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Abstract

Managing large numbers of incoming bug reports
and finding the most critical issues in hardware
development is time consuming, but crucial in order to
reduce development costs. In this paper, we present
an approach to predict the time to fix, the risk and
the complexity of debugging and resolution of a bug
report using different supervised machine learning
algorithms, namely Random Forest, Naive Bayes, SVM,
MLP and XGBoost. Further, we investigate the effect
of the application of active learning and we evaluate
the impact of different text representation techniques,
namely TF-IDF, Word2Vec, Universal Sentence Encoder
and XLNet on the model’s performance. The evaluation
shows that a combination of text embeddings generated
through the Universal Sentence Encoder and MLP as
classifier outperforms all other methods, and is well
suited to predict the risk and complexity of bug tickets.

1. Introduction

The development of computer hardware in general
and processors in particular is an indispensable task
in modern society, as the chip shortages in the light
of the COVID-19 crisis clearly emphasized [1]. In
the case of modern high-end processors, this task is a
complex process that spans many years and involves up
to millions of lines of code [2]. During this time, the
unfinished logic design of the chip will regularly contain
thousands of flaws and bugs.

Hence, it is no surprise that processor verification is
widely regarded as bottleneck of the hardware design
process [3]. Design verification takes about 80% of the
total product development time and has become more
challenging due to the demand for higher performance
chips and shorter time-to-market combined with the
exponential growth in hardware size [3], [4].

Consequently, it is essential that no critical bugs
remain when the chips get manufactured, because
re-fabrication of hardware can cost many hundreds of

thousands of dollars [2]. At the same time, unnecessary
delays in the development process lead to a later
time-to-market, also negatively affecting revenue.

Therefore, project management needs to closely
keep track of remaining known bugs: In order to focus
resources on the most critical bugs, estimates are needed
how critical the risk of each bug is, how complex
handling it will be and how long it will take to fix each
bug.

Until now, this bug triage had to be done manually,
which was costly in terms of invested time and
oftentimes repetitive for the affected individuals. In
this work, we propose a text-mining-based method to
estimate these properties automatically, relieving project
management from that task.

In order to classify the bug reports, we use
supervised machine learning techniques, which need to
be trained with already labeled data. However, as only
experts are able to label the specific tickets, their time
and budget is limited. In fact, manual labeling of all
data is not feasible in practice. Hence, we implemented
an active learning approach which shall enable high
prediction quality using few labeled data.

In this paper, we propose methods for answering the
following questions:

RQ1. Which text representation model performs best
for technical vocabulary?

RQ2. How much does active learning help to boost the
manual labeling process?

RQ3. Which targets can be predicted to what extend?
RQ4. Which classifier gives the most accurate label

prediction for a ticket?
RQ5. How does prediction quality improve with more

ticket entries?

Finding answers to these questions, we want to
illustrate the benefit of natural language processing and
machine learning in the domain of bug tracking in
hardware development. This is special, because the
language is highly technical and existing approaches
cannot be simply copied. Additionally, we evaluate the

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 798
URI: https://hdl.handle.net/10125/79429
978-0-9981331-5-7
(CC BY-NC-ND 4.0)



feasibility of predicting the complexity (for debugging
and resolution) of a bug report, which is especially
important for efficient project management. Therefore,
we benchmark multiple pre-processing methods and
algorithm combinations with a subsequent parameter
optimization and report on the results. These can inform
future researchers in their design of similar applications.
Finally, we show the economic impact of a successful
deployment of our solution and demonstrate how the
reduction of uncertainty in project management leads to
improved outcomes.

The rest of our paper is structured as follows.
Section 2 briefly describes the background and related
work and Section 3 presents our experimental design.
Section 4 shows an overview over our results and gives
an interpretation of these. Lastly, Section 5 concludes
this paper.

