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Abstract 
Light field video technology attempts to acquire 

human-like visual data, offering unprecedented 

immersiveness and a viable path for producing high-

quality VR content. Refocusing that is one of the key 

properties of light field and a must for mixed reality 

applications has shown to work well for microlens 

based cameras, but as light field videos acquired by 

camera arrays have a low angular resolution, the 

refocused quality suffers. In this paper, we present an 

approach to improve the visual quality of refocused 

content captured by a camera array-based setup. 

Increasing the angular resolution using existing deep 

learning-based view synthesis method and refocusing 

the video using shift and sum refocusing algorithm 

produces over blurring of the in-focus region. Our 

enhancement method targets these blurry pixels and 

improves their quality by similarity detection and 

blending. Experimental results show that the proposed 

approach achieves better refocusing quality compared 

to traditional shift and sum method.  

 

 

1. Introduction  

Light field (LF) technology is the latest innovation 

in digital media, seen as an “upgrade” to the way we 

capture and reproduce visual information [1] [2]. This 

revolutionary technology is promising a more 

immersive and holistic imaging experience, allowing 

post-shoot refocusing, perspective change, depth of 

field change, and 3D-like content generation with 

great precision, mimicking the richness of human 

visual perception. In fact, refocusing is the most far-

reaching potential application of light field technology 

and the foundation for more realistic mixed reality 

applications, as light field adds a real sense of reality. 

LFs are captured either by plenoptic cameras or 

camera arrays. Plenoptic cameras [1] have a primary 

lens and multiple micro-lenses, which are packed 

together with a very small distance between them 

(nanometers), making the different points of views 

very close together. As a result, they produce 

angularly dense LFs [3]. On the other hand, camera 

arrays [2] involve multiple cameras arranged on a rig 

to capture a scene. The distances between the lenses of 

the cameras (centimeters) are far greater than they are 

in plenoptic cameras. This means the point of views 

are further apart too. Hence, camera array’s produce 

angularly sparse LFs. Here the number of cameras 

dictates the angular resolution/number of viewpoints 

of the LF. Each camera's photo-sensor is dedicated to 

capturing a single image, resulting in higher spatial 

resolution LFs. Regardless of the capturing method, 

LF content is an abundance of captured information 

that enables immersiveness through depth of field, 

refocusing at multiple levels, variable resolution 

object identification and all-around view perspective. 

It has been shown that for the case of microlenses, 

using the shift and sum algorithm [1], allows us to 

digitally refocus a sufficiently dense (LF from 

plenoptic cameras) LF content to a desired depth with 

excellent results, holding a great promise for mixed 

reality. Dayan et al. developed a way to train a 

specially designed deep convolutional neural network 

for refocusing through sparse LF data [4]. However, 

this method is also designed for microlense based LF 

content. A stereo-image refocusing method was 

introduced in [5]. This method selectively blurs the 
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image based on the estimated depth using the stereo 

image, to create a refocused effect. However, this 

method was not extended for more than two cameras. 

Similar problems can also be found in [6] and [7], the 

former creates a refocused image using three images, 

whereas the latter generates the entire light field from 

a single image. In summary, all the above-mentioned 

approaches are designed for microlense type of LF 

data and as such they do not translate well to the case 

of camera array based LFs.  This is mainly due to the 

large shifts among the views. When we align the in-

focus region from different views we end up with a 

large shift in the other regions. As a result, the 

refocused images have noticeable ghosting and blocky 

artifacts in the out of focus region [8]. Researchers 

have dealt with this problem in various ways. Xiao et 

al. [9] proposed a technique to identify angular 

aliasing by statistical analysis of the refocused LF and 

reduce the aliasing by using lower resolution versions 

of the refocused image from a Gaussian pyramid. 

