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Abstract  
     Due to the complexity of aviation safety operations, 

the number of flight incidents continues to rise. The 

Aviation Safety Reporting System (ASRS) contains the 

largest collection of such incidents. Efficient and 

effective analysis of these incidents remains a challenge. 

This paper proposes a new approach to analyze aviation 

safety records using deep learning methods to improve 

incident classification. The proposed approach, CNN-

LSTM, combines the characteristics of convolutional 

neural network (CNN) and long short-term memory 

(LSTM) neural network, and a distributed computing 

method to model aviation safety data. The five machine 

learning methods Logistic Regression, Naive Bayes, 

Random Forest, Support Vector Machine, Multi-layer 

Perceptron were used to compare with CNN-LSTM. The 

results show that CNN-LSTM model can significantly 

improve the accuracy rates of classification for aviation 

safety incident reports using Word2Vec. The distributed 

platform in Spark with clusters can make full use of 

computing resources when processing textual data from 

ASRS, reducing time-consumption greatly when 

compared with machine learning algorithms running on 

a standalone computer. Timely and accurate 

identification of causes of reported incidents is 

important. The results of this study demonstrate a new 

approach to improve both accuracy and efficiency in 

incident cause identification.  

 
1. Introduction 

Safety is critical to aviation industry. The aviation 

industry still faces challenges in creating normal and safe 

operations. As the complexity of aviation operations 

increases, the number of flight accidents/incidents also 

increases. As a result, effective retrieval and analysis of 

aviation safety data to reduce incidents remains a 

challenge. Aviation incidents can be caused by a variety 

of factors. Identifying true causes is made more difficult 

by the fact that many relevant data fields have missing 

data in the ASRS database. In the last few decades a 

research stream has emerged that model and predict 

causes of aviation incidents.  

In 1998, Fullwood et al. [1] used Linear Regression 

model to predict the aviation safety trends in aviation 

service reports. In 2001, Nazeri and Bloedorn [2] used the 

association rule method to analyze the ASRS reports, and 

proved the feasibility of the association rule method in the 

analysis of aviation safety data. In 2004, Majumdar et al. 

[3] used the trend analysis method to analyze and predict 

the unsafe factors that caused aviation incidents. In 2006, 

Nazeri [4] used an analysis algorithm (an abnormal 

distribution algorithm) AF (attribute focusing) algorithm 

to analyze and mine data for difficult-to-find 

abnormalities.  

Koteeswaran et al. [5] proposed an aviation accident 

prediction method that combines k-Nearest Neighbor (k-

NN) and correlation-based feature selection method. This 

new method can detect risks by predicting the causes of 

accidents and improve the aviation management system. 

The main purpose of analyzing accident data is to explore 

the causes of accidents and prevent accidents in the future. 

Rao and Marais [6] proposed a state-based method by 

defining a grammar describing states and trigger 

sequences. The result shows that rule-based method can 

result in better statistics on the cause of the accident. 

Hegde and Rokseth [7] pointed out that different methods 
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dealing with different information may be combined to 

have an outstanding prospective in aviation accident. 

Altay et al. [8] used genetic algorithms and artificial 

neural networks to predict the age and types of aircrafts as 

these two factors contribute to accidents. In the prediction 

of aviation equipment failure, Castilho [9] used the 

experience of maintenance workers to construct variables, 

and then used these variables as the input of the Bayesian 

network, and as a result, they obtained improved 

prediction results. 

In recent years, some research began to use big data 

including deep learning and data stream methods to 

predict the risks in aviation industry. Odarchenko et al. 

[10] pointed out the challenges brought about by the 

current big data technology in aviation system application 

and proposed a feasible plan to transform from relational 

database to non-relational database. Subramanian & Rao 

[11] used Go-around (GAR) and Missed-approach (MA) 

data from the Aviation Safety Reporting System (ASRS) 

incident database and trained Long Short-Term Memory 

(LSTM) network to predict which categories of incidents 

are more (or less) likely to occur in the forecast period. 

This prediction helps to identify the factors that lead to the 

accident. Incident reporting and investigation are 

components of safety management. Shi et al. [12,13] 

applied data stream methods incrementally to build and 

test classification models for risk factor identification for 

ASRS. The results demonstrated that data stream method 

can be a viable approach to automated incident type 

identification and the use of text-mining and data-

streaming technologies can improve safety management 

systems.  

