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Abstract

Planning energy systems is subject to changes in
components’ health and installation costs, fossil fuel
prices, and load demand. Especially in developing
countries, electrical loads are reported to increase
drastically after electrification. Improper sizing of
the energy system’s components can lead to reduced
environmental sustainability, decreased reliability, and
long-term project failures. As no tools for energy
system planning exist that aim at developing countries
and sufficiently account for temporal variations, we
modify the software NESSI4D in a design science
cycle to provide the comprehensive decision support
system NESSI4D+. We conduct an applicability check
with a representative rural village in mountainous
Nepal that validates NESSI4D+’s relevance and shows
the importance of considering temporal variations
for economically, ecologically, and socially long-term
sustainable energy projects.

1. Introduction

Decentralized energy systems have proven
economically and environmentally successful solutions
to electrify areas in developing countries [1]. However,
the planning process of energy systems is subject to
considerable uncertainty, making the selection and
sizing of appropriate energy technologies challenging.
Small oversights can lead to unreliable electric
supply, unnecessary high costs [2], underestimated
environmental impacts through unexpected fossil
fuel consumption, and, ultimately, failing energy
systems [3]. Most pressing issues are time varying
factors, such as demand changes, price volatilities and
component degradation [3]. The former are particularly
prevalent in developing countries within areas with no
prior access to electricity. Dı́az et al. [4], for example,
report a doubling of energy demand in several off-grid
rural communities in Argentina over an eight-year
period. With the United Nations’ commitment to

support the provision of clean, reliable, and affordable
energy under the seventh Sustainable Development
Goals (SDGs), extensive financing and funded projects
have been launched. These are steadily improving
supply chains to developing countries and promoting
competition within these, steadily facilitating access to
renewable energy technologies (RETs) through price
reductions and local availability [5]. At the same time,
fossil fuel prices are expected to rise in the future
due to decreasing availability, increasing awareness of
their environmental impact, and overall rising energy
consumption [6]. Components’ degradation over time
and use leads to efficiency losses and unavoidable
reinvestment, affecting the performance and cost
of the power system and creating project risks [3].
Consideration of these circumstances is particularly
relevant in developing countries, where second-hand
products are often used and proper maintenance is not
always guaranteed.

It is therefore crucial that stakeholders are enabled to
account for these temporal variations in their planning
process. Information systems (IS) research is uniquely
able to empower decision-makers through decision
support systems (DSS) [8]. However, we found no tool
in or outside the IS community aimed specifically at
developing countries offering the needed functionalities.
The focus on developing countries is essential as
existing energy system models are often biased toward
industrialized countries [9]. Motivated by this gap and
the call for more solution-oriented Green IS research
[10], we explore the following research question:

How can a DSS be developed to assist
stakeholders in designing sustainable and
long-term successful energy systems by
considering variations over time?

As a basis, we use the DSS NESSI4D which is
based on NESSI by Kraschewski et al. [11] and was
specifically designed for stakeholders and circumstances
in developing countries. Leaning on the design science
research (DSR) methodology, we modify NESSI4D to
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Figure 1. Design science research methodology adapted from Peffers et al. [7].

account for temporal variations in installation, fuel,
and electricity prices as well as load demands and the
components’ state of health. First, we present related
software and our research design. Then, we describe the
extended version of NESSI4D, subsequently referred
to as NESSI4D+. We test the software’s applicability
on an exemplary, representative rural village in the
mountainous area of Solukhumbu, Nepal. We discuss
results, implications, and recommendations. Lastly, we
provide limitations, further research possibilities, and
conclusions.