Wang et al. proposed to render the not-in-focus region 

using bokeh rendering methods to avoid aliasing 

artifacts, then super resolve the in-focus region to 

create the refocused image [10]. LF reconstruction 

methods [11], [12], [13] and [14] are widely used to 

address the aliasing problem. These methods 

interpolate novel views between existing views and 

use the synthetic LF to refocus sub-images. Huang et 

al. [8] leveraged the fact that these novel views will 

never be seen or displayed therefore, avoided costly 

view interpolation techniques. They have also reduced 

memory access operations significantly. Methods 

[12], [13] can simultaneously increase the number of 

viewpoints and image resolution. Since there is a 

trade-off between the density of views and 

computational cost, these methods either suffer from a 

high computational burden, or retain aliasing artifacts 

to some degree. In summary, the holes caused by 

occluded areas and the inevitable approximation used 

in the generated views have shown to yield blurry 

refocused frames.  

In this paper, we propose an efficient refocusing 

scheme for camera array LF content, which uses a 

deep learning network to synthesize an appropriate 

number of new views and a similarity-based 

enhancement technique for improving the overall 

visual quality of the refocused frame. This way we can 

mitigate the cost of synthesizing too many views in 

between existing views and get rid of the aliasing 

artifacts. 

The rest of this paper is organized as follows. 

Section 2 gives an overview of the LF refocusing and 

shift-and-sum method designed for microlens based 

LF refocusing. In Section 3, we present our refocusing 

method. Experimental results are presented and 

discussed in Section 4. We conclude our work in 

Section 5.  

2. Overview of Light-Field Refocusing 

2.1. Light Field Parameterization 

Space is filled with light rays of various intensities. 
The complete set of all the light rays in the physical 
world is known as the light field (LF). E. Adelson and 
J. Bergen [15] used the plenoptic function, to express 
LF. It is a function of the location of an eye/camera in 
the physical world, the angle at the center of the 
pupil/lens when the light ray passes through it, the 
wavelength of the light ray, and the time. M. Levoy and 

P. Hanrahan [16] assumed the radiance does not change 
along a light ray unless blocked and the space is free of 
occlusion. Thus, they further simplified the 
representation of LF as a 4D function presented in eq. 
1. 

𝐿𝐹 = 𝐿(𝑢, 𝑣, 𝑠, 𝑡) (1) 

where 𝑢𝑣 and 𝑠𝑡 are two parallel planes, (𝑢, 𝑣)is the 
intersection of a light ray with the first plane 𝑢𝑣 
(perpendicular to the view direction) and (𝑠, 𝑡) is the 
intersection with the 𝑠𝑡 plane. Given 𝑢, 𝑣, 𝑠 and t, the 
intensity 𝐿(𝑢, 𝑣, 𝑠, 𝑡) is sampled. 

 2.2. LF Refocusing  

Let us assume there are 𝑈 × 𝑉 cameras and each 
image 𝐼(𝑢,𝑣) captured by the camera {u, v) | u ∈ U, v ∈
V, has a 𝑆 × 𝑇 pixel resolution. During the refocusing 
process, one camera will be firstly picked as the 
reference camera. The baseline disparity shift (𝛿𝑢, 𝛿𝑣) 
between the pixel (𝑠0, 𝑡0) | s ∈ S, t ∈ T in the 
reference view and the pixel (𝑠, 𝑡) | s ∈ S, t ∈ T in the 
other views is calculated at depth z1 with a far-field 
depth z0, where z0 is arbitrarily large to minimize the 
reprojection distortion. For each camera, the disparity 
shift is constant for all the pixels according to the 
assumption that all the cameras are coplanar. Then, the 

 
(a) (b) 

Figure 1. (a) Real focused imaged (b) 
synthetically refocused image 
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disparity shift at any depth 𝑧 could be calculated as 
𝑑(𝑧) ∗ (𝛿𝑢, 𝛿𝑣) as follows: 

𝑑(𝑧) =  

1
𝑧

−
1
𝑧0

1
𝑧1

−
1
𝑧0

(2) 

The refocused image 𝐼𝑐
′ (𝑠, 𝑡, 𝑧) at depth 𝑧 is 

computed by the shift-and-sum algorithm as follows:  

𝑠′ =  𝑠 + 𝑑(𝑧) 

𝑡′ =  𝑡 + 𝑑(𝑧) 

𝐼𝑐
′ (𝑠, 𝑡, 𝑧) =  

∑ ∑ 𝐼(𝑢,𝑣)(𝑠′ ⋅ δ𝑢, 𝑡′ ⋅ δ𝑣)𝑀−1
𝑣=0

𝑁−1
𝑢=0

𝑈𝑉
(3) 

Pixels in all the other views are shifted based on 

the disparity, then averaged to get the refocused image 

[17]. Note that eq. 3 also follows the coplanar 

assumption, which states that for each camera, the 

disparity shift (𝛿𝑢, 𝛿𝑣) is constant over the entire 

image. 

