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Bielefeld University of Applied Sciences

frederik.baeumer@fh-bielefeld.de

Oliver Müller
Paderborn University

oliver.mueller@upb.de

Abstract

Our world is more connected than ever before.
Sadly, however, this highly connected world has made it
easier to bully, insult, and propagate hate speech on the
cyberspace. Even though researchers and companies
alike have started investigating this real-world problem,
the question remains as to why users are increasingly
being exposed to hate and discrimination online. In
fact, the noticeable and persistent increase in harmful
language on social media platforms indicates that the
situation is, actually, only getting worse. Hence, in this
work, we show that contemporary ML methods can help
tackle this challenge in an accurate and cost-effective
manner. Our experiments demonstrate that a universal
approach combining transfer learning methods and
state-of-the-art Transformer architectures can trigger
the efficient development of toxic language detection
models. Consequently, with this universal approach, we
provide platform providers with a simplistic approach
capable of enabling the automated moderation of
user-generated content, and as a result, hope to
contribute to making the web a safer place.

1. Introduction

With the rise of the smartphone, the widespread
access to the internet, and the surge of social media
networks, our world is more connected than ever
before. These technological advancements have not
only revolutionized the way we communicate with
one another, but they have also forever changed the
way we share ideas, consume our daily news, or
even do business. However, notwithstanding the
uncountable benefits that our modern society has gained
from these developments, our highly connected world
has made it easier for social media users to bully,
insult, and propagate hate speech on the cyberspace
[1]. Genuinely, alongside the dramatic increase in
user-generated content and interactions on social and
sharing platforms, the web has also witnessed a rise

in abusive, discriminative, hateful, offensive, and racist
material [2], which, for the lack of a universal definition,
is henceforth referred to as toxic language. In truth,
the non-restrictive and pseudo-anonymous nature of the
internet provides users with malicious intents with the
perfect environment to express hatred and despise.

The fact that some users “misuse the [web] to
promote offensive and hateful language, which mars
experience of regular users, affects the business
of online companies, and may even have severe
real-life consequences” [3] has forced providers to look
for effective ways to eradicate toxic language from
sharing platforms [4]. Accordingly, community-driven
moderation approaches, such as encouraging users to
flag inappropriate content, can partly solve the problem
but can also lead to silencing supposedly unpopular
opinions. On the other hand, the ever-increasing
amount of available user-generated content makes the
labor-intensive process of manually moderating and
policing these platforms solely inconceivable [4, 5].
As a result, the need for automated solutions capable
of detecting toxic language and, therefore, support the
moderation process is proliferating [5].

In the last decade, researchers and companies alike
have started investigating this real-world problem. Even
though detecting the thin line between acceptable
opinions and hate speech is, in some cases, still
extremely challenging [4], advancements in machine
learning (ML), natural language processing (NLP), and
text classification techniques have made the detection of
offensive language more accurate and more accessible
[6]. Nevertheless, the question remains as to why
users are increasingly being exposed to hate and
discrimination online. As reported by various news
outlets and academic publications, the noticeable and
persistent increase in harmful language on social media
and sharing platforms indicates that the situation is only
getting worse [7, 8, 9, 10]; thus, confirming that this
problem is far from being resolved. In truth, even
the ongoing COVID-19 global pandemic triggered a
dramatic rise in cultural, political, and religious hatred
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on the internet [11, 12, 13]. Hence, by simply browsing
the web, one can witness the adverse effects of harmful
language, and that, without even actually looking for it.
Furthermore, while it seems that some platforms allow
basically every form of speech, other providers, such as
the German National News Service Tagesschau, have
decided, due to a lack of resources1, to deactivate, in
part, the comment function. In either case, we firmly
believe that users, providers, and freedom of speech
suffer from this situation.

