

Applying Forensic Analysis Factors to Construct a Systems Dynamics

Model for Failed Software Projects

Stephen Kaisler, D.Sc.

SHK & Associates

Laurel, MD 20723

skaisler1@comcast.net

William Money, Ph.D.

The Citadel

Charleston, SC 29409

wmoney@citadel.edu

Stephen Cohen

Microsoft Corporation

Redmond, WA 98052

Stephen.cohen@microsoft.com

Abstract

Forensic analysis of failed software projects

can aid in managerial understanding of the

issues and challenges of delivering a successful

project. The factors and their interrelationships

causing software project failure are not well

understood or researched with a strong forensic-

analytic approach. Previous papers have not

adequately explored how dynamic interaction of

multiple factors can lead to critical events that

ultimately portend eventual failure. This paper

proposes the development of a System

Dynamics (SD) model that will represent the

key factors, their dynamic interactions, and the

influence of exogenous events in causing

software project failure. Forensic data will be

used as inputs to the SD model to assist

managers in understanding the factor

interactions, the importance of individual factor

metrics, as well as the sequence of interactions

in causing possible software project failure.

Outcomes from the model will include a

likelihood of software project failure, possible

factor sequences leading to failure, and

suggestions of remediation activities that might

mitigate eventual failure.

1. Introduction

While numerous technical papers, blogs,

and articles have described and assessed failing

or failed software projects, few have described

these projects based on the component factors

that, when evaluated according to scalar

performance measures, can be used to assess the

probability of failure or the diagnose the

underlying reasons for such failure. The factors

are composed of a number of different

components which can be assessed relative to

their importance to a project. Poor scores (high

or low depending upon the component) are

considered faults which can be used to assess the

factors as input to the model. The issues and

challenges of assessing software project failures

have been described in an initial model [1,2]

However, knowing the factors does not answer

questions about how and why a software project

fails, and no theory of system failures has been

proposed or critically examined in the software

project failure literature.

1.1 Precious Research

Research addressing software project

failure recognizes many different, but

interrelated causes of failures, and posits that the

failure of systems is a complex and

multidimensional problem. The analysis of

failures is also difficult because there are

different levels of response to perceived

impending or detected failure ranging from

abandonment to attempting partial or full

recovery. An expanded literature review

focused on identifying critical factors and their

relationships which can constitute an analytical

framework for assessing the potential for failure

of a software project.

However, the factors associated with failure

have been observed and singled out in the

practitioner literature, and enumerated in the

technical literature as possible software project

failure causes.

A research literature survey and analysis

was conducted to systematically identify key

possible failure factors, and the relationships

among the factors. The literature and discussion

clearly indicate that a software project failure is

not a singular or discrete short term event (e.g.,

such as falling off a cliff or firing a weapon). It

is hypothesized to (more often) encompass a

longitudinal sequence of actions and/or

accumulation of critically low or poor

performance on a number of factors that

eventually lead to a software project’s failure

determination or recognition. This paper reports

on and discusses the factors from the literature

survey. The number of factors and their

interactions suggest that dynamic interactions of

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 1178
URI: https://hdl.handle.net/10125/79477
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

mailto:skaisler1@comcast.net

multiple factors can ultimately lead to software

project failure.

The framework model, initially described

in [2], has been revised and enhanced to

incorporate additional factors extracted during

the literature review to enable researchers to

conduct forensic analysis of software project

failures. It will be the basis for constructing the

System Dynamic model.

1.2 Literature Review

This paper seeks to analyze and explain

failure from a broad perspective. Thus, it sought

widely published descriptions and discussions

of software project failures from the academic

and practitioner literatures. Our objective is to

avoid attributing software failure causation to

only intuitive views, ad hoc rules, and overly

simplistic assumptions. We have incorporated

defined concepts, and relations between

concepts to address this problem by proposing a

model based on the literature. We explain our

approach with an example to show how forensic

analysis is useful because of its reasoning

contribution, qualitative distributed attribution

to decisions, and holistic approach to the

understanding of software project failures.