2.3. Problem Definition 

The aperture of an LF capture can be synthetically 
adjusted to refocus on an arbitrary focal plane (depth). 
However, the main difference with real aperture 
capture at that depth and a synthetic aperture is that the 
real one gathers all the light rays passing through the 
camera and the synthetic one acquires only a subset of 
those rays from all the cameras of the capture setup. 
Ideally an image 𝐼 is formed by integrating all the light 
rays 𝑅 entering the camera from the scene. However, if 
we have a subset of all the light rays coming from the 
scene the resultant image looks jagged. Let us analyze 
this problem for two points 𝑝1 and 𝑝2. Fig. 1(a) 
illustrates the situation for real focused capture and Fig. 
1(b) shows what happens when we synthetically adjust 
the focal plane to refocus. For the real image both 𝑝1 
and 𝑝2 receive angular samples of all three colors 
however, for the synthetic case 𝑝1

′  receives green and 
𝑝2

′  gets red and blue angular samples. This sudden and 
abnormal behaviour in neighboring pixels causes 
aliasing artifacts in LF refocused images. This 
phenomenon effects the not-in-focus region severely as 
the samples are further scattered. It also effects the in-
focus region however, due to the shifting of the shift-
and-sum algorithm the samples become closer 
consequently reducing the aliasing. Later when the 
averaging of the angular samples for the same spatial 
sample takes place, it leaves the pixel blurry rather than 
in sharp focus. In the next section we propose an 
enhancement method to improve the quality (reduce 
blur) of the refocused frame.             

3. Proposed Enhancement Method  

Our proposed refocusing scheme for LF camera 
array videos uses a deep learning-based view synthesis 
method and a modified shift and sum approach 
combined with a unique similarity-based enhancement 
technique for the in-focus region. The following 
subsections describe our approach in detail. 

3.1. View Synthesis 

Assuming that the cameras in an LF camera array 
are aligned with equal spacing horizontally and 
vertically, we investigated the refocusing performance 
for two different patterns for view synthesis, namely 
sparse and dense as shown in Fig. 2. We define 𝑛 ∈
ℤ0+ as the view synthesis factor where 𝑛 =  1 is 
equivalent to one novel view in between two adjacent 
views. In the sparse pattern, n represents the number of 
synthesized views between every nearest pair of 
horizontal/vertical original views. In the dense pattern, 
we also synthesize n views between each pair of the 
horizontal/vertical synthesized views from the sparse 
pattern. We assume the camera array has an angular 
resolution of N×N ( 𝑁 > 1). Therefore, the total 
number of views is 2𝑛𝑁2 − 2𝑛𝑁 + 𝑁2 for the sparse 
patternand and (𝑛𝑁 − 𝑛 + 𝑁)2 for the dense pattern. 

The chosen deep learning network [18] leverages a 
pre-trained fully-convolutional encoder-decoder 
architecture (modeled after VGG-19 [19]) to 
synthesize the novel views. This network does not 
require any camera parameter information, and thus it 

 
Figure 2. Examples (n = 3) of the proposed 

sparse and dense view interpolation 
patterns 
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can be generalized to any LF video dataset. Given two 
input views captured by two horizontally/vertically 
aligned cameras and the distance between those two 
cameras, the network can synthesize as many novel 
views between the input views as needed. First, we use 
the network to interpolate views for the sparse pattern, 
for n =1, 2, and 3, then we use it again to fill the 
"empty" view locations to achieve the dense pattern.  