Given the apparent advancements in ML techniques
and the present accessibility of such methods, it is,
from an outside perspective, difficult to understand the
exact reason(s) why some platform providers are not,
manually or automatically, moderating toxic content
effectively. This endeavor may seem technically
daunting for some or even costly for others. The
so-called cold-start problem, the lack of readily
available datasets, and the need for data scientists or
expensive hardware are all factors that, perhaps, weigh
in the balance. Even though such tools may not generate
revenue per se and are, therefore, not necessarily
financially attractive, they can still help providers avoid
getting hit with expensive fines in several regions of the
world – e.g., the European Union [14]. Hence, in this
work, we show that contemporary ML methods can help
tackle this challenge in an accurate and cost-effective
manner. Our experiments demonstrate that a universal
approach combining transfer learning methods and
state-of-the-art Transformer architectures can trigger
the efficient development of toxic language detection
models. Consequently, with this universal approach,
we provide platform providers with a simplistic and
functional approach capable of enabling the automated
moderation of user-generated content, and as a result,
hope to contribute to making the web a safer place by
exposing:

1. that a simple universal approach can achieve
state-of-the-art performance on a variety of toxic
language identification tasks;

2. that transfer learning is not only highly efficient
but that it also provides better classification
performance; and

3. that state-of-the-art methods can be implemented
efficiently; therefore, enabling a more accessible
and broader adoption.

The paper is structured as follows: In Section
2, we present a comprehensive overview of the most
prominent research efforts in the field of hate speech and

1https://meta.tagesschau.de/hilfe/FAQ (accessed August 24, 2021)

offensive language detection. In Section 3, we describe
our approach for the detection of toxic language before
we evaluate its performance in Section 4. Finally,
we give an outlook on future work and discuss the
limitations of the current study (Section 5).

2. Related Work

In this section, we outline the theoretical foundations
underpinning transfer learning in NLP and present a
comprehensive overview of the most prominent research
efforts in the field of toxic language detection.

2.1. Transfer Learning in NLP

In a traditional supervised ML setting, a statistical
model is trained on previously annotated training data
and then used to make predictions on future or unseen
data. In this setting, we assume that both the training
data and the future or unseen data are originating from
the same distribution, otherwise, a new model needs
to be trained for each task. However, this traditional
ML approach is quite different from how humans learn.
Instead of always starting from scratch, humans have
the ability to reuse the knowledge and skills learned
from previous tasks. This incredible ability is the
fundamental motivation behind transfer learning, which
can be defined as the application of knowledge learned
from a previous task (source task) to a novel task (target
task) (for a detailed survey on transfer learning, s. [15]).

Although many types of transfer learning exist,
sequential transfer learning is the most frequently used
transfer learning approach in NLP and consists of two
stages: (1) a pre-training phase – i.e., training the model
on a source task – and (2) an adaptation phase (see [16]
for a more detailed description). In NLP, pre-training
is typically performed on a large and broad annotated
corpus. This pre-training phase aims to learn universal
syntactic and semantic patterns about language, which
one can reuse with a wide range of target tasks. In the
subsequent adaptation phase, the model is trained on
the actual target task. This adaptation or fine-tuning is
typically performed on a smaller yet focused annotated
corpus. The adaptation aims to learn patterns that are
specific to the domain and the task of interest. While the
pre-training phase is computationally expensive – i.e., it
can take days or weeks on high-performance computing
(HPC) hardware – it only needs to be performed once.
In contrast, the adaptation phase, which only needs to be
performed for each new task, can be very efficient.

For the pre-training task, most transfer learning
approaches use some form of language modeling (LM)
[17]. Broadly speaking, the goal of LM is to predict the
next word(s) in a sequence of text given the preceding
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words. As accurately predicting a word in a sequence
requires knowledge of both the syntactic and semantic
roles of the words in context, LM is ideally suited
to learn generic reusable linguistic patterns. Besides,
training a LM does not require a labeled corpus; hence,
it can be done efficiently on very large corpora. In
the adaptation or fine-tuning phase, one can either feed
the outputs of a pre-trained LM as static features into
an independent downstream model or replace the last
layer(s) of a pre-trained LM with a target task-specific
layer – e.g., a linear classification layer [18]. In the
former case, only the downstream model is trained on
the task-specific annotated corpus; in the latter case, the
whole network can be fine-tuned on the task-specific
labeled corpus.

The application of transfer learning has resulted
in dramatic improvements in ML-based NLP, both
in terms of effectiveness and efficiency. Universal
Language Model Fine Tuning (ULMFiT), which
is based on a Long Short-Term Memory (LSTM)
recurrent neural network architecture, was one of the
first transfer learning techniques proposed for NLP
[19]. Experiments showed that with only 100 labeled
samples, a pre-trained ULMFiT model could match the
performance of other modern supervised classification
models trained on a hundred times more data. Today,
most of the current state-of-the-art transfer learning
approaches employ a Transformer-based architecture
instead of a recurrent architecture. Transformers are
sequence-to-sequence models originally developed for
machine translation tasks which easily be adapted
for language modeling. Bidirectional Encoder
Representations from Transformers (BERT), developed
by Google AI, is arguably the most famous Transformer
model for LM-based transfer learning [20]. BERT has
been incorporated into Google Search for improving
query understanding, and Google describes it as “one
of the biggest leaps forward in the history of [Google]
Search” [21].

