
An Interactive Approach to Teaching Git Version Control System

Elgun Jabrayilzade
Bilkent University

elgun@bilkent.edu.tr

Fatih Sevban Uyanık
Bilkent University

fatihsevban15@gmail.com

Emre Sülün
Bilkent University

emre.sulun@bilkent.edu.tr

Eray Tüzün
Bilkent University

eraytuzun@cs.bilkent.edu.tr

Abstract

Although the Git version control system is widely
used in software engineering, it has been observed
that most Computer Science and Software Engineering
students do not have the necessary knowledge and
practices to use Git. To address this issue, we have
prepared a Git and GitHub training program consisting
of four sessions as a part of the Object-Oriented
Software Engineering course where junior students
utilized these tools for their term projects. The program
was conducted in three academic terms for a total of 258
students.

To evaluate the effectiveness of the training
sessions, we have conducted two surveys, before (224
respondents) and after (200 respondents) the program.
According to the survey results, the number of students
considering themselves insufficient to use the tools for
their projects decreased from 67% to 9% after the
training program. Additionally, the majority of the
students found the lectures and laboratory assignments
beneficial.

1. Introduction

Version control systems allow software developers
to track changes to source code over time and recall
a specific version later if needed. These systems are
generally divided into two categories: centralized and
distributed. In centralized version control systems (e.g.,
Subversion1), there is a single server that contains all
the project files, and users can only work on the latest
snapshot of the project. One downside of such systems
is that there is a single point of failure, meaning that
the project could be lost if something goes wrong with
the server (e.g., database corruption). In the last decade,
many developers moved their projects to distributed

1https://subversion.apache.org/

version control systems such as Git2 where each user
stores the complete history of a project, making it
immune to server related issues. Git is currently one
of the most popular version control systems, and it was
used by 87.2% of responding developers in the annual
developer survey carried out by Stack Overflow in 2018
[1].

However, despite the trend, it has been noticed that
most students lack the necessary knowledge and practice
to use Git. This is because version control systems are
not adequately addressed in typical Computer Science
or Software Engineering curricula [2, 3]. To this
end, we prepared an educational training program for
junior Computer Science students as a part of the
Object-Oriented Software Engineering course in three
academic terms (which are referred to as the first, second
and third iterations of the program). In this course,
students are divided into 5-member teams to develop
a software project using object-oriented principles
collaboratively. Moreover, we made it mandatory for
students to use Git and GitHub3 throughout their term
projects. It should also be noted that this is the first
course in the university where students are introduced
to Git and GitHub.

The training program aimed to introduce frequently
used Git and GitHub concepts to students and prepare
them for their software engineering careers. We
followed a similar structure for the training programs
in all iterations, starting with a pre-training survey to
see the students’ level of experience in Git and GitHub.
Then, we delivered a lecture introducing the general
concepts of version control systems and GitHub. Next,
we conducted a live session to show the Git instructions
in more detail. Before executing the last session, we
allowed the students to learn more about and practice
the tools remotely for a week through online materials
as well as the lecture slides and tutorial videos we have

2https://git-scm.com/
3https://github.com/

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 901
URI: https://hdl.handle.net/10125/79443
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

https://subversion.apache.org/
https://git-scm.com/
https://github.com/


Table 1: Comparison of our program and other teaching methodologies.

Traditional
training

Reid et al.
[4]

Isomöttönen
et al. [5]

Bonakdarian
et al. [6]

Beckman
et al. [7]

Online
tutorials

Our
program

Introducing the concepts Yes Yes Yes Yes Yes Yes Yes
Live code examples No No No No No Yes Yes
Hands-on exercises No Yes Yes Yes Yes Yes Yes
Interactive lab No No Yes No No No Yes
Online delivery Yes No No No No Yes Yes
Survey about the effectiveness N/A No Yes Yes No N/A Yes
Large survey sample (>100) N/A No No No No N/A Yes

prepared. Afterward, as the last session of the program,
the students were given a graded (5% of the total course
grade) laboratory assignment, where they had to execute
a specific scenario using Git/GitHub operations. At the
end of the program, we conducted a post-training survey
to assess the efficacy of the training sessions.

The rest of the paper is organized as follows. Section
2 reviews the literature regarding the use of Git and
GitHub in education and the teaching of these tools.
Section 3 describes the training process in detail, while
Section 4 presents the results and observations. Section
5 and 6 discuss the potential threats to the validity of the
study and lessons learned, respectively. Finally, Section
7 concludes the study.

