
Using Students’ Screencasts as an Alternative to Written Submissions

Henrik Bærbak Christensen
Computer Science Department, Aarhus University, Denmark

hbc@cs.au.dk

Abstract

In this paper, we report our experiences on using
student produced screencasts as a medium for students
to explain and provide overview of their solution to
advanced design and programming exercises. In our
context, the screencasts have replaced written reports as
submissions, and we report both on students’ perception
on work effort and effectiveness of screencasts as well
as teaching assistants’ experiences in assessing and
marking the screencasts. Our main conclusions are that
screencasted submissions is an important tool in the
teacher’s toolbox for some categories of learning tasks,
but there are a number of best practices to follow to gain
the full benefits of the approach.

1. Introduction

Guiding and helping students to acquire advanced
design, programming and software engineering skills is
a daunting task. Central to the constructivist learning
paradigm [1] is the students’ own learning activities,
which in our context means finding appropriate software
designs and craft quality implementations of them in
a programming language. However, good teaching
requires more than just reviewing students’ produced
code—the process is just as important. To assess
that, we have previously asked students to hand in a
written report together with their source code; a report
that details their ideas and design, and document their
process.

A major challenge to instructors is the timely,
efficient, and proper feedback on the artefacts that
students produce, pointing out strengths and weakness
in their work and suggesting alternatives and ways of
improvement.

The motivation for the present work came from
a wish to make more efficient use of both students’
and instructors’ precious time, and to ensure a better
alignment between process oriented assignments and
what students actually do. The central hypothesis

was that students should produce screencasts (a digital
recording/video of the computer screen output enhanced
with audio narration) instead of reports. Thus our three
central research questions were

• R1: Are screencasts better to convey fulfillment of
learning goals compared to written reports?

• R2: Are screencasts more efficient to produce than
written reports?

• R3: Are screencasts more efficient to evaluate than
written reports for the teaching assistants?

The present paper presents data, experience, and best
practices gained from 2014 until 2020 in two courses in
nine instances. The data includes students’ perceptions
recorded through answering both Likert scale questions
as well as free text; interviews with teaching assistants,
and finally the instructor’s impressions.

The main conclusions are that screencasting is a
viable and valuable tool for certain types of assignments,
notably process-focused, overview-focused, and
demonstration-oriented assignments; that they indeed
are considered time-saving and thus preferred over
written reports by students, but it is less so for the
teaching assistants. Another important learning is
that efficient use of screencasting requires strong
communication and guidance by the instructor to avoid
confusion and resistance.

2. Related Work

Screencasts have been widely adopted in teaching in
higher education in order to produce material from the
teacher to the students. Reasons range from improving
access, efficiency, and student engagement [2], to
adopting flipped classroom teaching [3] that allows
developing a more student-centered approach through
“content in advance” by prerecorded screencasts or
captured videos. However, the most prominent use is
their use to address a larger audience and/or allowing
self-pacing, as seen in massive online (MOOC) teaching
at edX, Coursera, Udacity and others [4, 5].

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 881
URI: https://hdl.handle.net/10125/79440
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



The aspects of making students produce screencasts
is however much less studied. Powell et al. [6] evaluate
the effectiveness of students’ screencasts as a way
to increase student learning outcomes—by advocating
screencasts without narration as an alternative to note
taking in a introductory programming course. Thus,
the produced screencasts were not submitted, they were
only used for the student’s own use. Schafer [7]
presents a study on students producing screencasts of
geometric proofs which are then peer-reviewed and
discussed in-class to increase student’s self-reflection.
Mohorovičić [8] describes both teacher and student
produced screencasts, but emphasis is on the work flow
of screencast creation, and the selection of tools.

