
ScaffoldSQL: Using Parson’s Problems to Support Database Pedagogy

Otto Borchert
Missouri Southern State University

borchert-o@mssu.edu

 Gursimran Singh Walia
Georgia Southern University
gwalia@georgiasouthern.edu

Abstract
This paper examines ScaffoldSQL, an interactive

tool for helping students learn SQL through a system of
interactive scaffolded exercises using Parson’s
problems. In the system, students are posed with a
problem to solve using SQL. They start by attempting to
answer the question using free-form text. If they get the
problem wrong, they can use a Parson’s problem
interface to simplify the problem. After completing the
problem, students are given one of two “secret words,”
which allows instructors to track student progress
without the need to install anything beyond their typical
LMS. The system is designed to help instructors of
flipped classrooms identify students who are struggling
early, while simultaneously providing immediate
feedback for students as they are learning. The system
also provides tools for content creation and data
gathering for research and development purposes.

1. Introduction

SQL (Structured Query Language) is an ANSI-
specified declarative programming language used to
build, modify, and retrieve information from structured
databases [1]. SQL is currently one of the most popular
programming languages in the world [2], yet research
shows that students struggle learning SQL concepts [3,
4, 5, 6, 7, 8]. While teaching paradigms have been
investigated for object-oriented programming languages
(e.g., Java, Python), there has not been as much work
done on teaching students how to understand and write
SQL, a declarative language.

Based on published reports from interviews of
hiring managers and software developers, “most fresh
grads will have none to very basic SQL skills” [9].
Research reports also indicate that recent CS/SE
graduates have difficulty interacting with databases and
tying in the code meant to interface with the database,
difficulties even creating and designing databases [10,
11]. This implies that current teaching methods, tools,
and pedagogies are not addressing database concepts in
an acceptable fashion. To address this, we propose a
novel pedagogical tool called ScaffoldSQL, which
combines flipped classroom instruction with

scaffolding, Parson’s problems, and automated test
cases in a single-tier database application.

One recent teaching paradigm that has gained
popularity is the flipped classroom [12]. In this
approach, students watch lectures outside of class and
do more complex homework in class. When working
outside of class in the flipped approach, students do not
have immediate access to the instructor. However,
research shows that scaffolded instruction and
immediate feedback works best for learning.

Scaffolded instruction is "the systematic
sequencing of prompted content, materials, tasks, and
teacher and peer support to optimize learning" [13].
Immediate feedback provides students with answers to
their questions as they are asking them. This technique
has been shown to provide learning benefits in artificial
language learning environments [14], among others.

Parson’s problems [15] provides a unique method
for immediate feedback and scaffolding. In a Parson’s
problem, students are asked to solve a programming
problem. Rather than typing out a full computer
program - potentially taxing a novice student’s cognitive
load - students click and drag a series of lines of code,
creating the code line-by-line. Distractors can be added
to increase the difficulty level. Most importantly, the
problems can be auto-graded, so that students get
immediate feedback about what they did right and
wrong.

Parson’s problems are typically compared to full
code writing exercises, where a student is posed with a
problem and must write the code free-form and from
scratch. Parson’s problems take less time to complete
and are shown to provide the same learning performance
and student retention levels as a code writing exercise in
Python [16].

Another option for providing immediate feedback
for flipped classroom situations is auto-graded free-
form assignments using test cases. In this method,
instructors begin by creating a problem they would like
students to solve, then creating a series of test cases to
determine if the student successfully solved the problem
or not. Auto-grading tools like Gradescope and Web-
CAT utilize this method and have shown to support
student learning [17, 18].

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 1032
URI: https://hdl.handle.net/10125/79458
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

While flipped classrooms have been deployed in
SQL classrooms [19, 20], tools that require less
instructor overhead are needed for widespread adoption.
One way to reduce instructor overhead is by focusing on
tool architecture. SQL is typically deployed using one
of three tiers of architecture [21]. In a three-tier system,
a client connects to a middleware layer that connects to
a server. This provides excellent security for the
database but requires the most effort to implement. In a
two-tier architecture, a client connects directly to a
server database. Again, not impossible, but has some
setup costs. A one-tier system simply has the user
connect directly to the database on their own personal
computer. This approach can support students with no
or poor Internet connections. This is important for rural
students especially - only 70% of households near our
campus have broadband on average [22, 23]. A no-
Internet option would be useful for other learners as
well.

