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Abstract

Troubleshooting is a labor-intensive task that
includes repetitive solutions to similar problems.
This task can be partially or fully automated using
text-similarity matching to find previous solutions,
lowering the workload of technicians. We develop
a systematic literature review to identify the best
approaches to solve the problem of troubleshooting
automation and classify incidents effectively. We identify
promising approaches and point in the direction of a
comprehensive set of solutions that could be employed
in solving the troubleshooting automation problem.

1. Introduction

Learning from text is an important subject for
machine learning and deep learning models, providing
valuable insights based on the execution of different
algorithms [1]. For example, we can use models for
text similarity recognition and text categorization or
classification to learn from text [1]. Being able to
identify text similarity and its categorization allows us
to solve problems such as helping answer questions in
community-based websites [2], predict author gender
based on the text they wrote [3], and tasks related to
bug-triage [4, 5, 6, 7] to automate the resolution of
issues.

Large companies create many internal service
requests, known as issues or incidents, and different
people work to resolve them. These services have
diverse complexities and levels of urgency. Some
services are very specific, while a considerable portion
is very similar or even contains identical requests. For
the latter, companies can automatically replicate the
solution employed in the first occurrence of an issue.

Answering these service requests takes time and
requires the action of a specialist, who may sometimes
not be available full-time. For this reason, the internal
customer (and sometimes the external customer) needs
to wait until an expert can resolve the request and

fix the problem, but waiting usually leads to customer
dissatisfaction. In this context, developing a model that
suggests solutions for service requests impacts customer
satisfaction, time spent by users, collaborators, and
specialists, consequently incurring cost reduction.

This paper aims to understand the most used
machine learning and deep learning algorithms for
text similarity or text categorization applicable to
troubleshooting automation. To do so, we perform
a systematic literature review using five widely used
web search engines to answer the following question:
What are the most used machine learning and deep
learning techniques, algorithms, tools, or models for
text similarity or categorization? We start with 957
papers, and in the end, we accept 35 papers that answer
our research question.

We classify the papers into eight categories: models
and frameworks, proposed methods, preprocessing
and dimension reduction, new text representations,
attention-based models, multi-label related, comparative
approaches, and bug-triage related. Our review leads
to two key findings. First, most papers perform
experiments based on only one dataset, and the most
used public-available datasets are Reuters-21578 1 and
20 Newsgroups 2. Second, Support Vector Machine
(SVM) is the most used machine learning model, while
Convolutional Neural Network (CNN) is the most used
deep learning model for text similarity or categorization.

In what follows, we investigate applications
of machine learning to troubleshooting automation.
Section 3 describes the methodology we followed, and
Section 4 presents the results we achieved. Section 5
answers our research question and a discusses our
results. Finally, Section 6 summarizes our conclusions
and future work.

1Available at https://archive.ics.uci.edu/ml/
datasets/reuters-21578+text+categorization+
collection. Accessed in May 2021.

2Available at https://archive.ics.uci.edu/ml/
datasets/Twenty+Newsgroups. Accessed in May 2021.
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2. Theoretical Foundation

In this section, we introduce basic concepts related
to Text Similarity & Categorization, Machine learning
(ML) and Deep Learning (DL), and Troubleshooting
Automation (TA), focusing on their main features and
descriptions.

2.1. Text Similarity and Categorization

Text Similarity and Categorization are techniques
for text analysis. Text similarity analysis refers to
comparing two or more pieces of text regarding how
strong is the semantic or syntactic similarity among
them. The computation of text similarity can be based
on the word frequency in the text [1]. On the other hand,
text categorization or classification requires categories
to which the data can be fitted [8]. Categorization
is closely related to the clustering problem, but the
difference is that in categorization, we have training and
testing examples [1].

2.2. Machine Learning & Deep Learning

ML is a branch of artificial intelligence (AI) that
combines Computer Science and Statistics. This area
focuses on learning rules from data, adapting to changes,
and improving performance with experience [9]. ML
employs algorithms that parse data and use the new
information to improve decisions [9]. In summary,
an ML method based on a labeled dataset (supervised
learning) or unlabeled dataset (unsupervised learning)
can detect patterns and classify future inputs according
to the analyzed data.

