
A Triple Bottom-line Typology of Technical Debt: Supporting Decision-

Making in Cross-Functional Teams 

 

 
Mark Greville 

University College Cork 

Markgreville@pm.me  

Paidi O’Raghallaigh 

University College Cork 

P.OReilly@ucc.ie 

Stephen McCarthy 

University College Cork 

Stephen.McCarthy@ucc.ie 

Abstract 
Technical Debt (TD) is a widely discussed metaphor 

in IT practice focused on increased short-term benefit 

in exchange for long-term ‘debt’. While it is primarily 

individuals or groups inside IT departments who make 

the decisions to take on TD, we find that the effects of 

TD stretch across the entire organisation. Decisions 

to take on TD should therefore concern a wider group. 

However, business leaders have traditionally lacked 

awareness of the effects of what they perceive to be 

‘technology decisions’. To facilitate TD as group-

based decision-making, we review existing literature 

to develop a typology of the wider impacts of TD. The 

goal is to help technologists, non-technologists, and 

academics have a broader and shared understanding 

of TD and to facilitate more participatory and 

transparent technology-related decision making. We 

extend the typology to include a wider ‘outside in’ 

perspective and conclude by suggesting areas for 

further research. 

1. Introduction  

Organisations increasingly depend on technology 

as an enabler of heightened business performance. 

When used appropriately, technology has a multiplier 

effect in supporting greater operational efficiencies, 

customer intimacy, and superior offerings. However, 

compromises are sometimes made in the rollout of 

technology delivery programs. Technical debt (TD) is 

a metaphor used to describe compromises made in 

technology delivery decisions, involving the exchange 

of short-term benefit for longer term ‘debt’ to be 

repaid later. Ward Cunningham coined the metaphor 

in 1992 as follows: “Shipping first time code is like 

going into debt. A little debt speeds development so 

long as it is paid back promptly with a rewrite” [1]. 

TD reflects the cost of additional future rework caused 

by delivering a limited solution now rather than a more 

complete solution that would take more time and 

resources.  

TD can be perceived as debt ‘borrowed’ by 

technology staff on behalf of their organisations. It is 

presented in the literature as emanating from decisions 

made by technologists where: (i) decisions are made 

in isolation from the rest of the company [2], [3]; (ii) 

the impact of decisions may be invisible to those 

outside IT [4]; (iii) the impacts can cause constrained 

options for future growth through increased costs [2], 

[5]–[7], operational risk [8], staff issues [9], [2], [10], 

[7] and ethical challenges [11], [12]; and (iv) in 

extreme cases, the impacts can be a threat to the very 

existence of a company [8], [13]. 

The aim of this paper is to challenge this narrow 

perception of TD, explore a broader definition of TD, 

and examine its impacts across the organisation and 

beyond. Our aim is to support cross-functional teams 

in making more participatory and transparent 

technology-related decisions. Through an extensive 

thematic literature review and a review of technology-

related decisions reported in the media, we create a 

typology of impacts of TD on organisations. Later, we 

extend the metaphor of TD and the typology by 

considering the concept of the ‘triple bottom line’ 

developed by Elkington [14], [15] that examines 

broader ‘people, planet, and profit’ concerns. The 

final typology combines both inside-out and outside-

in perspectives across eight categories: Financial, 

Customer, Growth, Strategic, Internal Process, 

Economic, Social, and Environmental. We present the 

typology as a tool for technologists, non-technologists, 

and academics to expose a broader view of the ‘debt’ 

in play when technology-related decisions are being 

made. It gives those inside and outside the IT 

department a model and shared language to understand 

TD and it allows them to get involved in a joint 

decision-making process. The typology also offers 

academics a framework for identifying potential areas 

for future research. 

We structure the rest of the paper as follows. We 

present the background to the topic (Section 2) and an 

overview of the methodology used in this study 

(Section 3). Following this, we synthesize the key 

elements of the typology (Section 4) by including 

examples of TD derived from academic papers and 

media reports. Next is a discussion and extension of 

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 645
URI: https://hdl.handle.net/10125/79408
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

mailto:Markgreville@pm.me
mailto:P.OReilly@ucc.ie
mailto:Stephen.McCarthy@ucc.ie


the typology (Section 5). We finish with the 

implications and opportunities for further research in 

academia and practice (Section 6).  