2. Related software

A vast amount of simulation tools without multi-year
considerations exist, see, e.g., Stevanato et al. [12] and
Sinha and Chandel [13] for comprehensive overviews.
One of the most popular tools used in the literature
is the commercial software HOMER Pro [14]. It
presents the option to import load profiles from the
Open EI database, which collects the load demand of
different facility profiles in the United States. HOMER
Pro advises selecting those profiles whose location has
similar climatic conditions to the ones in the analyzed
country. The level of similarity is based on the Koeppen
Geiger Climate Classification Index. This approach is
unsuitable for developing countries as transferring load
profiles from the U.S. to rural households in developing
countries will lack the desired amount of precision.
Another possibility is to synthesize load profiles by
expanding a typical daily load to an annual profile with
the option of inserting randomness. Similar approaches
are presented by iHoga [15] and Hybrid2 [16] who
allow to import hourly or average load data and use
predefined load profiles. For the latter, load profiles
are synthesized with adjustable variabilities. These
options, however, require knowledge of loads which is
often not available. HOMER Pro and iHoga recently
have added the option of time variation, stressing the

importance of its considerations for long-term project
successes. In both cases, changes in percent per year
of load demand, component degradation, and prices
(i.e., investments and operation and management costs
(O&M)) are adjustable. Due to the novelty of these
add-ons – e.g., only iHoga’s newest update from May 4th

2021 is able to consider multi-period simulations – there
are just a few papers analyzing the effects and suitability
of the available adjustment options. Furthermore, the
presented tools do not offer our desired functionality
for stakeholders in developing countries, as they are
either of commercial nature, lack an intuitive graphical
user interface (GUI), or are aimed at engineers and
researchers.

Regarding tools for load profile generation, many
require detailed input data retrieved from, e.g., activity
diaries or national time-use surveys [17]. The
open-source software RAMP by Lombardi et al. [17]
allows to generate high-resolution multi-energy load
profiles with inexact information from survey and
locally available data. This is an appropriate solution
for developing countries as detailed information is often
lacking. The user is able to select the current appliance
ownership at the desired level of detail. Random
variation of parameters between pre-specified ranges
enables uncertainty, irregular usage patterns, and a high
degree of stochasticity. In its newest version, RAMP
can also consider time variations using the year of the
first appearing of an appliance and its minimum share in
users as further input variables [12]. However, RAMP
cannot be used by non-expert users as it lacks a GUI.

3. Research design

We follow the design-science-oriented approach
based on Peffers et al. [7] shown in Fig. 1. The
initiation of this design cycle is problem-centered and
derived from the evaluation of previous prototypes
of the NESSI system. Generally, we identified the
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a) Start page incl. load profile upload and load changes fields.

b) Technical input incl.

degradation rate for the

photovoltaic system.
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Figure 2. NESSI4D+’s graphical user interface including time variations.

lack of adequate decision support for energy system
planers in developing countries as a problem that
can and should be tackled by IS research. This
motivation led to the development of NESSI4D. In
this design cycle, we aimed at obtaining even more
accurate results by considering temporal variations in
components’ health, installation costs, fossil fuel prices,
and demand to support long-term successful energy
systems. As outlined in Section 2, we found no tool
that offers the needed functionality and is aimed at
developing countries. In the design and development
stage, we altered the previous prototype from simulating
a single year to a multi-year simulation and adjusted
the interface and economic and emission analyses
accordingly. We named the new prototype NESSI4D+.
The detailed functionality and changes are described in
Section 4.

To ensure reliable and valid results, we applied
modeling techniques from existing literature. NESSI
is also cyclical improved as it has passed several
design cycles already, see [11]. Furthermore, we use
an applicability check in this paper to evaluate the
efficacy and utility as is common in DSR [18] and
DSS literature [19]. For this purpose, we chose a
suitable context to demonstrate the functionality of the
prototype and evaluate if the artifact is easily usable
and encompasses the necessary settings. In line with
Lehnhoff et al. [8] who underline that IS research does
not have to be theory-building at once, but must provide
solutions for practical applications, we contribute to the
research body of solution-oriented IS research. In future

research, NESSI4D+ will be subject to further design
cycles and evaluation.