ScaffoldSQL is a learning tool for SQL instruction
that integrates into flipped classrooms, provides
scaffolded instruction, and uses a one-tier system for no
or poor Internet connection support. It runs using an
SQLite database through a web browser. A prototype of
this system, first described in [24], was developed by the
first author and used for the 2019-2020 school year at
Missouri Southern State University, a regional teaching
university in southwest Missouri in the United States.
This prototype consisted of an SQL simulator built into
an interactive textbook. Students were able to type in
free-form SQL queries and enter their response into an
essay-style question in the online textbook.

Despite students anecdotally enjoying the first
prototype, when these students came to class, they were
unprepared for the more complex material being
presented in class. They were unsure of the ordering and
execution of clauses, did not understand concepts like
aggregation, logical operators, and join operations.
These issues led to the conclusion that they required
further scaffolded instruction. Further improvements
described in this paper include the Parson’s problem
interface, a content creation tool, research tool, and UI
improvements.

In this paper, we will begin by identifying relevant
literature in SQL teaching and learning and Parson’s
problems in Section 2. Section 3 will look at
ScaffoldSQL’s novel approach to combining techniques
from computer science education research used in other
contexts but applied to database pedagogy. Section 4
will examine a previous version of ScaffoldSQL used in
a flipped classroom setting. Section 4 will also describe
the most recent iteration of ScaffoldSQL and its specific
implementation of interventions in depth. Section 5 will
identify opportunities for future work, while Section 6
will offer some concluding remarks.

2. Literature Review

There have been many efforts to assess student
understanding of SQL. Most of these efforts can be
divided into four main categories: SQL converted to
natural languages, auto-grading of SQL queries, SQL
visualizations, and feature-rich interactive tutoring
systems.

In [25], the authors describe a system to help
students learn SQL by converting queries into natural
language descriptions using regular expressions. SQL
involving subqueries are not captured by this system,
but it is still able to translate 96% of test queries into an
English representation. ScaffoldSQL does not support
the conversion of SQL statements into their English
equivalents.

Several systems have been developed to assist
instructors in grading SQL queries. In [26], the authors
describe XDaTa, a system that compares the results of a
student's query to the results of the solution query. The
system can also generate test set data for SQL queries.
It does not currently support SQLite. ScaffoldSQL
specifically does not include a solution query to avoid
cheating that can occur in a one-tier architecture.

Visualization is another avenue of teaching SQL.
Early visualization efforts include eSQL [8], a query
visualization tool for Oracle databases [27], and the
Animated Database Courseware (ADbC) system [28].
SAVI (System for Advanced SQL Visualization) [3] is
a tool for visualizing basic selection with the WHERE
operator, joins, grouping, and aggregates. It also runs on
any HTML5 compliant browser, but still requires an
extensive back-end server setup. SQL in Steps (SiS)
[29] uses a visualization strategy to help students build
the individual clauses of an SQL query. Mastery Grids
[30] is another, more recent method of visualization
using smart content for teaching Java, SQL, and Python.
ScaffoldSQL does not provide visualization support, but
this would be an interesting avenue for future research.

CS/SE educational research has a long history of
interactive tutoring combined with automated
assessment as an effective means to support pedagogy
in classrooms. In terms of grading and tutoring for SQL
queries, some of the tools include SQL-Tutor [7],
AssessSQL [6], aSQLg [31], LEARN-SQL [32],
SQLator [4], and unnamed systems like [5].
ScaffoldSQL’s free-form automated test case suite
looks most like these tools, with the addition of the
Parson’s problem interface – making it unique.

Page 1033

3. Proposed Approach: Supporting
Database Pedagogy using ScaffoldSQL

ScaffoldSQL (Figure 1) uniquely combines several
pedagogical approaches from non-database domains
and applies them to student learning. ScaffoldSQL
combines (1) automated test cases, as in [4, 5, 6, 7, 31,
32], (2) Parson’s problems [15, 16], (3) support for low
or offline Internet connectivity using “secret words”, (4)
a series of hooks for tracking student progress for
researchers, (see [33, 34]); and (5) a tool for developing
question, test case, and Parson’s problem content,
similar to [35].

Automated test cases have been used to help teach
students database concepts in many contexts [4, 5, 6, 7,
31, 32]. We see this as a baseline functionality for any
new learning tool designed to teach students about SQL
syntax and semantics.

Parson’s problems have been well established as
tools for helping students learn imperative programming
languages [15]. Our system seeks to determine the
effectiveness of applying Parson’s problems to a new
domain - learning SQL.

SELECT Items.itemName, COUNT(Items.itemName)
FROM Guilds JOIN GuildTreasury
 ON Guilds.guildID = GuildTreasury.guildID
JOIN Item
 ON Items.itemID = GuildTreasury.itemID
WHERE Guilds.guildName = ‘Shocking Power’
GROUP BY Guilds.guildName, Items.itemName
ORDER BY COUNT(Items.itemName) DESC

Figure 2. A SQL query that has been indented
and placed on separate lines.

