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Abstract 

Forensic analysis of failed software projects 

can aid in managerial understanding of the 

issues and challenges of delivering a successful 

project. The factors and their interrelationships 

causing software project failure are not well 

understood or researched with a strong forensic-

analytic approach. Previous papers have not 

adequately explored how dynamic interaction of 

multiple factors can lead to critical events that 

ultimately portend eventual failure. This paper 

proposes the development of a System 

Dynamics (SD) model that will represent the 

key factors, their dynamic interactions, and the 

influence of exogenous events in causing 

software project failure. Forensic data will be 

used as inputs to the SD model to assist 

managers in understanding the factor 

interactions, the importance of individual factor 

metrics, as well as the sequence of interactions 

in causing possible software project failure. 

Outcomes from the model will include a 

likelihood of software project failure, possible 

factor sequences leading to failure, and 

suggestions of remediation activities that might 

mitigate eventual failure.  

1. Introduction

While numerous technical papers, blogs,

and articles have described and assessed failing 

or failed software projects, few have described 

these projects based on the component factors 

that, when evaluated according to scalar 

performance measures, can be used to assess the 

probability of failure or the diagnose the 

underlying reasons for such failure. The factors 

are composed of a number of different 

components which can be assessed relative to 

their importance to a project. Poor scores (high 

or low depending upon the component) are 

considered faults which can be used to assess the 

factors as input to the model. The issues and 

challenges of assessing software project failures 

have been described in an initial model [1,2] 

However, knowing the factors does not answer 

questions about how and why a software project 

fails, and no theory of system failures has been 

proposed or critically examined in the software 

project failure literature. 

1.1 Precious Research 

Research addressing software project 

failure recognizes many different, but 

interrelated causes of failures, and posits that the 

failure of systems is a complex and 

multidimensional problem. The analysis of 

failures is also difficult because there are 

different levels of response to perceived 

impending or detected failure ranging from 

abandonment to attempting partial or full 

recovery. An expanded literature review 

focused on identifying critical factors and their 

relationships which can constitute an analytical 

framework for assessing the potential for failure 

of a software project. 

However, the factors associated with failure 

have been observed and singled out in the 

practitioner literature, and enumerated in the 

technical literature as possible software project 

failure causes. 

A research literature survey and analysis 

was conducted to systematically identify key 

possible failure factors, and the relationships 

among the factors. The literature and discussion 

clearly indicate that a software project failure is 

not a singular or discrete short term event (e.g., 

such as falling off a cliff or firing a weapon). It 

is hypothesized to (more often) encompass a 

longitudinal sequence of actions and/or 

accumulation of critically low or poor 

performance on a number of factors that 

eventually lead to a software project’s failure 

determination or recognition. This paper reports 

on and discusses the factors from the literature 

survey. The number of factors and their 

interactions suggest that dynamic interactions of 
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multiple factors can ultimately lead to software 

project failure. 

The framework model, initially described 

in [2], has been revised and enhanced to 

incorporate additional factors extracted during 

the literature review to enable researchers to 

conduct forensic analysis of software project 

failures. It will be the basis for constructing the 

System Dynamic model. 

1.2 Literature Review 

This paper seeks to analyze and explain 

failure from a broad perspective. Thus, it sought 

widely published descriptions and discussions 

of software project failures from the academic 

and practitioner literatures. Our objective is to 

avoid attributing software failure causation to 

only intuitive views, ad hoc rules, and overly 

simplistic assumptions. We have incorporated 

defined concepts, and relations between 

concepts to address this problem by proposing a 

model based on the literature. We explain our 

approach with an example to show how forensic 

analysis is useful because of its reasoning 

contribution, qualitative distributed attribution 

to decisions, and holistic approach to the 

understanding of software project failures. 

Sixty (60) papers (available in a separate 

bibliography) from the technical literature were 

identified using search terms including “project 

failure”, “software project failure”, “failed 

projects”, etc. The searches produced several 

hundred papers that matched one or more of 

these terms from the Xplor Digital Library 

(http:\\ieeexplore.ieee.org/), IEEE CDSL, the 

ACM Digital Library (http://portal.acm.org), 

Elsevier Science Direct 

(www.sciencedirect.com), Springer Link 

(http://link.springer.com), the AIS Repository, 

and the CEUR-WS Repository.  