2. Background  

The concept of debt has existed for at least 5,000 

years[16]. Debt is defined as a “borrower’s obligation 

to the lender from whom he has received funds” [17]. 

Once managed correctly, debt can be a valuable tool 

for companies, allowing them to leverage funds 

beyond those generated by their revenues [18]. 

Technical Debt (TD) is a very recent concept. Ward 

Cunningham originally coined the term in 1992 [1]. 

His company was designing a software product for the 

finance industry. Because the technical complexities 

were beyond the understanding of his non-technical 

manager, Cunningham used the metaphor of debt to 

explore trade-offs in delivering the software. Each 

time they learned something new about the business 

problem, they could update the software to reflect their 

new understanding. However, if the updates failed to 

keep up with the changes in understanding, this caused 

a misalignment, which resulted in a ‘debt’ that would 

need to be paid back in some form in the future. TD if 

managed well, can be beneficial when ‘leveraged’ to 

increase productivity in the short term, and may be 

useful in growing a business or creating new 

opportunities [2].  

While its original focus was on object-oriented 

software development, its use has grown to encompass 

many other areas such as IT infrastructure [2], testing 

[3], documentation [4], architecture [5], [6], build 

process [2] and systems integration [7]. Studies have 

been made across varying types of environments and 

use cases: Technology start-ups [8]; Open-source 

systems [9], [10]; Digital platforms [11]; Machine 

learning [12] [13]; Automated production systems 

[14]; Telecoms [7]; Social Networks; and Fortune 500 

companies [5]. More recently, Rolland et al. widened 

the scope of TD and introduced the term Digital Debt 

which they defined as the “buildup of technical and 

informational obligations that affect a platform’s 

maintenance and evolvability as part of a user 

organization’s digital infrastructure” [19].   

Tom al. [2], Li et al. [10] and Alves et al. [20] 

outline directions for future research based on 

comprehensive reviews of the literature on TD. Tom 

et al. call out the need to qualify associations of 

different types of TD to different impacts, and to 

establish metrics to quantify those impacts. Li et al. 

suggest the need to look at TD beyond debt generated 

by software code and to review aspects of TD not 

currently measured by existing tools to find gaps and 

directions for future research. Finally, Alves et al. 

suggest further research into TD identification and 

management. 

Prior research has stressed the importance of cross-

functional integration between IT and business groups 

in decision-making processes [21]. However, there is 

also a recognition of the inherent difficulties faced by 

cross-functional teams. Functions require 

specialization in performing their own tasks 

successfully but can have different perspectives on 

work and the organization [22], [23]. Differences in 

local understandings, expertise, and experience create 

inconsistent viewpoints. Neither technologists nor 

business leaders have a complete perspective of the 

organisational context [23]. Managers seeking to 

understand the impact of technical debt therefore face 

the challenge of integrating the perspectives of diverse 

functions during decision-making. 

3. Methodology  

We performed a two-phase thematic literature 

search, first we searched Scopus, and then AIS to 

return additional IS conference papers. We applied the 

following inclusion and exclusion criteria - papers 

should be: (a) from computer science or information 

systems domains; (b) exclude non-peer reviewed 

papers (e.g. blogs, trade papers, grey literature); (c) 

ignore duplicate papers; (d) ignore papers not written 

in the English language. The authors read the abstract, 

introduction, and conclusion of each paper to ensure 

that TD was a primary focus of the paper. We excluded 

any paper not meeting this criterion. The resulting set 

of papers was then reviewed in detail by the authors. 

A list of papers reviewed is available at 

http://dx.doi.org/10.13140/RG.2.2.10569.67688/1 . 