Sixty (60) papers (available in a separate

bibliography) from the technical literature were

identified using search terms including “project

failure”, “software project failure”, “failed

projects”, etc. The searches produced several

hundred papers that matched one or more of

these terms from the Xplor Digital Library

(http:\\ieeexplore.ieee.org/), IEEE CDSL, the

ACM Digital Library (http://portal.acm.org),

Elsevier Science Direct

(www.sciencedirect.com), Springer Link

(http://link.springer.com), the AIS Repository,

and the CEUR-WS Repository.

An initial review of the papers led to an

identification of 14 categories based on the

frequency of mention of relevant terms. Papers

were selected based on their mention of a term

from the categories and their discussion of

success or failure of a project. A fault was

indicated by a negative statement regarding the

potential for success of the project. These

categories were assigned to one or more causal

factors.

Table 1 presents a summary of the literature

review used to develop a forensic analysis

framework.

Table 1. Literature Review Analysis

Elements Count

Project Visibility 2

Management Tools & Methods 24

System Life Cycle 5

Time 12

Schedule 25

Risk 27

Personnel Resources 36

Communication 20

Cost & Budget 25

Technology 25

Stakeholders 33

Project Complexity 36

Project Management 44

Software 12

This review and analysis revealed that most

papers utilized anecdotal data, that

understanding of critical factors was not present

in the literature, and that measurements of such

factors and their relationships to each other were

not well understood or specified. Moreover, it

often seemed that the software project failure

was recognized in the eye of the beholder.

Analysis of the data derived from the

literature survey provided one perspective on

the potential causes of failure of software

projects. The distribution of causes depicted in

Table 1 and the analysis of the reviewed papers

– many of which reviewed several projects –

indicated that most projects fail for multiple

reasons.

The complexity and difficult of assessing

failures as a grouping of phenomena can be seen

with an example. One can consider a system that

was delivered late or over budget or lacking

some functionality. If the system was still useful

to the customer because it provided some

benefits, it might be hard to classify as a failure.

Indeed, the Standish Group CHAOS 2020 report

[3] termed 50% of IT projects as challenged or

impaired and 19% as failed, e.g., almost 3/4ths

of IT projects did not achieve their initial goals.

This observation occurs over multiple industry

sectors.

Potter [4] suggested that “success and

failure are two sides of the same coin”. Al-

Ahmad. Fagih, et al. [5] constructed a taxonomy

of IT Project Failure reasons. Ralph and Kelly

Page 1179

http://www.sciencedirect.com/

[6] described the dimensions of software

engineering success. However, their work does

not suggest that failure is the absence of success.

Different types of failure have also been

explored from a developer’s and manager’s

perspective by Lundin and Wictorin [7].

[A comprehensive discussion of the varying

reasons for project failure is beyond the scope of

this paper. A separate bibliography provides a

longer list of relevant papers.]

1.3 Case Study: Failing and Recovery

Cohen [9] has led many efforts to analyze

potential failure and develop recovery strategies

for these projects. This section presents a

synopsis of one such effort which would help to

drive our System Dynamics model

development.

A large institution operating globally

needed to modernize their legacy system.

Having been built to conform to specific needs

over decades, the system had grown into a

patchwork of technologies, inconsistent

implementations, and ill-defined standards and

was run by a network of local, independent,

administrators who had absolute control and

unfettered access to any component on their

segment of the network. Like many non-IT

focused organizations, they went through an

extensive contracting award process and

eventually selected a very large, capable, well-

established firm to lead and deliver an $80M, 4-

year, mission critical program.

3.5 years and ~$70M later, they had:

 followed a rigorous methodology;

 staffed with senior program leads having a

wealth of experience to draw upon;

 engaged representative users, legacy system

administrators, and organizational leads;

 adopted the key mission standards and sought

more recent standards to migrate to;

 produced a small mountain of documentation;

 created a structured meeting rhythm to ensure

engagement and transparency;

 created a huge set of tests to verify the

solutions quality; and

 Maintained a voluminous risk register that

was managed weekly and referenced by all.

