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Abstract

Scaling existing applications and solutions to
multiple human languages has traditionally proven to
be difficult, mainly due to the language-dependent
nature of preprocessing and feature engineering
techniques employed in traditional approaches. In
this work, we empirically investigate the factors
affecting language-independent models built with
multilingual representations, including task type,
language set and data resource. On two most
representative Natural Language Processing tasks —
sentence classification and sequence labeling, we show
that language-independent models can be comparable
to or even outperforms the models trained using
monolingual data, and they are generally more
effective on sentence classification. We experiment
language-independent models with many different
languages and show that they are more suitable for
typologically similar languages. We also explore the
effects of different data sizes when training and testing
language-independent models, and demonstrate that
they are not only suitable for high-resource languages,
but also very effective in low-resource languages.

1. Introduction

In today’s globalized world, companies need to be
able to understand and analyze what is being said
out there, about them, their products, services, or
their competitors, regardless of the human language
used. Many organizations have spent tremendous
resources to develop cognitive applications and services
for dealing with customers in different countries. For
example, cognitive systems may use machine learning
techniques to process input messages or statements
to determine their meaning and to provide associated
confidence scores based on knowledge acquired by the
cognitive system. Typically, the use of such cognitive
systems requires training individual natural language
understanding models in a specific human language. For

example, a tone analyzer model can be built to predict
tones from English conversations [1], but such model
would not work effectively with other languages. While
translation techniques can be applied to translate data
from an existing language to another language, human
translation is labor-intensive and time-consuming, and
machine translation can be costly and unreliable. As
a result, attempts to scale existing applications to
multiple human languages has traditionally proven to be
difficult, mainly due to the language-dependent nature
of preprocessing and feature engineering techniques
employed in traditional approaches [2].

In this work, we empirically investigate the
feasibility of multilingual representations to build
language-independent models, which can be trained
with data from multiple source languages and then
serve multiple target languages (target languages
can be different from source languages). We
explore this question using a unified language model
Multilingual BERT [3], which is pre-trained on the
combination of monolingual Wikipedia corpora from
104 languages. Through a series of experiments on
multiple task types, language sets and data resources,
we contribute empirical findings of how factors affect
language-independent models:

• Task Type. We analyze and compare
language-independent models on two most
representative Natural Language Processing
(NLP) tasks: sentence classification and
sequence labeling. On both tasks, we show that
language-independent models can be comparable
to or even outperform the models trained using
monolingual data. Language-independent
models are generally more effective on sentence
classification.

• Language Set. Theoretically
language-independent models can be trained
using any language set, and be used to make
predictions in any language. Through training
and testing language-independent models with
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many different languages, we show that they are
more suitable for typologically similar languages.

• Data Resource. We explore the effects
of different data sizes when training
language-independent models. We demonstrate
that language-independent models are not only
suitable for high-resource languages, but also
very effective in low-resource languages.

We derive insights from our experiments to facilitate
the development and customization of natural language
understanding models and solutions in new languages.
First of all, it can be used to solve the cold-start
problem, where no initial model is available for a
new target language, when building such models from
scratch is costly. Secondly, it largely saves the
cost and time for acquiring annotated data of a new
target language by reusing data already annotated in
previously supported languages. Thirdly, it simplifies
the deployment process of a new model and save
the efforts for simultaneously maintaining multiple
monolingual models in a production setting. Our
annotated data for low-resource languages will be made
publicly available.

2. Related Works

Multilingual representation learning has been an
active area of research, starting from word embeddings
alignment that uses small dictionaries to align
word representations from different languages [4].
Research by [5] has demonstrated that multilingual
representations can be leveraged to improve the quality
of monolingual representations. An unsupervised
learning method has been proposed by [6] to align
multilingual word embeddings without parallel data.
In addition to word embedding alignment, aligning
sentence representations from multiple languages
has also been studied in machine translation, on
both supervised learning [7, 8] and unsupervised
learning [9, 10]. However, most of these approaches
focus on pairwise multilingual representation learning.
In this work, we empirically investigate the impact
of multilingual representations learned from a large
number of languages on tasks that involves more
languages than a certain language pair.