Our work supplement and extend research in
student produced screencasts in several ways. First,
our emphasis is screencasts as the submission of an
assignment, and thus basis for assessment and grading,
more than a tool for reflection and own learning.
Second, we present data from an extended period
(7 years), we present observations from both the
producers (students) and receivers (teaching assistants),
and finally we present concrete advice for teachers
wanting to incorporate screencasting in their teaching.
We acknowledge that our data is an experience report
rather than rigorously validated data: Our focus in our
questionnaires and interviews have been to improve
teaching in the courses’ subject areas rather than
providing rigorous insights into screencasting as such.
Still, we find our experiences relevant as basis for further
work and study, as well as inspiration for teachers.

3. Course Contexts

Our use of screencasts as students’ submissions was
introduced in 2014 in a bachelor level (2nd year)
quarter length (7 week long) course with about 130
students enrolled. Each week is organized with
four 45-minute plenary lectures held by the lecturer
and three 45-minute classes (20-25 students) focused
on the mandatory project (outlined below) staffed
by teaching assistants. The course is a second
year university level course and learning goals are
primarily advanced programming techniques: design
patterns, frameworks, testing, test driven development,
refactoring, and software engineering and associated
tools (JUnit, Ant, Subversion, . . . ), and to a minor
extent aspects of software architecture and systematic
testing. The students are required to have passed exams
in introductory object-oriented programming and to a
minor extend object-oriented design.

Our learning perspective is based on constructivist
theories and the main learning vehicle in the course

is a mandatory project consisting of six learning
iterations or sprints that each adds functional and design
increments that ends up with a configurable framework
(in Java) for creating Civilization type games, complete
with a graphical user interface. Students are organized
in groups of 2–3 persons that work and hand in as a
unit. While each iteration requires adding, modifying,
and refactoring the group’s designs and source code, it
also requires academic reflections over the suitability of
design choices and software quality assessments. For
more detail consult [9, 10].

Up until the 2014 instance of the course, the students
were required to hand in two artifacts in each of the six
deliveries: a written report answering specific questions
about their design and implementation, as well as a zip
file of their production and test code. The questions
to be answered in the report typically required the
students to document designs using UML diagrams as
well as include and explain relevant code fragments
that express design patterns, JUnit test code, framework
hotspots, etc. In iterations that focus on process, like
e.g. test driven development [11] or refactoring [12],
students were required to document and reflect about
their process as well as provide “before-and-after” code
fragments.

As reported below, the experience gained led us to
keep using screencasting in later and revised instances
of the course. In 2017 a faculty level decision required
revising the course into a full semester length course
(14 weeks), keeping the core advanced programming
focus and extending it with extra topics as well as
going into more detail—putting extra emphasis on build
management (migrating to Gradle), version control
(migrating to Git, and using a University GitLab
repository for code deliveries), as well as introducing
clean code principles [13], concurrent programming,
as well as distributed programming using the Broker
pattern [14]. The original project’s six learning
iterations (that is six assignments and submissions) were
extended to 10, covering the extra topics of the course.

In addition, a single master level course on cloud
computing (again, with a strong programming and
skill-oriented focus) used screencasting for some of the
submissions, as detailed further in Section 7.

4. Screencasts as Assignment Submissions

The initial motivation for trying screencasting was
actually to try to lower the workload of the students and
the teaching assistants (TAs). Economic considerations
at our department urged the teachers to consider how to
reduce expenditure on teaching assistants. Therefore we
conducted a brainstorm with course TAs from the 2013

Page 882



instance of the course with that aim. The brainstorm
actually brought up a lot of potential changes in the
way the exercise classes were conducted and in the way
student groups’ and TAs’ work were organized but we
settled on replacing written reports with screencasts as
the most promising based on the following observations:

• The TAs’ experience was that students focus heavily
on the design and implementation effort embodied in
the project’s learning iterations (which is also aligned
with the intentions of the lecturer) which leads to
written reports of low quality. Basically, they reported
them as “put together in a rush just before hand-in
deadline.”

• The workload on the students are measured by the
department’s official evaluation system filled out by
the students. Here, the course is in the upper bracket
of workload and above the required. It was therefore
important to try to find ways that lowered workload
on the students while retaining the same learning
outcome.