Yet the program was facing what seemed to

be certain failure. There was no software.

Contracts were reviewed and discussed, logical

and clear reasons were provided describing how

this project state was reached. A small group of

project participants sought a way to move the

project forward and deliver a working solution

out to the users. A recovery lead was identified

and with no time and little funding asked to

deliver a working system.

After several interviews, shadowing program

leadership though various meetings, and reading

the small mountain of documents, what was

presented did *not* identify responsibility

instead focusing on causes of the failure. As a

result, the recovery team quickly provided an

actionable plan to remediate issues as well as

build and deploy a solution to the field. A

summary of that plan is presented in the

following table.

Table 2. Case Study: Issues and Actions

Issue Action

Stakeholders

Critical goals were not

resolved to an

architecture or design.

Goal: System must

support the mission part

of which supports

life/safety workloads.

Goal: The system must

be usable side by side

with the legacy system

as the transition will be

lengthy.

Baseline the

Architecture to meet

goals.

Constraint: there will be

no more money or time

for extensive design.

Revise staffing to

focus on experience &

speed.

Dependencies

Inter-organizational

coordination blocking

deployment planning.

interorganizational

acceptance / sign-off

Replace meeting

rhythm with

communication and

approval discussions

Use of tools

No promotion

environments

(dev>test>build)

Build needed

environments.

Bespoke components

with limited

knowledgeable staff

Align tools to new

team skills.

Reliance on a new tool

to solve complexity

without staff

experienced on the tool

Remove tool

dependencies.

Key Skills

No User Liaison

proactively informing

the global population.

Create liaisons and

fund global “tours”.

Page 1180

No staff experience in

complex near real time

architecture or design.

Include needed

experience in new

staffing.

No experience doing

rigorous process-based

development on large

systems.

Include needed

experience in new

staffing.

Management

Owning organization

was not “respected” by

the management in the

user community

Leverage team

reputation and

conduct extensive

outreach programs.

Business outcomes had

been abdicated to

technical goals

Technology

Nearly religious belief

that customizing a

commercial product

would solve things, it

didn’t.

Remove technology

dependence.

* With little to no implemented software,

technology was a limited source of concern

Note: This organization cannot be named due to

the sensitivity of the events.

The resulting solution was ready for

production deployment on time and within

available funds. New builds were being released

to the client and back-end system with minimal

disruption. Full global roll out completed within

2 years after which the solution entered a devops

life cycle and maintained continuous release for

more than 10 years.

2. Methodology

This paper views software project failures

as the outcome of a system of dynamic factors

that include context, components, inflection

points, events, and decisions. The literature

review identified causal factors from which we

developed a forensic analysis framework. This

framework, through causal mapping will drive

the development of a system dynamics model

that will enable the evaluation of software

project failure based on data collected from the

forensic analysis of a software project.

2.1 Research Questions

We identified two research questions which

led to the definition of our technical approach:

RQ1: What are the components of the factors

that impact and influence major software

project failures, and the faults that can occur for

the components making up the factors?

RQ2: How can we model failure factors and

their relationships to understand their impact

on project success or failure and estimate the

likelihood of project failure?

2.2 Forensic Analysis Model

The forensic analysis model (FAM),

depicted in Figure 1, is a multilevel,

accumulative model consisting of events,

decisions, causal factors, project metrics, and a

figure of merit (FoM) as described in Table 2.

This forensic analysis model is an enhanced

version of the model originally proposed in [1].

Table 3. Forensic Analysis Model Elements

Event: an action that is associated with the

technology, such as “module A failed to meet

requirement 1.3”.

Decision: an action taken by project personnel or

external actors. For example, a project manager

may decide “not to hire Joe because his salary

requirements exceeds the budget for that

position”.