Deep learning (DL) is the area of ML that deals
with complex artificial neural networks. According to
Bengio et al. [10], DL uses a hierarchy of concepts to
learn complex concepts by connecting them to simpler
ones. Artificial neural networks operate through the
composition of networks of simple functions (referred
to as neurons) connected to each other by weights that
represent how one function influences other connected
functions. DL can automatically learn representations
from data, such as images, video, or text, without
depending entirely on human-crafted features [10].

2.3. Troubleshooting Automation

Troubleshooting Automation is a systematic
approach to problem-solving in complex machines
or systems [11]. In this paper, we survey techniques
amenable to automating the resolution of incidents
using ML and DL. An incident is a service request
created by a user to be resolved by a member of the

Table 1. Example of textual features related to the

incidents

Feature Description

Short description: Brief description of the incident.
Description: Complete description of the

incident, usually with examples
and logs of errors, when
available.

Comments: Messages between the customer
and the attendant.

Work notes: Same as the comments, but it
is only visible for the internal
team.

Close notes: Brief description of what was
done to solve the incident.

Information Technology (IT) support team that usually
works in the same institution. The time people spend
resolving incidents can lead to low productivity and
increased costs for the institution. Whenever we can
automate the resolution of the incidents, we reduce the
time to resolve the service request, reducing cost. The
purpose of automation, in this case, is for the system
to decide which previous incident is the most closely
related one and suggest solutions based on the history
of solutions to such past incidents.

We are interested in the data stored in the service
desk system, which contains the incident and the related
conversation. Some systems generate error codes when
a failure occurs, and eventually, the user complements
the incident description by attaching application logs,
which contain details of the errors.

Different features can be selected as input for ML
and DL algorithms, based on the incidents datasets. We
provide an example of the features we could use in
Table 1. In this example, our target (the features we want
to learn) is the Close notes. One example of an incident
and solution that could be automated is the following:

• Short description: I cannot print an order.
• Description: The print button is not enabled for

order #1234, although the order is finished and
ready to be printed. Could you check that for me?

• Comments: -
• Work notes: Service x stooped again, we have to

update it soon.
• Close notes: Restart the service x.

Besides the features above, we could use the incident
ID, incident category, creation date, and resolution date.
Computational ways of automating troubleshooting
begin with the principle of understanding and
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categorizing the incidents, which, according to our
example, can be represented as text, numbers, or
data, to then choose some solution (that can also be
represented as text) automatically. In this context, ML
and DL can be useful in the TA problem, since it enables
us to use specific algorithms for text classification and
categorization.

3. Material and Methods

We perform a Systematic Literature Review (SLR),
as proposed by Kitchenham et al. [12]. Our focus is to
identify the main contributions regarding text similarity
and classification and provide an overview of models,
techniques, algorithms, and tools used in this research
area. According to Kitchenham et al. [12], an SLR has
three main phases, as follows.

The first phase refers to planning the
review—formulating the research questions and
protocols. For that purpose, we define one main
Research Question (RQ) to guide our development:
“What are the most used machine learning and deep
learning techniques, algorithms, tools, or models for
text similarity or categorization?”. We search for
the most used because it allows us to infer the most
adequate techniques, algorithms, tools, or models. In
order to facilitate the elaboration of research definitions,
we follow the PICO method proposed by Sackett et
al. [13] to formulate the search string:

• Population: papers that describe techniques,
algorithms, tools, or models for text similarity or
categorization;

• Intervention: using machine learning or deep
learning techniques;

• Comparison: -;
• Outcome: techniques, algorithms, tools, models.

During protocol development, we determine a
control study (Zaidi et al. [6]) based on the objective
of this literature review. We define the following
search string for submission to online search engines:
(”machine learning” OR ”deep learning” OR ”neural
network”) AND (incident OR issue OR problem
OR troubleshooting) AND (embeddings OR ”text
similarity” OR ”text categorization”) AND (technique
OR algorithm OR tool OR model).