Our work builds on top of recent advances in
pre-trained language modeling. ELMo [11] extracts
context-sensitive features from a bidirectional LSTM
language model and provides additional features for
a task-specific architecture. ULMFiT [12] advocates
discriminative fine-tuning and slanted triangular
learning rates to stabilize the fine-tuning process with

respect to end tasks. OpenAI GPT [13] builds on
multi-layer transformer [14] decoders instead of LSTM
to achieve effective transfer while requiring minimal
changes to the model architecture. Recently, BERT [3]
uses bidirectional transformer encoders to pre-train
a large corpus, and fine-tunes the pre-trained model
that requires almost no specific architecture for each
end task. In this work, we leverage the multilingual
representations learned from multilingual BERT [3] to
build models that can scale to many languages.

3. Language-Independent Model

In this section, we describe the motivation of
language-independent models, and how to create such
models via multilingual representation learning and
fine-tuning.

3.1. One Model, Many Languages

To scale our efforts to support the diversity of
people in the world, it is important to build and
customize machine learning models for many different
languages in various NLP tasks. For each target
language, however, this often requires going through the
whole lifecycle of data collection, data cleansing, data
annotation, data storage, feature creation and selection,
machine learning model training, model validation,
benchmarking and deployment of these models as
services in production. It easily becomes overwhelming
as the number of target languages increases. To
address this problem, we advocate to build one model
for all target languages together, which we called
a Language-Independent Model (LIM), as the target
languages to serve in production do not necessarily
depend on which source languages were used in
training. Figure 1 shows a conceptual example: an
LIM can be trained using annotated data from the source
languages such as English (EN) and French (FR), and
then serve in the target languages including Spanish
(ES), Italian (IT), Japanese(JA), which are different
from the source languages. This not only accelerates
the enablement of a new language by reusing data
already annotated in previously supported languages,
but also simplifies the deployment process and save
efforts for maintaining multiple monolingual models in
production.

3.2. Multilingual Representation Learning
with BERT

The basis for building LIMs lies in learning a
representation that can feature multiple languages.
Among the recent significant advances in deep
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Figure 1. A conceptual example of a

Language-Independent Model (LIM). The target

languages to serve in production do not necessarily

depend on which source languages were used in

training. For instance, an LIM can be trained using

annotated data from the source languages such as

English (EN) and French (FR), and then serve in the

target languages including Spanish (ES), Italian (IT),

Japanese(JA) and so on.

contextualized representation learning for natural
language understanding, BERT [3] stands out as its
pre-training process naturally supports multilingual
representation learning. Specifically, multilingual
BERT was pre-trained on the Wikipedia pages
(excluding user and talk pages) of 104 languages
with a 110K shared WordPiece [15] vocabulary.
It is a 12-layer, 768-hidden, 12-head transformer
model [14] with 110M parameters. To alleviate
the bias towards high-resource languages such as
English, data from high-resource languages were
under-sampled and those from low-resource languages
were over-sampled. The pre-training of multilingual
BERT does not use any marker denoting the input
language, and does not rely on parallel corpus to
explicitly encourage translation-equivalent pairs to have
similar representations.

3.3. Fine-Tuning Multilingual BERT for End
Tasks

The multilingual representations learned with
BERT can be generalized for many natural language
understanding tasks such as Sentiment Analysis,
Named Entity Recognition, Categorization, and
so on (as illustrated in Figure 2). The input
representation of multilingual BERT is a sequence
of tokens in any language, which may be a single
sentence or two sentences packed together. The input
representation of each token is constructed as the sum
of the corresponding token, segment, and position
embeddings. For sentence classification tasks, the
first token of each sequence is a special classification
embedding ([CLS]) and its final hidden state will be
used as the aggregate representation of the whole
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Figure 2. An illustration of generalized multilingual

representation learning for different NLP tasks.

sequence. For sequence labeling tasks, the final hidden
state of each token will encode its contextualized
representation with respect to the whole sequence. To
fine-tune multilingual BERT, a classification layer is
added on top of the final representation layer, and the
probabilities of all label classes are computed with
a standard softmax. The parameters of multilingual
BERT and the classification layer are fine-tuned jointly
to maximize the log-probability of the correct label. The
labeled data of end tasks are shuffled across different
languages when fine-tuning multilingual BERT.