4. Decision support for long-term
successful energy systems: NESSI4D+

NESSI4D (an acronym for Nano Energy System
SImulator for Development) is a multi-energy
simulation software that provides decision support
to sustainably build and transform decentralized
energy systems in developing countries. It simulates
thermal and electrical energy flows in hourly time
steps over one year and calculates total costs and
local greenhouse gas (GHG) emissions. An extensive
and intuitive GUI ensures easy usability (see Fig. 2).
The software includes several electricity as well as
heat-producing components, electric cars, storage
systems, and calculates the heating demand from
local hourly weather conditions. The simulation
procedure is shown in Fig. 3. The ranking-based energy
management simulation and subsequent economic and
ecological analyses returns the component-specific
energy yields, emissions, and costs with numerous
graphs and key indicators. The costs are calculated as a
fixed annualized value using the annuity method. Costs
comprise the discounted initial investments, O&M and
demand-related costs, as well as re-investments after
the lifetime of a component and its residual value at
the end of the project length. The application was
specifically developed for stakeholders in developing
countries, including policymakers, NGOs, company
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Figure 3. NESSI4D+’s simulation procedure with new functionalities depicted in green.

owners, and citizens. In comparison with NESSI by
Kraschewski et al. [11], the electric infrastructure was
extended by small-scale wind turbines (WT), diesel
generators (DG) as well as electrical and conventional
scooters for NESSI4D. Models regarding the national
power grid were also altered to account for availability
patterns in developing countries as well as grid failures.
For the case of an absent power grid, a dump load was
incorporated in NESSI4D to account for excess energy.
To allow for off-grid applications, island microgrids
were also included.

For this version (NESSI4D+), we adapted NESSI4D
to account for multiple temporal variations. First,
we implemented the possibility to consider electric
and thermal demand variations over time. For more
flexibility, we included two variants. For fast utilization,
users can enter annual demand changes in percent
similar to Homer Pro or iHoga. Additionally, we provide
the opportunity to use own multi-year load profiles
generated with RAMP or comparable software. The
new input fields are shown in Fig. 2a. As a second
new feature, we allow for state of health considerations
for all components. The annual degradation is entered
in percent of the components’ capacity. As NESSI4D
is able to simulate new and existing buildings, we
account for the components’ age at the beginning of the
simulation and applied the degradation accordingly. In
addition, we considered the components’ replacement
at the end of their lifetime when calculating the state
of health. An exemplary user interface is shown in
Fig. 2b. Lastly, we included installation cost and fuel
price changes. Based on HOMER Pro and iHoga,
these are also entered as an annual change in percent
as shown in Fig. 2c. Previously, NESSI4D simulated
one year in hourly time steps and assumed that this
year is repeated over the project length for the economic
analysis. Now, a multi-year simulation for every year
of the project length was needed to account for the
changing parameters. Subsequently, the analyses were
adapted to deal with the new data. Key indicators now
include average values for emissions, degree of autarchy
and degree of self consumption. In addition, new graphs
are provided to visualize the changes of these indicators.

5. Applicability Check:
Rural-mountainous Solukhumbu in
Nepal

The applicability check is intended to verify that
the new functions of temporal variability have a
sufficient level of detail to realistically represent
the specific conditions in developing countries, to
adequately illustrate the effects of temporal variability,
and to highlight the importance of its inclusion for
all users. First, we summarized Nepal’s energy
situation to construct an exemplary rural village with
realistic, time-varying demand data. Second, we
compiled literature-based technological and economic
settings for energy technologies of the analyzed energy
systems. Third, we constructed different scenarios to
test NESSI4D+’s ability to adequately consider temporal
variations in developing countries. The condensed form
in which the inputs and results of our analyses are
presented, is not primarily aimed at stakeholders in
developing countries. The broader scientific audience is
addressed to illustrate the applicability of the software,
evaluate results, identify weaknesses, and discuss
further developments.

5.1. Scenario setting and input data

In 2019, 85 % of Nepal’s population had access to
electricity [34]. However, Nepalese consumers often
suffer from high costs, unreliable availability, as well
as maintenance and monitoring problems [29]. In
particular, overloaded distribution lines and low load
factors threaten secure supply from national power
grids given the rapidly increasing demand for electricity
[34]. In remote rural areas, off-grid solutions are
often the single option for adequate electrification [29].
Simultaneously, the Nepalese Electricity Authority
intends to incorporate information and communication
technology (ICT) into its energy planning process
[34]. A remote location in Nepal, therefore, represents
a suitable candidate to test our tool’s applicability.
Thus, the rural mountainous region Solukhumbu was
chosen as it meets the criteria of remoteness with high
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Table 1. Input data and technical settings for an exemplary microgrid in Solukhumbu, Nepal.
Component Input Value Based on
Photovoltaic
systems
(PV)