2.2. Toxic Language Detection

In this section, we present a comprehensive overview
of the most prominent research efforts in the field
of toxic language detection. As addressed in the
introduction, toxic language can take many forms –
e.g., abuse, racism, or sexism. Consequently, even
though the papers exhibited in Table 1 all focus on the
same broad topic, the exact purpose of every research
varies slightly while the various methods, architectures,
datasets, and supported languages differ extensively.
A comparison between the individual papers is thus
made more difficult. However, one problem has already

become clear: researchers often start from scratch,
being either unable or unwilling to leverage existing
implementations or models.

Back in 2009, one of the first research papers
published on the subject proposed a supervised
learning approach aimed at detecting harassment in
user-generated content [22]. In this early attempt,
the authors focused on a binary classification task
by experimenting with three distinct datasets – i.e.,
Kongregate, Slashdot, and MySpace – and various linear
Support Vector Machine (SVM) models. Alternative
SVM approaches for the binary classification of toxic
language are proposed by [23], [24] and [31]. The
work by [31] should also be highlighted, as it is
dedicated to a low-resource language, namely Arabic,
and provides both a method and a dataset. Recently,
various works focusing on various European languages,
such as German [34], Spanish [35], and Italian [33],
have been published.

Stepping away from more traditional methods,
[25] experimented with character and word n-grams
by training logistic regression models on various
combinations of character-level features and unusual
features, such as the gender of the author and the
originating location of the Tweet. According to
the authors, the morphological features provided by
character-level approaches outperform traditional
lexical features when it comes to classifying
user-generated content [1]. Following [24], they
argued that due to the ever-changing standards and
guidelines on social media, languages could evolve
in a conscious or in an unconscious manner. Hence,
by adjusting their writing styles, users can circumvent
the lexical-based filtering systems used by social
networking platforms [1]. A character-level approach
would, most likely, ignore these modifications.

In one of the most extensive studies, [26] focused
on more contemporary techniques by experimenting
with deep learning approaches. By making use of
modern neural network architectures, they were the
first to truly experiment with such methods in the
field of hate speech detection and demonstrated that
these approaches can outperform approaches based
on char and n-gram representations [26]. Following
this work, [27] experimented with four different deep
learning architectures to classify hateful comments
on Twitter. In this research, their goal was
to prove that Convolutional Neural Networks can
provide state-of-the-art performance for hate speech
categorization.

However, the lack of adaptability and reusability
of the proposed approaches and datasets remain.
The annotation of domain-specific datasets is very
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Table 1. Related work on toxic language identification

Year Task Classifier Language Dataset F1-score

Yin et al. [22] 2009 Binary SVM English Own 0.481

Warner & Hirschberg [23] 2012 Binary SVM English Own 0.630

Nobata et al. [24] 2016 Binary SVM English Djuric et al. 0.774

Mehdad & Tetreault [1] 2016 Binary NBSVM English Djuric et al. 0.770

Waseem & Hovy [25] 2016 Multi. Log. Reg. English Own 0.739

Badjatiya et al. [26] 2017 Multi. GBDT English Waseem 0.930

Gambäck & Sikdar [27] 2017 Multi. CNN English Waseem 0.782

Davidson et al. [28] 2017 Multi. Log. Reg. English Own 0.900

Risch et al. [29] 2019
Binary

BERT (base-cased) German GermEval
0.764

Multi. 0.510

Mozafari et al. [30] 2019
Binary

BERT (base) + CNN English
Waseem 0.880

Binary Davidson et al. 0.920

Mulki et al. [31] 2019
Binary NB

Arabic Own
0.896

Binary SVM 0.820

Paraschiv & Cercel [32] 2019
Binary BERT (base-cased)

German GermEval
0.769

Multi. BERT (base-cased) 0.535

Corazza et al. [33] 2020

Binary LSTM English Waseem 0.823

Binary LSTM Italian Sanguinetti et al. 0.805

Binary GRU German GermEval 0.758

labor-intensive and thus prevents the previous methods
from being used by others [28]. In order to
address the lack of annotated, unbiased data (especially
for languages other than English) and in order to
increase the reusability of models in other domains
and languages, more recent work [29, 30] focus on
pre-trained language models such as BERT [20]. A
significant advantage of Transformer-based approaches
is that they can satisfactorily apply knowledge, once
learned, to new tasks.

