall with the best results and an accuracy of 97.92%. 
Only one screw image was falsely predicted as 
defective. Table 5. shows that the Xecption architecture 
performed with an accuracy of 83.30% and achieved the 
best results of the compared networks. The light 
Xception architecture is very easy to be defined and 
modified. Also, architectures such as VGG16 have those 
properties [36, 42, 66]. 

Other networks like VGG19 and 
InceptionResNetV2 performed with an accuracy below 

80% and therefore were not considered any further [36, 
67]. The ResNet50 architecture did not perform well, 
and so this approach was not considered in detail [49]. 
The EfficientNetB3 and EfficientNetB4 are mobile-
sized models and can be scaled up, but in our use-case 
only achieved an accuracy of under 60% [68]. 

6. Conclusion  

We built a highly effective defect detection model 
that achieves an excellent defect detection performance 
based on a CNN approach. Further, the performance of 
our model based on a pre-trained VGG16 architecture 
outperforms the previous studies and shows that a CNN 
network can be used to detect and identify several 
defects during quality inspection for screws. The small 
and simple model concerning computational costs 
accomplishes a fast training and outcome [36]. 

It consists of a pre-trained VGG16 architecture 
used for Transfer Learning. Furthermore, Data 
Augmentation was performed on the training data. This 
work is one of the first approaches with images in a real-
world industrial inspection scenario to detect the defect 
screw class with five realistic defect types and the 
defect-free screw class with an accuracy of 97.92%. The 
model is accurate, cost-efficient, and fast compared to 
manual quality control methods. For training and 
testing, side-view images were used, which were taken 
with a random rotation of the screws and realistic 
damages [22]. 

Our fast and reliable model is able to detect five 
realistic defect types like scratches and dents on the 
surface as well as distorted and missing object parts 
located at the screw front, head, neck, thread side, and 
thread top as it occurs in a real-world industrial 
inspection scenario [22]. Therefore, our model is 
suitable for real-time in-situ defect detection [14, 15]. 

In addition, the heatmaps of our network show the 
high reliability in defect detection. The important areas 
and different damages on the screw surface are 
highlighted in the Grad-CAM heatmaps, as shown in 
Figure 2. 

The internal validity of our model is high due to the 
train-test-validation-split, where testing is only carried 
out on unseen test images [69–71]. 

All defect parts were predicted correctly. Thus, our 
model contributes to zero-defect manufacturing. It is not 
only about the improvement of quality but also the 
learning process of quality inspection by identifying and 
analyzing any outliers in the process. Any potential risk 
for the quality has to be considered and not just an 
improvement of the yield [9, 10, 72]. 

The CNN model for the defect detection of screws 
has a practical relevance because of the realistic 
approach according to the industrial production 
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processes. The quality control can perform much faster 
and efficient, thus, to reduce manufacturing costs and 
improve the quality and yield [1, 2]. Our model is 
suitable for the large number of images and the high-
speed inspection in the industrial environment. 

6.1 Limitations 

The main limitation of this work is based on the 
limited number of images that were provided by the 
MVTec Anomaly Detection dataset [22]. Only two 
classes could be predicted due to the small data set. This 
might not represent the whole complexity of the quality 
control process in the industry with large manufacturing 
data. 

Changing lighting conditions, which were not 
considered, might be another limitation, as well as the 
manually generated defects of the data set [22, 62, 63]. 
The manual defects might not represent all real-world 
defects, like very fine scratches or dents caused by the 
machines. A problem could be that several defects can 
occur on one screw instead of only one defect per screw 
and image. Also, only one perspective of the screws was 
considered, which might be a limitation as the screws 
are moving in manufacturing processes. The occurrence 
of dust and/or dirt on the surface was not examined, 
which could occur in a manufacturing environment and 
lead to wrong predictions [2, 22]. This problem might 
limit the model and should be considered and evaluated. 

A limitation is that k-fold cross-validation is not 
performed on the data set yet. This computationally 
intensive method could improve the robustness of our 
model and accuracy to a more accurate result [64–66].  

More data could further improve the accuracy and 
enhance the prediction performance. Another aspect that 
can be viewed critically is the absence of external 
validation. The model needs to be tested in a real 
manufacturing environment. 

6.2 Future Work 

In the future, a more extensive dataset can be used 
to further evaluate the reliability of the proposed 
approach. It would also enable a more specific 
prediction for the different defect types. In the current 
classes of defective screws, five different defects are 
presented. A larger data set would make it possible to 
achieve a differentiated recognition of the defects. Thus, 
a more precise quality evaluation is achievable. 
Conclusions can be drawn, for example, to indicate 
errors on machines if one type of error occurs very 
frequently, in regards to the zero-defect manufacturing 
[7–10, 72]. Furthermore, the number of individual faults 
provides information about the production process and 
quality. An unsatisfactory result can lead to the 

consequence that the production process is optimized to 
avoid the respective defect. 

Another approach for the future could be the 
prediction of defective screws with more than one 
defect. It is possible that screws get more than one defect 
during the production process. In order to achieve 
accurate quality control, all defective parts of a screw 
should be recognized. 

Another direction in which could be worked on in 
the future is to make the model available for mobile 
devices. Due to the fast performance speed of our 
architecture for CPU and GPU, it could be possible to 
run it on a mobile application. This would enable the 
usage of the model in further areas of quality control. 
Thus, it could be applied in every step of the production 
and delivery of screws. For instance, to check the screws 
randomly at the incoming goods inspection [25, 64]. 

To further improve the performance accuracy of the 
model, stacking could be useful. By combining two or 
more CNN network architectures, the prediction could 
be increased to create a more reliable and robust model 
for screw defect detection [73]. A further approach is to 
apply stronger Data Augmentation. Besides the already 
applied rotation, functions like brightness, blur or zoom 
can be useful to make the model more robust. 

An additional line of research to be followed in the 
future is to analyze how human-computer interaction 
during workforce collaboration and automated quality 
control in production impacts user workload and user-
oriented concepts [74]. We are also planning to carry out 
experimental work to evaluate the acceptance of 
technology and trust in our embedded module and 
confirm whether the automated method enhances 
coordination more efficiently [75]. 
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