An initial review of the papers led to an 

identification of 14 categories based on the 

frequency of mention of relevant terms. Papers 

were selected based on their mention of a term 

from the categories and their discussion of 

success or failure of a project. A fault was 

indicated by a negative statement regarding the 

potential for success of the project. These 

categories were assigned to one or more causal 

factors. 

Table 1 presents a summary of the literature 

review used to develop a forensic analysis 

framework. 

Table 1. Literature Review Analysis 

Elements Count 

Project Visibility 2 

Management Tools & Methods 24 

System Life Cycle 5 

Time 12 

Schedule 25 

Risk 27 

Personnel Resources 36 

Communication 20 

Cost & Budget 25 

Technology 25 

Stakeholders 33 

Project Complexity 36 

Project Management 44 

Software 12 

This review and analysis revealed that most 

papers utilized anecdotal data, that 

understanding of critical factors was not present 

in the literature, and that measurements of such 

factors and their relationships to each other were 

not well understood or specified. Moreover, it 

often seemed that the software project failure 

was recognized in the eye of the beholder. 

Analysis of the data derived from the 

literature survey provided one perspective on 

the potential causes of failure of software 

projects. The distribution of causes depicted in 

Table 1 and the analysis of the reviewed papers 

– many of which reviewed several projects –

indicated that most projects fail for multiple

reasons.

The complexity and difficult of assessing 

failures as a grouping of phenomena can be seen 

with an example. One can consider a system that 

was delivered late or over budget or lacking 

some functionality. If the system was still useful 

to the customer because it provided some 

benefits, it might be hard to classify as a failure. 

Indeed, the Standish Group CHAOS 2020 report 

[3] termed 50% of IT projects as challenged or

impaired and 19% as failed, e.g., almost 3/4ths

of IT projects did not achieve their initial goals.

This observation occurs over multiple industry

sectors.

Potter [4] suggested that “success and 

failure are two sides of the same coin”. Al-

Ahmad. Fagih, et al. [5] constructed a taxonomy 

of IT Project Failure reasons. Ralph and Kelly 
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[6] described the dimensions of software

engineering success. However, their work does

not suggest that failure is the absence of success.

Different types of failure have also been

explored from a developer’s and manager’s

perspective by Lundin and Wictorin [7].

[A comprehensive discussion of the varying 

reasons for project failure is beyond the scope of 

this paper. A separate bibliography provides a 

longer list of relevant papers.]  

1.3 Case Study: Failing and Recovery 

Cohen [9] has led many efforts to analyze 

potential failure and develop recovery strategies 

for these projects. This section presents a 

synopsis of one such effort which would help to 

drive our System Dynamics model 

development. 

A large institution operating globally 

needed to modernize their legacy system. 

Having been built to conform to specific needs 

over decades, the system had grown into a 

patchwork of technologies, inconsistent 

implementations, and ill-defined standards and 

was run by a network of local, independent, 

administrators who had absolute control and 

unfettered access to any component on their 

segment of the network.  Like many non-IT 

focused organizations, they went through an 

extensive contracting award process and 

eventually selected a very large, capable, well-

established firm to lead and deliver an $80M, 4-

year, mission critical program. 

3.5 years and ~$70M later, they had: 

 followed a rigorous methodology;

 staffed with senior program leads having a

wealth of experience to draw upon;

 engaged representative users, legacy system

administrators, and organizational leads;

 adopted the key mission standards and sought

more recent standards to migrate to;

 produced a small mountain of documentation;

 created a structured meeting rhythm to ensure

engagement and transparency;

 created a huge set of tests to verify the

solutions quality; and

 Maintained a voluminous risk register that

was managed weekly and referenced by all.

Yet the program was facing what seemed to 

be certain failure.  There was no software. 