Noted biologist Crowson [24] suggests that 

"classifying things is perhaps the most fundamental 

and characteristic activity of the human mind, and 

underlies all forms of science". Traditionally, 

typologies have been viewed as classifications rather 

than theories. However, Doty & Glick [25] argue that 

such a conclusion, while unsurprising, would be 

incorrect. This is because of the wide scale 

misunderstanding of what typologies are and how they 

should be built. They assert that typology building is a 

“unique form of theory building” and typologies are 

“complex theories” that can be “subjected to rigorous 

empirical testing”. Drawing on this literature review, 

we developed a typology of the types and impacts of 

technical debt by adopting the typology-building 

framework advocated by O’Raghallaigh et al. [26] – 

see Figure 1.  

 

Page 646

http://dx.doi.org/10.13140/RG.2.2.10569.67688/1


 
Figure 1: Steps for creating ‘good’ typologies 

 

In the next section, we present the typology that 

resulted from following these steps. 

4. Development of a Typology of 

Technical Debt  

4.1 Purpose of the Typology 
 

The technical debt metaphor first introduced by 

Ward Cunningham in 1992 quickly spread as a 

concept in technology practice [1]. His original 

quotation was as follows “Shipping first time code is 

like going into debt. A little debt speeds development 

so long as it is paid back promptly with a rewrite... The 

danger occurs when the debt is not repaid. Every 

minute spent on not-quite-right code counts as interest 

on that debt. Entire engineering organizations can be 

brought to a stand-still under the debt load of an 

unconsolidated implementation, object-oriented or 

otherwise.” [1]. Many papers quote this either partially 

or in full e.g. [2], [27]–[33]. They imply TD is a 

conscious choice to implement a shortcut knowingly, 

such as delivering incomplete code that is not optimal. 

They look at the impacts of these coding choices 

internal to the IT department. Some papers (e.g. [7], 

[29], [34]–[36]) extend the original metaphor to 

include aspects beyond code. For example, McConnell 

continues to focus on the internal impacts of TD but 

broadens it to include “a design or construction 

approach that’s expedient in the short term, but that 

creates a technical context in which the same work will 

cost more to do later than it would cost to do now” 

[37].  

Though many studies adopt either Cunningham’s 

or McConnell’s definitions, there is some 

disagreement on which decisions give rise to TD. Li et 

al. details some of this disagreement on how broad or 

narrow the scope of TD should be and whether: (i) TD 

refers to code only, or to the broader project lifecycle; 

(ii) whether deferred functionality is considered TD or 

not; (iii) whether defects are TD; and (iv) whether 

trivial code issues are in scope.  

In 2009 Cunningham reflected on how others were 

using the metaphor and explained that TD went further 

than code and at its core is about an incomplete 

understanding of a system [38]. He explained TD was 

sometimes being misused by others to justify 

producing “code poorly with the intention of doing a 

good job later”. He stated that he is not in favour of 

writing code poorly, but he is in favour of writing code 

to reflect one’s current (but possibly incorrect) 

understanding [38]. He stated he had not intended 

offering TD as a way of knowingly taking shortcuts. 

However, none of the papers reviewed in our study 

reflected this clarification. Indeed, it can be argued 

that the definition of TD has now moved beyond the 

original intentions Cunningham had for it.  

Both Cunningham and McConnell assume that TD 

is taken on knowingly. But others challenge this 

perspective. For example, Fowler introduced the TD 

quadrant in 2009, which is widely referenced in the 

literature [2], [8], [10], [27], [29]–[31], [33], [34], 

[39]. He introduces two dimensions: reckless/prudent 

that looks at the risk appetite of the decision makers, 

and deliberate/inadvertent that looks at whether TD is 

knowingly taken on.  

In Table 1, we build on the seminal and emerging 

literature to categorise these different perspectives. 

Accumulated TD is made up of intentional and 

unintentional debt [40], [10]. We differentiate between 

knowingly (intentional) and unknowingly 

(unintentional) accumulating TD. Intentional debt is 

taken on deliberately to achieve some perceived 

benefit. An example might be the release of a product 

feature faster than a competitor, but at the cost of 

making some expedient (but possibly non-optimal) 

technical decisions. These decisions may contribute to 

higher future maintenance costs, but this cost may be 

bearable once it is kept visible and under control. 