2. Related work

2.1. VCS as a course management platform

There are various studies in the literature that
report experiences of using version control systems for
managing course materials and assignment submissions.
Before the release of Git, instructors mostly employed
Subversion and Concurrent Versions System (CVS)4

version control systems. Linder et al. [8] had students
use CVS for the weekly assignments and term project
of the software design course. Reid and Wilson [4]
used CVS as a platform for managing the course where
assignments were shared through CVS, and students
were expected to submit their solutions by committing
to the respective CVS repository. Furthermore, teaching
assistants graded students’ submissions through CVS.
Liu et al. [9] used CVS to monitor and analyze
each project repository of students. The analysis
aimed at understanding how students collaborate and
determine if there is a relationship between their grades
and collaboration patterns. Clifton et al. [10] used
Subversion as a course management tool to enhance
the teaching activities by allowing the instructors and
teaching assistants to collaborate remotely in two CS1

4https://www.gnu.org/software/trans-coord/
manual/cvs/cvs.html

courses.
More recent studies employed Git as a platform to

disseminate course materials and facilitate assignment
submissions [5, 7, 11–15]. Two studies integrated Git
into non-CS degrees. Beckman et al. [7] employed
the tool in four statistics courses, one of them being
a graduate-level course, whereas Lawrance et al. [15]
utilized it in a CS1 course for mechanical and electrical
engineering majors.

Two studies conducted a survey for measuring the
effectiveness of the platform. Conner et al. [12] carried
out a single-question survey for 107 students where
57% of them agreed that the weekly submissions helped
their understanding of Git. Harannen and Lehtinen
[13] also surveyed students at the end of the course
to determine their previous experience, perceptions
towards using Git, and their general feedback about
the course procedures. The majority of students who
answered the survey (141 students) agreed that using Git
as a course management tool was effective.

2.2. Teaching VCS

There are several experience reports about teaching
version control systems. Alongside using VCS as
a course management platform, in three studies,
instructors also taught the tool to students. Reid et al.
[4] conducted a one-hour lecture and one-hour tutorial
sessions for teaching the basics of CVS. Similarly,
Isomöttönen and Cochez [5] demonstrated Git concepts,
after which students practiced the tool in a single
session. Beckman et al. [7] prepared a 15-minute
tutorial and 30-minute practice sessions for teaching Git
to students.

Unlike the previous studies, Bonakdarian [6]
adopted a four-stage tutorial for teaching Git and GitHub
as a part of the ”Introduction to Unix” course. The
stages were composed of a tutorial on the command
line interface followed by GitHub and two Git tutorials.
Students (17 in total) were surveyed before and after the
tutorials answering two questions: (1) How confident
are you using Git/GitHub? and (2) Do you think

Page 902

https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html
https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html


knowing the basics of Git/GitHub will be helpful for
your future work (in school/career)?. The majority of
students felt confident about their skills in Git/GitHub
after the tutorial sessions.

There are also various kinds of tutorials or courses
online for people to benefit from. These include but not
limited to, YouTube videos5, online courses6 and games
for learning Git7. However, such online tutorials lack
interactivity and teaching assistants where students can
get feedback whenever they are stuck.

Table 1 compares current teaching methodologies
and prior approaches with our method in teaching
VCSs. The traditional training includes teaching via
presentation slides for introducing the VCS concepts.
Our work differs from the aforementioned studies and
online tutorials in several ways. First, we carried out
the laboratory session in an interactive manner where
teaching assistants helped the students throughout the
session. Second, the tutorial sessions were carried out
on-campus in iteration 1 and online through Zoom8 for
iteration 2 & 3, indicating that the program is suitable for
both environments. Moreover, we prepared an extensive
survey to assess the effectiveness of the program in
detail, where we got responses from 200 students (78%
response rate).

3. Program setup

The process we followed to execute the training
program is shown in Figure 1. We followed the
same program structure in all iterations. It consists
of four main sessions (lecture, live session, offline
learning, and laboratory assignment) and additional pre
and post-training surveys. The lecture slides used for
teaching and the laboratory assignments are available
online9. In the following subsections, we state the
learning objectives of the tutorials and elaborate on the
parts of the program.