Contracts were reviewed and discussed, logical 

and clear reasons were provided describing how 

this project state was reached. A small group of 

project participants sought a way to move the 

project forward and deliver a working solution 

out to the users.  A recovery lead was identified 

and with no time and little funding asked to 

deliver a working system.   

After several interviews, shadowing program 

leadership though various meetings, and reading 

the small mountain of documents, what was 

presented did *not* identify responsibility 

instead focusing on causes of the failure. As a 

result, the recovery team quickly provided an 

actionable plan to remediate issues as well as 

build and deploy a solution to the field. A 

summary of that plan is presented in the 

following table. 

Table 2. Case Study: Issues and Actions 

Issue Action 

Stakeholders 

Critical goals were not 

resolved to an 

architecture or design. 

Goal: System must 

support the mission part 

of which supports 

life/safety workloads. 

Goal: The system must 

be usable side by side 

with the legacy system 

as the transition will be 

lengthy. 

Baseline the 

Architecture to meet 

goals. 

Constraint: there will be 

no more money or time 

for extensive design. 

Revise staffing to 

focus on experience & 

speed. 

Dependencies 

Inter-organizational 

coordination blocking 

deployment planning. 

interorganizational 

acceptance / sign-off 

Replace meeting 

rhythm with 

communication and 

approval discussions 

Use of tools 

No promotion 

environments 

(dev>test>build) 

Build needed 

environments. 

Bespoke components 

with limited 

knowledgeable staff 

Align tools to new 

team skills. 

Reliance on a new tool 

to solve complexity 

without staff 

experienced on the tool 

Remove tool 

dependencies. 

Key Skills 

No User Liaison 

proactively informing 

the global population. 

Create liaisons and 

fund global “tours”. 
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No staff experience in 

complex near real time 

architecture or design. 

Include needed 

experience in new 

staffing. 

No experience doing 

rigorous process-based 

development on large 

systems. 

Include needed 

experience in new 

staffing. 

Management 

Owning organization 

was not “respected” by 

the management in the 

user community 

Leverage team 

reputation and 

conduct extensive 

outreach programs. 

Business outcomes had 

been abdicated to 

technical goals 

Technology 

Nearly religious belief 

that customizing a 

commercial product 

would solve things, it 

didn’t. 

Remove technology 

dependence. 

* With little to no implemented software,

technology was a limited source of concern

Note: This organization cannot be named due to 

the sensitivity of the events. 

The resulting solution was ready for 

production deployment on time and within 

available funds. New builds were being released 

to the client and back-end system with minimal 

disruption.  Full global roll out completed within 

2 years after which the solution entered a devops 

life cycle and maintained continuous release for 

more than 10 years.   

2. Methodology

This paper views software project failures

as the outcome of a system of dynamic factors 

that include context, components, inflection 

points, events, and decisions. The literature 

review identified causal factors from which we 

developed a forensic analysis framework. This 

framework, through causal mapping will drive 

the development of a system dynamics model 

that will enable the evaluation of software 

project failure based on data collected from the 

forensic analysis of a software project. 

2.1 Research Questions 

We identified two research questions which 

led to the definition of our technical approach: 

RQ1: What are the components of the factors 

that impact and influence major software 

project failures, and the faults that can occur for 

the components making up the factors? 

RQ2: How can we model failure factors and 

their relationships to understand their impact 

on project success or failure and estimate the 

likelihood of project failure? 

2.2 Forensic Analysis Model 

The forensic analysis model (FAM), 

depicted in Figure 1, is a multilevel, 

accumulative model consisting of events, 

decisions, causal factors, project metrics, and a 

figure of merit (FoM) as described in Table 2. 

This forensic analysis model is an enhanced 

version of the model originally proposed in [1]. 

Table 3. Forensic Analysis Model Elements 

Event: an action that is associated with the 

technology, such as “module A failed to meet 

requirement 1.3”. 

Decision: an action taken by project personnel or 

external actors. For example, a project manager 

may decide “not to hire Joe because his salary 

requirements exceeds the budget for that 

position”. 