3.1.1. Network Overview. The network is a fully 
convolutional encoder-decoder architecture (see [18] 
Table 1 for detailed layer specification). The encoder is 
modeled after a VGG-19 variant [19]. In order to 
capture fine texture details the decoder consists of 
deconvolution layers with skip-connections from lower 
layers. To maintain spatial resolution and larger scene 
context it also has dilated convolutions [20] in the 
intermediate layers. Each layer is followed by a ReLU 
nonlinearity and layer normalization [21] however in 
the last layer the tanh activation function without layer 
normalization is applied. The system is implemented in 
TensorFlow [22]. It was trained using the ADAM 
solver [23] for 600K iterations with learning rate 
0.0002, β1 = 0.9, β2 = 0.999, and batch size 1. The 
network was trained on images having a spatial 
resolution of 1024 × 576, but the model can be applied 
to arbitrary resolution at inference time in a fully 
convolutional manner. To tackle the large number of 
parameters produced by the fully connected layers the 
training images were cropped into 256×256 size 

patches. Training time was approximately one week on 
a Tesla P100 GPU with 32GB memory. 

To refocus using the synthesized views, we need to 
calculate the disparity shifts of the synthetic views. We 
linearly interpolate these shifts using the disparity 
shifts of the two adjacent original views. For example, 
if 𝑛 = 1 that is, we synthesize one view 𝐼𝑢,𝑣 between 

every two original views 𝐼𝑢−1,𝑣 and 𝐼𝑢+1,𝑣, then we use 

the disparity shifts of views𝐼𝑢−1,𝑣 and 𝐼𝑢+1,𝑣, to linearly 

interpolate the disparity shift of the synthesized view 
𝐼𝑢,𝑣 . Finally, we apply the shift and sum algorithm 

using the interpolated and original disparities to 
produce the refocused video. 

3.2. Similarity-based Enhancement Method 

After performing the shift and sum refocusing 
algorithm using the original and synthesized views, we 
observed that the objects at the refocused plane appear 
to be blurry especially when they are close to the 
camera. The reason for this is that the synthesized 
views are not as accurate as original views could be, 
and as a result the average values for the in-focus pixels 
are not accurate either. To address this problem, we 
introduce a similarity-based enhancement method, 
which involves the 3 steps shown in Fig. 3: 
computation of a normalized similarity map (step 1), 
calculation of pixel blending weights (step 2), and 
generation of refocused view (step 3).  

 
Figure 3. Flowchart of the proposed quality enhancement approach. Some details are 

enlarged to demonstrate the effectiveness of the approach. 
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The task is to replace the in-focus pixel values at 
the refocused view with those of the reference view. To 
this end, we need to identify which pixels we want to 
copy. Moreover, for objects (or object parts) not 
exactly at the refocused plane but near the plane, we 
need to blend the corresponding pixel values from the 
reference view and the refocused view. Therefore, we 
need to find a blending weight for each pixel. 

Let the reference view using reference camera c be 
Ic. For a given refocus depth z, we denote the refocused 

view using only original views as Ic
′A and the refocused 

view using both original and synthetic views as Ic
′B. As 

an in-focus region in Ic
′A resembles the corresponding 

area in Ic more than the not in-focus region, we first 

compute a pixel level similarity map based on Ic
′A and 

Ic. This similarity map shows structure similarity rather 
than similar pairs of pixels in both views. Thus, we only 

compute the similarity maps of the Y channels (Yc
′A  is 

the Y channel of Ic
′A and Yc is for Ic). To identify 

similar structures on a larger scale, we use a sliding 
window of size K×K and stride Δ to compute a 
similarity value between the corresponding pair of 

image patches on Yc
′A and Yc. We used two different 

methods for computing the similarity values: Structural 
Similarity Index Measure (SSIM) [24] and Normalized 
Cross-Correlation (NCC) [25]. The SSIM will give a 
value in the range of [0, 1], higher SSIM indicates 
higher similarity. NCC will give a value in the range of 
[-1, 1], which indicates a correlation score. Since we do 
not care about the negative correlation, the negative 
part of the NCC range is replaced by zero. Now, we can 
interpret the value of NCC as a similarity score as well. 
To maintain the aspect ratio of the original views, we 

use zero paddings in Yc
′A and Yc. Then, we use bi-cubic 

interpolation to resize the raw similarity map to the 
same size as the original view. Since all values in the 
similarity map are in the range of [0, 1], we name it the 
normalized similarity map, denoted by ρc. This is the 

first step of the proposed quality enhancement 
approach (see Fig. 3 step 1). 