Although data stream methods were verified to be 

better or comparable to the traditional machine learning 

methods [12,13] and some researchers just began to use 

deep learning methods to analyze safety reports [14], two 

problems still remain to be solved, i.e., the prediction 

accuracy rates need to be improved and run time of the 

algorithms need to be reduced as natural language 

processing tasks required in processing incident reports 

and subsequent modeling can be very resource intensive. 

To the best of our knowledge, there is very little or no 

literature on distributed framework for processing ASRS 

data sets. 

In order to solve the two problems, we will explore the 

use deep learning methods and distributed platform to 

process the textual data from ASRS, and construct models 

to classify the incidents. The paper is organized as follows. 

Section 2 provides the data description. Section 3 presents 

the methods used in this paper, including feature selection 

methods, neural networks based on Convolutional Neural 

Network (CNN) and Long Short-Term Memory (LSTM), 

and distributed Clusters and Spark architecture. Section 4 

discusses the results of the experiments. Finally, Section 

5 concludes the paper. 

 

2. Data Description 
    

The Aviation Safety Reporting System (ASRS) is 

provided by the U.S. National Aviation Safety Data 

Analysis Center. It includes many confidential aviation 

incident reports, and the reports were collected from the 

aircraft crew, flight attendants, maintenance personnel, 

and air traffic control personnel. Each record in the reports 

consists of structured numeric and text fields such as the 

date and hour of the incident, type of aircraft, personnel, 

etc. as well as unstructured text data, i.e., the description 

of incidents entered by flight and ground personnel. These 

narratives provide valuable information that help to 

determine the cause of incidents. Therefore, in computer 

simulation we only use unstructured textual data. 

 The data set in this study contains 158,070 incident 

records in which incident types were manually classified 

by human experts reading the reports. There are 97,481 

incidents attributable to human factors, accounting for 

about 61.67% of the total number of incidents. There are 

31,796 incidents caused by aircraft-related factors, 

accounting for 20.12% of the incidents. Others factors 

such as weather, ambiguity, and company policy occurred 

in relatively small numbers. One can see that human 

factors are the cause of more incidents than any other 

factors combined. Therefore, in this study, identifying 

human factors is our main objective, and the other factors 

are categorized as non-human factors. We will classify 

presence of human factors and nonhuman factors for 

incidents reports. Figure 1 shows the proportion of 

incidents types.  

 

3. Methods 
 

     In the study, we used Sklearn running on a standalone 

computer and Spark with clusters. PySpark is an interface 

for Apache Spark in Python and it is used in the 

distributed environment in the study. Sklearn (scikit-learn) 

is a library for machine learning algorithms in Python. 

Figure 2 shows that the architecture of identification 

model of human factors in aviation incidents. In the figure, 

Hadoop Distributed File System (HDFS) is designed to 

reliably store very large files across machines in a large 

cluster. 

 

3.1 Feature selection methods 

 

     Feature engineering is a process of identifying relevant 

input variable in the original data. The process generally 
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consists of three parts: feature processing, feature 

selection and dimensionality reduction. Feature 

processing includes a series of steps such as data selection 

and cleaning. In text mining, it mainly refers to removing 

special characters, removing stop words, and case 

conversion. This step was carried out with the Python 

natural language toolkit NLTK (Natural Language 

Toolkit). The vector space model was used to convert text 

into a vector. In the study two methods, Term Frequency-

Inverse Document Frequency (TF-IDF) and Word2Vec 

were used to extract the structured information from 

textual data. 

  

 
 

Figure 1. The proportion of incidents types 
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Figure 2. The architecture of identification of human factors in aviation incidents 
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3.2 CNN-LSTM 

       
Neural networks based on Convolutional Neural 

Network (CNN) and Long Short-Term Memory (LSTM) 

have their distinct advantages in classification tasks [15]. 

Convolutional neural networks can be used in mining 

the potential semantic information of textual data. The 

multi-convolution kernel performs convolution 

operations on the word vectors of the text. LSTM 

networks are well-suited to classifying, processing and 

making predictions based on time series data. In the 

field of text processing, CNN-LSTM neural network 

[16], are known to produce good results. In the study, 

we built a CNN-LSTM neural network model to classify 

aviation incidents. The structure of the model is shown 

in Figure 3.  