Fault: an event or decision receiving a low metric 

score that is believed to affect the ability of an 

organization to complete a software project 

because it exploits a vulnerability in software 

project management. 

Fault Class: a set of faults that affects one or more 

causal factors. 

Causal Factor: an opportunity in a software 

project for assessing whether a project is 

succeeding or failing. 

Inflection Point: where critical decisions have to 

be made about the potential success or failure of a 

software project and the application of recovery 

procedures [1]. 

Project Metric: a weighted perspective on the 

effect of causal factors. 

Figure of Merit: a single number on a 

predetermined scale that indicates potential 

success or failure. 

Events and decisions are statements about a 

software project. 

A catastrophic fault may cause a software 

project to fail suddenly. Anecdotal evidence 

suggests that failure is an accumulation of faults 

(over some time period). The range of the metric 

scale and the threshold(s) at which a fault is 

determined depends on a project and its domain. 

Causal factors represent opportunities for 

taking remediative action if a software project 

appears to be failing as discussed in [1]. In any 

software project, some actions will be more 

important than others. Determining relative 
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importance is key to determining if recovery is 

possible, developing a plan for recovery, and 

applying remediative or recovery procedures. 

Project metrics directly affect the 

confidence that project management, 

organizations, and customers will have in 

potential project success because they can be 

direct indicators of potential failure. 

The Figure of Merit is determined on a 

project-by-project basis for a particular domain. 

Projects falling significantly below the 

threshold lead to a terminal inflection point, 

which is a decision to terminate the project [1]. 

The Forensic Analysis Model, developed 

from our literature survey, satisfies RQ1. 

Continued review of the technical literature and 

case studies will be used to refine this model 

further in conjunction with experiments 

performed using the SD model. 

3. Technical Approach

The goal of this research is to develop a

System Dynamics (SD) model that will allow 

assessment of the potential for success or failure 

of a software project based on data collected on 

the events and decisions made during the 

project. To construct the SD model, we will use 

Causal Mapping [10] as suggested by our 

reviewer as this will enable us to translate 

instances of the elements into the components of 

the SD model. 

We are also considering using Sowa’s 

Conceptual Graphs (CG) [11] as a 

complementary technique to assist in 

eliminating possible ambiguity due to natural 

language. We are also considering Unified 

Modeling Language (UML) [12] to provide 

formal descriptions of the design.  

3.1 Causal Mapping 

Causal Mapping was developed by Eden 

[13] to handle multiple causal flows in decision-

making processes. It was intended to facilitate

the understanding of how events occurring in

one area could impact events occurring in or

more other areas. It emphasizes developing a

holistic or systemic view of what has occurred

or is occurring, in our case, within a project.

Causal Mapping (CM) has been used to 

explore human decision making processes in a 

variety of disciplines. We intend to use its 

principles to not only capture decisions, but also 

to capture events occurring in systems that may 

not be the direct result of human decisions, but 

indirectly result from human decisions, as 

described in selected technical literature. 

3.1.1 CM Advantages & Disadvantages 

 Powell [14] has developed a Guide to 

Causal Mapping, which draw inspiration from 

Pearl and Mackenzie’s [15] The Book of Why. 

He has identified several advantages (A) and 

disadvantages (D) of Causal Mapping, which 

are presented in Table 4.  

Table 4. CM Advantages & Disadvantages 

(A) Identifies and elaborates domain

structures through chains of argumentation.

(A) Captures networks of effects for events

and decisions.

(A) Directly understand causality based on

narrative

(D) Lack of ability to recognize significant

changes in the environment

(D) Lack of longitudinal data and

perspective

(D) Failure to recognize the

creation/insertion of previously unknown

causative factors

(D) Failure to determine weights of causal

factors

3.1.2 Applying Causal Mapping 

We will apply CM to analyze the relevant 

technical literature that was identified through 

our literature search. We will extract events and 

decisions, their relationships, and their effects 

through our analysis.  

An example of direct human decision 

making is illustrated by the hiring of a new 

programmer for a project. The multiple effects 

of this decision include: need to educate the 

programmer in the system structure, delaying 

some aspects of software development, drawing 

upon existing team members time to train the 

new person, etc. One decision and its associated 

event have multiple (potentially negative) 

impacts on various aspects of the project. Table 

5 identifies events and decisions. 