Unintentional debt is more destructive because it is 

initially incurred without the knowledge of the team, 

often because of a lack of experience or lack of 

communication. For example, a developer might 

choose a low level solution which has a detrimental 

impact on the overall system architecture without 

realising that the solution will create serious issues for 

others [39].  

In Table 1, we also differentiate between internal 

and external views of TD. In their literature reviews, 

Li [10] and Tom [2] look at both internal and external 

Page 647



effects of TD. By internal view, we mean one where 

the studies concentrate on concerns and effects inside 

the IT department, while the external view considers 

effects across the wider business. 

 

Table 1: Different categories of TD 

 Knowingly Unknowingly 

Internal Ex-ante 

recognisation of 

impacts from 

technology-related 

decisions on IT, 

e.g. Cunningham, 

McConnell. 

Failed ex-ante 

recognisation of 

impacts from 

technology-

related decisions 

on IT, e.g. Brown 

and Ernst. 

External Ex-ante 

recognisation of 

impacts from 

technology-related 

decisions beyond 

IT, e.g. Sculley, 

Rios. 

Failed ex-ante 

recognisation of 

impacts from 

technology-

related decisions 

beyond IT, e.g. 

Tom, Woodard. 

 

Several papers take an internal view and consider 

TD which is taken on knowingly. For example, Potdar 

et al., Huang et al. and Digkas [3], [41], [42] study TD 

which is taken on knowingly by the decision makers 

in IT. Potdar et al. analyse four large open source 

projects for comments, finding a high positive 

correlation between the experience level and the 

amount of TD produced. Huang et al. builds on Potdar 

et al. and uses machine learning to review comments 

in source code to identify TD at a more precise rate 

than Potdar et al. Digkas et al. analyses 57 Apache 

open-source projects at a code level and look at the rate 

of TD remediation to understand the lifecycle of TD. 

None of these papers consider the impacts of TD 

outside IT. 

Sculley et al. also look at TD taken on knowingly 

but look at the impacts this can have externally [12], 

[13]. They use TD as a lens through which the impacts 

of machine learning can be understood. They discuss 

an example where a machine learning model could 

incorrectly adjust the price of shares on the stock 

market because of TD.  

Brown et al. and Ernst et al. each look at TD taken 

on both knowingly and unknowingly and investigate 

from an internal view of the IT department. Brown et 

al. [27] offer an invitation to the software engineering 

community to research how to best manage TD, 

focusing on further research in seven areas, all of 

which are primarily code related activities: 

refactoring, architectural issues, identifying the 

dominant sources, measurement, process issues, 

monitoring and non-code artefacts. Ernst builds on this 

work using a survey of 1831 software practitioners  

Some studies investigate TD taken on both 

knowingly and unknowingly and investigate impacts 

outside the IT department. Woodard et al. look at the 

impact of TD as a limiting factor on Design Capital 

and how it can impact advances in a firm's digital 

strategy. Tom et al. look at the effects of TD beyond 

the technology department, and its impact on morale, 

productivity, quality, and risk. There is an actual 

monetary cost of TD as quality issues result in 

potential loss of sales. There is also a discussion of the 

environmental debt, whereby TD can cause 

operational and security issues leading to potential 

brand damage.  

The purpose of the typology presented next in this 

paper is to give a shared language for IT staff, business 

people, and academics to understand the impacts of 

TD across the whole of a business.  

4.2 Impacts of TD  

In taking our cue from extant literature, the initial 

version of the typology examines the impact that TD 

has across an entire business. We now discuss the 

categories of impact identified in the literature. We are 

influenced by the balanced scorecard in our choice of 

categories. The balanced scorecard explores the 

realisation of current and future value across different 

perceptions of performance, namely Financial, 

Customer, Internal Process, and Learning and Growth 

(Kaplan et al.) [43]. This is achieved through an 

evaluation of metrics related to different functions in 

an organisation and the working environment more 

broadly. While the original balanced scorecard was 

intended as a strategic management tool for assessing 

the performance of organizations, more recent 

research has adapted it to the context of project teams 

[44], [45]. We can readily map the internal impacts of 

TD identified in the literature to the categories of value 

identified by Kaplan et al. We illustrate these types of 

internal TD impacts through examples derived either 

from the academic literature or from the news media. 