The resulting similarity map highlights the in-focus 
pixels. However, there could be some not in-focus 
pixels that still have high similarity scores in ρc. This 
could include false positives from repeated textures or 
homogeneous areas (e.g., sky) within the frame. To 
separate the latter from the actual in-focus pixels, we 
utilize the reference view's depth map Dc to accurately 
choose only the in-focus pixels. In this second step, Dc 
is estimated by the Depth Estimation Reference 
Software (DERS) [26]. Since the depth z of the focus 
plane is known, the idea is to set the values in ρc to be 
zero, if the corresponding depth in Dc is far from z. We 
impose γ meters tolerance threshold to calculate a 
pixelwise contribution mask for the refocused frame. 
The blending weights θc for this mask are computed as 
follows: 

θ𝑐(𝑠, 𝑡) = {
𝜌𝑐(𝑠, 𝑡)  |𝐷𝑐(𝑠, 𝑡)  −  𝑧|  ≤ γ

0  |𝐷𝑐(𝑠, 𝑡)  −  𝑧|  > γ
 

(4) 

Finally, in step 3, the enhanced refocused view Ic
′E 

(Bottom right image in Fig. 3) is generated by blending 

Ic and Ic
′B using θc as follows: 

𝐼𝑐
′𝐸(𝑠, 𝑡) = 𝐼𝑐(𝑠, 𝑡)θ𝑐(𝑠, 𝑡) + 𝐼𝑐

′𝐵(𝑠, 𝑡)θ𝑐
̅̅̅(𝑠, 𝑡) (5) 

Here, θ𝑐
̅̅̅(𝑠, 𝑡) = 1 − θ𝑐(𝑠, 𝑡). Note that blending is 

performed on each color channel separately.  

4. Performance Evaluation and 

Discussions 

We use the Interdigital LF video dataset [17] to 
evaluate the proposed approach. The LF videos were 
captured by a synchronized 4×4 camera array at 30fps. 

 

Figure 4. Dense view synthesis results for n=3. Here the top left and right views are original 
frames from camera 5 and 6. The bottom three views are the synthesized views in between 

them. 

  

 

f
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The cameras are 70mm apart with 50°×37° field of 
view. Each LF video has 2048×1088 spatial resolution 
in raw 4:2:0 8bit YUV format and is 12.3 seconds long 
(i.e., 372 frames). To compare the two similarity 
methods used in our enhancement approach (SSIM and 
NCC), we experimented with sparse and dense view 
interpolation patterns with 𝑛 ∈ {0, 1, 2, 3, 5, 10}, at 
various depth planes - 𝑧 ∈ {1.9, 2.0, 3.0, 3.2, 4.0}. For 
the controlled parameters i.e., kernel size, stride and 
blending tolerance of the similarity computation we 
experimented with sliding kernel window sizes 10-90 
at every 10 interval and have empirically is set 𝑘 =
 60, for the stride Δ we examined values from 10 to 15 
and finalized 12 to be optimum, and finally for the 
tolerance threshold we varied γ from 0.1 to 1m at every 
0.1m and found 0.5m to be acceptable.  

A pretrained model [18] was used to render the 
synthesized views. This model was trained on 
YouTube videos which have multiple views of the 
same scene i.e., static scenes shots from a moving 
camera. For demonstration purposes of our method, we 
show the 90th frame of the “Painter” LF video 
sequence. Fig. 4 present the synthesized views using 
the deep learning network. We used the videos from 
camera 5 and 6 and synthesized 3 novel views between 
the two. As these two cameras are placed side by side 
horizontally, we can observe the synthesized views 
have new content appearing to the very right from the 

left most synthesized view to the right most and content 
disappearing from the left side. This is exactly what we 
were expecting. The overall quality of the synthesized 
views look good too. No visible holes, discontinuity or 
distortion were observed. Using a Tesla P100 GPU 
with 32GB memory, the network takes roughly 4.5 