3. Universal Approach

In this section, we present the four fundamental
building blocks of the proposed universal approach (see
Figure 1). This sequential pipeline, which leverages
the benefits of transfer learning and contemporary
Transformer architectures, allows the efficient and

straightforward development of classification models
capable of achieving state-of-the-art performance on
various toxic language identification tasks.

3.1. Dataset Selection or Generation

First and foremost, selecting or generating a
representative dataset is crucial to any (supervised)
machine learning task. Rationally, the quality of the data
fed into a machine learning algorithm directly correlates
with the performance of the resulting model. Besides
some arguably subjective factors, such as the pertinence
of the selected sources and the quality of the annotation,
the size of the training sample is also known to have an
impact on the overall quality of statistical models [36,
37, 38, 39]. This notion becomes even more significant
when one is dealing with textual data. In fact, because
of the sheer complexity of human languages as well as
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Figure 1. Transformer-based universal approach

the high-dimensional nature of the problems at hand,
NLP tasks, such as text classification, most commonly
benefit from large amounts of data [38, 40]. This being
said, generating a large dataset is a painstaking, costly
endeavor that is not always feasible or even affordable.

Consequently, by relying on recent advancements
in transfer learning and language modeling techniques,
Transformer-based models can achieve state-of-the-art
results with just a fraction of the (annotated) data
previously required. Hence, leveraging a meticulously
selected corpus makes it possible to deploy cutting-edge
text classifiers while avoiding the usual overhead
associated with the data collection and annotation
process. Therefore, the idea is to acquire qualitative,
representative, and diversified data from various
platforms and channels.

3.2. Architecture & Model Selection

Second, selecting the right (pre-trained) language
model is, in combination with a representative dataset,
of paramount importance in the above approach. In
truth, we believe that these two primary steps are
critical to the successful and efficient development of
the intended classifier. With the field of language
modeling growing at an incredible pace, it may seem
hard to keep up with all the latest breakthroughs. Yet,
as previously exposed, Transformer architectures have
become, over the last couple years, the go-to models
for many NLP applications, such as neural translation,
question answering, and text classification.

Designing with efficiency in mind, the idea is to
avoid starting from scratch by leveraging the knowledge
embedded into pre-trained Transformer models. These
models, which are readily available in a multitude of
languages, act as a foundation for the steps that follow.
Thereby, the success of this approach partially relies
upon this selection.

3.3. Domain-Specific Model Pre-Training

As can be expected, most readily available
pre-trained Transformer models are trained on gigabytes
of generic data – e.g., Wikipedia or Common Crawl.

However, the type of language represented in these
corpora may not accurately portray the domain-specific
language that one is trying to model. As one can
imagine, toxic language is usually conveyed through
comments, tweets, or even blogs. This online jargon
is most likely to be different from the more formal
language found on websites such as Wikipedia. Slang
words, abbreviations, as well as grammatical and
typographical errors are all characteristics related to the
type of language found on social networking platforms.
Furthermore, some harmless words and expressions,
such as the word “tool” in the demeaning expression
“You are a tool!”, may even be used in a harmful manner.
As a result, with the help of domain-specific unlabelled
data, one first wants to tweak, in an unsupervised
manner, the already pre-trained language model so that
it matches our target language; therefore, increasing the
likelihood of success.

3.4. Task-Specific Classifier Fine-Tuning

The second and last stage of the training phase
consists of building a classifier on top of the selected
Transformer architecture. Keep in mind that the
idea behind language modeling is not to predict a
target variable, but rather to “assign probabilities to
sequences of words” [41]. This means that a vanilla
Transformer model is not capable of performing any
given classification task. However, by replacing a
model’s last layer with a discriminative classifier head
– e.g., logistic regression – one can leverage the
previously acquired language knowledge while giving
the model the capability to assign an arbitrary number
of classes to given samples. With the help of annotated
data, the model, including its classifier layer, can be
fine-tuned to suit the task at hand.