 

4.2.1 Strategic Impacts. TD can be reputational in 

nature. For example, TD can have a positive effect 

where a firm gets a reputation for putting the customer 

needs first. Organisations can choose to take on TD to 

meet customer demands more quickly rather than 

waiting for the most elegant or robust technology 

solution [46]. On the other hand, taking on TD can also 

have a very damaging reputational impact. For 

instance, redundant code which was no longer needed 

had a significant impact on American global financial 

services firm Knight Capital [11]. In 2012, Knight 

Capital inadvertently caused significant fluctuations in 

the prices of 148 companies on the New York Stock 

Page 648



Exchange, resulting in a $440 million pre-tax loss 

[47]. A piece of its legacy code used for routing equity 

trades had been disabled but never physically removed 

from the firm’s router. A subsequent rollout of updated 

software inadvertently re-enabled the code. This 

caused over 4 million orders to be incorrectly sent into 

the market to fulfil 212 customer orders. This error 

caused enormous issues for the stock markets and 

severely damaged the firm's reputation. The firm 

struggled to recover and was acquired in late 2012 

[11]. 

Some TD can be security related in nature. Taking 

on TD to fix security issues rapidly can be a positive 

short-term measure. However, if a company does not 

actively manage it, un-remediated TD can have a 

longer term impact on a firm’s security, causing a 

direct impact on the firm’s wellbeing [10]. Security 

vulnerabilities can be exposed by the continued use of 

technology which has already reached the end of life 

[2]. Spanos and Angelis reviewed 45 studies and 

showed that for companies affected by an information 

security event, over 75% of cases result in a 

statistically significant impact on their stock prices 

[48].  

 

4.2.2 Internal Process Impacts. TD can be 

operational in nature. Woodard et al. describe a case 

study that shows both the positive and negative impact 

that TD can have on operations [8]. The paper 

describes a three-way merger of cable TV, residential 

broadband, and mobile businesses into a single 

company. This company (Infocom) inherited three 

separate billing and account management systems 

which were costly and inefficient to run. Initially, 

taking on TD (in this case from using three separate 

systems) allowed the company to manage customer 

accounts and billing immediately. Infocom built a 

common database schema between the systems, but 

this required manual interventions to reconcile errors 

between the systems. The extent of these operational 

interventions resulted in the firm becoming 

overwhelmed, forcing abandonment of the common 

database project (and a significant write-off of the 

prior investment in it).  

TD impacts staff turnover. If a company doesn’t 

take on TD, it often indicates a conservative, slow 

moving approach. This can result in an environment 

lacking dynamism and can cause dissatisfaction 

among staff. TD used in the right way can give a short-

term productivity boost to a team, but this comes with 

a longer-term cost. As TD accumulates, staff must 

contend with diminishing levels of productivity [49]. 

If it's not managed and continues to grow, staff 

become increasingly disillusioned and are more likely 

to leave the organisation [2]. For a manager, carrying 

TD may be an acceptable risk, but a high level of TD 

makes a developer’s job more difficult [10].  

 

4.2.3 Financial Impacts. Capitalist economies are 

based on investing capital with the expectation of a 

positive return on the investment. This view has 

traditionally led companies to measure themselves by 

this yardstick, looking at the return to shareholders in 

a public market, or to a return to private investors in a 

non-public one. Balance sheet accounting 

concentrates on metrics which originate inside a 

company, such as cash flows, costs, risks, size of 

market, growth rates, availability of resources, and so 

on. In any company whose business activities require 

the use of technology as part of its operating model, 

TD can occur and can have an impact in a variety of 

ways on inside metrics, often in ways that are initially 

invisible to business stakeholders and investors. 

TD impacts the cost of change. This choice is 

really a ‘pay now or pay later’ scenario. TD can be a 

positive choice if incurring TD saves significant 

upfront investment [8]. However, if TD is incurred, the 

interest accruing must be paid. If left untreated, this 

interest continues to grow. Nugroho shows that as debt 

increases, the cost of maintenance also increases [40]. 