The search is limited to papers written in English
published from 2017 until 2021. The inclusion criteria
are: I) Qualitative or quantitative research about the
research theme; II) Describes a complete study in
electronic format; III) Conference paper, review, or
journal. On the other hand, the exclusion criteria are:
I) Incomplete or short paper (less than 4 pages); II)

Table 2. Papers by search engines
Source Initial 1st filter 2nd filter Final
ACM 359 169 14 7
arXiv 7 0 0 0
Google
Scholar

26 11 0 0

IEEE
Xplore

269 93 31 13

Web of
Science

296 198 32 15

Total: 957 469 77 35

Study is unavailable for download; III) Study is not
related to the topic of our research; IV) Duplicated
study; V) Written in a language other than English;
VI) Conference proceedings index; VII) Published more
than 4 years ago; VIII) Literature review; IX) Book or
book chapter; X) Thesis or dissertation.

The second phase is conducting the review, and
it consists primarily of paper selection. We searched
for papers in five online search engines: ACM Digital
Library, arXiv, Google Scholar, IEEE Xplore, and Web
of Science. The search string in the search engines
above, resulted in a total of 957 papers. Table 2 shows
the number of papers from each search engine.

We use the StArt (State of the Art through systematic
review) tool (Fabbri et al. [14]) to facilitate the process
of extraction and compilation of the data, resulting
in 469 papers. The following phases consist of: i)
the initial selection phase, we apply the inclusion and
exclusion criteria to the papers based on title and
abstract, rejecting 392 papers; ii) the final selection
phase, we thoroughly analyze the 77 papers left, using
the criteria to decide whether the paper fits the objectives
of our research, then accepting 35 papers.

The third and last phase from Kitchenham et al. [12]
is document review. In this part, we write and review the
report itself, which we report next.

4. Results

To start the analysis of the papers, we group
the papers into eight main categories, according to
an analysis of the keywords, important terms in the
abstracts, as well as similarities between the approaches
followed by the authors. The groups we identified
are: 1. Models and frameworks, 2. Proposed methods,
3. Pre-processing and dimension reduction, 4. New
text representations, 5. Attention-based models, 6.
Multi-label related, 7. Comparative approaches, and 8.
Bug-triage related. Next, we explain each group along
with the related papers.
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Models and 

frameworks
9 papers

Proposed 

methods
5 papers

Pre-processing and 

dimension 

reduction
3 papers

New text 

representations
6 papers

Attention-based 

models
4 papers

Multi-label

related
2 papers

Comparative 

approaches
2 papers

Bug-triage 

related
4 papers

Total number 

of papers:
35 papers

Figure 1. Eight categories of papers.

4.1. Categorization of the papers

In what follows, we classify the accepted papers
providing brief description of each category. We
conclude the categorization with a summary of the
number of papers per category in Figure 1. Most of
the papers are related to the Models and Frameworks
category (9 papers), and the second most popular
category is related to New text representation methods
(6 papers).

4.1.1. Models and frameworks
Research that propose different models and

frameworks based on text classification or similarity
are the majority in the final selected papers. Liu et
al. [15] develop a Centroid-Based Classification Model,
the Gravitation Model (GM), in which a Vector Space
Model (VSM) represents the documents. This model is
useful when we work with a class-imbalanced dataset.
Like in universal gravitation, the classes represent the
objects with the attractive forces in this model.

Zhang, Gao, and Fang [16] propose a model
to classify news titles according to related topics.
This model is called the Word-Embedding-based
Sentence-LDA (WESL) model. The authors first convert
the letters to lowercase, then delete stop-words and
non-alphabetic characters to later delete words that
appear once or twice in the dataset.

Chen et al. [2] develop the Heterogeneous Social
Influential Network. They focus on question retrieval for
community-based question answer to help users select
historical questions that match their new questions,
based on semantics or relevancy. Their model learns
about the textual content of the questions, information
about related categories, and social information of
people who ask questions in the system to rank the

most similar historical proposed questions to the new
question. Consulting previous text answers is relevant
to TA since we need to process a new incident and base
its solution on historically similar problems.

Adam et al. [17] develop two Long Short-Term
Memory (LSTM) models to monitor software use based
on the history of the actions of the users in the
interface. The authors use an LSTM network with action
embeddings (one-hot encoded vectors). They feed the
LSTM network with feature vectors for their crash
detection task, composed of actions with above-average
crash probabilities.