 
Figure 4. SSIM-based vs NCC-based 

enhancement method without blending 
weights. 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Sparse vs dense view synthesis. (a), (c) and (e) sparse pattern with n=1, 2 and 3 
respectively. (b), (d) and (f) dense pattern with n = 1, 2 and 3 respectively. 
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minutes to generate the scene representation between 
two original views and 56 seconds to synthesize a novel 
view. For 16 original views we have 24 stereo pairs 
hence 24 unique scene representations. So, it takes 108 
minutes to generate these scene representations. For 
n=3 we have 169 views and 153 among them are 
synthesized and 16 are original. The view synthesis 
would take approximately 143 minutes. Therefore, the 
whole view synthesis process takes about 251 minutes. 

We observed that as we increase the value of n for 
view synthesis, the refocusing results improve for both 
sparse and dense patterns. However, the refocusing 
quality for dense pattern improves drastically with 
increasing value of n. The dense pattern achieves 
visually acceptable results with n = 3 (total 169 views 
with 16 original views). These results are presented in 
Fig. 5 for side-by-side comparison of sparse and dense 
patterns for n = 1, 2, and 3. From the figure we can 
observe that, the sparse pattern still causes the ghosting 
artifacts in the not in-focus region even if we keep 
increasing n. Based on the above observations, from 
here on we fix n = 3 and only use the dense pattern to 
study SSIM-based and NCC-based enhancement 
methods. Results of both enhancement methods 
refocused at a 2m distance are shown in Fig. 6. We find 
that the NCC-based quality enhancement results are 
more visually pleasing and natural compared to SSIM 
based. The overall running time of the entire refocusing 
pipeline for any reference view is 252 minutes. It is 
worth mentioning that if we precompute the depth 

maps and synthesize the required novel views 
beforehand, the shift and sum refocusing, and the in-
focus region enhancement can be done in near real-
time. To study the effect of our blending approach, we 
use the normalized similarity map ρc as blending 
weights instead of θc. Without the blending weights, 
we see that both methods introduce blurriness. 
However, the SSIM-based method introduces larger 
and more noticeable artifacts than the NCC-based 
method. In addition, the transition from in-focus to not 
in-focus region looks abrupt and unnatural. For 
example, for the books on the table we expect a smooth 
transition from the in-focus region to the not in-focus 
region. Fig. 7 compares a refocused frame without any 
enhancement (Fig. 7 (a)), SSIM and NCC-based 
enhancement without blending weights (Fig. 7 (b) and 
(c) respectively) and NCC-based enhancement with 
blending weights (Fig. 7 (d)). The blending weights 
from the last step provide us with a smoother transition 
as seen in Fig. 7 (d). Based on our observation, we 
recommend using the NCC-based quality enhancement 
method.  

5. Conclusion and Future Work 

In this work, we presented an efficient refocusing 
scheme for camera array LF content, which uses a deep 
learning network to synthesize an appropriate number  
of new views and a similarity-based enhancement 
technique for improving the overall visual quality of 

  

(a) (b) 

  

(c) (d) 

Figure 5. LF post refocusing in-focus region enhancement (a) no enhancement, (b) SSIM-
based enhancement, (c) NCC-based enhancement and (d) NCC-based enhancement with 

blending weights. 
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the refocused frame. We found that a dense pattern of 
synthesized views yields better visual results for the out 
of focus regions, while the quality enhancement 
approach improves the visual quality of the in-focus 
regions by replacing the blurry pixels with 
corresponding pixels from the reference view using 
similarity detection and blending.  As a result, our 
method achieves visually acceptable and natural-
looking refocused LF videos. To the best of our 
knowledge, this is the first method designed to 
efficiently enhance the quality of the refocused region 
of camera array LF content, offering unprecedented 
immersiveness and an excellent infrastructure for 
producing high-quality mixed reality content. Having 
said that one limitation of this work is the results are 
not reproducible in a short time frame. Our refocusing 
pipeline consists of a deep learning network. 
Depending on the spatial resolution of the LF content 
generating the required number of novel views might 
take a while. The code and an easy-to-use UI 
application for testing our approach are publicly 
available at GitHub accessible using the following link 
https://github.com/PeizhiYan/light_field_demo.  
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