3.1. Learning objectives

Participants of the program were junior students
majoring in Computer Science. Thus, considering their
potential future careers, we have defined the following
three learning objectives for the Git and GitHub training
program:

• Understand the benefits of using version control
systems.

5https://www.youtube.com/watch?v=RGOj5yH7evk
6https://www.udemy.com/course/

git-and-github-bootcamp/
7https://ohmygit.org/
8https://zoom.us/
9https://figshare.com/s/3426342d57238aeaad57

• Grasp the main concepts of Git workflow.

• Develop the required skills to use Git and GitHub
for future projects.

3.2. Pre-training survey

Before starting the training program, we conducted
a preliminary survey to determine the knowledge and
experience level of students in Git and GitHub. The
survey included the following five questions:

1. Have you ever used Git? (Yes/No)

2. If you have used Git, have you used GUI apps for
Git? (Yes/No)

3. If you have used Git/GitHub, which operations
and concepts have you performed? (Multiple
selections from {commit, clone, fork, push, pull,
branch, fetch, merge, checkout})

4. In how many projects did you use GitHub? (0,
1-5, 6-10, 10+)

5. Do you see yourself sufficient to use Git and
GitHub during your term project? (Yes/No)

3.3. Lectures and live coding session

The training program started with a two-hour lecture
on Git and GitHub. The lecture was conducted in
person for the first iteration and online for the second
and third iterations due to the pandemic. Initially,
we showed what version control systems are and why
they are essential for software development projects.
Then, we explained the basic Git operations such as
init, add, commit, push, pull, clone as well as some
advanced ones such as rebase, squash, amend, etc.
There are various Git GUI applications that allow
performing the operations much easier and provide a
better visual representation of the commit history. Thus,
we also demonstrated how to apply Git operations using
Sourcetree10 in the first iteration. However, because
such GUI applications have limited operating system
support and they may prevent students from learning Git
in detail, we decided to utilize a command-line interface
most of the time in iteration 2 & 3. Furthermore, we
went over an example project on GitHub explaining
issues, pull requests, and other useful collaboration
features. We made the lectures interactive by asking
questions to students and running polls. Directly after
the lectures, we conducted a live coding session for an
hour, showing how to install and setup the Git as well as
apply the operations on a sample project.

10https://www.sourcetreeapp.com/

Page 903

https://www.youtube.com/watch?v=RGOj5yH7evk
https://www.udemy.com/course/git-and-github-bootcamp/
https://www.udemy.com/course/git-and-github-bootcamp/
https://ohmygit.org/
https://zoom.us/
https://figshare.com/s/3426342d57238aeaad57
https://www.sourcetreeapp.com/


Pre-training
Survey

Lecture
(2 hours)

Live Coding
(1 hour)

Remote Learning
(1 week)

Compare Answers

Program Flow

Lab Assignment
(3 hours)

Post-training
Survey

Training Sessions

Post-program
Support

Figure 1: Activity diagram of the training program.

3.4. Remote learning

In addition to the live lectures, the same concepts
were also taught on YouTube. That way, the students
had the opportunity to revise the concepts in-depth in
order to get ready for the graded laboratory session,
which was conducted a week after the lectures. The
video lectures for the Git and GitHub tutorials can be
accessed online11.

3.5. Laboratory assignment

In the laboratory assignment, the students were
asked to implement a mini-project using Git. Students
had the opportunity to practice various Git concepts that
were taught in the tutorials. The prepared assignments
for the iterations of the training program were different
in terms of scenario but were similar in structure.
A history graph of the assignment from the second
iteration is shown in Figure 2. It can be seen that
the students performed operations such as commit,
branch, merge, fetch, etc. An example scenario of a
commit operation is shown in Figure 3. The laboratory
session was conducted virtually through Zoom in all
iterations. Throughout the laboratory session, the
teaching assistants were available to help the students
with their assignments. The students having problems
with their assignments joined the teaching assistants’
Zoom meeting rooms and waited in the waiting rooms.
The teaching assistants accepted the waiting students
to the meeting room one by one and tried to resolve
their problems. The students were also able to share
their screens during the meeting sessions, enabling the
teaching assistants to tackle the issues much more easily.

3.6. Assessment of the laboratory assignment

The assignment was divided into multiple parts
where each part had a predetermined score according to
its difficulty. The teaching assistants were responsible
for grading the students’ submissions in all iterations.
Firstly, they cloned each student’s repository and

11The YouTube link will be published after the review phase.