Fault: an event or decision receiving a low metric

score that is believed to affect the ability of an

organization to complete a software project

because it exploits a vulnerability in software

project management.

Fault Class: a set of faults that affects one or more

causal factors.

Causal Factor: an opportunity in a software

project for assessing whether a project is

succeeding or failing.

Inflection Point: where critical decisions have to

be made about the potential success or failure of a

software project and the application of recovery

procedures [1].

Project Metric: a weighted perspective on the

effect of causal factors.

Figure of Merit: a single number on a

predetermined scale that indicates potential

success or failure.

Events and decisions are statements about a

software project.

A catastrophic fault may cause a software

project to fail suddenly. Anecdotal evidence

suggests that failure is an accumulation of faults

(over some time period). The range of the metric

scale and the threshold(s) at which a fault is

determined depends on a project and its domain.

Causal factors represent opportunities for

taking remediative action if a software project

appears to be failing as discussed in [1]. In any

software project, some actions will be more

important than others. Determining relative

Page 1181

importance is key to determining if recovery is

possible, developing a plan for recovery, and

applying remediative or recovery procedures.

Project metrics directly affect the

confidence that project management,

organizations, and customers will have in

potential project success because they can be

direct indicators of potential failure.

The Figure of Merit is determined on a

project-by-project basis for a particular domain.

Projects falling significantly below the

threshold lead to a terminal inflection point,

which is a decision to terminate the project [1].

The Forensic Analysis Model, developed

from our literature survey, satisfies RQ1.

Continued review of the technical literature and

case studies will be used to refine this model

further in conjunction with experiments

performed using the SD model.

3. Technical Approach

The goal of this research is to develop a

System Dynamics (SD) model that will allow

assessment of the potential for success or failure

of a software project based on data collected on

the events and decisions made during the

project. To construct the SD model, we will use

Causal Mapping [10] as suggested by our

reviewer as this will enable us to translate

instances of the elements into the components of

the SD model.

We are also considering using Sowa’s

Conceptual Graphs (CG) [11] as a

complementary technique to assist in

eliminating possible ambiguity due to natural

language. We are also considering Unified

Modeling Language (UML) [12] to provide

formal descriptions of the design.

3.1 Causal Mapping

Causal Mapping was developed by Eden

[13] to handle multiple causal flows in decision-

making processes. It was intended to facilitate

the understanding of how events occurring in

one area could impact events occurring in or

more other areas. It emphasizes developing a

holistic or systemic view of what has occurred

or is occurring, in our case, within a project.

Causal Mapping (CM) has been used to

explore human decision making processes in a

variety of disciplines. We intend to use its

principles to not only capture decisions, but also

to capture events occurring in systems that may

not be the direct result of human decisions, but

indirectly result from human decisions, as

described in selected technical literature.

3.1.1 CM Advantages & Disadvantages

 Powell [14] has developed a Guide to

Causal Mapping, which draw inspiration from

Pearl and Mackenzie’s [15] The Book of Why.

He has identified several advantages (A) and

disadvantages (D) of Causal Mapping, which

are presented in Table 4.

Table 4. CM Advantages & Disadvantages

(A) Identifies and elaborates domain

structures through chains of argumentation.

(A) Captures networks of effects for events

and decisions.

(A) Directly understand causality based on

narrative

(D) Lack of ability to recognize significant

changes in the environment

(D) Lack of longitudinal data and

perspective

(D) Failure to recognize the

creation/insertion of previously unknown

causative factors

(D) Failure to determine weights of causal

factors

3.1.2 Applying Causal Mapping

We will apply CM to analyze the relevant

technical literature that was identified through

our literature search. We will extract events and

decisions, their relationships, and their effects

through our analysis.

An example of direct human decision

making is illustrated by the hiring of a new

programmer for a project. The multiple effects

of this decision include: need to educate the

programmer in the system structure, delaying

some aspects of software development, drawing

upon existing team members time to train the

new person, etc. One decision and its associated

event have multiple (potentially negative)

impacts on various aspects of the project. Table

5 identifies events and decisions.