• TAs spend much of their time correcting the group’s
report and code deliveries, and providing feedback
to the groups. This entails reading the (often poorly
structured) report and evaluating the code (executing
tests and demonstrators, browsing and understanding
code structure). The latter is a rather laborious process
as the project ends with a large code base in a complex
package structure. Screencasts were hypothesized as a
way to lower workload on the TAs as the source code
and its structure is already shown while the students
explain and browse their code in the screencast, and
run their test cases or demos. Ideally, the TAs would
not need to inspect/run the code at all, if the screencast
provides a comprehensive and compelling overview.

• Screencasts were in the assignments required to
between 6-15 minutes. This was deemed (much) less
time spent by the TA per group than it takes to read a
report, get hold of source code, review and execute it.

• Several central learning objectives, such as test driven
development and refactoring, are basically processes.
Processes unfold over time and are thus poorly
documented in written form. Screencasting was
deemed a better medium for showing process.

• Previous work [15] had documented that even in
courses that focus on test driven development, many
students adopt misaligned practices in that they write
the tests after developing the production code using
traditional techniques. This is impossible to spot in a
written report or resulting source code, but obvious

Table 1. The focus of each screencast
Week Focus Duration (min)
1 Test-driven Dev 10–15
2 Refactoring 5–10
2 Strategy pattern 5–10
3 Test stubs 5–10
3 State pattern 5–10
6 Design and Demo 5–10

in a screencast. Thus changing medium will force
students to adopt the proper process, thereby aligning
their work with the course’ learning goals.

The change in 2014 entailed replacing the
requirement of handing in a written report with
one or two screencasts for four of the six weekly
deliveries, for a total of six screencasts of between
5–15 minutes duration. The focus of each screencast
is outlined in Table 4. The current use is provided in
Appendix B.

As an example of a reformulation of an exercise
whose learning goal is developing code using the
test driven development paradigm. Initially it was
formulated as (2013):

Write a report that includes

1. The final test list.
2. An outline of two or three interesting

TDD iterations from your AlphaCiv
development in detail, outlining the
steps of the rhythm, testing principles
used, and refactorings made.

which was initially rewritten into a screencast
submission (2014)

Create an approximately 10-15 minutes
long screencast with audio narration of one
to three interesting TDD iterations from
your AlphaCiv development. The audio
must refer to the TDD rhythm’s steps and
TDD principles used during development.

It should be noted that this formulation is problematic,
as explained below. The current formulation as well as
other examples are given in Section 8 and the appendix.

5. Student Evaluation

We asked students about their experience of producing
screencasts through questionnaires containing both
statements to evaluate on a Likert scale as well as a
option to provide free text feedback. The initial 2014

Page 883



course instance had an elaborate questionnaire of nine
question, many of which were related to the internal
group process of producing the screencast. Later course
instances reduced questions to one or two questions
regarding “work effort” and “suitability”, as reported
below. No evaluations were made in 2015 and 2016
due to testing other pedagogical aspects in the course,
therefore the questionnaires these years had other foci.
Generally, we strive to have as few questions as possible
to avoid “questionnaire fatigue”, leading to low response
rates.

5.1. Question 1: Suitability

The statement for students to evaluate on the Likert scale
deals with the approach’s suitability for demonstrating
students’ skills, and thus addressing research question
R1 in the introduction. It is formulated as:

Statement 1: Screencasting demonstrates
our work better than written reports
(Exercises on TDD, refactoring, clean
code, etc.)

The results for each year and student answers (Count)
in percentages of answers in categories Strong Agree
(SA) over Agree (A), Neutral (N), Disagree (D) to Strong
Disagree (SD) are shown below.

Table 2. Statement 1
S1: Screencast demonstrates our work better. . .
Year Count SA A N D SD
2014 63 41% 34% 12% 9% 3%
2017 72 16% 26% 31% 8% 15%
2018 79 34% 36% 17% 10% 3%
2019 113 29% 30% 20% 16% 5%
2020 86 26% 30% 34% 6% 4%

It appears the numbers for 2014 are a bit higher than
later years, perhaps attributable to the novelty factor.
Never-the-less student’s perception is generally positive,
with only 10%-23% finding that written report would
be a better medium for submitting their work. That is,
roughly more than 75% prefer or are neutral towards
screencasts over the years. It should be noted, however,
that the neutral group is generally quite large.