Figure 2: Git history graph of the assignment from
the second iteration (taken from Sourcetree).

Figure 3: Example scenario of a commit operation.

extracted the corresponding Git history graph. By
looking into the graphs, the teaching assistants were
able to see individual commits in each branch created
by students and grade the assignment parts accordingly.

3.7. Post-training survey

After completing the laboratory session, a
post-training survey was conducted to assess how
well the students have learned Git and GitHub. Textual
feedback was received from the students about the
lecture tutorial and laboratory assignment. The
questions that were asked to the students are as follows:

1. How were the Git and GitHub tutorials? (Likert
scale)

2. Which Git/GitHub operations have you
performed after the tutorials? (Multiple selections
from {commit, clone, fork, push, pull, branch,
fetch, merge, checkout})

3. How beneficial was the laboratory assignment?

Page 904



55 126 43

Have you ever used Git?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

No Yes

Figure 4: Results of the pre-survey question 1.

(Likert scale)

4. How realistic was the assignment scenario?
(Likert scale, iteration 2 & 3 only)

5. How difficult was the laboratory assignment?
(Likert scale)

6. After the tutorials, how well did you learn Git and
GitHub? (Likert scale)

7. How sufficient do you see yourself using Git and
GitHub during your projects? (Likert scale)

8. Did you like the Sourcetree software? (Likert
scale, iteration 1 only)

9. What are your opinions about the training
program? (Text)

Question 8 was only asked in iteration 1 due to
the limitations of GUI applications for Git discussed in
Section 6.

3.8. Post-program support

After the lecturing and laboratory assignment,
further assistance was given to the students who
contacted the teaching assistants. Short Zoom meetings
were organized in order to resolve the encountered
issues in their projects regarding Git and GitHub
throughout the semesters.

4. Results

In this section, we present the results of surveys and
the grades of laboratory assignments we conducted in
each iteration. The answers to each survey question are
shown in Figure 4 to 15, while the distribution of grades
can be seen in Figure 16.

55 126 43

If you have used Git, have you used GUI applications for Git?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

Have not used Git No Yes

Figure 5: Results of the pre-survey question 2.

55 126 43

In how many projects did you use GitHub?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

10 6-10 1-5 0

Figure 6: Results of the pre-survey question 4.

4.1. Pre-training Survey

A preliminary survey was conducted to assess the
knowledge of the students before the tutorials. The
overall response of the survey suggests that 67% of
the students did not think that their Git and GitHub
knowledge is sufficient (see Figure 7) and even, in
the first iteration, around 60% of the class have not
utilized Git before (see Figure 4). More importantly,
it can be inferred from Figures 6 and 15 that the
majority of the students who have used Git and GitHub
before experimented with the tools in a few projects
and performed basic operations such as commit, push
and pull more frequently in comparison to complex
operations such as branch and merge.

There are many graphical user interface (GUI)
applications for Git such as Sourcetree, GitKraken12,
and GitHub Desktop13. The students were asked
whether they used such applications before. The results
are shown in Figure 5. In the first iteration, only 9% of
the students had used GUI applications for Git before.
For the latter iterations, it was approximately 35%.

12https://www.gitkraken.com/
13https://desktop.github.com/

Page 905

https://www.gitkraken.com/
https://desktop.github.com/


55 126 43

Do you see yourself sufficient to use Git and GitHub during your term project?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

No Yes

Figure 7: Results of the pre-survey question 5.

53 109 38

How were the Git and GitHub tutorials?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

Very Poor Poor Average Good Very Good

Figure 8: Results of the post-survey question 1.

Sourcetree was used in the tutorials of the first iteration.
The reason for utilizing Sourcetree was that it has a good
commit history visualization and teaching assistants had
previous experience in it.

The initial survey results reflect the necessity for
having Git and GitHub lectures in the Object-Oriented
Software Engineering course, as the main aim of this
course is to learn the processes during the development
phase of a software product and how to contribute to a
software project as a well-organized group. Hence, it
can be concluded that the knowledge of Git becomes
essential during the development of a software project
due to collaboration.

4.2. Post-training Survey

After the laboratory assignment, another survey was
conducted to assess whether the students learned the
utilization of Git and GitHub to the degree that they
can contribute to projects efficiently via these platforms.
Furthermore, constructive feedback was collected from
the students about the live tutorials, offline learning
materials, and laboratory assignments.