2. Background and Related Work

In this section, we provide a description of
the relevant background knowledge required for our
method. First, we give a short introduction to processor
verification (Section 2.1). Second, we elaborate on
active learning and the machine learning techniques
relevant to our work (Section 2.2). Third, we discuss
different text representation methods, which serve as
the basis for our approach (Section 2.3). Fourth, an
overview of similar approaches and the embedding of
our work is given (Section 2.4).

2.1. Fundamentals of Processor Verification

The initial concept for a new or improved processor
is specified in a high-level design, which describes the
general architecture. To achieve high performance while
at the same time keep the area and power consumption
low, logic designers then implement this high-level
design in low-level hardware description languages like
VHDL or Verilog. It is the job of verification engineers
to compare this implementation against the high-level
specification and the design intent [2]. For this, they
make use of different verification methods:

Functional verification runs simulations of the
design under test, stimulating the inputs with different
patterns each time. Based on the high-level
specification, the expected outputs are calculated and
compared to the actual outputs from the simulation.
Whenever a discrepancy is detected, verification
engineers need to debug the scenario in order to trace
the discrepancy back to its root cause.

Formal verification can prove the absence of bugs
for certain aspects of the design by mathematically
transforming the symbolic logic extracted from the

design under test. This can for example be used to
ensure that modifications introduced by a performance
optimization tool do not alter the functional behavior of
the design.

Structural verification checks for the correctness
of (semi-)regular connection structures. Examples
for such structures are the on-chip clock distribution
infrastructure, structures for the initialization of
the chip, and structures that facilitate testing for
manufacturing errors to filter out defective chips.
Structural verification can detect connectivity problems
significantly faster than functional verification, and it
often directly points to the root cause. It can check
large and distributed structures spanning the whole
chip, which would be infeasible with formal verification
methods because their computational complexity grows
exponentially with the state space.

One way to perform structural verification is to
first traverse the net list (i.e. the connections between
components and logic blocks) and convert it into tokens.
A parser then matches these tokens against a grammar
that describes the expected structures. This approach
allows to encode the specification in a higher-level
grammar instead of having to account for every allowed
variation in the low-level implementation [5].

Whenever verification engineers expose a bug, they
report it in a bug tracking system, so that the logic
designers know what they still need to fix. Compared
to e.g. news texts or social media posts, discussions in
bug tracking tickets contain a mix of ’natural’ language,
technical jargon, error dumps from log files and code
snippets. Because of these peculiarities, it is not clear
from the outset how well natural language processing
methods will be able to process such bug tracking
tickets.

2.2. Active Learning and Machine Learning
Techniques

Active learning results in a maximal increase of the
model’s performance using fewer labeled training data,
if the model is allowed to select the data instances which
it learns [6]. In pool-based active learning, an initial
classifier is trained based on the small set of labeled
data. It is then applied to the unlabeled data set. Using
the approach of uncertainty sampling, the least certain
instance is passed to the expert for labeling and the
learner is retrained [7]. For measuring uncertainty,
Shannon’s entropy can be used [8]. It is the most
general uncertainty sampling strategy and determines
the average information content of a variable [6] by
summing over all possible values of a random variable
X and taking into account their occurrence probability
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p(xi) as shown in Equation (1).

H(X) = −
n∑

i=1

p(xi) log p(xi) (1)

There are multiple supervised learning algorithms
which can be used as classifiers. While Random
Forest [9], SVM [10] and Naive Bayes [11] models
are able to reach a high prediction accuracy in a
short time, Multi-Layer Perceptron (MLP) [12] and
XGBoost [13] are methods which are able to learn
more complex problems. In order to improve a
classifier’s performance, hyperparameter optimization
can be applied using one of multiple possible search
algorithms [14].

2.3. Natural Language Processing

Bug tracking tickets consist of structured data (e.g.
state, severity) and a stream of free-text discussion
entries. In order to transform this unstructured
text into normalized and structured data, several text
representation techniques are available. A survey
of Wang, Gao, Wei, et al. (2020) compares several
common language models on noisy text data [15].