5.2. Question 2: Work effort

The perceived workload of producing screencasts
compared to writing a report with similar contents,
related to our research question R2, was evaluated
through the statement:

Statement 2: Making screencasts requires
less effort than writing a report on the same
topic

The distribution of answers were:

Table 3. Statement 2
S2: Requires less effort. . .
Year Count SA A N D SD
2014 63 29% 27% 14% 13% 8%
2019 113 38% 30% 14% 8% 7%
2020 86 26% 33% 20% 13% 8%

Thus, between 56%–68% agree that screencasting is
less effort to produce, while only 15%–21% disagree.
The neutral group is notably smaller than for the S1
statement.

Question S2 was unfortunately not part of the
evaluation 2017+2018. The author simply forgot to add
the question to the pool, and only discovered it in 2019.

5.3. Free Text Answers

Both S1 and S2 allowed students to fill in free text
comments, and many did so. As many answers are not
strictly associated with the particular statement (S1 or
S2), we present opinions and insights from the students
comments to both below. We have read through all free
text evaluations, and selected representative statements
for similar concerns.

The benefits outlined below are directly copied from
the evaluations, or the author’s translation to English:

• “Good to illustrate work flow, and group interactions”

• “Easier to demonstrate execution”

• “They are just quicker to do”

• “It was far quicker to explain and communicate our
work through screencasts”

• “They can be annoying at times, but are definitely to
be preferred over the alternative”

• “It is OK, once you find out they do not have to be
production quality movies”

• “Super nice format, once you have your setup
running. Lovely to be able to demonstrate the
process”

• “I have become better at explaining the material.
Great preparation for the exam”1

And liabilities mentioned:
1The course has an oral exam.

Page 884



• “Difficult to be certain if we covered all required
aspects”

• “Highly work intensive. We had to do all exercises,
make a story board of the screen cast, rehearse it, and
potentially retake it”

• “I do not like it, I sound like a moron”

• “I’d rather just write a report; it is easier, quicker and
any problem in it are easier to discuss with the TA”

• “Reports are easier to edit later. A screencast has to
be redone”

• “In the beginning it takes longer time”

The feedback supports the Likert scale results and
pinpoints some of the underlying issues that students
experience.

First, it is a new way of submitting your work
requiring a new technical setup and thus requires
an investment in time up-front. It should be
noted that informally we have not heard similar
comments in the 2019–2020 course. We hypothesize
that complete change to online teaching due to the
COVID-19 pandemic has forced students into having
the setup anyway. Some students initially feel quite
uncomfortable with the format. In contrast, writing a
report is well known, and perhaps also a bit more private.

Another issue is that of “fear of not being perfect”
which some groups express. Since the revision in 2017,
the markings of assignments have contributed towards
the final course grade, and especially strong students
feared “missing some points” leading to spending way
too much effort on making the screencasts perfect.
As discussed below, it is a concern that needs to be
addressed.

And finally, there is the inherent property of
screencasts that they are more difficult to overview, edit
and restructure than reports—and also more difficult
to pinpoint trouble spots in, for the TAs. As
discussed below, this has implications on which types
of assignments screencasts are suited for.

5.4. Question 3: Exam preparation

The course has an oral exam. While the focus is software
engineering and programming, it is of course evident
that the ability to present your work orally in a clear and
concise way is important. While our data below is not
directly tied to any of the research questions, R1–R3, we
still find our findings interesting.

The original questionnaire (2014) had a single
question regarding this aspect.

Statement 3: Screencasting prepares me
better for the oral exam than writing
reports.

The questionnaire data is:

Table 4. Statement 3
S3: Better preparation for oral exam. . .

SA A N D SD
25% 41% 30% 2% 2%

We therefore find, that students perceive it as a good
training, as also supported by comments in the free text
sections over the years.