From the post-survey results, it can be inferred from

54 109 38

How beneficial was the laboratory assignment?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

Very Inefficacious Inefficacious Average Beneficial Very Beneficial

Figure 9: Results of the post-survey question 3.

109 38

How realistic was the assignment scenario?

0%

25%

50%

75%

100%

Iteration 2 Iteration 3

Very unrealistic Unrealistic Average Realistic Very realistic

Figure 10: Results of the post-survey question 4
(Iteration 2 & 3 only).

Figure 8 that the tutorials in the class and on YouTube
were effective because 48% of the students rated the
tutorials as good and 17% as very good (all iterations
combined).

Approximately 66% (very beneficial, beneficial) of
the students found the laboratory assignment beneficial
(see Figure 9). Moreover, the results suggest that the
difficulty of the assignments was perceived roughly as
balanced by the majority of the students in the iterations
(see Figure 11).

In the first iteration, students have rated the
Sourcetree tool. According to the results, Sourcetree
was considered a good tool by the students as roughly
60% of the students voted that the tool is qualified and
28% of the students voted for it as an average tool (see
Figure 14).

To assess the effectiveness of the tutorials and the
assignment, we compared the results of questions that
were asked before the tutorials and after the tutorials.

Before the tutorials, 33% of the students stated
that they were capable of using Git in their term
projects. However, after the tutorials and the
laboratory assignment, 72% of the students stated that

Page 906



53 109 38

How difficult was the laboratory assignment?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

Very Easy Easy Average Difficult Very Difficult

Figure 11: Results of the post-survey question 5.

53 109 38

After the tutorials, how well did you learn Git and GitHub?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

Very Poor Poor Average Good Very Good

Figure 12: Results of the post-survey question 6.

they considered themselves skilled (very sufficient,
sufficient) for using Git in their term projects (see
Figure 7 and 13).

Figure 15 shows which Git operations students
performed before and after the tutorials & assignment.
It can be observed that more students were able to use
complicated operations rather than basic operations such
as commit and push after the tutorials and laboratory
sessions. Hence, due to this progress, it would be safe
to claim that the students gained hands-on experience
alongside theoretical experience.

Figure 16 shows the histogram of the grades that the
students obtained from the laboratory session conducted
in each iteration. It can be seen that the majority of
students got scores in the range of 76 to 100 (64%,
83%, 74% in iteration 1, 2, and 3, respectively) in all
iterations.

Finally, the claims (see Figure 12) and scores of
the students suggest that they learned Git and GitHub
well, which indicates the effort in teaching the tools was
successful.

53 109 38

How sufficient do you see yourself to use Git after the tutorials?

0%

25%

50%

75%

100%

Iteration 1 Iteration 2 Iteration 3

Very Insufficient Insufficient Average Sufficient Very Sufficient

Figure 13: Results of the post-survey question 7.

Did you like the SourceTree software?

0

5

10

15

20

Very Good Good Average Poor Very Poor

Figure 14: Results of the post-survey question 8
(iteration 1 only).

5. Threats to Validity

In this section, we discuss potential threats that
might have an effect on the provided results. First of
all, in the first iteration, students specified their identities
while responding to their survey questions, whereas,
in the second and third iteration, they responded
anonymously. Thus, the results in the first training
could be a bit biased because they may abstain from
answering, knowing that their names would appear in
their responses. In addition, it was not compulsory
to participate in post-surveys in the second and third
iterations. For this reason, 152 of the 169 students
participating in the pre-training survey participated in
the post-training survey, which may have caused the
second program’s responses to be biased because 17
students who did not participate could have given
negative answers.

Moreover, Git and GitHub are known to provide
version control and make it easier to write software as a
team. However, laboratory assignments were individual
tasks that may not have simulated how Git and GitHub
are used in real life. Finally, since the assignment was

Page 907



Pre Tutorial Post Tutorial

(a) Iteration 1

Pre Tutorial Post Tutorial

(b) Iteration 2

Pre Tutorial Post Tutorial

(c) Iteration 3

Figure 15: Results of the pre-survey question 3 and post-survey question 2 (Which Git/GitHub operations have
you performed before/after the tutorials?).