Table 5. CM Example

Events Identify need for new programmer

Hire new programmer

Decisions Train new programmer

Divert Staff to training task

Page 1182

Delay SW development to train

new programmer

Possible

Indirect

Decision

Delay SW module delivery

Reschedule SW module

development and/or delivery

An example of an indirect effect is an error

in stating certain requirements that leads to

errors in design which leads to errors in software

development which leads to errors occurring in

software testing. One error can lead to a

sequence of errors or a spreading wavelet of

errors if multiple elements of the system are

affected.

3.1.3 Applying CG and UML

As seen in Table x, the statements reflect

high-level events. Detailed analysis will reveal

discrete subordinate variables to be considered

which must be included in the SD model. CG

provides techniques for decomposing activities

to reveal interdependencies in elements of an

activity. UML provides a formal modeling

mechanism with temporal aspects that can assist

in identifying concurrency issues.

3.2 Analysis using System Dynamics

Ackerman, Eden and Williams [16] applied

System Dynamics (SD) to examine dynamic

causality in decision-making within a project to

understand and quantify the resulting effects.

They explored interrelationships among causal

effects that led to system problems leading to

project failure. Using this approach, they

identified disruptive actions in the complex,

interacting parts of a project and followed them

to the resulting outcomes. They conducted

“what-if” analyses by varying the model

parameters to assess possible remediation

actions.

Other researchers have also used SD

models to examine decision threads in complex

projects to assess effects and outcomes. But, few

SD models have explicitly focused on

determining how projects fail as the result of

interrelationships among these threads.

As Ackermann and Eden note, SD models

accommodate multiple causality and feedback.

Since causality is the basis for understanding

project success or failure, causal mapping is a

good technique for helping to identify the

concepts and relationships to be implemented in

an SD model because its output can be directly

translated to the components of an SD model.

3.2.1 SD Rationale

A systems dynamics approach employs

differential equations as a mathematical tool to

understand the nonlinear behavior of complex

systems and assess the rates of change of causal

factors in a software development project. It

incorporates state variables as objects to

represent the state of a system. The model has a

state variable representing the current state of a

component (success or failure). An SD model

uses derivatives to define rates of change in state

variables that specify the tendency to be

successful or to fail over time based upon the

measured change in the component values. The

derivative aggregates all changes to show the

net change in the state variable over time. The

structure of the model will describe the effects

of state variables, their relationships,

remediative actions, and the feedback from such

actions in affecting recovery or minimizing the

degree of failure.

3.2.2 Key SD Concepts

An SD model [17] is based on several key

concepts which are described in Table 6.

Table 6. SD Key Concepts

Stocks are an accumulation of material,

information, or other resources in a system over

time. The quantity of a stock reflects the net

changes in its inflows and outflows.

Flows are transfers of material, information, or

other resources between stocks and/or the

environment.

Sources represent the evaluated data collected

about events and decisions that are inflows to

stocks.

Sinks represent the repository of data at the

conceptual boundary of the model that are

outflows from stocks.

Rates are variables that control the flows of

information into and out of stocks.

Auxiliaries are variables that modify information

as it passes from stocks to rates.

Feedback loops can amplify or modify the

quantity of stocks over time and support the

implementation of iterative decision making in SD

models.

Page 1183

3.2.3 Model Building

An SD model for forensic analysis of

software projects will proceed through several

stages as briefly described in Table 7.

Table 7. SD Model Development

Step Description

1 Identify Input/Output Variables: Some of

these are derived directly from the FAM;

some will be exogeneous. These will

suggest the initial model boundary. They

may also supply weights to internal

variables.

2 Review literature for endogeneous

variables representing internal states of

the model (rates, auxiliaries).

3 Define flows that represent the causality

using causal loop diagrams (CLDs).

4 Define equations for stocks, rates, and

auxiliaries.