4. Experiments

The effects of LIMs can be affected by at least three
factors: task type, language set and data resource. In this
section, we empirically investigate the effects of these
factors on the performance of LIMs.

4.1. Factor Characterization

Task Type We explore whether LIMs are equally
effective across different end tasks. For the scope
of this paper, we consider sentence classification
and sequence labeling as two of the most popular
NLP tasks. In particular, we select and compare
two representative tasks: Sentiment Analysis and
Named Entity Recognition (NER). Sentiment Analysis
represents a typical sentence classification task, while
NER is a popular sequence labeling task.

Language Set While theoretically an LIM can
be trained using any language set, and be used
to make predictions in any language, multilingual
representations may not be equally effective across
different languages [16]. For instance, it has been shown
that a multilingual word embedding alignment between
English and Chinese is much more difficult to learn than
that between English and Spanish [6]. We explore many
different languages when training and testing LIMs.
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Data Resource For high-resource languages, the
annotated data can be of different sizes; for low-resource
languages, large amounts of data do not often exist [17].
We explore the effects of different data sizes when
training and testing LIMs.

4.2. Case Study on Sentiment Analysis

We take Sentiment Analysis as a 3-class
classification problem: given a sentence s in a
target language T , which consists of a series of
words: {w1, ..., wm}, predict the sentiment polarity
y ∈ {positive, neutral, negative}.

For this case study, we consider 7 high-resource
languages: English, Spanish, Italian, Brazilian
Portuguese, Dutch, Japanese and Chinese, covering
both western and eastern languages. The high-resource
training set consists of 770K data points — 230K
English, and 90K each in other 6 languages; the test set
contain both public available test data and high quality
in-house test data — 630K English, 10K Spanish, 57K
Japanese, 10K Chinese and 15K French. Meanwhile,
we collect 5K data points each in 5 languages: Danish,
Swedish, Norwegian, Russian, and Turkish, which
are considered as low-resource languages in our
experiments. We use 4K as training set and 1K as test
set for each low-resource language.

We randomly split 1/10 from the training set as
the development set for model selection and the rest
for model training (i.e., fine-tuning the parameters
of Multilingual BERT and the sentence classification
layer). Following original BERT fine-tuning [3], we
fine-tune the multilingual BERT with the following
parameter choices: (1) batch size: 16, 32; (2) learning
rate: 5e-5, 3e-5, 2e-5; (3) number of epochs: 3, 4.
The model of 32 batch size, 2e-5 learning rate and 4
epochs was selected as the best model based on its
performance on the development set. We denote the
LIM for Sentiment Analysis trained with high-resource
languages as LIM-H, and the LIM trained with the
mix of high-resource and low-resource languages as
LIM-M.

4.2.1. Results on High-Resource Languages For
high-resource languages, we compare LIM-H with the
following methods:

• CNN [18] is a convolutional neural networks
(CNN) trained on top of pre-trained word vectors
for sentence-level classification tasks. We use this
method to train monolingual Sentiment Analysis
models as a baseline because of its popularity and
simple implementation for reproducibility.

• ULMFiT [12] is a recent generative pretrained
language model with task-specific fine-tuning.
We follow ULMFiT by adopting discriminative
fine-tuning and slanted triangular learning rates
to stabilize the fine-tuning process and create
monolingual Sentiment Analysis models.

• Monolingual-BERT. We trained monolingual
Sentiment Analysis models by fine-tuning BERT
with monolingual datasets for every language,
respectively. For example, a Chinese-only BERT
model refers to the BERT model fine-tuned
using Chinese-only annotated data for Sentiment
Analysis.

In Table 1, we report the accuracy results of
Sentiment Analysis on English and Spanish across
various models. We get a significant boost in
performance of 7.4% than CNN, and 3.2% than
ULMFiT in English. As for Spanish, we outperform the
previous methods by 4.5% and 2.3% respectively.

Language CNN ULMFiT LIM-H
English 72.1 76.3 79.5
Spanish 69.4 71.6 73.9

Table 1. Accuracy results of Sentiment Analysis on

English and Spanish across various models.