Term frequency-inverse document frequency
(TF-IDF) is a term weighting scheme, which measures
the importance of a word with respect to the documents
in a collection. Therefore, the ratio between the
occurrence frequency of keywords over the total
number of keywords of a document (TF) and the inverse
of the occurrence frequency of keywords over the total
number of documents (IDF) is calculated. The product
of both statistics results in TF-IDF values, representing
a set of keywords which best describe the document
[16].

Another technique to represent words as vectors is
Word2Vec [17]. There are two prevalent ways how
to use neural network architectures to return word
embeddings: While the continuous bag-of-words model
(CBOW) uses the surrounding words (context) to predict
the current word, the skip-gram model is trained to
predict the context using the current word.

The Universal Sentence Encoder (USE) is a
deep learning model which includes two pre-trained
encoders: the transformer and the deep averaging
network (DAN) [18]. This allows to include more
context and hence, sentence embeddings can be
generated.

XLNet is a large-scale language model, which also
provides vector embeddings of sentences [19]. The
pre-trained autoregressive transformer combines the
advantages of autoregressive and autoencoding methods Pa
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while avoiding their limitations. The model enables
each position to use contextual information from all
positions, since the context can consist of words from
left and right.

2.4. Similar Approaches

Table 1 gives an overview on state-of-the-art
approaches regarding the analysis of bug tracking
data. Bold highlighted text shows the best performing
pre-processing or classification model, if multiple
options are given. Two papers try to forecast different
labels with different models, so there is not just a single
highest performing model and therefore there is no
highlight [29], [32].

Most of the approaches use bug tracking data of
software projects and TF-IDF as pre-processing method,
or other term frequency based approaches. Only
two projects decided to apply Word2Vec as language
model [34], [35], but there is no related work using
deep learning techniques for text representation as
described in Section 2.3. A great variety of machine
learning models is used for solving classification tasks.
Naive Bayes and SVMs are the most commonly used
classifiers and perform best. The learners are generally
used to predict one to a maximum of two labels,
ranging from severity or priority classification, over bug
fixing time prediction to recommending an appropriate
developer for each bug.

3. Methodology

The input data was generated during processor
verification and we focused on issues discovered by the
structural verification tool described in Section 2.1. A
sample ticket can be found in Figure 1. After extracting
features from raw data, some labels can be extracted
directly from the ticket data itself and some need to
be manually labeled with the help of active learning
(Section 3.2). Through pre-tests we chose the best
performing models, which were then used for further
improvement through hyperparameter tuning. Figure 2
shows an overview over the mentioned steps. In the
following, the steps from feature engineering to model
selection are explained in more detail.

3.1. Pre-Processing and Feature Engineering

We used bug tracking data from 2013 to 2020, which
resulted in a total of 5,007 completed tickets. Then,
the data collection was split into a train (4,506 tickets)
and a test set (501 reports = 10%) by assigning every
10th ticket id to the test set. Each bug ticket consists
of different number of timestamps which document the

time when a change occurred, e.g. when a comment
has been added or the state of the ticket changed from
‘working’ to ‘fixed’. Since the model should be able to
give a prediction for tickets which are still in progress,
we used the completed tickets as base tickets to generate
‘open‘ tickets: For each completed ticket, we split the
ticket history and created an ‘open’ ticket that only
contained the first part of the history. As we know which
base ticket belongs to the new ticket, we still know what
the outcome will be in the end for the ‘open’ ticket,
and thus can generate training labels. For example, if
a base ticket has a total of 4 timestamps, 4 ’artificial’
tickets are created after feature engineering as illustrated
in Figure 3: the first ticket consists of data from the first
timestamp, the second ticket consists of data from the
first and second timestamps, the third ticket consists of
data from the first three timestamps and lastly, the fourth
ticket consists of all timestamps. From the 4,506 base
tickets, we thus generated 40,661 tickets. To avoid data
leakage, we made sure that generated tickets from the
same base ticket ended up either in (cross validation)
training or test sets, but never in both.