Orientation & tilt angle South & 29 ° [20]
Degradation 1.5 %/a [21]
Installation costs (change) 995 US$/kWp (-2 %/a) [5, 22]
Operation and management costs 9.5 US$/(kWp*a) [5]
Lifetime 20 a [23]

Locally produced
wind turbines
(WT)

Rated power per turbine 1 kW [24]
Hub height & Rotor radius 15 m & 1 m [24]
Wind speeds (Cut-in, cut-out, rated) 2.5 m/s, 16 m/s, 6.8 m/s Assumption
Degradation 1.5 %/a [25]
Installation costs (change) 1,500 US$/kW (-1 %/a) [24, 22]
Operation and management costs 32 US$/a [26]
Lifetime 20 a [12]

Diesel generator
(DG)

Minimum load ratio 30 % [27]
Efficiency 26 % [28]
Degradation 0.5 %/a Assumption
Installation costs (change) 375 US$/kW (0 %/a) [29], Assumption
Operation and management costs 25 US$/(kW*a) [23]
Fuel costs (change) 0.917 US$/l (+3 %/a) [30, 22]
GHG emissions 0.267 kgCO2-eq./kWh [31]
Lifetime 20 a [27]

Second-life battery
storage
(BS)

Energy to power ratio 4 h Assumption
Efficiency 91 % [27]
Degradation 5 %/a [32]
Installation costs (change) 65 US$/kWh (-5 %/a) [27, 33]
Operation and management costs 0 US$/(kWh*a) [27]
Lifetime 12 a [32]

geography-related difficulties in expanding the national
power grid and low access to electricity.

To design a representative village with 20 standard
households, we analyzed the survey Multi-Tier
Framework for Measuring Energy Access by the
Energy Sector Management Assistance Program
(ESMAP) [35]. We calculated mean asset ownership
from grid-connected households, i.e. a regular light
bulb, two compact fluorescent lamps, and a phone
charger. Considering literature-based assumptions on
appliance usage, we synthesized the village’s load
profile with the software RAMP. We chose a project
length of 30 years to show the influence of technology
replacements on the energy system’s costs. The total
annual demand sums to 720 kWh/a with hourly peak
load of 0.3 kW. To generate an exemplary load increase
scenario with RAMP, we extract appliance ownership
from more developed regions in Nepal. The additional
appliances and their purchase time were chosen to
double the load over an eight-year period consistent
with the findings of Dı́az et al. [4]. With load increase,
the hourly peak load almost triples to 0.83 kW over the
30 year period. The average annual demand rises to
1,600 kWh/a. The hourly loads of both load profiles are
depicted in Fig. 4.

We constructed five different decentralized energy
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Figure 4. Electrical load profile for 20 exemplary

households in rural-mountainous Solukhumbu, Nepal.

systems with varying energy technologies: We
designed a microgrid including the typical RETs,
photovoltaic systems (PV) and WTs [3]. The lack of
professionals often negatively influences the reliability
of energy supply [34]. Thus, we chose a locally
producible WT to support business creation, local
empowerment, and knowledge growth. As common
in Nepal, we incorporated DGs to improve reliability
and quality [29]. We included second-life batteries
(BS) in all scenarios including RETs to account for
periodic power generation, low financial capabilities,
and sustainability-improving practices. Because the
markets for neither electric vehicles nor modern thermal
infrastructure currently exist in rural Nepal, we omit
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Figure 5. Exemplary results as illustrated in NESSI4D+’s graphical user interface (Scenario PV-DG-BS, left:

Reference, right: Load increase not anticipated)

them for this simulation. Costs for the creation
of a microgrid are neglected, since they occur in
every scenario. Unplanned power outages are also
omitted to ensure comparability of all scenarios. We
assume a discount rate of 5 %. Component sizing
is determined individually for each scenario as it is
depended on the analyses’ assumptions. We assume that
all components are newly purchased at the beginning of
the project. Tab. 1 displays our technical, economic, and
ecologic input data including our selected parameters
representing temporal variations.