4. Experiments

As argued in the introduction, leveraging the benefits
of transfer learning and contemporary Transformer
architectures can yield state-of-the-art results on the task
of toxic language detection and, ultimately, allow the
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efficient and straightforward development of moderation
tools. Hence, in this section, we train and evaluate
various classification models capable of detecting toxic
language following the universal approach exposed in
the previous section. To make the task a bit more
challenging and, therefore, to prove the predictive
capabilities of this simplistic pipeline, we decided to
focus on a language that does not benefit from as
many resources as English, namely German. As a
result, by focusing on a language such as German,
we believe that our experiments is representative of
the target group that could benefit from employing
the disclosed methodology. Lastly, to prove the
generalization capabilities of this universal approach,
we evaluate its performance and portability on another
dataset provided by a third party – i.e., unseen data
gathered and annotated by an independent organization.

4.1. Experimental Setup

For the sake of consistency and reproducibility, the
following experiments were all carried out on a single
workstation2 using the same PyTorch3 development
environment – i.e., an open-source machine learning
library. As to the transfer learning part of the
implementation, we made use of the readily available
pre-trained models available in the Transformers4

library provided by Hugging Face5. In addition,
to demonstrate that one can tackle this challenging
problem by leveraging the efficiency of transfer learning
methods alone, we deliberately did not take advantage of
powerful virtual machines hosted on cloud platforms or
even TPU-accelerated hardware.

4.2. Resources

As briefly discussed, the quality of the data involved
in the training phase plays a crucial role in a machine
learning model’s performance. However, for many
languages, the resources are pretty scarce when it
comes to toxic language identification. Hence, for most
low-resource languages, the first step of any approach
will, as expose earlier, consist of manually extracting
and annotating data.

Regarding the German language, the lack of
appropriate resources is indisputable, and that, despite
the effort by a handful of research groups. Nonetheless,
in an attempt to promote research in this highly relevant
field, the Shared Task on the Identification of Offensive

2CPU: Intel i7-9800X; RAM: 8x16GB (128 GB); GPU: 1x
NVIDIA Titan RTX (24 GB)

3https://pytorch.org
4https://github.com/huggingface/transformers
5https://huggingface.co

Language was put in place by GermEval [42, 43].
This workshop required participants to train machine
learning models capable of identifying toxic language
with the help of the provided annotated datasets [42,
43]. Even though these publicly available corpora show
rather exciting characteristics, such as a multi-class
approach and highly comprehensive definitions, they
were sourced solely from Twitter and are relatively
small in size. Studies have repeatedly shown that
different demographics use different social networks
[44]. As a result, the linguistic features, the expressions,
and the discussed topics vary widely from platform to
platform. To overcome this drawback and generate a
representative corpus, we built our dataset using data
originating from three different social networks, namely
Instagram, Twitter, and YouTube, while utilizing the
multi-class approach and definitions provided by [45].
Furthermore, we also made sure to collect data from
diverse categories – e.g., lifestyle, sports, and politics.

In preparation for the annotation process, we
acquired over 200,000 comments from the platforms
mentioned above. Following the annotation guidelines
proposed by [45], we annotated, for the sake of
our experiments, 50,000 randomly selected comments.
Logically, we discarded all comments containing only
emojis or those written in a foreign language. Table 2
reveals the details about our final dataset containing
a total of 20,000 manually annotated samples. The
remaining 150,000 comments were set aside for the
pre-training phase of the exposed approach.

Table 2. Dataset overview

Label Instagram Twitter YouTube Total

Other 5,042 5,734 4,224 15,000

Offense 283 347 687 1,317

Insult 747 634 1,284 2,665

Abuse 225 228 565 1,018

Total 6,297 6,943 6,760 20,000

Finally, in order to assess the quality of our
annotations and, therefore, the value and consistency
of our dataset, we proceeded with an inter-annotator
reliability evaluation. The resulting Krippendorff’s
values of α = 0.91 for the binary setting and α = 0.79
for the multi-class setting do not only speak for the
quality of the annotation, but also the quality of the
definitions and guidelines provided by [45]. In order to
promote further research, the above dataset can be made
available by the authors upon request.
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4.3. Text Preprocessing

When it comes to preprocessing text documents,
approaches, methods, and views vary widely. As a
matter of fact, some of the studies presented in the
related work section of this paper employed heavy
preprocessing – e.g., [22] – while others did not even
bother to address the subject – e.g., [27]. Hence, since
our approach revolves around efficiency, we decided that
it would be best to follow a more minimalist approach.
Thus, our preprocessing consisted of converting the
documents to lowercase before removing all unwanted
characters, symbols, emojis, hashtags, and mentions.
Even though it can be rightfully argued that various
entities such as emojis or hashtags contain valuable
information beneficial to the overall performance of a
classification model, the goal of our experiments is to
demonstrate the straightforward predictive capabilities
of the universal approach by solely focusing on
language.