The raw data comprises 128 categorical, numerical,
text and date fields. After removing fields with a
high proportion of NaN values (> 90%) and based
on domain knowledge, 49 relevant fields are left for
the feature extraction process. For categorical data
(e.g. state, action), one-hot encoding was used if there
were less than 10 classes. If there were more than
10 classes, an expert created a mapping, in order to
reduce the size of possible characteristics. Important
time information (e.g. timestamp of change, discussion
update) was used to calculate the time span between
the dates. Those time periods were then used to get
the minimum, maximum and mean. For numerical data
(e.g. number of field changes, seconds since last state
change) no further operations were needed. Based on
the empirical study of Wang, Gao, Wei, et al. (2020), we
chose the best performing language models XLNet and
USE in order to process our text data (e.g. discussion
entries, headlines). The study used twitter data with
noisy and short messages [15], i.e. characteristics that
our discussion entries also exhibit. For XLNet and
USE, the only text pre-processing step was the removal
of HTML tags. Moreover, we included TF-IDF and
Word2Vec, since those techniques were commonly used
in state-of-the-art approaches (Table 1). For these, the
text pre-processing includes numbers, punctuation and
stop word removal and tokenization. To reduce the
dimension of the feature vector, we chose the 200 words
with the highest TF-IDF values. We averaged the output
vectors resulting from Word2Vec over all words in the
ticket, aiming to generate equal length vectors.
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Univ ID: HW123456
Headline
State

“Scan-chain is missing StumpMux after 1024 latches.” in L2

Open
Tier
Subsystem

P10 Hardware
P10_Design

Severity 2
Release
Component

c07_p10d2
L2

Owner John Doe

Notes Log

==== State: Submit by: John Doe on 03 September 2020 19:24:05 ====

Hi Bob, I'm running on P10 MPD chip level. During GSD scan checking, I found an issue that was not covered 
in your mail to Alice: ISSUE_MD20200903_01 [ Owner = ”John Doe", Scope = "p10", Comment = "", Issue, 
IssueMsg = "Scan-chain is missing StumpMux after 1024 latches." ] { EQ04.EX0[0-
3].EL.L2.L2CNTL.L2SQ_CTL.L2SQCTB0.GATHER_CARP3_EXT3_INST.LATC.SI(0) }

Figure 1: Example of an issue report

Data 
Collection 

(JSON 
Dump)

Label Extraction  
Through 

Heuristics and 
Active Learning

Feature Engineering 
(Text, Numerical 
and Categorical 

Data)

Model 
Selection 

and 
Construction

Model 
Evaluation 

and 
Refinement

Result 
Interpretation 
(Comparative 
Evaluation)

Figure 2: Research design

Open

Discussion

Verify

Closed

Labels

Base Ticket
Open

Labels

Ticket 1
Open

Discussion

Labels

Ticket 2
Open

Discussion

Verify

Labels

Ticket 3
Open

Discussion

Verify

Closed

Labels

Ticket 4

Figure 3: Process of generating multiple tickets from base ticket while avoiding data leakage (no pollution of test set
with tickets that are also used in training)

3.2. Label Extraction

There are four different targets which need to be
predicted: Risk, complexity of debug, complexity of
resolution and time to fix. The fixing time which denotes
the days passed until a ticket is closed, can be extracted
from raw data. After calculating the fixing time for each
timestamp, we assigned classes using the quantiles [0.2,
0.4, 0.6, 0.8], which correspond to the days [1, 10, 27,
65].