5 Implement the SD model using VENSIM;

develop visualizations of model behavior.

6 Develop test suites for several scenarios.

Perform sensitivity and validation studies.

Conduct “What-If” experiments.

3.2.4 Proposed Model Structure

Events, decisions, causal factors, and

project metrics will be represented as nodes in

the SD model. The value of each node will be

dynamically computed based on the inflows and

outflows to each node.

Some inflows will be generated by

exogenous factors that exist outside of the

project, such as weather, budget reductions, and

supply delays. For experimentation purposes,

exogeneous factors can be generated by lookup

tables or random variables.

Values assigned to each node can be

adjusted based on the perceived evaluation by

the users (project managers, stakeholders, etc.).

Links will connect nodes to represent

relationships and to the causal factors to which

they are associated. Causal factor nodes will be

connected to the project metric nodes which will

connected to a summary FoM node.

3.2.5 The Benefit of System Dynamics

Several benefits accrue to using system

dynamics as our modeling technology as

described in Table 8.

Table 8. Benefits of System Dynamics

Ability to simulate the effects of events and

decisions in a model of a complex system over

time.

Specific events can be activated or terminated

Recurring events can have their values adjusted

within a specified range

Variables are recalculated at each time step to

reflect their current values.

Yields a deeper level of understanding the

interdependencies of elements than textual

descriptions.

Provides a clear structural representation of the

problem or process.

Provides a “hands-on” tool to conduct “what if”

experiments.

Using GUI-based systems, such as

VENSIM [18], a user can adjust the values of

the components, weights and the exogenous

factors using controls (e.g., like rheostats).

Controls can also be used to activate or

deactivate components of the SD model to

explore “what-if” scenarios. One can also

visualize the change in causal factors, project

metrics, and the FoM using graphs or other

tools, and assess the limits and strengths of

factors with simulations.

3.5.2 Uncertainty

A significant factor is uncertainties: the

“known unknowns and the unknown

unknowns”. Known unknowns, as Islam et al.

[19] note, are “related to time-to-market, budget

and schedule estimation, technology evolution,

and stakeholders’ expectations”. With project

management experience, some estimates of the

impact, if not the severity, of these unknowns

can be made and factored into the planning

process. It is unknown unknowns for which no

estimates nor reasonable guesses can be made.

It is noted that risk and uncertainty are

related, but are not the same concept.

Uncertainty is the unknown, whereas risk is a

recognized element that can go wrong or fail.

Risks can be managed, but uncertainty can only

be reduced. One can assess and assert the

likelihood of a risk and measure its perceived

value fluctuations during a project. One can

reduce uncertainty through application of

various managerial strategies [20], and the

understanding that as time progresses

uncertainty is reduced.

Page 1184

4. Assessing Events and Decisions

The stocks and flows will be represented as

numeric values. Each event and decision in the

model will be evaluated according to risk and

reward tables developed by Cohen [2] shown in

Tables 9 and 10. Values for the Causal Factors,

Project Metrics, and the Figure of Merit will be

“rolled up” by the SD equations.

Table 9. Risk Table

0 No impact

-1 Negligible impact, easily resolved

-2 Likely to create additional tasks

-3 Expands the scope of the issue

-4 Degrades team morale and/or

communication

-5 Requires a notable response

-6 Increases cost or delays schedule

-7 Injects current and future issues

-8 Degrades solution quality

-9 Shows critical feature failure

-10 Prevents product/milestone delivery

Table 10. Reward Table

0 No impact

1 Improve poor performance to nominal

2 Reduce isolate effort of effort

3 Broadly improves things

4 Improves team morale/communications

5 Yields measurable improvement

6 Reduces cost or schedule

7 Resolves current issues or reduces

severity of future issues

8 Improves overall quality significantly

9 Ensures feature delivery

10 Ensures total product/milestone delivery

The tables apply weighted criteria to assess

risk which may significantly affect the potential

for success and reward associated with

remediation activities which may significantly

affect the potential for partial or whole recovery.