Tellez et al. [18] develop a framework to create
a text classifier regardless of both the domain and
the language, based only on a training set of labeled
examples. The authors approach creating effective text
classifiers as a combinatorial optimization problem—a
space with all the options of text transformations,
tokenizers, and weighting procedures. They use a
meta-heuristic (Random Search and Hill Climbing—a
procedure to generate/select a good solution to an
optimization problem) to produce an effective text
classifier in this space. The name of this model selection
procedure is µTC (micro–Text Classification).

Kong et al. [19] develop a framework to evaluate
the helpfulness of a product review. During
pre-experiments, the authors note that using only
features learned from a CNN model can achieve better
performance than hand-crafted features, and that a CNN
model outperforms TransE. Based on the results of the
pre-experiments, they build an automatic model based
on CNN and TransE. Additionally, the paper from
Guo et al. [20] introduces a framework to recommend
jobs (text data) that consisted of integrating four
different levels: feature-level, model-level, data-level,
and approach-level.

Two papers focus their research on entity-related
proposals. First, Conover et al. [21] develop Pangloss,
a production system for entity disambiguation on noisy
text. Pangloss combines a probabilistic linear-time
key phrase identification algorithm with a semantic
similarity engine based on context-dependent document
embeddings to achieve better than state-of-the-art
results. Second, Ahmadvand et al. [22] introduce
ConCET, a DL algorithm that improves topic
classification on human-machine and human-human
conversations combining character, word, and entity
type embeddings into a single representation.

4.1.2. Proposed methods
Text similarity and classification can be executed

in different ways. Bellaouar, Cherroun, and Ziadi [23]
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based their research on String Subsequence Kernel
(SSK). String Kernel is a function used to measure
the similarity of pairs of strings; the more similar
two strings are, the higher the value of a string
kernel. SSK belongs to this family, and the main
idea is to compare strings depending on common
substrings or subsequences they contain. To improve
the time consumption of SSK computation, the authors
develop a novel Geometric-based approach by extending
the layered-range tree (LRT) data structure to a
layered-range sum tree (LRST). Unfortunately, this
approach depends on alphabet size, and it is not efficient
for a small alphabet. Nevertheless, SSK can be used in
many applications, such as text categorization.

Silva, Almeida, and Yamakami [24] present
MDLText, a text-classifier method to process high
dimensional data quickly. This method is based on the
Minimum Description Length (MDL) principle (fewer
complex models are preferable, but there is no standard
procedure for calculating this). MLDText can prevent
overfitting, when a model learns the detail and noise
in the training data, negatively affecting the model’s
performance in the test data. In addition, the authors
point out that MDLText has a low computational cost.

Wei et al. [25] propose a graph recurrent neural
network for text categorization. In the paper, the authors
compare their method to widely used text classification
methods, such as CNN, LSTM, RNN, and achieve
higher accuracy than the other methods using GloVe
with 300-dimensional embeddings to initialize word
representation.

Goudjil et al. [26] focus on text categorization using
what the authors call active learning, in which the main
objective is to reduce the labeling effort and maintain
accuracy by selecting samples to be labeled. Their
algorithm is based on SVM with a probabilistic output to
be able to deal with multi-class labels. Active learning
is used by selecting a batch of informative samples to be
labeled by a domain expert. Their proposed approach
is called AL-MSVM, based on the posterior probability
estimated by a set of SVM classifiers.

The work of Gadri and Moussaoui [27] addresses the
problem of automatic topical text categorization. The
authors use a new approach based on the k-Nearest
Neighbor (k-NN) algorithm, as well as a new set of
pseudo-distances (distance metrics) known in the field
of language identification. This constitutes a simple and
effective method to improve the quality of performed
categorization.

4.1.3. Pre-processing and dimension reduction
When dealing with text tasks such as

classification, data size can be massive. This
necessitates dimensionality reduction methods, which
the authors do as follows. First, Xu et al. [28] develop
a Deep Clustering via Variational Auto-Encoder
(DC-VAE) of mutual information maximization. Deep
clustering refers to the process of guiding clustering
methods jointly with automatic learning representation
from the high-semantic and high-dimensional data via
deep neural networks. Compared to k-NN, which is
computationally costly due to its lazy learning pattern,
DC-VAE performs well with high-dimensional space
features.