Table 5. CM Example 

Events Identify need for new programmer 

Hire new programmer 

Decisions Train new programmer 

Divert Staff to training task 
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Delay SW development to train 

new programmer 

Possible 

Indirect 

Decision 

Delay SW module delivery 

Reschedule SW module 

development and/or delivery 

An example of an indirect effect is an error 

in stating certain requirements that leads to 

errors in design which leads to errors in software 

development which leads to errors occurring in 

software testing. One error can lead to a 

sequence of errors or a spreading wavelet of 

errors if multiple elements of the system are 

affected. 

3.1.3 Applying CG and UML 

As seen in Table x, the statements reflect 

high-level events. Detailed analysis will reveal 

discrete subordinate variables to be considered 

which must be included in the SD model. CG 

provides techniques for decomposing activities 

to reveal interdependencies in elements of an 

activity. UML provides a formal modeling 

mechanism with temporal aspects that can assist 

in identifying concurrency issues. 

3.2 Analysis using System Dynamics 

Ackerman, Eden and Williams [16] applied 

System Dynamics (SD) to examine dynamic 

causality in decision-making within a project to 

understand and quantify the resulting effects. 

They explored interrelationships among causal 

effects that led to system problems leading to 

project failure. Using this approach, they 

identified disruptive actions in the complex, 

interacting parts of a project and followed them 

to the resulting outcomes. They conducted 

“what-if” analyses by varying the model 

parameters to assess possible remediation 

actions. 

Other researchers have also used SD 

models to examine decision threads in complex 

projects to assess effects and outcomes. But, few 

SD models have explicitly focused on 

determining how projects fail as the result of 

interrelationships among these threads. 

As Ackermann and Eden note, SD models 

accommodate multiple causality and feedback. 

Since causality is the basis for understanding 

project success or failure, causal mapping is a 

good technique for helping to identify the 

concepts and relationships to be implemented in 

an SD model because its output can be directly 

translated to the components of an SD model. 

3.2.1 SD Rationale 

A systems dynamics approach employs 

differential equations as a mathematical tool to 

understand the nonlinear behavior of complex 

systems and assess the rates of change of causal 

factors in a software development project. It 

incorporates state variables as objects to 

represent the state of a system. The model has a 

state variable representing the current state of a 

component (success or failure). An SD model 

uses derivatives to define rates of change in state 

variables that specify the tendency to be 

successful or to fail over time based upon the 

measured change in the component values. The 

derivative aggregates all changes to show the 

net change in the state variable over time. The 

structure of the model will describe the effects 

of state variables, their relationships, 

remediative actions, and the feedback from such 

actions in affecting recovery or minimizing the 

degree of failure. 

3.2.2 Key SD Concepts 

An SD model [17] is based on several key 

concepts which are described in Table 6. 

Table 6. SD Key Concepts 

Stocks are an accumulation of material, 

information, or other resources in a system over 

time. The quantity of a stock reflects the net 

changes in its inflows and outflows. 

Flows are transfers of material, information, or 

other resources between stocks and/or the 

environment. 

Sources represent the evaluated data collected 

about events and decisions that are inflows to 

stocks. 

Sinks represent the repository of data at the 

conceptual boundary of the model that are 

outflows from stocks. 

Rates are variables that control the flows of 

information into and out of stocks.  

Auxiliaries are variables that modify information 

as it passes from stocks to rates. 

Feedback loops can amplify or modify the 

quantity of stocks over time and support the 

implementation of iterative decision making in SD 

models. 
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3.2.3 Model Building 

An SD model for forensic analysis of 

software projects will proceed through several 

stages as briefly described in Table 7. 

Table 7. SD Model Development 

Step Description 

1 Identify Input/Output Variables: Some of 

these are derived directly from the FAM; 

some will be exogeneous. These will 

suggest the initial model boundary. They 

may also supply weights to internal 

variables. 