The remaining targets need to be labeled through
experts with the help of active learning. It is used to
facilitate the manual labeling process. The risk target,
which uses the final resolution as a proxy for how severe
the chip design would be affected if the bug would not be
fixed, can be divided into 6 classes: hardware fix, code
fix, setup fix, waiver, user error, duplicate. The most
critical bugs need hardware fixes, while the least critical
bug reports are duplicates of existing bug tickets. A
waiver is a reported ‘bug’ that is invalid (e.g. if a general
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design rule does not apply for a certain block of logic)
or accepted (because it technically violates a design rule
but does not affect the performance and functionality of
the processor). Further the complexity of debugging and
of resolution shall be predicted on a scale from 0 (low)
to 10 (high).

The input of active learning corresponds to the base
tickets, which include the whole history of the bug
ticket, since the label is the same at each observed time
of a ticket’s lifetime. Therefore, no multiplication of
the input data is achieved as described in Section 3.1.
To select the model used in the active learning phase,
an initial pool of 39 labeled tickets was provided.
TF-IDF was chosen as text representation technique,
because the values can be generated fast for new data.
Since we needed to quickly re-train the model in
each iteration of the active learning loop, we selected
Random Forest, Naive Bayes and SVM as potential
candidates. Their performances were compared to each
other using leave-one-out cross validation because of
the low number of labeled tickets. For measuring the
uncertainty over a target we chose the entropy, because
its objective is to minimize the log-loss. In other words,
instances for which only one of the labels is highly
unlikely are not favored [6]. When active learning was
implemented, we trained the selected model on a pool
of 230 labeled tickets which were labeled randomly
after the model selection process. For each target an
own model was trained and the entropy was calculated.
Afterwards, we proposed the ticket with the overall
maximum entropy for one of the three targets to the
expert.

3.3. Models

While the objective for choosing a model for active
learning was to reduce run-time, our final model was

Parameter Search Space
max depth [10, 20, 30, 40, 50, None]
max features [auto, sqrt, log2]
n estimators [10...1000]
criterion [gini, entropy]

Table 2: Search space for Random Forest tuning

Parameter Search Space
hidden layer sizes [10...300]
alpha [exp(-8*log(10))...exp(3*log(10))]
activation [relu, logistic, tanh]
solver [lbfgs, sgd, adam]

Table 3: Search space for MLP tuning

selected based on optimizing the prediction quality
using a 5-fold cross validation. Therefore, the ticket ids
were randomly shuffled and then split into five folds of
almost equal size, in order to prevent that the same base
ticket is present in the training and test set. We trained
each of the models (Random Forest, Naive Bayes, SVM,
MLP and XGBoost) using each of the different text
representation input vectors from Section 3.1, plus a
”no NLP” input vector that only contained numerical
and categorical features. Afterwards we tuned the
hyperparameters of the best combinations using the
search spaces mentioned in Table 2 for the Random
Forest and Table 3 for our MLP with the help of the TPE
algorithm [14].

3.4. Evaluation

We evaluate our classifier’s performance by using
the widely used f1-score as follows:

f1-score =
TP

TP + 1
2 (FP + FN)

(2)

We compare our models with the random guesser
(all classes have the same probability of being chosen)
as baseline. We tried different baseline approaches
beforehand and chose the random guesser, since it yields
the highest f1-score among all baseline approaches on
our training and test data.

4. Results and Discussion

In this section we answer the research questions
introduced in Section 1 and give an interpretation of the
results.

4.1. RQ1: Evaluation of NLP Techniques

Our pre-tests showed that the performance of our
text mining techniques depends on the target and the
classifier used. Comparing all methods, XLNet and ”no
NLP” consistently exhibited the worst scores, followed
by Word2Vec. Regarding the prediction quality on our
training set the combination of TF-IDF and Random

Baseline TF-IDF & RF USE & MLP
Time to Fix 0.20 0.28 0.29
Risk 0.19 0.40 0.66
Debug 0.04 0.36 0.60
Resolution 0.04 0.36 0.51
Average 0.09 0.35 0.51

Table 4: Performance comparison of the best
performing classification techniques on the hold-out set
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Figure 4: Change of f1-score when labeling through active learning or random picking

Forest outperforms USE and MLP when predicting the
fixing time, while the latter is better regarding the
prediction of the targets labeled through active learning.
Therefore we chose to optimize both approaches, which
led to an overall better performance of the method using
USE embeddings over all targets as shown in Table 4.