 

  
Figure 3. Text classification of CNN-LSTM model 

 
CNN is widely used in image data, time series data 

processing and other fields. The network structure has 

the characteristics of non-full connection and parameter 

sharing. Compared with the fully connected network, 

the network complexity and the number of weights in 

CNN are greatly reduced. The core of CNN consists of 

the following parts, input and output layer, 

convolutional layer, pooling layer and fully connected 

layer.  

 LSTM neural network is an extension of RNN, 

which solves the problem of long-term dependence, 

especially when dealing with text data. It can predict the 

probability of the next word through the semantic 

context information of the text. The cell state in the 

network model is the core of the LSTM network, which 

is somewhat similar to a conveyor belt. Figure 3 is the 

LSTM neural network mechanism. LSTM uses the 

structure of gates to select information, and gates are 

usually composed of sigmoid functions. Since the result 

of the sigmoid output value is between 0 and 1, then 0 

and 1 can be used to indicate two states, 0 means fail, 

and 1 means pass. There are three types of gate states: 

input gate, output gate and forget gate.  

 

3.3 Clusters and Spark architecture 

 

Clusters are formed when independent computers 

are connected over a network to solve larger computing 

tasks. Clustering has high scalability and reliability. The 

disadvantage is that the communication time cost 

increases with the increase of computing nodes. 

However, when processing large-scale data, the running 

time of the algorithm model is longer, and the 

proportion of the communication time in the total 

running time gradually decreases, so the communication 

time is insignificant.  

In recent years, with the application of big data 

technology, Spark is often regarded as the first choice 

for a big data computing platform. At present, Spark's 

functions have covered a wide range of computing fields, 

such as machine learning, streaming/real-time 

computing, and graphics processing. Its advantages 

include: fast speed, memory-based computing; and ease 
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of use. Spark also provides rich interfaces and supports 

many programming languages including Java, Python, 

and Scala. 

 

 

 

 

  
Figure 4. Spark architecture 

 

Figure 4 shows the overall architecture of Spark. The 

user codes for data processing through Driver Program, 

and creates a SparkContext object by running the main() 

function, through which the interaction between the user 

and the cluster is realized. The Cluster Manager in the 

middle of the figure is specifically used to manage 

resource scheduling. It now supports Local, Standalone 

and Yarn modes. Cluster Manager will start Executor 

while allocating computing resources. In Executor, each 

computing unit is called Task, and each computing node 

in the cluster is called Worker Node. The start of the 

thread pool is also completed by Executor. The main task 

of the thread pool is to manage the running status of the 

Task. The Executor will eventually report the running 

status of the Task to the Driver. 

 

4. The experiment design and results from 

computer simulation 
 

In the distributed environments, we use one master 

and 1, 2, 4 and 6 slave nodes. The operating system is 

selected as Oracle Linux Server release 7.4, the Hadoop 

is 2.6.0 version, and the Spark version is 2.2.0.  CPU of 

the master node and slave nodes is Intel Xeon E5-2683 v4, 

the memory of the master node is 64G and the memory of 

slave node is 16G.  

The classification performance and running time of 

the classification algorithms for Sklearn in Spark in 

standalone mode and in Spark with clusters in different 

sample sizes are shown in Figures 5 through 13, where LR, 

NB, RF, SVM, MLP and CNN-LSTM represent Logistic 

Regression (LR), Naive Bayes (NB), Random Forest (RF), 

Support Vector Machine (SVM), Multi-layer Perceptron 

(MLP), and CNN-LSTM combined model; feature 

selection methods are TF-IDF and Word2Vec. Four 

groups of data (1000, 10,000, 100,000, 150,000) were 

randomly generated. 

The classification accuracy rates of CNN-LSTM are 

affected by the parameter settings. Through experiments, 

the model has the best results when the dimensions of the 

word vector selected are 256; the number of convolution 

kernels is set to 128; the number of CNN hidden layer 

nodes is 128; the numbers of LSTM hidden layer nodes 

are set to128; the function is selected as cross-entropy; the 

optimization function selected is Adam (a replacement 

optimization algorithm for stochastic gradient descent). In 

order to enhance the generalization ability of the model 

and prevent over-fitting of the data, a Dropout layer is 

added between the LSTM and the fully connected layer. 