6. Teaching Assistant Evaluation

Research question R3 is about the workload of the
teaching assistants. The 2014 course had five teaching
assistants associated. One of the teaching assistants
was also employed in the 2013 instance of the course
which allowed her to discuss the change more precisely.
Informal group interviews were conducted with them
once a week as part of the regular reporting on student
and course progress. Key points from their experience
in reviewing and assessing the students’ screencasts are:

1. Assessing screencasts are about as labour
intensive as assessing written reports. Thus they
fare no better nor worse in this respect.

2. Screencasts are more difficult to overview than a
written report. As examples, the TAs reported
it more difficult to check whether a screencast
satisfactorily answers all questions and learning
goals set forth in the exercise. If the TA fears a
question is not really dealt with in the screencast
he/she basically has to review it all again to be
absolutely sure.

3. Providing written feedback is more cumbersome.
For a written report you are used to referring
using notes in PDF, or page number and position.
For a screencast you need to refer to time, like
(minute:second), and that forced the TAs to spend
quite some time finding a particular frame again
in the video.

4. Especially in the beginning, the TAs reported
students were handing in unstructured, unfocused,
and verbose screencasts. One particular video
lasted 18 minutes ending in one student asking the
others “Don’t you think we should re-record this
video?” to which his fellow students say: “No, we
don’t want to do all that work again.”

Page 885



5. Some screencasts were of low technical quality,
like low volume of narration, low video quality,
ambient and/or keyboard noise, etc.

Some of the issues can be remedied with a better
reviewing process and their problems may be attributed
to the TAs being faced with a new and relatively
unknown medium. For instance, having a checklist of
required answers to fill in while reviewing the screencast
will remedy the problem in item [2]; noting time on a
feedback sheet if a wrong or problematic answer is given
in the screencast will lower issue [3].

One TA reported that you could actually speed-view
the screencasts at twice the ordinary speed and still make
out the narration, to lower the work on issues [2] and [3].
And the technical issues of low quality videos seems to
be an issue of the past.

On the positive side, the TAs also reported that the
screencasts does provide a relatively better overview and
understanding of the design and implementation so the
actual time they have to spend reviewing the source code
is lowered compared to relying only on the students’
written reports.

As part of course planning we let the TAs choose
whether they preferred a written report or screencast
delivery for the design exercise in week 6. They chose a
screencast, as is evident from Table 1.

In 2017 a semi-structured open-ended interview [16]
was held with the TAs using an interview guide based
on four areas of interest: A) benefits, B), liabilities,
C) TA’s review process, D) how to provide feedback.
Generally, this interview supports the main conclusions
of the informal discussions above.

Regarding benefits, the TAs generally points to an
aspect also identified by the students, namely that it
provides insights into the process as it unfolds. They
judge “the best screencasts” are those in which the
members of the group talks together about what they
do, as opposed to a single presenter. They highlight
the inability of students “to cheat” and “we can catch
those groups that simply do not get it”. Some of the
later assignments require students to demonstrate their
final Broker based client-server systems, and the TAs
agreed that it is easier to view their screencast because
“starting up a server and four clients takes one h. . . of a
time.” They pointed out that depending on the concrete
assignment and the skills of the group, they could
sometimes get away with only reviewing the screencast
and avoid having to get the full source code and execute
it to validate it. In particular, strongly skilled groups
may cover all learning goals in their screencast to a
satisfactory degree.

Regarding liabilities there were also overlap with
students’ experiences, like some “spend too much time

with numerous retakes”, and that some group members
never do the talking as they experience “stage fright”.
However, much of the discussion of liabilities actually
stems from the reviewing process.

The inherent property of screencasts as a streaming
medium makes it cumbersome to overview, navigate,
and comment upon. For instance, ensuring that the set
of required aspects have been covered is difficult, ”Did
they mention the “One Level of Abstraction” clean code
issue”, which sometimes forces the TA to rewind the
screencast or even view it one more time. Especially
submissions made by below-average students are hard
to mark as it is difficult to “assess that they mention
all learning aspects”. Some aspects are also difficult to
discern from the screencast—one example is the TDD
rhythm that requires all tests to be run at certain time
in the process. In IntelliJ this is a short-cut key and
executing the tests is so fast it is nearly not visible on
the video.