Since we trained Word2Vec on our training set (total
of 4,506 tickets), the poor result can be explained by the
fact that the model did not have enough data available
to capture relationships between the technical words.
Even though we used the pre-trained XLNet and USE
models and both methods are regarded as state-of-the-art
approaches in the field of NLP, they performed very
differently: USE turned out to be one of the best models
while XLNet is on a par with not using any NLP at
all, i.e. it did not increase prediction performance
beyond what is already achievable with only categorical
and numerical data. A possible reason might be that
XLNet was trained on text extracted from book and
movies [19], while USE used human-written English
sentences extracted from a variety of web sources (e.g.
discussion forum, question and answer pages) [18],
which contained formats closer to our heterogeneous
text data. The TF-IDF approach is not as good as USE,
because we did not include all TF-IDF values for all
terms in our feature vector (curse of dimensionality).
Therefore, there is a chance that we missed important
terms, while the text embeddings from USE represent
the whole text input. Additionally, TF-IDF works on
individual words and thus cannot incorporate context
from whole sentences.

4.2. RQ2: Evaluation of Active Learning
Approach

Our experiments revealed that the Random Forest
(f1-score: 47%) had the best average score over all
targets generated through active learning (Naive Bayes:
19%, SVM: 27%). In order to evaluate the impact of

active learning on the labeling process, we simulated
the active learning process and calculated the f1-score
change for each ticket which is added to the pool of
labeled data. This pool is then used to retrain our
Random Forest. As shown in Figure 4 no impact of
active learning on the performance can be identified.
In contrast, it can be seen, that active learning is
performing worse with more labeled data than our
baseline, since the f1-score stays on the same level,
while it increases with the number of labeled data
generated through random picking.

The reason is that the choice of entropy as
uncertainty measure is not appropriate for our use
case, since this method often proposes outliers (e.g. a
ticket with parts of the discussion in another language;
or a ticket that contains discussion threads for three
independent bugs). These outliers are very dissimilar
to any other ticket and thus lead to a less generalizable
training set.

4.3. RQ3: Prediction Performance for the
Targets

In this study, we investigated how accurate the
targets risk, complexity and time to fix can be predicted.
It can be stated that our models have the highest f1-score
predicting the risk of a bug report (Table 4). Regarding
the complexity targets, the debug complexity can be
better predicted than resolution complexity. Both of our
models predict the time to fix the worst.

A possible reason for the bad performance for the
fixing time prediction might be that there are too many
classes which can be chosen in order to meet the
business requirements. Our experiments showed that
we can yield a better performance level if our target has
less classes. Another reason might be that our models
are not complex enough to capture the underlying
relationship between our features and our fixing time
target. Moreover, there are external factors which can
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influence the fixing time which are not represented by
our feature vector. For example, the fixing time also
depends on the overall workload of the team, which is
not reflected in the individual tickets. The predictions
for complexity are not as good as the prediction of risk,
since a ticket’s label was chosen based on the expert’s
subjective placement on a scale, so there is a possibility
that users might assign slightly different values. For the
risk target on the other hand, we have dedicated classes
where the experts will always choose the same label, and
thus our model was able to predict them well.

4.4. RQ4: Classifier Selection

As mentioned above, the combination of TF-IDF and
Random Forest and USE and MLP were outperforming
our other possibilities during our pre-tests. That sets
our work apart from related work, since SVM and
Naive Bayes were mostly used. We chose the random
guesser (all classes have the same probability of being
chosen) as baseline approach. On average, the tuned
models with the corresponding parameters (shown in
Table 5 and Table 6) achieve a 4-fold improvement for
Random Forest and a 6-fold improvement for MLP over
the baseline approach (Table 4). Regarding our best
performing approach (USE and MLP), the evaluation
results show that we can achieve an average weighted
f1-score of 29% (1.5-fold improvement) for predicting
the time to fix, 66% (3.5-fold improvement) for risk,
60% (15-fold improvement) for debug complexity and
51% (13-fold improvement) for resolution complexity.