Furthermore, we show that our method is able
to compete with the monolingual BERT models on
Sentiment Analysis in Table 2. By leveraging data
from non-native languages, our LIM outperforms
the English-only BERT model by 1.8% and the
Japanese-only BERT model by 0.7%, but falls behind
the Chinese-only BERT model by 1.2%. It should
be noted that BERT specifically pre-trained the
Chinese-only model to account for its unique character
tokenization. Therefore, it is still very encouraging to
see that our LIM is comparable to a specially customized
monolingual BERT model.

Language Monolingual-BERT LIM-H
English 77.7 79.5
Japanese 78.0 78.7
Chinese 74.5 73.3

Table 2. Accuracy results of Sentiment Analysis on

English, Japanese and Chinese between monolingual

BERT and LIM-H.

In Table 3, we evaluate the impact of LIM on
Sentiment Analysis via zero-shot transfer learning.
When we do not include any French annotated data for
training, we can still obtain a significant improvement
of 5.7% over the monolingual CNN model trained using
French annotated data.
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Language CNN LIM-H
French 54.0 59.7

Table 3. Accuracy results of Sentiment Analysis on

French between CNN and LIM-H. This demonstrates

a zero-shot transfer learning case for LIM-H as it

does not involve any French annotated data when

training the model.

4.2.2. Results on Low-Resource Languages For
low-resource languages, we compare both LIM-H and
LIM-M in Table 4. LIM-H demonstrates the effects of
zero-shot transfer learning on low-resource languages,
with an average of 60% accuracy. Since we do not
use any low-resource training data in LIM-H, this
shows that LIM can be used to address the cold-start
problem, where no initial model is available for a
new target low-resource language, when building such
models from scratch is costly. Furthermore, LIM-M
demonstrates how much improvement a LIM can gain
by adding only a small amount of data in low-resource
languages. In particular, by adding 4K annotated data
in each low-resource language, we obtain an average
of 11% improvement. This largely saves the cost
and time for acquiring annotated data of a new target
low-resource language by transferring the knowledge
learned from a larger amount of annotated data available
in high-resource languages.

Language LIM-H LIM-M
Danish 62.5 69.2
Swedish 56.8 68.6
Norwegian 62.0 70.3
Russian 62.1 75.8
Turkish 56.8 69.1

Table 4. Accuracy results of Sentiment Analysis on

low-resource languages. We compare the performance

of zero-shot transfer learning in LIM=H (without any

annotated data from the target languages) and

low-resource transfer training in LIM-M (only 4K

annotated data from the target languages were used

in training).

4.3. Case Study on Named Entity Recognition

Given a sentence s in a target language T ,
which consists of a series of words: {w1, ..., wm},
NER outputs a sequence of labels {l1, ..., lm}, with
respect to the named entity type e ∈ {Person,
Location, Organization, Date, Time, JobTitle,
Duration, Facility, GeographicFeature, Measure,
Ordinal, Money}. This is much more fine-grained

and complex than the traditional CoNLL NER task
that only considers 4 entity types [19, 20]. We
follow the Inside—outside—beginning (IOB2) tagging
format [21]: a B-prefix means that the tag is the
beginning of a chunk, an I-prefix indicates that the tag
is inside a chunk, and an O tag represents that a token
belongs to no chunk.

We build an LIM for NER with annotated data in 3
languages: French, Italian and German. The training set
consists of 679K data points (148K in French, 470K in
Italian and 61K in German). We randomly split 1/10
from the training set as the development set for model
selection and the rest for model training (i.e., fine-tuning
the parameters of Multilingual BERT and the sequence
labeling layer). We selected the best model of 32 batch
size, 2e-5 learning rate and 3 epochs, after fine-tuning
with different parameters (described in Section 4.2) on
the development set.

4.3.1. Compared Methods We compare LIM with
the following methods:

• BiLSTM+CRF [22] is a bidirectional LSTM with
a sequential conditional random field above it. We
use this method to train monolingual NER models
as a baseline because it has been effective and
widely used on sequence labeling tasks.