Chen et al. [3] propose an approach that combines
the Latent Semantic Indexing (LSI) method (dimension
reduction purpose) with k-NN to predict the gender,
based on a real-life collection of posts on actual blog
pages. Das Gollapalli and Jung-Jae [29] tackle the
task of classifying wordmarks, which are essentially a
small set of words (less than five most of the time).
They describe how to prepare the data using different
syntactic representations simultaneously as features
for best performance, then compare the classification
performance with a large variety of methods.

4.1.4. New text representations
Text representation is an important step for

similarity or classification tasks. Different authors
propose different models or techniques for text
representation to be used in such tasks. For example,
Hongpeng and Jia [30] develop a sentence vectorization
method based on task contribution that uses the
improved information gain feature selection method
(IIG-SIF). IIG-SIF vectorization can be used in two
tasks: i) text categorization based on neural networks;
ii) text similarity using a specific formula described by
them.

Li et al. [31] present a novel framework called Text
Concept Vector, which uses both neural networks and a
knowledge base to produce a high-quality representation
of text. They test their framework in sentence pair
similarity and sentiment classification, performing well
against popular text representations.

Shuang et al. [32] develop a text representation
model named Convolution–Deconvolution Word
Embedding (CDWE). CDWE is a multi-prototype and
end-to-end fusion embedding that composes specific
information for the context and tasks and extracts
semantic and syntactic information. The authors focus
on polysemy (terms having more than one meaning)
and task unawareness (the type of task before analyzing
the words). They apply their model to word embedding
generation to then use it in machine translation and text
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classification.
Jiang et al. [33] propose a model for Latent Topic

Text Representation (LTTR) based on word embedding
(word2vec-CBOW model) to learn a text distance
measure in the framework of a statistical manifold
(information geometry/probability distribution). They
use a Gaussian Mixture Model to describe the word
distribution, where each Gaussian represents a potential
topic. This kind of text classification requires a distance
metric to measure how much the texts differ, of which
they describe four different measurement theories and
introduce a distance metric using statistical manifold
learning. They compare the results of the proposed
method with other state-of-the-art methods, using the
SVM and k-NN classifiers on the test sets.

Zheng et al. [34] introduce Hierarchical
Collaborative Embedding (HCE) for a context-aware
recommendation. To overcome the bag-of-words
limitation, which does not capture semantic meaning,
and RNN gradient vanishing problem, in which in
a long input word sequence RNN tends to forget
previous words, they use HCE to learn hierarchical
item embeddings from the textual content. Because it
is hierarchical, HCE derives a better item embedding,
achieving more accurate recommendation results.
Hierarchical Recurrent Network (HRN) is a component
of the proposed HCE. HRN learns embeddings of
documents associated with items. To validate HCE
effectiveness, they compare it with five baseline
models—HCE consistently outperforms all baselines.

Hourali, Zahedi, and Fateh [35] present a new
coreference resolution approach. A coreference occurs
when two or more expressions in a text refer to the same
person or thing. The authors incorporate RoBERTa
embeddings with a neural Multi-Criteria Decision
Making (MCDM) method. RoBERTa uses syntactic
and semantic information and extracts correct mentions
with different lengths from the text, and is used for
word embedding to obtain better contextual information.
MCDM is accurate for ranking candidate antecedent and
better detection rate of co-referent mentions. Thus, their
proposal manages the problem of coreference resolution
with the lowest error rate.

4.1.5. Attention-based models
Attention mechanisms consider the importance of

words in a domain/task. The importance of words
depends on the data domain, and the text task goal
impacts on the results of the models. The attention
mechanism allows the setting of different weights
to highlight important information from the context.
The following authors use attention mechanisms for

analyses and classification purposes. Liu and Guo [36]
develop an architecture for text classification based on
an attention-based BiLSTM with a convolutional layer
(AC-BiLSTM) in the pre-processing step, for sentiment
and question classification.