As stated in the previous research questions, the
combination of USE embeddings and MLP as classifier
achieve the best performance, since it can learn more
complex relationships between features and targets.

4.5. RQ5: Prediction Quality and Ticket
Length

We chose tickets with 8 entries (which is the average
ticket length) to analyze the change in prediction
performance over the lifetime of the ticket. For
the analysis we chose the combination of USE and
MLP with tuned hyperparameters corresponding to the
targets. The result is visualized in Figure 5. For the
targets time to fix, risk and resolution complexity no
clear upwards trend can be identified. The trajectory of
the debug complexity shows an increasing trend starting
at a f1-score of 20% and ending at 37%.

For the risk target, the score is almost as high at
the beginning as at the end of a bug lifetime, which
shows that we are already able to give suitable prediction
when a ticket has just been opened. This can be
explained by the fact that our model can learn from

log files describing the bug found which is usually
attached in the first discussion entry. The slight upward
trend of debugging complexity shows that with an
extended number of discussion entries, it becomes more
likely that the debugging complexity is higher. On the
other hand, such an effect does not show up for the
resolution complexity. The resolution complexity is
rather dependent on textual features than on the number
of entries. The trajectory describing the performance of
the fixing time is constant except for the last entry of
a ticket, when the status has been set to closed, so the
model has an indicator that the remaining time is low.

5. Conclusion

Bug triaging is critical for the development of
processors since it can help to reduce design costs.
Therefore, we developed a method to ease the
process of tracking the reports. Based on a survey
about text mining techniques and the experiments
of state-of-the-art approaches regarding software bugs
we propose USE for pre-processing and MLP as
a classifier. Our experiments revealed that it is
possible to apply the pre-trained USE model to our
technical vocabulary, but the commonly used TF-IDF
score also yields good results. In addition, we
applied an extensive pre-testing, experimenting with the
combinations of multiple pre-processing methods and
algorithms followed by parameter optimization for the
application in future related work. We showed that
our model is able to predict the new targets regarding
the complexity (debug, resolution) which cannot be
found in our related work approaches. We were able
to achieve a high performance level for our targets
which needed to be manually labeled, even though
the application of active learning did not increase our
learning performance significantly. After the successful

max depth max features n estimators criterion
Time to Fix 40 sqrt 877 gini
Risk 20 auto 166 gini
Debug 10 sqrt 297 entropy
Resolution 10 sqrt 215 entropy

Table 5: Results of Random Forest hyperparameter
tuning dependent from target

hidden layer sizes alpha activation solver
Time to Fix 36 3.8183 relu adam
Risk 0 0.0332 relu adam
Debug 27 0.1409 relu sgd
Resolution 32 0.0005 relu lbfgs

Table 6: Results of MLP hyperparameter tuning
dependent from target
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Figure 5: Development of model performance with increasing number of entries

deployment of our approach, we will be able to identify
critical tickets more easily and hence, the workload
of repetitive tasks will be reduced. Therefore, there
will be more time for verification engineers to dedicate
themselves to creative tasks. A limitation to our
approach is the data set used for our experiments since
the quality of raw data is heterogeneous. Further, we
do not account for concept drift [36] in the selection
of our training, validation, and test sets. Since our
active learning approach did not improve the learning
rate, we propose to use other semi-supervised learning
methods, or active learning with a different uncertainty
measure in order to receive fewer outliers. One option
is to select the ticket which most reduces the uncertainty
of all the other tickets left. Finally, our method needs
to be successfully deployed and the effectiveness of
the predictions for project management needs to be
evaluated. A promising field of research lies ahead.
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“Algorithms for hyper-parameter optimization,”
in 25th annual conference on neural information
processing systems (NIPS 2011), 2011.