When the value of Dropout is set to 50%, the accuracy 

rates of the models are the highest. 

Figures 5 and 6 compare the performance of 

classification algorithms based on TF-IDF and Word2Vec 

representation in Sklearn, Spark with single node and 

Spark with clusters (4 slave nodes). The experimental 

sample data used the data set with 100,000 as the data size 

is moderate.  
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Figure 5. The results of the models based on TF-IDF  

 
Figure 6. The results of the models based on Word2Vec 

 
In Figure 5, one can see that when the features are 

represented by TF-IDF, the accuracy rates of the 

methods using Sklearn except for SVM are higher 

than those using Spark with single node and Spark 

with cluster.  In Figure 6, when the features are 

represented by Word2Vec, the accuracy rates of the 

classification algorithms using Sklearn are better 

than those using Spark with single node and Spark 

with clusters. A possible reason for the better 

performance of Sklearn may be the different 

processing strategy for Sklearn and Pyspark. The 

accuracy rates for the same classification algorithms 

using the Sklearn are slightly higher than that of 

Pyspark. Figures 5 and 6 show that the different 

feature selection methods have an impact on the 

accuracy rates of the classification model. On the 

whole, the accuracy rates for TF-IDF are slightly 

higher than those for Word2vec. 

In order to compare the performance of the 

classification algorithms based on data sets with 

different sizes, the whole data set is divided into 

four groups: 1000, 10,000, 100,000, and 150,000. 

Figures 7, 8, 9, and 10 show the results for TF-IDF 

and Word2Vec for the Sklearn and Spark using the 

six slave nodes on four different data sets.  

Figures 7 and 8 show the results using the TF-

IDF and Word2Vec in the Sklearn, and Figures 9 

and 10 show the results using the TF-IDF and 

Word2Vec in Spark clusters. For Sklearn, as the 

size of sample data increases, the overall accuracy 

rates of the models show an upward trend. The 

accuracy rates of the logistic regression model in 

Figure 6 in the four sample data sets are 0.785, 

0.8195, 0.832, and 0.8113, respectively. When the 

sample size is from 1,000 to 10,000, the accuracy 

rates of the four classification algorithms NB, SVM, 

MLP and CNN-LSTM declined. For example, the 

accuracy rate of the SVM decreases, and the 

accuracy rate dropped from 0.845 to 0.613. 

Figures 9 and 10 show the results for TF-IDF and 

Word2Vec in Spark using the six slave nodes on 

different numbers of data sets. As the size of data 

increases, the accuracy rates of the classification 

models using TF-IDF and Word2Vec in Spark with 

clusters increase as well.  

It can be seen from Figure 7 to Figure 10 that the 

CNN-LSTM model using Word2Vec has the best 
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performance. Figure 11 shows the comparison of the 

accuracy rates of the CNN-LSTM model for 

Word2Vec. In the figure, we use 4 slave nodes in the 

distributed environment. 

 
Figure 7. The accuracy rates using the TF-IDF in Sklearn  

 

      
 

Figure 8. The accuracy rates of using Word2Vec in Sklearn 

 

 

 
 

 

 

 

 

 

 

 

Figure 9. The accuracy rates of using TF-IDF in Spark with clusters 

It can be seen from Figure 11 that as the size of 

data increases, the accuracy rates curve of the CNN-

LSTM for Sklearn is always above the curve for 

Spark with single node and Spark with 4 slave nodes. 

The reason for this phenomenon could be due to the 

fact that Sklearn and Pyspark have different data 

processing strategies. From the figure, one can see 

that the accuracy rate curve for the Spark single-

node almost overlaps those for Spark with 4 nodes.  

Figure 12 and Figure 13 compares the running 

time of the models for the Sklearn and the Spark 

clusters with different nodes. In the two figures, the 

data set with150,000 were used. The experimental 

environment includes Sklearn, Spark with single 
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node, Spark with 2 slave nodes, Spark with 4 slave 

nodes, and Spark with 6 slave nodes.