Zheng and Zheng [37] propose Bidirectional
Recurrent Convolutional Neural Network
Attention-Based Model (BRCAN), a model that
combines the bidirectional LSTM for context, and the
CNN with the attention mechanism for keywords with
Word2Vec. Their model can assign different weights to
words in sentences according to their importance to the
classification given by attention mechanisms. BRCAN
got results that outperformed traditional ML models.

Shi and Lu [38] build a bidirectional hierarchical
LSTM network model (HBLSTM-ATT) based on the
attention mechanism and calculate the correlation before
and after the sentence. At the same time, their
model focuses on document-level classification, using
hierarchical structures to build document-level vectors
from word vectors. Yuan [39] considers that BiLSTM
has been widely used in the field of text classification
but still has room for improvement in accuracy and
feature extraction. In response, the author proposes
a BiLSTM-WS attention model, which achieves good
results on the used datasets.

4.1.6. Multi-label related
Categorization problems require a more complex

classification due to multi-label classes and non-unique
correct answers. The following two papers focus
on multi-label tasks. Imrattanatrai, Kato, and
Yoshikawa [40] develop a model based on neural
networks for multi-label sentence classification that
classifies sentences as representing properties given a
target entity. They introduce zero-shot learning to train
sentences when properties are unavailable.

Gargiulo et al. [41] propose a methodology to
regularize data labels named Hierarchical Label Set
Expansion (HLSE). HLSE expands the label set of each
document integrating all the missing labels along the
label hierarchy, and analyzes the impact of different
semi-supervised word embedding models.

4.1.7. Comparative approaches
Understanding the overall differences in

methods/models is important, leading the following
authors to compare the approaches for text
classification. Surkova, Skorynin, and Chernobaev [42]
analyze and compare two commonly used linguistic
models (cognitive approach and word embeddings) by
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their classification capacity. The authors conclude that
opting for either of the models does not necessarily
guarantee improved classification quality.

Zhu and Wong [43] focus on text categorization
using five known algorithms (k-NN, Naive Bayes (NB),
SVM, AdaBoost, and Multi-Layer Perceptron (MLP)) to
evaluate an automatically generated labeled dataset. In
addition, they use five types of feature selection applied
to their dataset: Chi-Square (CHI), information gain
(IG), mutual information (MI), odds ratio (OR), and
GSS coefficient.

4.1.8. Bug-triage related
Four of the 35 selected papers use “bug-triage”

as term for categorizing problems found in the software
domain. Despite the purpose of that categorization, they
are all based on the principle of text classification. For
example, Zaidi et al. [6] propose a CNN framework to
assign a bug classified from their textual information
(e.g., summary and description) to a specific developer,
which, in essence, is the same as categorizing a problem
and assigning it to someone or something related to that
category. To compare their performances, they test the
framework using word embeddings, such as Word2Vec,
GloVe, and ELMo.

Lee et al. [4] use a similar approach with DL to
reach the same objective. In addition, they develop
an architecture with word embedding using Word2Vec
in a multi-language context, as it helps deduce latent
meaning from the regular words and jargon.

Next, we review two more applications of
text categorization in bug-related problems. First,
Ardimento and Mele [7] use Bidirectional Encoder
Representations from Transformers (BERT) to predict
the time for bug resolution in the bug-tracking system.
Second, Phetrungnapha and Senivongse [5] analyze
user reviews on popular application stores to classify
them between new feature requests and bug reports
to automatically generate tickets in an issue-tracker
system. Their approach first classifies user reviews,
then determines which ones are duplicates to generate
the issue ticket. According to their experiments, the
best classifier is the Extra Tree ensemble model, using
doc2vec embedding to represent comments from the
users.

4.2. Characteristics of the datasets used in the
experiments

Based on the selected papers, we identify the most
used datasets for text similarity or categorization. Most
papers report using only one dataset (14 papers), but the
amount varies from 1 to 45 datasets. The papers that

perform experiments on more than three datasets are:
Silva, Almeida, and Yamakami [24] (45 datasets), Liu
et al. [15] (12 datasets), Liu and Guo [36] and Tellez et
al. [18] (7 datasets), Zheng and Zheng [37] and Xu et
al. [28] (6 datasets), and Conover et al. [21] (5 datasets),
Shi and Lu [38] and Wei et al. [25] (4 datasets). We
also identify that eight papers analyze three datasets, and
five papers analyze two datasets. The papers we select
analyze 95 different datasets. Some datasets are used to
validate approaches in more than one paper. The most
used datasets are Reuters-21578, a dataset that contains
news (10 papers) and 20 Newsgroups, a dataset with
newsgroups (7 papers).