This means the cost of changes in a system rise as TD 

rises [2].  

When left unmanaged, TD can cause technical 

bankruptcy. The more TD accrues, the closer a system 

gets to bankruptcy. Technical bankruptcy is the point 

at which all new work on a project ceases and one of 

two things happen. Either all new development is 

halted while the TD is paid down, or a full rewrite 

becomes necessary [2]. Technical bankruptcy can be 

positive or negative depending on where in the 

lifecycle the system is. If a system is past its expected 

end of life, this implies that the company is extracting 

unexpected value from the investment, which is a 

positive. If a system has not reached its expected end 

of life, the requirement to invest in a rebuild adds 

financial burden to the organisation. In extreme cases, 

TD can cause the cancellation of a program of work. 

A notable example is the case of the HP TouchPad 

tablet. The product’s core software suffered from 

architectural flaws, and this resulted in the tablet's 

withdrawal after only seven weeks on the market [8], 

resulting in a significant loss of investment and 

reputation for HP. 

 

4.2.4 Customer Impacts. Taking on TD has a direct 

impact on market opportunity. In a digital world, a 

lack of speed can be detrimental to the future of 

organisations. Firms delivering digital platforms must 

have a technology stack which allows fast delivery in 

the early stages of development. Growing the user 

Page 649



base quickly is vital. Firms with an early advantage 

here are extremely difficult to catch, even if 

competitors have better technology. So, firms often 

take on TD to gain this ‘first mover’ advantage. 

However, firms who have incurred a high level of TD 

can be slowed down by it and therefore begin the race 

to market at a significant disadvantage [50]. 

TD can contribute to customer satisfaction [51]. 

TD can allow companies to release additional features 

more rapidly in an agile fashion [31], and to prioritise 

customer satisfaction over quality of delivery [30]. But 

because TD can indicate a lack of quality, it can also 

cause customer dissatisfaction, which can result in 

customer turnover and a loss of sales [2]. This can be 

seen in the case study of Infocom [8]. After the merger 

of the three companies, Infocom found that TD 

resulted in an upsurge of customer queries, problems, 

and general dissatisfaction.  

 

4.2.5 Growth Impacts. TD impacts a company's 

ability to innovate. Firms with a low level of TD can 

use their position to create options for innovation. 

Rolland et al. discuss this in depth, with new 

technologies becoming facilitators of innovation, as 

long as TD in the guise of ‘digital debt’ is manageable 

[8], [19]. Firms with high TD, those who delay 

repayment of the debt inherit a reduced capacity for 

innovation. These firms cannot react to the needs of 

the market as fast as competitors, or at all in some 

cases  [12]. In the mobile device arena, both RIM 

(makers of the Blackberry device) and Nokia found 

themselves unable to react to new entrants, such as 

Apple and Google Android, because of architectural 

TD [8].  

 

5. Discussion and Expansion of the 

Typology 

 

As we can see from Section 4, TD has the capacity 

to influence the fate of a business, from its impact on 

its customers, its operations, its financials, its 

employees, and its future success. This impact can be 

positive or negative depending on the nature of the TD 

and how it is managed.  

Many companies have moved from inward-only 

metrics of success, such as when using the Balanced 

Scorecard, towards a more holistic view, where long-

term environmental and social concerns are now also 

incorporated into business planning and corporate 

sustainability [52]. This approach is not always as 

selfless as it may seem, it may be an attempt by a 

business to safeguard future financials. If society 

unravels, the economy degrades and customers 

become impoverished, it then will become 

increasingly difficult to do business.   

In 1997, Elkington introduced the concept of a 

triple bottom line (TBL) [14]. In looking at 

sustainability of businesses, he discussed the need to 

ensure that actions taken by companies today should 

not limit the range of options open to future 

generations. He advocated looking beyond the 

traditional model of measuring a company by financial 

or ‘inside’ metrics only, and instead looking at a TBL 

that adds social and environmental imperatives to 

traditional economic ones. The TBL advocates that 

companies should commit to focusing as much on 

social and environmental concerns as they do on 

profits. TBL argues that instead of one bottom line, 

there should be three: profit, people, and the planet. 