Fortunately, TAs have evolved better processes and
mention techniques like “viewing the screencast at 1½
or 2 times normal speed” in which you can still get
the main aspects of the spoken word; using two (or
more) physical monitors—one with the video and the
other with an open feedback document for marking
exact time and noting issues or noting that a required
issue has been covered; and watching the screencast
“stop/go” with a checklist of learning goals to look out
for. Still, some TAs report “video feed fatigue” and
concentration issues, noting that they “zone out” and
have to review a given screencast again. Generally,
the TAs provide feedback in writing, using overall
comments and also (minute:second) marks for specific
comments or suggestions.

7. Instructors Experience

Screencasts as submissions was also employed in
two instances of a quarter length courses in cloud
computing. The course has a strong programming
and tool-stack focus with learning goals set on
microservices, virtualization and container technology
(Docker), stability patterns, NoSQL (MongoDB),
messaging (RabbitMQ), replication and load balancing;
again using a project as main learning vehicle [17]. Here
screencasts were required for demonstration focussed
assignments, like demonstrating a properly set up
MongoDB replica set or sharding cluster (the latter
requires at least seven correctly configured servers); or
demonstrating fail-over handling.

As a smaller course, the author fulfilled the role
of TA in the course, assessing the student groups’
submissions.

Page 886



Generally our experiences align with those already
reported. As an example, downloading student’s code
base and trying to replicate their written documentation
of how they started seven servers and configured
them, and finally made their application use it, does
not compare favorably to just reviewing a 6 minutes
long screencast in which they talk you through the
process while their system executes and is responding
to the execution scenario detailed in the assignment.
Furthermore, it is impossible (or would require
enormous effort) to produce a screencast, if they have
not actually solved the assignment correctly.

Again, formulating the exact requirements is
essential. An example below is an assignment in
which the system must use a session-database pattern as
cache, shows the scenario/user story that the assignment
details along with the required system output allowing
assessment.

Submit a screencast (or a link to a youtube
or other video) that is about 5 minutes long
screencast containing:

• A shell that show ’docker ps’ output in which
there are containers running for MongoDB,
RabbitMQ, Memcached, and at least TWO
servers connected to the MQ.

• A shell with the client running where you
MOVE through three rooms and then ’BACK’
your way.

• Shell(s) showing that the TWO servers
alternate to retrieve messages from the MQ.

• The RabbitMQ dashboard in which the two
connections to the two servers are shown,
AND also show the message rate indicating
that messages flowed from the client

• A TELNET connection to the memcached in
which a GET command show that an object is
stored associated with the playerID.

Similar assessment techniques as outline above were
employed expect we never got used to listening to
“mouse voices” when running videos as twice the speed
and thus avoided it.

8. Best Practices

Based upon years of using screencasting in teaching a
set of best practices or guide lines emerge.

• Use screencasts for process, overview, and
demonstration assignments. Initially, screencasts
were used for many types of assignments, but
they should be used primarily for process oriented
assignments, assignments to provide overview over
how a specific feature is implemented across a large
code base, or assignments in which demonstration
is central, due to the issues the TAs experience.
In our course, these are assignments on test

driven development, refactoring and cleaning up
code, introducing a specific design patterns, and
demonstrations of GUI and distribution.

• Use screencasts to enforce process adherence.
Screencasts excel as they unfold over time what
students actually do, or what their software systems
actually do. If your code does not compile or hangs
while executing, you can still easily fool a stressed
TA with some screenshots (before the system crashed)
and code fragments in a written report. If you did
your test-first assignment by writing production code
and adding tests after-the-fact, no one will notice in a
written report. Needless to say, this is not possible in
a screencast.