4.4. Language Modeling and Classifier
Fine-Tuning

As exposed, the field of language modeling
is currently growing at an incredible pace, and
Transformer models are at the center of this evolution.
For this reason, we decided to experiment with the
most common Transformer-based architecture, namely,
BERT [20]. This architecture is considered by many
to be one of the most exciting developments in NLP
in recent years and acts as the groundwork for many
contemporary works.

With the success of the approach relying on the
selection of a suitable pre-trained model, we opted for
the uncased version of the so-called German BERT
model6. This model, which is based on the work by
[20] comprises 110 million parameters and was trained
on some 16 GB of data originating from Wikipedia, the
EU Bookshop corpus, Open Subtitles, CommonCrawl,
ParaCrawl, and News Crawl. Hence, with this model,
we can jumpstart our implementation by leveraging
the knowledge gathered from more than 2.3 billion
tokens and a vocabulary containing over 30,000 tokens,
which was generated using the language-independent
subword tokenizer known as SentencePiece7 [46].
This subword approach, in combination with the
self-attention mechanism characteristical of the
Transformer architecture [47], allows the model to deal
with linguistic ambiguity, linguistic subtleties, word
variations, and even misspellings.

6https://huggingface.co/dbmdz/bert-base-german-uncased
7https://github.com/google/sentencepiece

Even though German BERT provides a solid
foundation for our implementation, we can further
pre-trained the model’s weights using domain-specific
data. This first unsupervised step of the training phase
may help our model, at a later stage, to better recognize
words, patterns, and even expressions distinct to our
target language. Hence, before moving on to the
classifier and, therefore, the actual task, we further
pre-trained the German BERT model in its entirety – i.e.,
without freezing any layers – with the 150,000 unlabeled
comments mentioned earlier.

At last, we can now build a task-specific classifier on
top of our architecture. This second and final stage of the
training phase consists, as explained earlier, of replacing
the last layer of our pre-trained language model with
a classifier head before fitting the model’s parameters,
or weights, to our downstream task. To proceed, we
trained two versions of the German BERT model for
both our binary and multi-class experiments – i.e.,
one without pre-training and one with domain-specific
pre-training – using 5,000, 10,000, and 15,000 annotated
training samples. Experimenting with various training
sets enabled us to assess the effects of the sample size
on the model’s overall performance. Please note that we
did not freeze any layers for our experiments – i.e., we
fine-tuned both the weights of the pre-trained language
model and those of the classifier.

4.5. Evaluation

Table 3 and Table 4 expose the classification results
obtained by our binary and multi-class models when
tested on various sample sizes. In order to put these
results into perspective, we also trained and evaluated
several baseline models that were optimized using a
Bayesian hyperparameter tuning approach and the same
training and test data. The results show that the
models trained using the Transformer-based universal
approach outperform all other models in every single
category. Even though marginal, the models pre-trained
on domain-specific data also manage to beat their
fine-tuned German BERT counterparts. Furthermore,
the results reveal that the models based on the universal
approach do not benefit from larger training sets.
This suggests that one can achieve state-of-the-art
results with a minimal amount of training data and,
consequently, minimize the effects of the cold-start
problem.

4.6. Benchmark Evaluation

In order to be able to judge the performance
of our proposed approach, especially with regards
to generalization, we assess how our models stack
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Table 3. Binary evaluation for various training sample sizes