This was further advanced by Dyllick and Muff [15] 

who contributed a business sustainability model. This 

model suggests that a sustainable company should 

move from an inside-out perspective towards an 

outside-in perspective - beginning by asking how a 

business can solve global challenges, and then 

developing strategies and business models to 

overcome them.  

In 2020 Kaplan and McMillan discussed the 

importance of incorporating the triple bottom line of 

financial, environmental and societal factors into a 

balanced strategic perspective needed to run a 

company [53].  

When we re-examine the typology derived from 

current literature and presented in Section 4, we see a 

strong focus on a narrow inside-out perspective. 

Further to this, the external impacts of TD identified 

in the literature can be mapped to the TBL of profit, 

people, and the planet. We therefore advocate an 

important extension to the original typology presented 

in Section 4 to include an outside in perspective. 

The outermost ring in Figure 2 presents an 

expansion of the typology of TD based on this outside-

in view of business. This adds environmental, 

economic and social measures to the existing middle 

ring, which primarily focuses on measures inside a 

company.  

 

Page 650



 
Figure 2: Typology of TD 

 

5.1 Environmental Impact of TD [Planet] 
 

The Environmental Bottom Line pertains to the 

environmental sustainability of a company’s practices. 

The goal is to minimise any impacts on the 

environment, and to benefit the natural order where 

possible. A Triple Bottom Line (TBL) perspective 

advocates the management of a company’s energy and 

raw material consumption in a way that poses minimal 

disruption to the ecology of the planet, for example 

through reducing waste and disposing of hazardous 

materials in a safe and legal manner. Otherwise, the 

company might be viewed as complicit in increasing 

long term costs which must be re-paid by society.  

TD can generate environmental costs through its 

energy consumption practices. For instance, Bitcoin 

mining has become a technological phenomenon since 

2010. Constantindes explains how the design of the 

Bitcoin Core allows between 5 and 7 transactions per 

second, compared with 25,000 per second for Visa. 

This ‘design debt ’has a serious consequence for the 

environment, with one report suggesting that energy 

consumption for all households in Iceland was less 
than used for bitcoin mining [50]. 

TD can lead to a high risk of environmental 

hazards. IT systems have a part to play in many vital 

industries such as water, power generation and 

distribution and gas. The existence of TD can increase 

the chance of issues arising. In a case study, which 

looked at the process automation industry, Sandberg, 

Holstrom and Lyytinen showed how the company 

accumulated TD in its move to an ‘Industrial IT’ 

strategic initiative to integrate thousands of IT systems  

[54]. These process automation systems run in 

dynamic and demanding environments with a “risk of 

significant environmental hazards”. We have already 

witnessed examples of disasters caused by technology 

failures, such as the Maroochy Shire Sewage spill 

where up to one million gallons of sewage was 

released into rivers and coastal waters in Australia 

[55], the Stuxnet attacks which destroyed 

approximately 20% of Iran’s nuclear reactors [56] or 

the Deepwater Horizon oil spill disaster which 

released 779 million litres of crude oil in the Gulf of 

Mexico [57].  

 

5.2 Social Impact of TD [People] 
 

The Social Bottom Line pertains to how a company 

treats people in its employment, in communities, and 

in broader society (particularly if it effects the 

company's fortunes). A TBL perspective advocates 

that the company sees an interdependence between the 

interests of corporate, labour, and other stakeholders. 

A company could set goals to avoid exploitation of 

vulnerable people (e.g. use of FairTrade, avoiding 

child labour, paying a living wage). 
TD can raise ethical costs. For example, the use of 

feedback loops in systems using Machine Learning 

can result in costs. A feedback loop happens when a 

model consumes some of its own output as an input. 

The most insidious type of feedback loop is known as 

the Hidden Feedback Loop [11], [12]. Here loops may 

develop between two otherwise disconnected systems. 

As one model changes, it influences the output of 

another model. There is the hypothetical scenario of 

two stock market prediction models, where 

improvements/bugs in one influence the buying 

behaviour of the other.  