2 Review literature for endogeneous 

variables representing internal states of 

the model (rates, auxiliaries). 

3 Define flows that represent the causality 

using causal loop diagrams (CLDs). 

4 Define equations for stocks, rates, and 

auxiliaries. 

5 Implement the SD model using VENSIM; 

develop visualizations of model behavior. 

6 Develop test suites for several scenarios. 

Perform sensitivity and validation studies. 

Conduct “What-If” experiments. 

3.2.4 Proposed Model Structure 

Events, decisions, causal factors, and 

project metrics will be represented as nodes in 

the SD model. The value of each node will be 

dynamically computed based on the inflows and 

outflows to each node. 

Some inflows will be generated by 

exogenous factors that exist outside of the 

project, such as weather, budget reductions, and 

supply delays. For experimentation purposes, 

exogeneous factors can be generated by lookup 

tables or random variables. 

Values assigned to each node can be 

adjusted based on the perceived evaluation by 

the users (project managers, stakeholders, etc.). 

Links will connect nodes to represent 

relationships and to the causal factors to which 

they are associated. Causal factor nodes will be 

connected to the project metric nodes which will 

connected to a summary FoM node. 

3.2.5 The Benefit of System Dynamics 

Several benefits accrue to using system 

dynamics as our modeling technology as 

described in Table 8. 

Table 8. Benefits of System Dynamics 

Ability to simulate the effects of events and 

decisions in a model of a complex system over 

time. 

Specific events can be activated or terminated 

Recurring events can have their values adjusted 

within a specified range 

Variables are recalculated at each time step to 

reflect their current values.  

Yields a deeper level of understanding the 

interdependencies of elements than textual 

descriptions. 

Provides a clear structural representation of the 

problem or process. 

Provides a “hands-on” tool to conduct “what if” 

experiments. 

Using GUI-based systems, such as 

VENSIM [18], a user can adjust the values of 

the components, weights and the exogenous 

factors using controls (e.g., like rheostats). 

Controls can also be used to activate or 

deactivate components of the SD model to 

explore “what-if” scenarios. One can also 

visualize the change in causal factors, project 

metrics, and the FoM using graphs or other 

tools, and assess the limits and strengths of 

factors with simulations. 

3.5.2 Uncertainty 

A significant factor is uncertainties: the 

“known unknowns and the unknown 

unknowns”. Known unknowns, as Islam et al. 

[19] note, are “related to time-to-market, budget

and schedule estimation, technology evolution,

and stakeholders’ expectations”. With project

management experience, some estimates of the

impact, if not the severity, of these unknowns

can be made and factored into the planning

process. It is unknown unknowns for which no

estimates nor reasonable guesses can be made.

It is noted that risk and uncertainty are 

related, but are not the same concept. 

Uncertainty is the unknown, whereas risk is a 

recognized element that can go wrong or fail. 

Risks can be managed, but uncertainty can only 

be reduced. One can assess and assert the 

likelihood of a risk and measure its perceived 

value fluctuations during a project. One can 

reduce uncertainty through application of 

various managerial strategies [20], and the 

understanding that as time progresses 

uncertainty is reduced. 
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4. Assessing Events and Decisions

The stocks and flows will be represented as

numeric values. Each event and decision in the 

model will be evaluated according to risk and 

reward tables developed by Cohen [2] shown in 

Tables 9 and 10. Values for the Causal Factors, 

Project Metrics, and the Figure of Merit will be 

“rolled up” by the SD equations. 

Table 9. Risk Table 

0 No impact 

-1 Negligible impact, easily resolved 

-2 Likely to create additional tasks 

-3 Expands the scope of the issue 

-4 Degrades team morale and/or 

communication 

-5 Requires a notable response 

-6 Increases cost or delays schedule 

-7 Injects current and future issues 

-8 Degrades solution quality 

-9 Shows critical feature failure 

-10 Prevents product/milestone delivery 

Table 10. Reward Table 

0 No impact 

1 Improve poor performance to nominal 

2 Reduce isolate effort of effort 

3 Broadly improves things 

4 Improves team morale/communications 

5 Yields measurable improvement 

6 Reduces cost or schedule 

7 Resolves current issues or reduces 

severity of future issues 

8 Improves overall quality significantly 

9 Ensures feature delivery 

10 Ensures total product/milestone delivery 

The tables apply weighted criteria to assess 

risk which may significantly affect the potential 

for success and reward associated with 

remediation activities which may significantly 

affect the potential for partial or whole recovery. 