As a declarative language, SQL does not typically

use control flow, however, SQL can be formatted into
“clauses” on separate lines, forcing students to think
about the “steps” of the problem (Figure 2). This format
is not required and can be replaced with a single less-
readable line (Figure 3). However, industry-standard
practice focuses on using clause-based formatting. For
this reason, Parson’s problems were chosen in this
approach as a tool to help students scaffold their
understanding of SQL.

SELECT Items.itemName, COUNT(Items.itemName)
FROM Guilds JOIN GuildTreasury ON
Guilds.guildID = GuildTreasury.guildID JOIN
Item ON Items.itemID = GuildTreasury.itemID
WHERE Guilds.guildName = ‘Shocking Power’
GROUP BY Guilds.guildName, Items.itemName
ORDER BY COUNT(Items.itemName) DESC

Figure 3. The same query as in Figure 2

without indentation or line breaks.

The COVID-19 pandemic has illuminated issues

with Internet equity, especially in remote and rural areas
[36]. SaffoldSQL aims to reduce this discrepancy with
respect to SQL pedagogy by including a series of “secret
words”. When creating a question, the instructor selects
two words – one for the Parson’s problem interface and
one for the free-form interface. These words are
encrypted and hidden from the student. When the
student answers a question correctly in an interface, that
secret word is encrypted and shown to the student.
These secret words can be sent to instructors via non-
Internet means - whether through SMS messages, paper,
or verbally. This allows the instructor to see which

Figure 1. Flow diagram for ScaffoldSQL. Students start in the Freeform SQL entry interface.

Page 1034

students needed to use the Parson’s problem interface
and which students were able to answer the question
using the free-form interface – allowing for more
appropriately scaffolded instruction in low or no
Internet scenarios.

Recent efforts in computer science education have
focused on developing common frameworks for sharing
research data. For example, PEML (Programming
Exercise Markup Language) [37] for sharing
programming exercises, and ProgSnap2 (Programming
Snapshots) [38] for sharing student process data
captured during student interactions with computer-
based programming learning tools. ScaffoldSQL seeks
to support the broader computer science education
research field by using these existing frameworks, rather
than inventing a new one.

One of the major disadvantages of platforms like
ScaffoldSQL is the difficulty in developing content that
is bug-free and syntactically valid [35]. Instructors do
not necessarily have the time, expertise, or patience to
learn the specific test case and Parson’s problem format.
Thus, ScaffoldSQL provides a content creation tool,
allowing an instructor or other content creator to specify
what test cases, Parson’s problem data, and secret words
should be included for their problems, without knowing
the specifics of the file format.

4. ScaffoldSQL: Implementation and Field
Study

ScaffoldSQL has been prototyped, evaluated, and has
undergone significant iterative changes. This section
provides details regarding the two versions in the
following subsections.

4.1. ScaffoldSQL v1

At the university using the initial prototype, SQL is
considered a third programming course after two
semesters focused on C#. Approximately half of the
course is involved in teaching SQL, while the other half
focuses on writing GUI applications in C# that use
databases.

To reduce the effort required to maintain a server
architecture and with a long-term plan of supporting
offline deployment, SQLite was chosen to implement
ScaffoldSQL v1. SQLite is “a small, fast, self-
contained, high-reliability, full-featured, SQL database
engine” [39]. ScaffoldSQL uses a Javascript version of
SQLite to provide the students with an interface to edit
SQL [40].

In the summer of 2019, the author developed an
interactive website and textbook in Top Hat. Top Hat is
a web-based platform for course management. It

includes features like attendance tracking, lecture
recording, polls and quizzes, assignments, and
textbooks [41]. The textbook allowed the instructor to
“flip” the database course. Students completed a series
of readings and SQL queries on a simple database, then
came to class to work on more difficult SQL and GUI
problems in a pair programming environment. The
textbook includes an iframe ability, displaying external
web site content in the textbook. This “external website”
was ScaffoldSQL v1.

The website was built in GitHub Pages using sql.js
[40] and used in the 2019-2020 school year. Students
were able to query the database and see the results of
their query. They would then enter their responses into
a Top Hat question which had to be graded manually.

While this was somewhat effective, students would
often have the wrong answer and come to class
inadequately prepared to answer more complicated SQL
questions. Analysis of students' responses when using
ScaffoldSQL v1 and their content understanding led to
the development of the new system (v1.2).