The reason for the authors that choose to present
their experiments based on only one dataset varies. Lee
et al. [4], Phetrungnapha et al. [5], Zhu et al. [43] claim
the reason for adopting one dataset is because of the
originality of their studies. Gadri et al. [27] and Surkova
et al. [42] decided to use well-known benchmark corpus
(Reuters-21578 and 20 Newsgroup) to ease replicability.
Guo et al. [20] had to use a dataset from the ACM
RecSys Challenge 2017 [44], since they produced the
paper for the challenge. Adam et al. [17] show from
their results that selecting a larger dataset would be
better to take advantage of the learning capacity of the
DL model used by the authors.

Chen et al. [3], Yuan [39], and Gargiulo et al. [41]
stated they used only one dataset because they needed
domain-specific data. In two papers, they present their
experiments with only one dataset because they needed
handcrafted features (Das Gollapalli et al. [29], and
Kong et al. [19]). Finally, Ardimento and Mele [7]
state that their choice to use only one dataset is
a threat to validity in their research since it could
not significantly represent the domain and, therefore,
difficult replicability.

5. What are the most used machine
learning and deep learning techniques,
algorithms, tools, or models for text
similarity or categorization?

To answer this question, we analyze the algorithms
of the 35 selected papers used as baselines and the ML or
DL technique they used. Among the 35 mapped papers,
we identify 29 ML techniques and 42 DL techniques.
The most used ML technique is SVM. SVMs [45] are
discriminative linear classifiers based on the concept of
decision planes that defines decision boundaries learned
between different classes, linear or nonlinear. The
second most used ML technique is Naive Bayes (NB)
classifier. NB assumes that a particular feature in a
class is unrelated to any other feature. In other words,
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it assumes that each input variable is independent [37].
The next one is k-NN. k-NN is instance-based learning,
which means the function is locally approximated, and
all computation is deferred until classification. Its main
idea is to measure the similarity of new instances with
training instances in an n dimensional space [3].

As for DL techniques, the most common one is
CNN. CNNs are specialized in processing data in the
form of multiple arrays, such as images (2D), audio
and video, or volumetric data (3D) [10]. The first
use of CNNs was to recognize simple shapes, in this
case, handwritten digits [46]. The second most used
DL technique is LSTM. LSTM is a type of recurrent
neural network (RNN) that has feedback connections. It
addresses the problem of vanishing gradient in RNNs
by replacing self-connected hidden units with memory
blocks [36]. The standard LSTM network only exploits
historical context, but the lack of future context may
lead to an incomplete understanding of the problem.
Therefore, BiLSTMs aims to exploit both historical and
future contexts by combining a forward hidden layer and
a backward hidden layer [36]. The last DL technique
is BERT. BERT is a new language representation model
based on a bidirectional contextualized representation of
words, which allows generating word embeddings that
retain information about the context of words within the
sentence [7].

Table 3 lists the top three ML, and DL techniques
used more than once among the papers. Other ML
techniques, such as logistic regression, multi-layer
perceptron, and extra trees, appeared respectively 4, 4,
and 2 times among authors, but are not part of the top
three. We omit from the table ML and DL techniques
used only once.

Our specific goal is to find the most used ML and
DL approaches that deal with TA tasks, even when
applied with a different context. In troubleshooting
tasks, possible problems tend to be repetitive or even
similar: depending on the complexity of each solution,
it can be automatically solved because the problems are
alike or the same.

In the final list of selected papers, the ones in
the bug-triage section are well related to this research,
especially Zaidi et al. [6] and Lee et al. [4]. Bug as
a software problem can be considered an issue. These
authors use textual information of bugs classified by ML
or DL to later assign it to a proper developer, a specialist
in the classified problem.