Using the model, a qualitative review of project

activities is converted to a quantitative

assessment by this model.

Risks, representing negative events and

decisions, due to events and decisions flow into

and out of stocks. Rewards, due to positive

events and decisions, also flow into and out of

stocks.

Traditional approaches to risk management

often focus on single agents, single inflows, or

single outflows, and linear progression. As

noted above, there are many competing and,

possibly, correlated risks that can affect project

success or failure. SD supports the notion of

multiple causality by allowing stocks to have

multiple inflows and to affect multiple stocks

via multiple outflows. Using feedback loops, SD

supports the concept of iterative cause and

effect.

This risk-reward model was used

previously [2] was applied to a limited

description of the Advanced Automation

System (AAS) project of the Federal Aviation

Administration [21]. The assessment was

presented in Table 7 at the end of that paper. Of

the 21 statements evaluated, only three had a

positive impact on the program. The description

clearly identified a significant negative impact

that portended the likely failure of the project.

The methodology for applying this assessment

process will be described in a forthcoming book

[9].

5. Observation

The inevitability of project failure seems to

be mythical based on the accumulated anecdotal

evidence, but unsupported by actual metrics and

analysis. Software projects can and should be

successful. Successfully managing projects and

developing software is described by the plethora

of articles, books, and conferences. Further, the

potential pitfalls and problem areas are known,

and guidelines for avoiding them are well

described. A system dynamics assessment can

assist project managers and stakeholders in

understanding where, when, and perhaps why a

project is succeeding or failing, and, if failing,

how serious the problem is.

6. Conclusions

The technical literature review and

anecdotes demonstrated that there is limited

understanding from a project management

perspective about what are significant causes of

software project failure, and how to recognize

them in real time. There are few tools and

methods and little understanding of how to

perform ongoing assessments and forensic

analysis to determine the likelihood of project

failure during the execution of the project.

This suggests that (1) systems are not

designed and developed with assessable metrics

and data, and (2) that projects are not structured

to address system assessment as a continuous

process rather than as a culminating activity

Page 1185

when potential failure is impending. This is a

different metric from performance on isolated

software project descriptive and reporting

measures. Assessability is an objective that

means the ability to determine whether or not

the totality of a software project has achieved its

interim and final goals during system

development.

Computing assessability requires metrics

for each of the causal factors. Many have been

suggested in the technical literature, but there is

no consensus on a preferred subset. This paper

has begun to identify a set of components that

can lead to a process for evaluating causal

factors.

This paper has proposed using a System

Dynamics model to provide a continuous

assessment tool for evaluating project success or

failure and indicating what events and decisions

support these outcomes.

7. Future Work

This paper has not addressed the different

methodologies used in project management nor

the use of formal methods. While formal

methods can increase confidence that a project

may not fail or may fail gracefully, they cannot

“prove or not prove” that a software project will

not fail.

Previous work identifies a set of activities

required to address software project failures [2}.

It is suggested that these efforts include two

additional tasks:

1. Develop Models of software Failure: There

are many models of IT system success, such as

Delone and McLean [22], but few models of

software failure. Forensic analysis can provide

the data to construct and validate such models.

Through a case study of a particular project, we

will test, refine, and validate the SD model.

2. Extend Model to Identify Remediation and

Recovery Mechanisms: Our eventual goal is not

only to be able to predict potential failure, but

then to examine and suggest possible

remediative actions to lead to recovery.

Acknowledgement

The authors gratefully thank several

colleagues and the anonymous reviewer who

have provided critique, suggestions, and

additional insights into the concepts and

analysis presented in this paper.

Note: An extensive bibliography has been

prepared for this project and is available from

the authors.

References

[1] Cohen, S., S. Kaisler, and W. Money. 2020.

“Forensic Analysis of Failed Software

Projects”, Tutorial at the 53rd Hawai’i

International Conference on System Sciences,

Maui, HI

[2] Kaisler, S., W. Money, and S. Cohen.