4.2. ScaffoldSQL v1.2

During Fall 2021, progress was made developing
ScaffoldSQL to include more features. The new version
combines the following:

● a “secret word” system for improving the
experience for students with poor or no Internet
connectivity;

● automatic grading using test cases;
● a Parson’s problem hint interface;
● a “Question Maker” so instructors or content

creators can build questions, Parson’s
problems, and test cases; and

● research infrastructure for gathering data.
This new version is a standalone system that does

not require Top Hat or a connected Internet server.

4.2.1. Offline Support - “Secret Words”. One of the
design goals of ScaffoldSQL is to create a product that
worked in locations with poor or no Internet
connectivity but could also scale - adding more features
when the Internet is available. The secret word system
is designed to assist students in this situation.

In a normal client-server platform, an Internet-
based server would store whether they got a particular
query right or wrong. In ScaffoldSQL, upon completing
a question, the program provides the student with a
secret word that they can give to their instructor over a
non-Internet communication channel.

There are two sets of secret words. One set
corresponds to the student correctly answering an SQL
query using the free-form interface, and another that
corresponds to the student successfully answering a

Page 1035

question after using the Parson’s problem interface. This
way, an instructor can keep track of student progress,
even without the direct support of an Internet
connection. These secret words could also eventually be
used as part of a gamification system (see Future Work).

Since the secret words are stored locally, one worry
is that students could simply look up the secret words
and enter those into the offline communication channel.
A dedicated student could open the files associated with
the ScaffoldSQL program and use the secret words
directly, rather than completing the exercises. To
alleviate this risk, secret words are encrypted using
AES. This is not a perfect solution but should keep the
casual student from cheating during the exercises.

4.2.2. Automatic Grading via Test Cases. In the initial
ScaffoldSQL prototype, students needed to either write
a precisely matching SQL query or have the instructor
manually grade their SQL query to get full credit for a
solution. This led to a second design goal of

ScaffoldSQL: a product where students did not have to
exactly match the provided solution, giving more
flexibility to student creativity and reducing instructor
grading burdens. To satisfy this requirement, a system
of test cases was developed that would be executed on
the results of a student’s SQL query.

A typical use of the ScaffoldSQL system would
begin with a student being posed with an SQL-based
problem or question in a free-form interface (Figure 4).
The simulator loads a specific test case file using a GET
request to a locally running web server. The student
begins the problem by attempting to answer the SQL
query by typing out their response. When they are
satisfied with their answer, they click the Execute
button, which executes the query on the database.
Rather than matching the student’s submission against a
provided solution via a simple string comparison, the
results returned from the database are compared to these
test cases to determine if their output matches. If the
student passes all the test cases, their answer is deemed

Figure 4. The free-form interface of ScaffoldSQL filled in, after a student has successfully

answered the question. The codeword can be entered into an LMS or Top Hat textbook
response to help instructors identify who needed a hint.

Page 1036

correct, the secret word is decrypted and provided to the
student.

If the student gets the free-form question incorrect
once, they are allowed to enter the Parson’s problem
interface. If the student is incorrect five times, they are
automatically put into the Parson’s problem interface.
Future versions will allow the instructor to tailor how
many free-form attempts should be allowed before the
hint interface is exposed or when students are
automatically switched to the interface.

The test case format of ScaffoldSQL is a text file
divided into three main sections - introduction,
automated test case information, and Parson’s problem
information.

The first section consists of five lines.
1. The text of the question.
2. A true/false value indicating if this question

includes a Parson’s problem.
3. A true/false value indicating if the question

includes automated test cases.
4. The encrypted secret word for completing the

Parson's problem.
5. The encrypted secret word for completing the

automated test cases (without the Parson’s
problem hint).

The second section contains a list of automated
tests. The test cases can check if the results contain a
given number of rows and columns, if there is a specific
value in a specific cell in the results, and if the name of
a particular column matches a particular value.

There is a single line with the constant “Parsons” to
separate the automated test cases from the Parson’s
problem data. The final section describes the
information to be displayed to the user in the Parson’s
problem interface, using the js-parsons format,
described in the next section.

4.2.3. Parson’s Problem Hint Interface. Upon
clicking the Hint button or being automatically directed
to the Parson’s problem interface, the student sees a list
of SQL query clauses with toggles on the left-hand side.
The student must click and drag the clauses from the left
to the right, place the clauses in the correct order, and
select the appropriate toggle to answer the question
(Figure 5).

After completing the Parson's problem, the student
clicks the Execute button, which causes the SQL query
to be executed and tested against the same series of test
cases as the free-form interface. If all the test cases pass,
the student is given the secret word specific to the

Figure 5. The Parson’s Problem interface in ScaffoldSQL. Clicking and dragging lines from left

to the right solves the problem. Clicking the ?? buttons switches between options. Clicking
Reshuffle sets the problem back to its original state, but re-ordered. Clicking the Execute

button runs the SQL query on the test cases with the database results appearing as output.