Grade

P
er

ce
nt

ag
e

0.00

0.25

0.50

0.75

1.00

0-25 26-50 51-75 76-100

Iteration 1 Iteration 2 Iteration 3

Figure 16: Distribution of student grades from the
laboratory assignments.

conducted in a virtual environment, the students could
not be inspected thoroughly, which may have caused
them to resort to academic misconduct, even though it
was mandatory for all students to keep their webcams
on throughout the laboratory session.

6. Discussion

In the first iteration, the lecturing was done in a
real classroom and at the end of the lecture, students
interacted with the instructor and asked their clarifying
questions. In the second and third iteration, because
of the coronavirus pandemic, the lecturing has been
conducted virtually, and likewise, students asked their
questions at the end of the lecture. Importantly,
the virtual lecture was recorded thanks to the feature
provided by the video streaming application. Also,
small modifications were done to the tutorial slides in
the second and third iterations; however, the YouTube
tutorials from the first iteration have been reused.

In addition, adopting an interactive teaching
methodology through laboratory assignments and
having teaching materials for remote learning such as
YouTube lectures enhanced the quality of lecturing
because students had the opportunity of revising the
concepts afterward and practicing the Git concepts on
their own. Moreover, having pre-training surveys and
post-training surveys provided meaningful analytics that
reflected how successful the training program was.
Initially, 63% of the students knew Git, whereas around
92% (very good, good, average) of the students learned
it after the training sessions (see Figure 12).

Textual feedback and comments were received from
the students at the end of the post-training survey.
From the feedback, we observed that the students
were satisfied with the training program. Two of the
comments were as follows:

“I think the lab was perfect. I was starting
to feel really bad about not knowing the
intricacies of Git, but this helped me a lot.”

“Tutorials make me feel better while I need
to learn something for courses. Sending
videos before tutorials was also beneficial
because it enables us to look for the same
things and choose right things to study.
Having opportunity to see examples and
ask questions during lecture time made me
to learn better.”

In the first iteration, some students complained about
Sourcetree’s lack of Linux support. That’s why in
the second and third iterations, IntelliJ IDEA and the
command line interface were used for performing the
Git operations, and the students that desired to benefit
from Sourcetree utilized the YouTube lectures from the

Page 908



first iteration. In the last iteration, we got negative
comments about the duration of the laboratory session,
one of them being:

“In my opinion, time shortage was not
a meaningful scenario for Git & GitHub
lab. It was really stressful to understand
and complete all the parts in time.
I learned many things about Git and
GitHub, however, time shortage made it
unnecessarily stressful.”

Our main goal for the laboratory sessions was to allow
students practice and learn Git. Considering this, we
plan to increase the time duration of the laboratory
assignment in the future iterations.

In the first and third iterations, two teaching
assistants were guiding the students during the
assignment. In contrast, in the second iteration, three
teaching assistants supported the students because there
were more students attending the training program.
Furthermore, in the first iteration, initially, 1.5
hours were given to the students for completing the
assignment. However, the students could not finish the
assignment in the expected time. Thus, the duration
of the assignment was extended to three hours during
the laboratory session of the first training program and
likewise, in the second and third iterations, three hours
of time was given for the assignment.

Due to the pandemic, the laboratory assignment was
conducted virtually. The interactivity of the assignment
could be enhanced if it could be performed in a real
classroom environment. This is because communicating
in a virtual environment requires a stable internet
connection, students have to wait in virtual waiting
rooms, and sharing the desktop with the teaching
assistant is time-consuming, whereas, in a classroom,
communication is a lot easier and students can state their
problems faster. When the pandemic ends, this fact can
be evaluated and reflected in the laboratory assignment.

7. Conclusion

In this study, we have demonstrated how we
conducted a Git and GitHub training program for
third-year undergraduate students in three academic
terms as a part of the Object-Oriented Software
Engineering course. The motivation for conducting the
training program came from the lack of representation
regarding the usage of version control systems in
Computer Science and Software Engineering curricula.
We designed the program to address our learning
objectives directly. During the program, we delivered
lectures and shared our pre-prepared YouTube videos

with the students so that they could gain practical
experience. To evaluate the students’ knowledge, an
interactive laboratory assignment was conducted in a
virtual environment. We shared the lecture slides,
YouTube tutorials, and assignment materials publicly,
making them accessible for the Computer Science
education community.