Model Accuracy Precision Recall F1-score

5,
00

0
sa

m
pl

es

TF-IDF + Logistic Regression 0.851 0.893 0.710 0.749

TF-IDF + XGBoost 0.878 0.899 0.771 0.810

German BERT (fine-tuned) 0.949 0.932 0.933 0.932

Universal Approach 0.955 0.940 0.939 0.939

10
,0

00
sa

m
pl

es

TF-IDF + Logistic Regression 0.877 0.905 0.764 0.804

TF-IDF + XGBoost 0.892 0.911 0.798 0.835

German BERT (fine-tuned) 0.959 0.948 0.942 0.945

Universal Approach 0.962 0.949 0.951 0.950

15
,0

00
sa

m
pl

es

TF-IDF + Logistic Regression 0.891 0.913 0.794 0.833

TF-IDF + XGBoost 0.904 0.921 0.821 0.857

German BERT (fine-tuned) 0.962 0.951 0.949 0.950

Universal Approach 0.964 0.952 0.952 0.952

Table 4. Multi-class evaluation for various training sample sizes

Model Accuracy Precision Recall F1-score

5,
00

0
sa

m
pl

es

TF-IDF + Logistic Regression 0.828 0.838 0.468 0.537

TF-IDF + XGBoost 0.864 0.803 0.618 0.676

German BERT (fine-tuned) 0.923 0.836 0.839 0.836

Universal Approach 0.933 0.862 0.845 0.851

10
,0

00
sa

m
pl

es

TF-IDF + Logistic Regression 0.848 0.825 0.540 0.614

TF-IDF + XGBoost 0.872 0.828 0.638 0.696

German BERT (fine-tuned) 0.935 0.851 0.860 0.855

Universal Approach 0.942 0.869 0.866 0.867

15
,0

00
sa

m
pl

es

TF-IDF + Logistic Regression 0.864 0.841 0.597 0.672

TF-IDF + XGBoost 0.878 0.833 0.662 0.717

German BERT (fine-tuned) 0.945 0.877 0.885 0.880

Universal Approach 0.947 0.887 0.886 0.886

Table 5. Benchmark evaluation (GermEval 2019 [43])

Model Accuracy Precision Recall F1-score

B
in

-
ar

y Paraschiv et al. [32] 0.794 0.764 0.776 0.770

Universal Approach 0.819 0.794 0.784 0.788

M
ul

ti-
cl

as
s Paraschiv et al. [32] 0.736 0.585 0.494 0.536

Universal Approach 0.740 0.575 0.544 0.558
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up against the best-performing models submitted to
GermEval 2019 [43]. As can be seen in Table 5, both
our binary as well as our multi-class models outperform
the best-performing model submitted by [32]. Even
though the models proposed by [32] were also based
on a Transformer architecture, we believe that our
efficient pre-training provided our implementations with
a serious performance advantage.

5. Conclusion

In the last few years, the need for moderation to
maintain an orderly interaction on social media and
sharing platforms has grown massively. Even though
technical solutions are continually evolving [4], the
persistent increase in harmful language on the web
indicates that the situation is only becoming worse
[7, 8, 9, 10]. Consequently, this paper contributes to
making the implementation of automated solutions more
accessible by exposing how a universal approach can
enable the efficient and cost-effective development of
accurate machine learning models capable of detecting
toxic language. As our empirical experiments showed, it
is possible to build state-of-the-art moderation solutions
with minimal resources, thanks to modern techniques
such as transfer learning and Transformer models.

As with most studies, however, these results must
be interpreted in light of some limitations. First, our
experiments focused solely on the detection of toxic
language and, therefore, did not reflect every type
of threat encountered on the web. In fact, threatful
actions such as trolling – i.e., the act of instigating
conflict by intentionally posting provocative or offensive
messages – or doxing – i.e., the act of publicly
revealing someone else’s private information – are all
detrimental behaviors that would need to be addressed
in future work. Second, because of a language’s
complex and diverse nature, ill-intentioned individuals
may be able to circumvent automatic moderation
systems by adapting their writing style – e.g.,
by voluntarily introducing typos or non-alphabetical
characters. Even though the subword approach, in
combination with the self-attention mechanism of the
Transformer architecture, makes our models robust to
such linguistic alterations, future work should focus on
testing the reliability of various architectures by putting
those under the stress of adversarial attacks. Lastly,
it would be interesting to examine the adaptability
and transferability of the presented models to different
domains, such as gaming. Even though these models
were trained on diverse datasets, the language found
on social media platforms may differ from the jargon
encountered on gaming platforms.
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[27] B. Gambäck and U. K. Sikdar, “Using Convolutional
Neural Networks to Classify Hate-Speech,” in
Proceedings of the 1st Workshop on Abusive Language
Online, pp. 85–90, 2017.