• Be clear, that it is not a “Hollywood movie.”
Especially ambitious students have a fear of falling
short in producing the screen cast. The abundance
of screencasts by professional teachers or presenters
misleads students to think that they have to
produce screencasts of similar quality. As shown
above and often heard, these students complain of
high workloads because they produce story boards,
rehearse it several times, and retakes it endlessly to
ensure every bit is as polished as possible. We have
countered this with success by being very clear to TAs
that they should be lenient in grading and very clear to
students that they should make a draft of what to say,
and then do the screencast, and only do a single retake
if it goes wrong. We are actively communicating these
points in our lectures before the first submission is
due. As one of the comments were: “It is OK, once
you find out they do not have to be production quality
movies”

• Provide a template for the screencast. A report has
a accepted structure, and a screencast must have one
as well. The initial requirements of the assignments
was “Make a screencast” in the anticipation that
students had seen enough to be able to figure out
how to organize it. It turned out that this was not
true. Therefore, each assignment today provides a
template of how to section the screencast, and what
to emphasize in central sections. The current wording
on the example assignment from Section 4 is the
following:

Create an approximately 6-12 minutes long
screencast with audio narration, outlining one
or a few interesting TDD iteration(s) from your
AlphaCiv development. The screencast must be
structured with

1. Intro: State your names and group name
2. Shortly outline what you achieved in the

last TDD iteration of AlphaCiv, briefly

Page 887



showing the test list items and associated
code.

3. State the purpose of this iteration
4. Do the iteration, and follow and refer to

TDD principles applied and the five steps
of the rhythm as you go. (Say out loud:
”Now we quickly add a test”, add the test
and explain what it does as you code it
- if you ”fake it” then say that, if you
”triangulate” then say that, etc.; mention
that you now ”run test and see it fail”,
etc.)

5. Conclude

For other examples, refer to the appendix.

• Use TAs best practices. TAs develop ways to
improve the assessment process. These practices are
important to bring on to new TAs, like “playing at 1½
or 2 times normal speed”, “use multiple screens with
screencast on one screen and IDE on code base plus
grade sheet/commenting on the other”, “stop video
and comment immediately”, “use (minute:second)
marks to identify comment points”, etc.

9. Conclusion

We set out to assess our three research questions
regarding the use of screencasting: They better support
assessing learning goals (R1), they are more cost
efficient than written reports (R2), and they are more
efficient to assess for the teaching assistants (R3). In
conclusion we find support for R1 (for certain types of
assignments), for R2, but less support for R3.

Our data indicates that student produced screencasts
are a viable and relevant alternative to written reports as
submission medium for specific types of assignments.
These types include process oriented assignments in
which students must demonstrate their ability to execute
development processes, like test driven development,
refactoring, or cleaning up code; execution oriented
assignments in which students must demonstrate that
their (complex) system indeed operate correctly and
efficiently; and overview oriented assignments in which
students provide overview of their code base by
explaining specific elements while navigating the code
structure. Used correctly, screencasts may lower the
work effort required by students and highlight the
process aspect

While students are generally favorable to
screencasts, the teaching assistants are less so, as
there seems to be little benefits to their process of
assessment and marking. In particular, the inability
to quickly overview a screencast to assess where all
learning goals have been addressed is a major issue.
Best practices are therefore important to help the
teaching assistants, including running screencasts at 1½

or 2 times speed, having multiple screens, and doing
commenting by “stop/go” the video while watching.

Finally, matching of expectations is important to
convey clearly to both students as well as teaching
assistants. The WWW has an abundance of high quality
and professionally made screencasts, which may lead
students to believe that this is the required level. It must
be actively communicated what is expected before the
first submission is due.

References

[1] M. E. Caspersen and J. Bennedsen, “Instructional design
of a programming course: a learning theoretic approach,”
in Proceedings of the third international workshop on
Computing education research, pp. 111–122, 2007.

[2] V. Berardi and G. E. Blundell, “A learning theory
conceptual foundation for using capture technology
in teaching,” Information Systems Education Journal,
vol. 12, no. 2, p. 64, 2014.