We establish reference scenarios with no variations
over time and highlight the costs and environmental
impacts of each scenario. To examine the influences of
time variations, we conduct three analyses. First, we
examine the influence of installation cost and fuel price
changes on total costs. Second, we analyze the effects
of a significant load increase after electrification on load
coverage and component sizing. Third, we include
the state of health assumptions and again examine the
influence on load coverage and component sizing.

5.2. Results and findings

Before turning to the detailed analysis, we present
NESSI4D+’s GUI with the output of the PV-DG-BS
scenario in Fig. 5. The left side displays the
reference scenario. On the right side load increases
are incorporated in the simulation but not anticipated
in the components’ sizing. The two images illustrate
that the environmental and economic impacts of the
scenario can be easily quantified and visualized for the
user. Further, the magnitude of the variation over time
of various indicators such as uncovered load, annualized
costs or CO2 emissions is demonstrated. Please note that
detailed results, such as the DG’s runtime, can be viewed
in the individual tabs, but their presentation is beyond
the scope of this paper. In the following, the different
scenarios are analyzed and compared in depth.

The reference results are displayed in black in all

result figures. In Fig. 6 annual costs are related to
local GHG emissions. Economically and ecologically,
powering the microgrid with only a DG is the least
attractive option. This scenario accounts for local
GHG emissions of 941 kg CO2-eq./a at total costs of
218 US$/a. Comparable costs but significantly lower
emissions of 25 kg CO2-eq./a occur when operating the
microgrid with DG, WT, and BS. If the DG is omitted
and the BS enlarged, local emissions fall to zero at
the same cost level (193 US$/a each). Achieving no
local GHG emissions is also feasible at two-third the
cost (121 US$/a) by employing PV and BS. The most
economically favorable scenario (80 US$/a) is using PV
and BS in combination with a DG which produces local
GHG emissions of 56 kg CO2-eq./a. RETs are sized
with an allowed uncovered load of 0.1 %, if necessary, to
prevent over-sizing. If the PV is operated with BS, we
have determined a size of 1 kWp with 4 kWh storage.
If a 0.3 kW DG is added, 0.4 kWp and 2 kWh storage
are sufficient. One WT is combined with 5 kWh storage
when operated on its own, and with 2 kWh storage when
an additional 0.3 kW DG is present. The DG with
0.3 kW is also able to cover the full load on its own as
the peak load is 0.3 kW.
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Considering changes for installation and fuel prices
affects the scenario’s costs differently. Fig. 6 shows
annual total costs in relation to local GHG emissions.
Most affected is the DG scenario, where total costs
increase by a third to 303 US$/a. While we assumed
constant installation cost for the DG, diesel prices
are expected to increase strongly (+3 %/a) [22]. On
the contrary, total costs for all other scenarios drop
when including installation and fuel price changes.
In scenarios where the DG is combined with RETs
(PV-DG-BS and WT-DG-BS), the drop in installation
cost of the RETs and BS over-compensates the
increasing fuel price. The biggest cost decrease occurs
in scenario WT-BS (-16 US$/a).
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Figure 7. Economic and load coverage impacts of

load growth.

The results of our second analysis regarding load
increases after electrification are shown in Fig. 7,
relating total costs to the average uncovered load per
year. To improve readability, we added an x-axis break.
Anticipating the load increase when sizing components
averts uncovered loads, but significantly increases costs
(blue scenarios). The highest increase occurs in scenario
WT-BS (+363 US$/a), while scenario WT-DG-BS is
least affected. Without the additional DG, three WTs
and 12 kWh BS are necessary to cover the load to a
sufficient level. A peak load DG with 0.85 kW decreases
the number of necessary WTs to 1 with a 6 kWh battery.
PV-DG-BS remains the scenario with the lowest total
costs (now 198 US$/a).