[28] T. Davidson, D. Warmsley, M. Macy, and I. Weber,
“Automated Hate Speech Detection and the Problem
of Offensive Language,” in Proceedings of the
International AAAI Conference on Web and Social
Media, vol. 11, 2017.

[29] J. Risch, A. Stoll, M. Ziegele, and R. Krestel, “hpiDEDIS
at GermEval 2019: Offensive Language Identification
using a German BERT model,” in Proceedings of the
15th Conference on NLP, pp. 405–410, 2019.

[30] M. Mozafari, R. Farahbakhsh, and N. Crespi, “A
BERT-based Transfer Learning Approach for Hate
Speech Detection in Online Social Media,” in
Proceedings of the International Conference on Complex
Networks and Their Applications, pp. 928–940, 2019.

[31] H. Mulki, H. Haddad, C. Bechikh Ali, and H. Alshabani,
“L-HSAB: A Levantine Twitter Dataset for Hate Speech
and Abusive Language,” in Proceedings of the 3rd
Workshop on Abusive Language Online, pp. 111–118,
2019.

[32] A. Paraschiv and D.-C. Cercel, “UPB at GermEval-2019
Task 2: BERT-Based Offensive Language Classification
of German Tweets,” in Proceedings of the 15th
Conference on NLP, pp. 398–404, 2019.

[33] M. Corazza, S. Menini, E. Cabrio, S. Tonelli, and
S. Villata, “A Multilingual Evaluation for Online
Hate Speech Detection,” ACM Transactions on Internet
Technology, vol. 20, no. 2, 2020.

[34] B. Ross, M. Rist, G. Carbonell, B. Cabrera,
N. Kurowsky, and M. Wojatzki, “Measuring the
Reliability of Hate Speech Annotations: The Case
of the European Refugee Crisis,” arXiv preprint
arXiv:1701.08118, 2017.

[35] J. C. Pereira-Kohatsu, L. Q. Sánchez, F. Liberatore, and
M. Camacho-Collados, “Detecting and Monitoring Hate
Speech in Twitter,” Sensors, vol. 19, no. 21, 2019.

[36] J. Cho, K. Lee, E. Shin, G. Choy, and S. Do, “How Much
Data is needed to Train a Medical Image Deep Learning
System to Achieve Necessary High Accuracy?,” arXiv
preprint arXiv:1511.06348, 2015.

[37] S. J. Raudys and A. K. Jain, “Small Sample Size Effects
in Statistical Pattern Recognition: Recommendations for
Practitioners,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 3, pp. 252–264, 1991.

[38] M. Sordo and Q. Zeng-Treitler, “On Sample Size and
Classification Accuracy: A Performance Comparison,”
in Biological and Medical Data Analysis, pp. 193–201,
2005.

[39] H. He and E. A. Garcia, “Learning from Imbalanced
Data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[40] J. Hestness, S. Narang, N. Ardalani, G. Diamos,
H. Jun, H. Kianinejad, M. Patwary, M. Ali, Y. Yang,
and Y. Zhou, “Deep Learning Scaling is Predictable,
Empirically,” arXiv preprint arXiv:1712.00409, 2017.

[41] D. Jurafsky and J. H. Martin, Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech
Recognition. Unpublished, 3 ed., 2020.

[42] M. Wiegand, M. Siegel, and J. Ruppenhofer, “Overview
of the GermEval 2018 Shared Task on the Identification
of Offensive Language,” in Proceedings of the 14th
Conference on NLP, 2018.

[43] J. M. Struß, M. Siegel, J. Ruppenhofer, M. Wiegand,
M. Klenner, et al., “Overview of GermEval Task
2 Shared Task on the Identification of Offensive
Language,” in Proceedings of the 15th Conference on
NLP, 2019.

[44] M. Duggan and J. Brenner, The Demographics of Social
Media Users, 2012, vol. 14. Pew Research Center’s
Internet & American Life Project, 2013.

[45] J. Ruppenhofer, M. Siegel, and M. Wiegand, “Guidelines
for IGGSA Shared Task on the Identification of
Offensive Language,” 2018.

[46] T. Kudo and J. Richardson, “SentencePiece: A Simple
and Language Independent Subword Tokenizer and
Detokenizer for Neural Text Processing,” arXiv preprint
arXiv:1808.06226, 2018.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is All You Need,” in Proceedings of the
31st International Conference on Neural Information
Processing Systems, p. 6000–6010, 2017.

Page 797