Page 1037

Parson’s problem. This way, an instructor can identify
students that answered the free-form question correctly
from those who needed the hint interface to answer the
question, regardless of Internet availability.

To load a Parson's problem, ScaffoldSQL reads the
test case file from the hard drive or available Internet
connection. The js-parson’s format consists of a series
of lines indicating which lines of code are included in
the problem. In ScaffoldSQL’s case, this corresponds to
the series of SQL clauses the student might use in their
solution.

In addition to these clauses, toggles need to be
specified (See the ?? buttons in Figure 5). These toggles
allow the student to select between different field
names, table names, expression symbols (ex: <, <=, >,
>=, =) and literal values within the SQL query. These
toggles start with the token $$toggle, and end with the
token $$. Each toggle choice is separated by two colons.
For example, a toggle that includes all of the expression
symbols shown above would be represented via
$$toggle<::<=::>::>=::=$$.

4.2.4. Instructor Tools. Building the test cases and
Parson’s problems by hand is tedious. The Question
Maker interface (Figure 6) allows instructors or other
content creators the ability to create these test case files
without needing to know the specific format
requirements. The creator can enter the question
number, question name, test case specifics, Parson’s
problems specifics, and secret words for the problem.
The test case format is then written to the hard drive and
can be distributed with ScaffoldSQL installations as
needed.

The Question Maker interface contains three
distinct sections available for question creation, (1) The
question text posed for a student attempt and its
corresponding number, (2) The test cases used to

evaluate the correctness of an attempted query, and (3)
The Parson’s problems commands and values, including
the potential to add distractors.

Upon entering the application, a creator is first
asked to set the question number and question text. The
question number is used as the name of the file that will
be loaded by the student interface. The question text is
the scenario posed to the student.

The second section is focused on test case
development. The creator can select whether test cases
will be used for this problem. If test case evaluation is
enabled, the instructor enters test case data, including
the number of columns and rows that should result from
a valid SQL query, the column headers that should
appear in the result, and specific evaluation criteria for
row/column cell values - for example, cell 0, 2 should
contain the value 20. Finally, the creator enters a secret
word for the test case data and is prompted to encrypt
the secret word.

The third section of Question Maker focuses on
Parson’s problem development. As with the test case
evaluation, creators can enable or disable the Parson’s
problem interface for students. A series of combo boxes
indicates which clauses to include in the Parson's
problem interface. Clauses available are SELECT,
FROM, INSERT INTO, VALUES, DELETE FROM,
COUNT, IN, NOT, LIKE, CROSS JOIN, HAVING,
ORDER BY, GROUP BY, OFFSET, LIMIT, RIGHT
JOIN, UNION, FULL OUTER JOIN, ON, LEFT JOIN,
NATURAL JOIN, JOIN, BETWEEN, AND, UPDATE,
SET, and WHERE. There is also support for sorting
data in ascending or descending order. The creator also
sets the possible table, column, and literal values for
each clause. Finally, the creator can select a secret word
for the Parson’s problem interface, encrypt the word,
and submit the question. Submitting saves the question
file to the local hard drive.

Figure 6. A screenshot of ScaffoldSQL’s Question Maker interface. This shows a portion of the

Parson’s problem generation tool.

Page 1038

4.2.5. Researcher Tools. ScaffoldSQL includes tools to
help with computer science education research through
a series of logging hooks. When a student clicks the hint
or execute buttons, an entry is stored in a research-only
external database with the question number, question
text, if the student was using the Parson’s interface, the
date and time they clicked the Hint button (if
applicable), the date and time they clicked the Execute
button, and the number of attempts for that student. No
student demographics or tracking information is
included. This information is only sent to the database
when the student is connected to the Internet.

5. Contribution and Future Work

While ScaffoldSQL has not yet been
comprehensively validated, students at Missouri
Southern State University used ScaffoldSQL v1 and
were pleased with the interactive features (e.g., having
a built-in simulator for practice) but would have liked to
get more immediate feedback during their readings
which motivated the addition of new features in v1.2.

Since the design of ScaffoldSQL is grounded in
pedagogical literature, we believe that this tool will
provide scaffolds for student learning (that can allow
instructors to assess and intervene in a timely manner),
reducing students’ cognitive load towards solving SQL
queries and reducing instructor overhead. We anticipate
that students will demonstrate higher learning gains,
especially on more complex queries like joins and
subqueries. Based on the student feedback on
ScaffoldSQL v1, students appreciate the extra support
during out-of-class sessions in a flipped classroom
modality where they can practice and self-assess their
understanding of content covered during the classroom.