2021. “Forensic Analysis of Failed Software

Projects: Issues and Challenges”, 54th Hawai’i

International Conference on Systems Sciences

(Virtual).

[3] Standish Group. 2020, “CHAOS Manifesto.

Beyond Infinity”. Boston, MA.

[4] Potter, S. 1987. On the Right Lines: The

Limits of Technological Innovation. W.

Frances Publishing Co., London, England.

[5] Al-Ahmad, W., K. Fagih, K. Khanfar, et al.

2009. “A Taxonomy of IT Project Failure:

Root Causes”, International Management

Review, 5(1):93-104.

[6] Ralph, P. and P. Kelly. 2014. “The

Dimensions of Software Engineering Success”,

International Conference on Software

Engineering, ACM Press. New York, NY

[7] Lundin, M. and E. Wictorin. 2020. “The

Subjectivity of Failure”, School of Economics

and Management, Lund University, Lund,

Sweden.

[8] Munns, A.K. and B.F. Bjeimi. 1996. “The

Role of Project Management in Achieving

Project Success”, 14(2):81-87, Scotland, UK

[9] Cohen, S. 2022. Lessons Learned from

Recovery Procedures for Failing Software

Projects, [In Preparation].

[10] Ackerman, F. and C. Eden. 2005. “Using

Causal Mapping with Group Support Systems

to Elicit an Understanding of Failure in

Complex Projects: Some Implications of

Organization Research”, Group Decision and

Negotiation, 14:355-376

[11] Sowa, J.F. 1984. Conceptual Structures:

Information Processing in Mind and Machine,

Addison Wesley, Reading, MA

[12] Armour, F. and G. Miller. 2001. Advanced

Use Case Modeling: Software Systems,

Addison-Wesley, Reading, MA.

Page 1186

https://archive.org/details/conceptualstruct0000sowa
https://archive.org/details/conceptualstruct0000sowa

[13] Eden, C. 1988.“Cognitive Mapping: A

Review,” European Journal of Operational

Research 36, 1–13.

[14] Powell, S. 2021. Guide to Causal

Mapping, Causal Map, LTD., Bath, England

[15] Pearl, J. and D. Mackenzie. 2018. The

Book of Why: The New Science of Cause and

Effect, Basic Books, NY.

[16] Ackermann, F., C. Eden, and T. Williams.

1997. “Modelling for Litigation: Mixing

Qualitative and Quantitative Approaches”.

Interfaces, 27():48-65.

[17] Forrester, J. 2009. Some Basic Concepts

in Systems Dynamics, D-4894, Sloan School of

Management, MIT, Boston, MA

[18] Ventana Systems, Inc. 2015. VENSIM

Brochure.

[19] Islam, S., H. Mouratidis, E.R. Weippl, and

J. Jurgens. 2014. “An Empirical Study on the

Implementation and Evaluation of a Goal-

driven Software Development Risk

Management Model”, Information and

Software Technology, 56(2):117-133

[20] Marinho, M., S. Sampaio, T. Lima, and H.

de Moura. 2014. “A Guide to Deal with

Uncertainties in Software Project

Management”, International Journal of

Computer Science & Information Technology

(IJCSIT), 6(5).

[21] U.S. Government Accountability Office

(GAO). 1994. Advanced Automation System:

Implications of Problems and Challenges,

https://www.gao.gov/products/T-RCED-94-

188.

[22] DeLone, W.H. and McLean, E.R. 2003.

The DeLone and McLean Model of

Information Systems Success: A Ten-Year

Update. Journal of Management Information

Systems. 19, 4, 9–30.

Figure 1. Kaisler, Money, Cohen Forensic Analysis Framework

Page 1187

https://scholar.google.com/scholar?oi=bibs&cluster=13355261091548588428&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=13355261091548588428&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=13355261091548588428&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=13355261091548588428&btnI=1&hl=en