For the scenarios shown in red, we left the
component sizes unchanged from the reference scenario,
but included the constructed load increase, thus,
simulating the effects of not anticipating load increases
when laying out components. As predicted, significant
uncovered loads occur. In the worst case (scenario
DG), a fifth of the average load remains uncovered.
The scenario WT-DG-BS is best equipped against

subsequent load increases as less than a 10th of the
worst-case load remains uncovered. Combinations of
RETs and DGs are best suited for load increases since
the DG is only used for peak loads in the beginning
and can be switched on more often. In the case
of scenario WT-DG-BS, operating hours of the DG
increase from 192 to 1,429 h/a, and for PV-DG-BS from
490 to 4,766 h/a.
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Figure 8. Uncovered load per year when load

increases are not considered in component sizing.

Fig. 8 shows the development of uncovered load
for the case that load increase is not anticipated.
For the scenarios DG and PV-BS, the uncovered
load increases exponentially until year 11, while for
the others (WT-BS, WT-DG-BS, and PV-DG-BS) it
increases linearly. The rise of the former approximately
follows the considered load increase, which suggests
that the component composition and their sizing cannot
meet the load growth. The pattern from year 11 to 15
is attributable to biannual demand growth assumptions.
Scenarios DG and PV-BS are able to adapt to this
load increase. From year 4 onward, appliances with a
higher load were added, and here, scenarios WT-BS,
WT-DG-BS, and PV-DG-BS are more able to adapt to
this load increase. As the annual load is 1,934 kWh/a in
the last year, in the worst case (scenario DG) a quarter
of the households are without power at the end of the
project.

Fig. 9 shows the results of our third analysis
regarding the components’ state of health. The figure
relates total costs to the average uncovered load and
shows the reference scenarios (black), scenarios where
components’ degradation was not anticipated (purple),
and scenarios where it was considered when sizing the
components (teal). In comparison to the load increase
analysis, average uncovered loads are small. In the worst
case (scenario WT-BS), 7 kWh/a remain uncovered. In
the scenarios with a DG, no uncovered load occurs.
As to be expected, the additional costs for correctly
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sizing components are comparatively small. The highest
increase occurs for scenario PV-BS with +53 US$/a.
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In Fig. 10, we show the detailed development of
the annual uncovered load for the scenarios where the
components’ state of health is not regarded when sizing
components. The highest uncovered load occurs in
year 11 for scenario WT-BS (15 kWh/a). The state of
health correlates to the age of a component, thus, the
annual uncovered load decreases when a component is
replaced. BS are replaced after 12 years, PVs and WTs
after 20 years, producing the shown pattern.

6. Discussion, implications, and
generalized recommendations

Our applicability check shows that NESSI4D+ is
able to account for temporal variations and quantify
their environmental and economic impacts, while
maintaining a high level of usability, flexibility, and

detail. For our study in particular, the reference
results show that scenarios incorporating RETs are both
economically and environmentally advantageous over
microgrids powered solely by DGs. However, it is
economically essential to take price developments into
account to build future-proof energy systems. Given
the scarcity of fossil fuels, their prices are expected
to rise continuously. Choosing a DG at present
means becoming dependent on diesel and its price
changes in the future. This is especially critical for
poor countries, as it reinforces their often already
existing import dependencies. Scenarios including
RETs are of greater robustness to price changes, as
they become more financially attractive over time.
Thus, the risk of energy poverty from rising electricity
prices in developing countries could be decimated by
implementing RETs. Further, when anticipating load
increases and component degradation in the planning
process, the initial capital costs increase significantly
due to future-proof sizing of components. NESSI4D+