As we plan to conduct large scale studies using
ScaffoldSQL v1.2 and make subsequent improvements,
we will seek opportunities for ways to enable
widespread adoption and evaluation. Some of these
include integration into Learning Management Systems
using LTI, creation of a shared database of questions
and test cases, improvement of research tool
interoperability, addition of gamification elements,
creation of a tool to help instructors of large classes
manage secret word communication, development of
self-paced competency-level mastery modules,
improvement in Parson’s problem scaffolding, and
integration of ScaffoldSQL with other data pedagogical
tools.

One request of many instructors when dealing with
learning tools is integration with university learning
management systems (Blackboard, Canvas, Moodle,
etc). This is typically done via an LTI (Learning Tools
Interoperability) interface. ScaffoldSQL currently does

not support LTI, but it will need to be included to
support broader adoption of the technology.

Instructor overhead is still high using the current
version of ScaffoldSQL, especially with respect to
content creation. A shared repository of Parson’s
problems, test cases, and questions will alleviate the
burden of instructors needing to develop this content on
their own. This database could also be used to identify
difficulty level using student answers to questions in the
ScaffoldSQL interface.

While a rudimentary system for saving research
data exists, it will be important for ScaffoldSQL to
become part of the broader research landscape. For this
to occur, research data gathered from ScaffoldSQL
needs to be read and shared in some common data
format. Options include PEML [37] and ProgSnap2
[38], the former for sharing the actual questions
embedded in ScaffoldSQL, while the latter for sharing
student progress while they use ScaffoldSQL.

A potential future use of secret words is in the
development of a gamified interface. Gamification has
been used in a wide variety of disciplines and has been
shown to improve student motivation and learning [42,
43, 44, 45]. ScaffoldSQL secret words could be used as
part of a “madlib” type interface, where each secret
word becomes part of a story that the student would be
motivated to complete.

In addition to gamification of secret words, an
interface could be built to collect and organize secret
words from students. Presently, there is no way to
manage what secret word came from what student. This
would be especially important for instructors who are
teaching large classes.

Rather than using the tool as a supplement to a
flipped database course, it could also be self-contained
and self-paced. Students would be able to complete a
series of problems showing they have mastery over each
of the individual learning outcomes within the tool.

More intentional and focused scaffolding between
Parson’s problems and the automated test suite is also
possible. One such example would be a failed test case
that induces a specific follow-up Parson problem. For
example, if a test failed because of too many columns,
the Parson's problem could focus on the SELECT
clause. If a test failed because of too many rows, the
associated Parson's problem could focus on the WHERE
clause. Another example would be providing the student
with specific study resources if they incorrectly answer
a Parson’s problem in common ways.

6. Conclusion

The ScaffoldSQL tool provides a system of
scaffolding for students to learn SQL through a series of
Parson’s problems in a flipped classroom environment.

Page 1039

Specific student submissions allow instructors to
identify students who require more attention during in-
class activities.

Successful validation of ScaffoldSQL would
include examining the order effects that might be
present when using tool combinations. For example, is
it better for students to learn using a visualization tool
[3, 8, 27, 28, 29] first, then use Parson's problem
interface? Is it better for students to write a Parson’s
problem, then have the SQL be translated into English
as in [25]? These more complicated questions can only
be answered with solid cross-researcher collaboration.

ScaffoldSQL is publicly available on GitHub at
https://github.com/OttoBorchert/ScaffoldSQL.

7. Acknowledgements

Thank you to the Spring 2021 capstone group at
Georgia Southern University that helped improve the
ScaffoldSQL system, Dr. Andrew Allen for supervising
the capstone students, and students at Missouri Southern
State University for providing feedback on v1.

8. References

[1] "SQL Standard," [Online]. Available:

https://blog.ansi.org/2018/10/sql-standard-iso-iec-
9075-2016-ansi-x3-135/#gref. [Accessed 3
September 2021].

[2] "TIOBE Index," [Online]. Available:
https://www.tiobe.com/tiobe-index/. [Accessed 3
September 2021].

[3] M. Cembalo, A. De Santis and U. Ferraro Petrillo,
"SAVI: a new system for advanced SQL
visualization," in Proceedings of the 2011 conference
on Information technology education, West Point,
2011.

[4] S. Sadiq, M. Orlowska, W. Sadiq and J. Lin,
"SQLator: an online SQL learning workbench," in
Proceedings of the 9th annual SIGCSE conference on
Innovation and technology in computer science
education, Leeds, 2004.