Using the model, a qualitative review of project 

activities is converted to a quantitative 

assessment by this model.  

Risks, representing negative events and 

decisions, due to events and decisions flow into 

and out of stocks. Rewards, due to positive 

events and decisions, also flow into and out of 

stocks. 

Traditional approaches to risk management 

often focus on single agents, single inflows, or 

single outflows, and linear progression. As 

noted above, there are many competing and, 

possibly, correlated risks that can affect project 

success or failure. SD supports the notion of 

multiple causality by allowing stocks to have 

multiple inflows and to affect multiple stocks 

via multiple outflows. Using feedback loops, SD 

supports the concept of iterative cause and 

effect. 

This risk-reward model was used 

previously [2] was applied to a limited 

description of the Advanced Automation 

System (AAS) project of the Federal Aviation 

Administration [21]. The assessment was 

presented in Table 7 at the end of that paper. Of 

the 21 statements evaluated, only three had a 

positive impact on the program. The description 

clearly identified a significant negative impact 

that portended the likely failure of the project. 

The methodology for applying this assessment 

process will be described in a forthcoming book 

[9]. 

5. Observation

The inevitability of project failure seems to

be mythical based on the accumulated anecdotal 

evidence, but unsupported by actual metrics and 

analysis. Software projects can and should be 

successful. Successfully managing projects and 

developing software is described by the plethora 

of articles, books, and conferences. Further, the 

potential pitfalls and problem areas are known, 

and guidelines for avoiding them are well 

described. A system dynamics assessment can 

assist project managers and stakeholders in 

understanding where, when, and perhaps why a 

project is succeeding or failing, and, if failing, 

how serious the problem is. 

6. Conclusions

The technical literature review and

anecdotes demonstrated that there is limited 

understanding from a project management 

perspective about what are significant causes of 

software project failure, and how to recognize 

them in real time. There are few tools and 

methods and little understanding of how to 

perform ongoing assessments and forensic 

analysis to determine the likelihood of project 

failure during the execution of the project. 

This suggests that (1) systems are not 

designed and developed with assessable metrics 

and data, and (2) that projects are not structured 

to address system assessment as a continuous 

process rather than as a culminating activity 
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when potential failure is impending. This is a 

different metric from performance on isolated 

software project descriptive and reporting 

measures. Assessability is an objective that 

means the ability to determine whether or not 

the totality of a software project has achieved its 

interim and final goals during system 

development.  

Computing assessability requires metrics 

for each of the causal factors. Many have been 

suggested in the technical literature, but there is 

no consensus on a preferred subset. This paper 

has begun to identify a set of components that 

can lead to a process for evaluating causal 

factors. 

This paper has proposed using a System 

Dynamics model to provide a continuous 

assessment tool for evaluating project success or 

failure and indicating what events and decisions 

support these outcomes. 

7. Future Work

This paper has not addressed the different

methodologies used in project management nor 

the use of formal methods. While formal 

methods can increase confidence that a project 

may not fail or may fail gracefully, they cannot 

“prove or not prove” that a software project will 

not fail. 

Previous work identifies a set of activities 

required to address software project failures [2}. 

It is suggested that these efforts include two 

additional tasks: 

1. Develop Models of software Failure: There

are many models of IT system success, such as

Delone and McLean [22], but few models of

software failure. Forensic analysis can provide

the data to construct and validate such models.

Through a case study of a particular project, we

will test, refine, and validate the SD model.

2. Extend Model to Identify Remediation and

Recovery Mechanisms: Our eventual goal is not

only to be able to predict potential failure, but

then to examine and suggest possible

remediative actions to lead to recovery.
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