[15] L. Wang, C. Gao, J. Wei, W. Ma, R. Liu,
and S. Vosoughi, “An Empirical Survey of
Unsupervised Text Representation Methods on
Twitter Data,” in Proceedings of the Sixth
Workshop on Noisy User-generated Text (W-NUT
2020), 2020.

Page 806



[16] H. M. Tran, S. T. Le, S. V. Nguyen, and P. T. Ho,
“An Analysis of Software Bug Reports Using
Machine Learning Techniques,” SN Computer
Science, 2020.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean,
“Efficient estimation of word representations in
vector space,” in 1st International Conference
on Learning Representations, ICLR 2013,
Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013.

[18] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco,
R. St. John, N. Constant, M. Guajardo-Cespedes,
S. Yuan, C. Tar, B. Strope, and R. Kurzweil,
“Universal sentence encoder for English,”
in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language
Processing: System Demonstrations, 2018.

[19] Z. Yang, Z. Dai, Y. Yang, J. Carbonell,
R. R. Salakhutdinov, and Q. V. Le, “Xlnet:
Generalized autoregressive pretraining for
language understanding,” in Advances in Neural
Information Processing Systems, 2019.

[20] T. Menzies and A. Marcus, “Automated severity
assessment of software defect reports,” in 2008
IEEE International Conference on Software
Maintenance, 2008.

[21] A. Lamkanfi, S. Demeyer, E. Giger, and B.
Goethals, “Predicting the severity of a reported
bug,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), 2010.

[22] J. Anvik and G. C. Murphy, “Reducing the
effort of bug report triage: Recommenders
for development-oriented decisions,” ACM
Transactions on Software Engineering and
Methodology, 2011.

[23] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and
T. Verdonck, “Comparing Mining Algorithms for
Predicting the Severity of a Reported Bug,” in
2011 15th European Conference on Software
Maintenance and Reengineering, 2011.

[24] J. Kanwal and O. Maqbool, “Bug Prioritization
to Facilitate Bug Report Triage,” Journal of
Computer Science and Technology, 2012.

[25] M. Sharma, P. Bedi, K. K. Chaturvedi, and
V. B. Singh, “Predicting the priority of a reported
bug using machine learning techniques and cross
project validation,” in 2012 12th International
Conference on Intelligent Systems Design and
Applications (ISDA), 2012.

[26] K. Somasundaram and G. C. Murphy, “Automatic
categorization of bug reports using latent

Dirichlet allocation,” in Proceedings of the 5th
India Software Engineering Conference on -
ISEC ’12, 2012.

[27] M. Alenezi and S. Banitaan, “Bug Reports
Prioritization: Which Features and Classifier to
Use?” In 2013 12th International Conference on
Machine Learning and Applications, 2013.

[28] M. Alenezi, K. Magel, and S. Banitaan, “Efficient
Bug Triaging Using Text Mining,” Journal of
Software, 2013.

[29] H. Zhang, L. Gong, and S. Versteeg, “Predicting
bug-fixing time: An empirical study of
commercial software projects,” in 2013
35th International Conference on Software
Engineering (ICSE), 2013.

[30] A. F. Otoom, D. Al-Shdaifat, M. Hammad, and
E. E. Abdallah, “Severity prediction of software
bugs,” in 2016 7th International Conference
on Information and Communication Systems
(ICICS), 2016.

[31] Q. Fan, Y. Yu, G. Yin, T. Wang, and H. Wang,
“Where Is the Road for Issue Reports
Classification Based on Text Mining?” In
2017 ACM/IEEE International Symposium
on Empirical Software Engineering and
Measurement (ESEM), 2017.

[32] J. M. Alonso-Abad, C. López-Nozal, J. M.
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