In order to assess the effectiveness of the tutorial
and laboratory assignment, pre and post-training surveys
were carried out. Comparing the combined survey
results in both iterations, in the beginning, 63% of the
students used Git previously; however, after the tutorials
and the laboratory assignment, 92% of the students
stated that they learned Git prominently. The percentage
of students who were confident in using Git and GitHub
for their term projects rose from 33% to 91%, which
indicates that the training program we designed for
teaching Git and GitHub was successful.

In the future iterations of the program, we plan
to make the laboratory session a collaborative activity
to allow students to have an experience closer to
real-life scenarios. Moreover, we are planning to
expand the scope of the laboratory assignment to include
more GitHub operations such as creating pull requests,
opening issues, etc.

References

[1] “Stack overflow developer survey 2018,” 2018.
[Accessed Jan. 13, 2021].

[2] V. Garousi, G. Giray, E. Tüzün, C. Catal, and
M. Felderer, “Aligning software engineering education
with industrial needs: A meta-analysis,” Journal of
Systems and Software, vol. 156, pp. 65 – 83, 2019.

[3] V. Garousi, G. Giray, and E. Tuzun, “Understanding
the knowledge gaps of software engineers: an empirical
analysis based on swebok,” ACM Transactions on
Computing Education (TOCE), vol. 20, no. 1, pp. 1–33,
2019.

[4] K. L. Reid and G. V. Wilson, “Learning by doing:
Introducing version control as a way to manage student
assignments,” in Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE ’05, (New York, NY, USA), p. 272–276,
Association for Computing Machinery, 2005.

[5] V. Isomöttönen and M. Cochez, “Challenges and
confusions in learning version control with git,”
in International Conference on Information and
Communication Technologies in Education, Research,
and Industrial Applications, pp. 178–193, Springer,
2014.

[6] E. Bonakdarian, “Pushing git & github in undergraduate
computer science classes,” Journal of Computing
Sciences in Colleges, vol. 32, no. 3, pp. 119–125, 2017.

[7] M. D. Beckman, M. Çetinkaya Rundel, N. J. Horton,
C. W. Rundel, A. J. Sullivan, and M. Tackett,
“Implementing version control with git and github as a
learning objective in statistics and data science courses,”
Journal of Statistics Education, p. 1–35, Nov 2020.

Page 909



[8] S. P. Linder, D. Abbott, and M. J. Fromberger, “An
instructional scaffolding approach to teaching software
design,” Journal of Computing Sciences in Colleges,
vol. 21, no. 6, pp. 238–250, 2006.

[9] Y. Liu, E. Stroulia, K. Wong, and D. German, “Using
cvs historical information to understand how students
develop software,” in International Workshop on Mining
Software Repositories (MSR 2004), pp. 32–36, 2004.

[10] C. Clifton, L. C. Kaczmarczyk, and M. Mrozek,
“Subverting the fundamentals sequence: using version
control to enhance course management,” ACM SIGCSE
Bulletin, vol. 39, no. 1, pp. 86–90, 2007.

[11] F. F. Blauw, “The use of git as version control in the
south african software engineering classroom,” in 2018
IST-Africa Week Conference (IST-Africa), pp. Page–1,
IEEE, 2018.

[12] D. C. Conner, M. McCarthy, and L. Lambert,
“Integrating git into cs1/2,” Journal of Computing
Sciences in Colleges, vol. 35, no. 3, pp. 112–121, 2019.

[13] L. Haaranen and T. Lehtinen, “Teaching git on the
side: Version control system as a course platform,” in
Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE
’15, (New York, NY, USA), p. 87–92, Association for
Computing Machinery, 2015.

[14] J. Kelleher, “Employing git in the classroom,” in
2014 World Congress on Computer Applications and
Information Systems (WCCAIS), pp. 1–4, 2014.

[15] J. Lawrance, S. Jung, and C. Wiseman, “Git on the
cloud in the classroom,” in Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’13, (New York, NY, USA), p. 639–644,
Association for Computing Machinery, 2013.

Page 910


	Introduction
	Related work
	VCS as a course management platform
	Teaching VCS

	Program setup
	Learning objectives
	Pre-training survey
	Lectures and live coding session
	Remote learning
	Laboratory assignment
	Assessment of the laboratory assignment
	Post-training survey
	Post-program support

	Results
	Pre-training Survey
	Post-training Survey

	Threats to Validity
	Discussion
	Conclusion