 

 
Figure 10. The accuracy rates of using Word2vec in Spark with clusters 

 

 
Figure 11. The accuracy rates of using Word2vec in Sklearn, Spark with single node and spark 

with 4 nodes 

 
 

 
 

Figure 12. The running time of the 4 models (for IF-IDF and Word2vec) with the different 

experimental environment 
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Figure 13. The running time of the 2 models (for IF-IDF and Word2vec) with the different 
experimental environment 

      In Figures 12 and 13, LR-IDF represents a 

logistic regression model using TF-IDF, LR-w2v 

represents a logistic regression model using 

Word2Vec, and so on. It can be seen from the figures 

that the overall running time of RF and SVM is 

higher than that of the other four models. The 

running time of different classification models for 

Sklearn and Spark clusters are different. The 

running time of the LR-IDF and SVM-IDF models 

in the Sklearn environment is lower than that of the 

Spark with clusters. In the Spark with clusters, the 

running time of the models decreases gradually with 

the number of cluster nodes, especially between 4 

nodes and 6 nodes, which is approximately a smooth 

straight line. On the one hand, the running times of 

the models using Word2Vec are higher than those 

using the TF-IDF model. For example, the running 

time of CNN-LSTM-w2v is 938.91s, 260.66s, 

226.6s, 190.62s, and 186.43s, for Sklearn, Spark 

with single node, Spark with 2 slave nodes, Spark 

with 4 slave nodes, Spark with 6 slave nodes, while 

the running time of CNN-LSTM-IDF is 1132.59s, 

1016.67s, 774.14s, 502.36s, and 378.76s.  

 

5. Conclusion 

 
In the paper, we classified the human factors and 

the nonhuman factors from aviation incidents using 

LR, NB, RF, SVM, MLP and CNN-LSTM in 

standalone and distributed environment with data 

sets of sizes 1,000, 10,000, 100,000, and 150,000. 

Two feature selection methods TF-IDF and 

Word2Vec were used to extract relevant incident 

type data from the aviation incident reports. Then six 

models were tested to assess their potential in 

classifying the incidents in Sklearn, Spark with 

single node, and Spark with clusters. Overall 

accuracy rates and running time are used to measure 

the performance of these models. 

Our results show that the accuracy rates of the 

models in Sklearn are higher than those in the Spark 

with clusters. CNN-LSTM using Word2Vec is the 

best in classifying these incidents. Generally, as the 

number of samples increases, the overall accuracy 

rates increases in Spark with clusters using TF-IDF 

and Word2Vec. The accuracy rates of some models 

will fluctuate with data sizes, and the rates of CNN-

LSTM models always perform better when data size 

increases. It shows that CNN-LSTM has a better 

stability and generalization ability. The accuracy 

rates of the CNN-LSTM model are affected by the 

word vector’s dimension, the number of convolution 

kernels, the number of hidden layer nodes and other 

parameters. The optimal dropout parameters are 

selected through comparison experiments. 

In addition, the models using the TF-IDF 

consume less time compared with the models using 

the Word2Vec, and LR-IDF and NB-IDF consume 

relatively less time, while RF-IDF and SVM-IDF 

consume more time. Although in Sklearn and Spark 

with single node, CNN-LSTM model consumes 

more time, the models in Spark with 2, 4, 6 slave 

nodes consume less time. When processing a small 

data set, the models in Sklearn in standalone mode 

have obvious advantages, and the models take less 

time compared with the models in the Spark with 

clusters. Due to time-consuming communication 

between data partitions, the models in Spark with 

single node and Spark with clusters will take more 

time. As data size increases, the running time of the 

models in Spark with clusters will decrease, which 

is preferable when processing aviation incidents 

with large amount of text data. 
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The models presented in this paper can 

automatically classify the cause of an incident as 

either caused by human factors or caused by 

nonhuman factors, without manual and time-

consuming involvement of human experts. Using 

variable reduction one can also find, in the textual 

data describing the incidents, the major factors that 

influence the prediction. This may help to find the 

causes of incidents and reduce the occurrence rates 

of incidents. The research described in this research 

has practical implication. An accurate prediction 

model can help identify the true cause of incidents. 

Incidents occur at a higher frequency. When 

incidents are reported, the causes of the incidents are 

not known. It is important that we identify 

accurately and timely the cause of each reported 

incident. We feel our study shows an effective 

alternative to improve both the accuracy and 

efficiency of the incident cause identification 

process. 
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