[3] J. O’Flaherty and C. Phillips, “The use of flipped
classrooms in higher education: A scoping review,” The
internet and higher education, vol. 25, pp. 85–95, 2015.

[4] D. Youngberg, “Why online education
won’t replace college—yet,” Aug. 2012.
https://www.chronicle.com/article/
why-online-education-wont-replace-college-yet/.

[5] P. J. Deneen, “We’re all to blame for moocs,” The
Chronicle of Higher Education, no. Jun 3, 2013.

[6] L. M. Powell et al., “Evaluating the effectiveness of
self-created student screencasts as a tool to increase
student learning outcomes in a hands-on computer
programming course,” Information Systems Education
Journal, vol. 13, no. 5, p. 106, 2015.

[7] K. Shafer, “The proof is in the screencast,”
Contemporary issues in technology and teacher
education, vol. 10, no. 4, pp. 383–410, 2010.

[8] S. Mohorovičić, “Creation and use of screencasts in
higher education,” in 2012 Proceedings of the 35th
International Convention MIPRO, pp. 1293–1298, IEEE,
2012.

[9] H. B. Christensen, “A story-telling approach for a
software engineering course design,” in Proceedings of
the 14th annual ACM SIGCSE conference on Innovation
and technology in computer science education, ITiCSE
’09, (New York, NY, USA), pp. 60–64, ACM, 2009.

[10] H. B. Christensen, Flexible, Reliable Software—Using
Patterns and Agile Development. CRC Press, 2010.

[11] K. Beck, Test-Driven Development by Example.
Addison-Wesley Signature Series, 2003.

[12] M. Fowler, Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[13] R. C. Martin, Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson, 2008.

[14] H. B. Christensen, Flexible, Reliable, Distributed
Software—Still Using Patterns and Agile Development.
leanpub.com, 2020.

[15] K. Buffardi and S. H. Edwards, “Exploring influences
on student adherence to test-driven development,” in
Proceedings of the 17th ACM annual conference
on Innovation and technology in computer science
education, pp. 105–110, 2012.

Page 888



[16] M. Q. Patton, Qualitative Research & Evaluation
Methods. Sage Publications, Inc., 2002.

[17] H. B. Christensen, “Teaching devops and cloud
computing using a cognitive apprenticeship and
story-telling approach,” in Proceedings of the 2016 ACM
conference on innovation and technology in computer
science education, pp. 174–179, 2016.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reuseable
Object-Oriented Software. Addison-Wesley, 1995.

A. Assignment Formulation Examples

A.1. Refactoring Example

This assignment has clean code [13] as learning goal:

Create one approximately 5-8 minutes
long screencasts with audio narration that
demonstrates a method clean up to achieve one
or several clean code properties. The screencast
must be structured with

• Intro: State your names and group name
• Short explanation of what clean code property

that your method does NOT have, and outline
what refactoring you will do to achieve it.

• Do the refactoring, explaining what you do as
you go along.

• Conclude and argue how the code has become
more clean.

(Note: it is not a screen cast of the refactoring of
the full method; it is like one of my screencasts
in which I focus on one or a couple of clean code
property and handle that.)

A.2. Overview Example

This assignment has variant handling through
compositional design and dependency injection [18, 10]
as learning goal:

Create one 5-8 minute screencast that details
the architecture and implementation of one of
the required variants, specifically, you should
screencast/show the code and explain it. Be
sure to show and explain a) the interface(s)
introduced, b) the variability point(s), c) the
place(s) where variable behavior is selected
(”this code chooses whether it becomes an
AlphaCiv or GammaCiv game”), and d) the
implementing delegates. Remember to argue
why your code is a compositional design, and
relate to the 3-1-2 process.

B. Current Use of Screencasting

Since 2018 screencasted submissions have been on these
areas.

Week Focus Duration (min)
2018–2020
1 TDD I 6–12
2 TDD II Git 6–12
3 Refactoring 5–8
3 Strategy pattern 5–8
4 Clean code 5–8
8 Frameworks 6–12
10 Broker 4–8

Page 889