[5] G. Russell and A. Cumming, "Improving the Student
Learning Experience for SQL Using Automatic
Marking," in Cognition and Exploratory Learning in
Digital Age (CELDA), Lisbon, 2004.

[6] J. R. Prior, "Online assessment of SQL query
formulation skills," in Australasian Computing
Education Conference, 2003.

[7] A. Mitrovic, "A knowledge-based teaching system for
SQL," in World Conference on Educational
Multimedia, Hypermedia & Telecommunications
(ED-MEDIA), Freiburg, 1998.

[8] R. Kearns, S. Shead and A. Fekete, "A teaching
system for SQL," in Proceedings of the 2nd

Australasian conference on Computer science
education, 1997.

[9] D. Chopra, "A Recruiter’s Guide to Screening and
Hiring SQL Developers," 2020. [Online]. Available:
https://www.adaface.com/blog/recruiter-guide-to-
screening-sql-developers/. [Accessed 3 September
2021].

[10] A. Radermacher, G. Walia and D. Knudson,
"Investigating the Skill Gap Between Graduating
Students and Industry Expectations," in Proceedings
of the 36th ACM International Conference on
Software Engineering, Hyderabad, 2014.

[11] A. Radermacher, G. Walia and D. Knudson, "Missed
Expectations: Where CS Students Fall Short in the
Software Industry," CrossTalk – The Journal of
Defense Software Engineers, vol. 28, no. 1, pp. 4-8,
2015.

[12] J. L. Bishop and M. A. Verleger, "The flipped
classroom: A survey of the research," in ASEE
national conference proceedings, Atlanta, 2013.

[13] S. V. Dickson, D. J. Chard and D. C. Simmons, "An
integrated reading/writing curriculum: A focus on
scaffolding," in LD Forum, 1993.

[14] B. Opitz, N. K. Ferdinand and A. Mecklinger,
"Timing matters: the impact of immediate and delayed
feedback on artificial language learning," Frontiers in
human neuroscience, vol. 5, p. 8, 2011.

[15] P. Denny, A. Luxton-Reilly and B. Simon,
"Evaluating a new exam question: Parsons problems,"
in Proceedings of the fourth international workshop
on computing education research, 2008.

[16] B. J. Ericson, L. E. Margulieux and J. Rick, "Solving
parsons problems versus fixing and writing code," in
Proceedings of the 17th Koli Calling International
Conference on Computing Education Research, 2017.

[17] A. Singh and e. al, "Gradescope: a fast, flexible, and
fair system for scalable assessment of handwritten
work," in Proceedings of the fourth (2017) ACM
conference on learning@ scale, 2017.

[18] S. H. Edwards, "Improving student performance by
evaluating how well students test their own
programs," Journal on Educational Resources in
Computing (JERIC), vol. 3, no. 3, pp. 1-es, 2003.

[19] S. Prabhu and S. Jaidka, "SQL and PL-SQL:
Analysing teaching methods," in CITRENZ
Conference, 2019.

[20] S. M. Dol, "Use of Self-Created Videos for Teaching
Structured Query Language (SQL) using Flipped
Classroom Activity," Journal of Engineering
Education Transformations, vol. 33, pp. 368-375,
2020.

[21] Javatpoint, "DBMS Architecture," [Online].
Available: https://www.javatpoint.com/dbms-
architecture. [Accessed 3 September 2021].

[22] BroadbandNow. [Online]. Available:
https://broadbandnow.com/Missouri. [Accessed 19
September 2021].

Page 1040

[23] BroadbandNow. [Online]. Available:
https://broadbandnow.com/Kansas. [Accessed 19
September 2021].

[24] O. Borchert, "ScaffoldSQL: SQL Test Cases +
Parson's Problems," in Proceedings of the 52nd ACM
Technical Symposium on Computer Science
Education, 2021.

[25] A. Ade-Ibijola and G. Obaido, "S-NAR: generating
narrations of SQL queries using regular expressions,"
in Proceedings of the South African Institute of
Computer Scientists and Information Technologists,
2017.

[26] A. Bhangdiya, B. Chandra, B. Kar, B. Radhakrishnan,
K. V. Maheshwara Reddy, S. Shah and S. Sudarshan,
"The XDa-TA system for automated grading of SQL
query assignments," in 2015 IEEE 31st International
Conference on Data Engineering, 2015.

[27] B. Allenstein, A. Yost, P. Wagner and J. Morrison, "A
query simulation system to illustrate database query
execution," in Proceedings of the 39th SIGCSE
technical symposium on Computer science education,
2008.