discloses the importance of looking into the future
by quantifying the impacts of ignoring these changes.
Strengthened by Xiao et al. [36] who have shown
considerable variation in cost projections by country and
region, we reemphasize the importance of individual,
site-specific simulation. Temporal variations also
have significant ecological impacts. The inclusion
of load increases and component degradation show
that scenarios with a DG produce more local GHG
emissions than RETs. This is due to the DG having to
cover more load than planned, resulting in significantly
higher diesel consumption and, thus, an increase in
emissions. To avoid rising health risks through higher
GHG emissions, RETs must be sized accordingly
to be able to meet higher demands in the future.
Considering social factors when collaborating with or
working for the local community is also essential for
long-term successful electrification projects [1]. For
this, a DSS such as NESSI4D+ is ideal to inform
and engage local stakeholders by using and illustrating
the impact of different energy systems. Load growth,
degradation, and pricing simulations are an important
lever to use in communications with project financiers
and investors to justify the need for larger components
from the beginning. In addition, with NESSI4D+,
stakeholders are taught the different aspects of energy
system planning with its strong need to anticipate
future developments and necessary current actions. The
encouragement to participate may additionally lead to
greater empowerment.

In summary, we find that time variations impact the
long-term sustainability of energy projects significantly,
making their consideration indispensable. We conclude
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that NESSI4D+ is able to consider site-, user-,
and time-specific conditions of energy systems in
developing countries. As such, NESSI4D+ provides
users with a comprehensive overview of the economic
and ecological impacts of the individually created
energy system. The software is, thus, useful to facilitate
the planning of long-term energy projects and supports
an economically, ecologically and socially sustainable
future as called for by the SDGs. As governments
have already stated their desire to incorporate ICTs in
their energy planning, see e.g. [34], we are confident
that our research is of interest to a broad audience of
stakeholders.

7. Limitations and outlook to further
research

We consider installation cost changes, fuel price
variations, and degradation with an annual change
in percent similarly to popular tools like HOMER
Pro and iHoga. This approach neglects that price
trends can fluctuate or stagnate over time, which
significantly influences the results in long projects.
Further, we use weather data from the project’s initial
year, omitting variations and, e.g., extreme events,
which are expected to become more prevalent [6].
NESSI4D+ measures lifetimes and degradation in years.
For DGs and BS, these inputs strongly depend on the
component’s usage which should be considered for
future developments. NESSI4D+ also solely accounts
for emissions associated with energy flows whereas
life cycle costs are omitted. Moreover, NESSI4D+

does not support components’ capacity increases during
the project’s duration through, e.g., the use of more
advanced technologies or RET extensions. Considering
these changes in the planning process is important to
prepare for connections and reserve space to avoid
additional costs. Furthermore, adding NESSI4D+’s new
features increased its calculation time from under one
second to about 10 seconds, depending on the number
of years simulated. This decreases the usability but is
still tolerable for a DSS.

As we have validated NESSI4D+ applicability, we
will continue to develop the software: To increase
worldwide accessibility and usability, we will deliver
NESSI4D+ as a free web tool. Especially the rural poor,
one of NESSI4D+’s focus groups, is often restricted
by the costs of simulation tools on the market. As
the tool is currently written in MATLAB, it restricts
non-license holders of its usage. Additionally, we
will provide more language and currency options as
well as default values. Expert modes, helpdesks and
training, as well as options for user feedback will also

be tackled to accommodate different user preferences
and capabilities. In this study, we have presented an
applicability check common for initial testing in DSR
[18] and DSS research [19]. We plan to incorporate
RAMP’s base functionality into NESSI4D+ to make
easy load profile generation accessible for all potential
users. Although the representative village and the input
data used were thoroughly researched, they lack real
stakeholders and energy technologies. Hence, our next
steps will also include evaluations and user tests in the
field to validate the applicability of the software.

8. Conclusions

Planning long-term successful and sustainable
energy systems is subject to changes in components’
health, installation cost, fossil fuel prices, and energy
demand. Improper sizing of energy system components
can lead to decreased reliability, reduced environmental
sustainability, and long-term project failure. Thus, we
further developed the DSS NESSI4D that is tailored
to the needs of stakeholders in developing countries to
include these temporal variations. To test NESSI4D+,
we conducted an applicability check on an exemplary
rural village in mountainous Nepal. We found that
especially load variations over time have a high impact
on the energy systems’ reliability, and the economic,
ecologic, and social sustainability of energy projects.
With regards to our research question, we show that
the DSS NESSI4D+ is able to consider and quantify
the effects of different temporal variations in detail and
provide decision support for economically, ecologically,
and socially long-term sustainable energy projects.
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