• FLAIR [23] is one of the latest NLP frameworks
that achieved state-of-the-art for sequence
labeling tasks. It models words as sequence
of characters and leverages contextual string
embeddings produced from a trained character
language model [24]. We adopt the pre-trained
multilingual FLAIR embedding to build
multilingual NER models using the FLAIR
framework.

4.3.2. Results We evaluate the models on high
quality in-house benchmark datasets for NER in various
languages including French (3870 entities), Italian
(3776 entities), and German (5023 entities)1.

First of all, we report the F-measure results of NER
on French, Italian and German. Regarding French, we
reach a significant improvement in performance of 9.9%
than BiLSTM+CRF, and 7.1% than FLAIR. Similarly,
on German, we outperform the previous methods by
6.1% and 2.4% respectively. Our LIM approach is
comparable to BiLSTM+CRF and outperforms FLAIR
by 3.5% on Italian.

1We refer to the number of entities instead of data points as one
data point can contain multiple entities.
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Language BiLSTM+CRF FLAIR LIM
French 68.0 70.8 77.9
Italian 71.5 68.0 71.5
German 64.5 68.2 70.6

Table 5. F-measure results of NER on French,

Italian and German. The BiLSTM-CRF models were

trained using monolingual data in each language

respectively. The FLAIR and LIM models were

trained using the concatenation of French, Italian and

German annotated data.

Secondly, we evaluate the effects of our LIM
approach for zero-shot transfer learning on NER.
We trained another FLAIR and LIM using only the
concatenation of French and Italian annotated data while
excluding German annotated data. Table 6 shows that
our LIM method is able to retain the performance of
58.6% while FLAIR drops to 20.3%. demonstrates
shows the power of our LIM method in accelerating the
development of models for a new language where no
annotated data is available.

Language FLAIR LIM
German 20.3 58.6

Table 6. F-measure results of NER on German

(zero-shot transfer learning). The FLAIR and LIM

models were trained using the concatenation of

French and Italian annotated data, while German

annotated data was excluded.

4.4. Discussion

Task Type While the results demonstrate the
effectiveness of LIMs on two most representative NLP
tasks, we found that LIMs are generally more effective
on a sentence classification task than a sequence labeling
task, particularly for zero-shot transfer learning. For
example, LIM outperforms the corresponding baseline
on Sentiment Analysis (Table 3), but falls behind the
corresponding baseline on NER (Table 5 and 6), when
no annotated data from the target language was used in
model training.

Language Set Powered by the multilingual
representations learned in pre-trained BERT, LIMs seem
more suitable for typologically similar languages. For
instance, the LIM-H is not as good as the model trained
using Chinese-only BERT on Sentiment Analysis,
though the difference is relatively small (Table 2).
This is consistent with the findings from multilingual
representation learning using word embeddings [6].

Data Resource Language-independent models are not
only suitable for high-resource languages, but also
very effective in low-resource languages. In particular,
adding a relatively small amount of low-resource
training data can result in a significant improvement of
performance (Table 4).

Implications These insights bring unique values to
the development and customization of natural language
understanding models and solutions in new languages.
First of all, it can be used to solve the cold-start
problem, where no initial model is available for a
new target language, when building such models from
scratch is costly. Secondly, it largely saves the
cost and time for acquiring annotated data of a new
target language by reusing data already annotated in
previously supported languages. Thirdly, it simplifies
the deployment process of a new model and save
the efforts for simultaneously maintaining multiple
monolingual models in a production setting.

5. Conclusion and Future Work

As the use of machine learning becomes more
pervasive all over the world, people speaking different
languages will come to expect seamless and customized
experience of their own. Building a language
independent model can accelerate the enablement
of machine learning and cognitive solutions in new
languages at a large scale. We demonstrate the power of
this language-independent modeling approach through a
series of experiments on multiple task types, language
sets and data resources. Our annotated data for
low-resource languages will be made publicly available.
We hope that the insights gained from these experiments
will help researchers and practitioners develop solutions
and tools that enable better scalability, integration and
operations in many other languages. In future, we will
continue to explore the effects of different combinations
of languages with respect to various end tasks. Besides,
we plan to extend the studies to more NLP tasks,
and investigate the feasibility of multi-task learning for
building a task and language independent framework.
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