Chen et al. [2] also develop an approach connected
with the possible use for TA, in which their model can
find similarities between old answered questions, and
a new question from the user, leading us to think in a
good use for finding associations between old and new

Table 3. Top 3 most used Machine Learning and

Deep Learning techniques.

Classifier Amount Papers

Machine Learning
- SVM 15 [5, 6, 16, 17, 18,

19, 24, 27, 31, 32,
33, 36, 37, 38, 43]

- Naive Bayes 10 [3, 5, 19, 24, 27,
30, 36, 37, 39, 43]

- k-NN 5 [3, 24, 32, 33, 43]
Deep Learning
- CNN 12 [4, 6, 19, 22, 25,

31, 32, 36, 38, 39,
40, 41]

- LSTM / BiLSTM 10 [17, 25, 31, 32, 35,
36, 37, 39, 40, 42]

- BERT 2 [7, 35]

problems, to then execute or even propose the same
solution. When it comes to the task of identifying
those solutions, we can use similar techniques but
now applied to categorizing the resolution or merging
neural networks with a knowledge base, as Li et
al. [31] presented, to then create a high-quality text
representation of them.

Finally, we summarize the approaches to text
analysis that can be used in the TA problem. All
selected papers have at least one possible link to TA:
different models and frameworks based on textual tasks,
attention-based and multi-label related models, ways of
pre-processing data, and reducing their dimensionality,
novel text representations, and methods used for
classification and similarity.

Table 4 groups the selected papers into two classes
according to their approach to TA and categorizes them
based on their application. Most papers fit “Classifying
the issue” since they are related to topic classification or
text similarity. However, “Identifying double-meaning
terms” contains articles related to specific terms, such
as wordmarks and polysemy, that—like others in this
class—can be incorporated into a TA system to improve
its operation.

Among the papers related to text
categorization, [25], [33], and [24] can be applied
to the feature Close notes, as shown in Table 1, to
classify the incident into a category with similar
instances. In many cases, the description contains the
informal text. On this topic [21] introduces a new model
for information retrieval, taking into account noisy text
and entity disambiguation. Another automatic approach
to TA is analyzing the semantic similarity between
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Table 4. Approaches to Troubleshooting Automation

TA application Papers

Directly approaches TA
- Classifying the issue [2, 3, 4, 5, 6, 16,

21, 22, 23, 24, 25,
26, 28, 30, 31, 33,
36, 37, 38, 39, 40,
41, 42, 43]

- Dealing with imbalanced data [15]
Indirectly approaches TA
- Analyzing historical
interactions data

[17, 20, 34]

- Identifying double-meaning
terms

[29, 32, 35]

- Identifying languages [18, 27]
- Receiving feedback [19]
- Predicting resolution time [7]

incident Close notes, as proposed by methods described
in [31] and [30]. Once we find these correspondences,
the system can direct the user to a solution or conduct
the solution process itself.

6. Conclusion

This paper provides a systematic literature review on
machine learning and deep learning for text similarity
and categorization, applied to the troubleshooting
automation problem. We selected 35 papers that answer
our research question, and we grouped the papers into
eight categories, according to their similarity: models
and frameworks, proposed methods, preprocessing
and dimension reduction, new text representations,
attention-based models, multi-label related, comparative
approaches, and bug-triage related.

One of our key findings regards the datasets used in
the experiments for text classification or categorization.
Specifically, most papers analyze only one dataset (37%
of the papers), while a single paper used 45 datasets in
its experimental validation ([24]). Our results suggest
that Reuters-21578 and 20 Newsgroup datasets could
be a good point for validating a text classification or
categorization model since they were the most widely
used ones in the papers selected.

Even though we did not list all ML and DL models
used by each paper, we detected a wide variety of
models. The most used ML and DL models—SVM
and CNN—are widely employed for text classification
or categorization. Finally, we identify how the
approaches from the papers we review could be used
in the troubleshooting automation problem. All the
algorithms we found can be useful for Troubleshooting

Automation.
As future work, we plan to develop and validate a

model for troubleshooting automation, based on a real
dataset that contains the features we discussed earlier
and the results we collected in this SLR. We plan to
validate this model using Focus Groups in a widely
known multinational company to evaluate and discuss
the results with domain experts.
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