[28] M. Murray and M. Guimaraes, "Animated database
courseware: using animations to extend conceptual
understanding of database concepts," Journal of
Computing Sciences in Colleges, vol. 24, no. 2, p. 144,
2008.

[29] P. Garner and J. Mariani, "Learning SQL in steps,"
Journal of Systemics, Cybernetics and Informatics,
vol. 13, no. 4, pp. 19-24, 2015.

[30] P. Brusilovsky, S. Edwards, A. Kumar, L. Malmi, L.
Benotti, D. Buck, P. Ihantola, R. Prince, T. Sirkiä, S.
Sosnovsky, J. Urquiza, A. Vihavainen and M.
Wollowski, "Increasing Adoption of Smart Learning
Content for Computer Science Education," in
Proceedings of the Working Group Reports of the
2014 on Innovation & Technology in Computer
Science Education Conference, Uppsala, 2014.

[31] C. Kleiner, T. Tebbe and F. Heine, "Automated
grading and tutoring of SQL statements to improve
student learning," in Proceedings of the 13th Koli
Calling International Conference on Computing
Education Research, 2013.

[32] A. Abelló, M. E. Rodríguez, T. Urpí, X. Burgués, M.
J. Casany, C. Martín and C. Quer, "LEARN-SQL:
Automatic assessment of SQL based on IMS QTI
specification," in Eighth IEEE International
Conference on Advanced Learning Technologies,
2008.

[33] K. R. B. Sanders, J. E. Moström, V. Almstrum, S.
Edwards, S. Fincher, ... and L. Thomas, "DCER:
sharing empirical computer science education data,"
in Proceedings of the Fourth international Workshop
on Computing Education Research, 2008.

[34] M. Yudelson, "Interoperable Data Collection," 6 June
2021. [Online]. Available:
https://cssplice.github.io/interdc/. [Accessed 4
September 2021].

[35] G. Hokanson and B. M. Slator, "Development Tools
for Content Creation in Virtual Environments," in
Proceedings of E-LEARN 2013 - World Conference
on E-Learning, Las Vegas, 2013.

[36] M. Lieberman, "Internet Access is a Civil Rights
Issue," 23 September 2020. [Online]. Available:
https://www.edweek.org/technology/internet-access-
is-a-civil-rights-issue/2020/09. [Accessed 3
September 2021].

[37] "PEML," [Online]. Available:
https://cssplice.github.io/peml/. [Accessed 3
September 2021].

[38] "ProgSnap2," [Online]. Available:
https://cssplice.github.io/progsnap2/. [Accessed 3
September 2021].

[39] "SQLite," [Online]. Available:
https://www.sqlite.org/index.html. [Accessed 3
September 2021].

[40] "SQL.js," [Online]. Available: https://github.com/sql-
js/sql.js/. [Accessed 3 September 2021].

[41] "Top Hat," [Online]. Available:
https://tophat.com/features/. [Accessed 3 September
2021].

[42] S. Deterding, D. Dixon, R. Khaled and L. Nacke,
"From game design elements to gamefulness: defining
gamification," in Proceedings of the 15th
International Academic MindTrek Conference:
Envisioning Future Media Environments, 2011.

[43] J. Thom, D. Millen and J. DiMicco, "Removing
gamification from an enterprise sns," in Proceedings
of the ACM 2012 conference on Computer Supported
Cooperative Work, 2012.

[44] Z. Fitz-Walter, D. Tjondronegoro and P. Wyeth,
"Orientation passport: using gamification to engage
university students," in Proceedings of the 23rd
Australian Computer-Human Interaction Conference,
2011.

[45] M. R. Narasareddygari, G. S. Walia, D. M. Duke, V.
Ramasamy, J. Kiper, D. L. Davis, ... and H. W.
Alomari, "Evaluating the Impact of Combination of
Engagement Strategies in SEP-CyLE on Improve
Student Learning of Programming Concepts," in
Proceedings of the 50th ACM Technical Symposium
on Computer Science Education, 2019.

[46] B. Shneiderman, "Improving the human factors aspect
of database interactions," ACM Transactions on
Database Systems (TODS), vol. 3, no. 4, pp. 417-439,
1978.

[47] K. Renaud and J. Van Biljon, "Teaching SQL—
Which Pedagogical Horse for This Course?," in
British National Conference on Databases,
Edinburgh, 2004.

[48] V. Matos, R. Grasser and P. Jalics, "The case of the
missing tuple: teaching the SQL outer-join operator to
undergraduate information systems students," Journal
of Computing Sciences in Colleges, vol. 22, no. 1, pp.
23-32, 2006.

Page 1041