With the increasing prevalence of machine 

learning models in the real world, we can extend this 

TD scenario to ethical concerns in systems. Ntoutsi et 

al. discuss the COMPAS system which predicts higher 

rates of re-offending for black inmates than the actual 

risk (and higher rates than for white inmates). They 

also discuss the Google Ads tool, which showed 

significantly fewer higher paid job ads to women than 

to men. Other issues have been noted in areas such as 

credit scoring, automated screening of job applicants 

and profiling of civilians by police departments [58]. 

These biases can potentially undermine the sense of 

fairness and justice that is required for society to 

prosper. 

Social media is firmly entrenched as part of 

modern life. Social media companies are fast moving 

with a ‘release quickly’ mindset which comes hand in 

hand with some level of TD. However social media 

Page 651



has many issues yet unanswered for its role in society. 

There are issues with addiction to the medium itself 

[59], the spreading of violent extremism and terrorism 

[60], along with the fake news phenomenon which has 

caused a hardening of stances politically in the US 

since 2016 [61].  

 

5.3 Economic Impact of TD [Profit] 
 

The Economic Bottom Line is a more holistic view 

of economic performance. A company’s bottom line 

often refers to profit and earnings per share and is 

made up of the value of total assets minus total 

liabilities. Traditionally, capital in production is made 

up of physical capital (machinery, buildings) and 

financial capital. In the digital economy, human 

capital and intellectual capital must be added. In the 

world of sustainability, social and environmental 

capital must be added, reflecting the cost/benefit the 

organisation has on the overall environment and 

society. As companies move to different calculations 

of their economic impact, the potential impact of 

taking on TD needs to be considered on intellectual 

and human capital, as well as social and ecological 

capital. 

6. Conclusion  

Overall, the literature presents Technical Debt as a 

useful metaphor, defining the gap between the 

technical implementation of a system at a point in time 

and the ideal implementation based on complete 

knowledge. TD is predominantly seen as an issue for 

technologists, however our typology shows how TD 

has an impact well beyond the confines of the IT 

department and indeed beyond the organisation. The 

decision to take on TD can have consequences beyond 

internal measures (such as profit); it can also impact 

people and the planet. Further research into how the 

decisions to take on TD are made by individuals and 

groups is needed. Research looking at TD through the 

lens of an outside-in business perspective is missing 

but we suggest that it is required to offer a more 

holistic perspective on technology related decision 

making.  

TD provides the mechanism to assist in exploring 

the link between technology-related decisions and the 

future wellbeing of organisations. However, this 

mechanism remains underdeveloped. This paper finds 

that TD is not well understood and on its own does not 

contribute to better decisions. More effective use of 

TD demands that technologists, non-technologists, 

and executives embrace and understand the impact of 

technology-related decisions. In this paper we sought 

to extend the use of TD to support more collaborative 

discussions include both inside-out and outside-in 

perspectives.  

While taking on financial debt is for the most part 

a deliberate action in that one takes it on by choice, 

this is not always the case with TD, which is often 

inadvertent [27]. In fact, TD is often invisible to 

management and executives in a business [34]. 

Therefore, every time they fund a new project or 

feature, they may be inadvertently paying interest on 

it, with no way of addressing the interest payment as 

an overall concern. A primary contribution of this 

study is to help make hidden TD more accessible. The 

typology presented in Section 5 provides a discursive 

framework for practitioners and academics to use as 

they collectively grapple with how TD can affect 

organisations and beyond. It details the eight 

categories of impact TD has on a business, namely 

Financial, Customer, Growth, Strategic, Internal 

Process, Economic, Social and Environmental.  

While this paper is based on an extensive thematic 

review of over 100 relevant papers from the Computer 

Science and Information Systems domains, there may 

be justification for undertaking a more extensive 

review of literature, particularly given the paucity of 

material in IS. The narrower scope of this paper could 

limit the validity of the conclusion. However, at the 

same time we believe the typology provides a 

foundation for further research. We recommend the 

need for more studies looking at TD from a non-

technical perspective, potentially interviewing non-

technology staff across different firms to empirically 

document their understanding of the impact of 

technology-related decisions on their operations, 

tactics and strategies. Research providing case studies 

of issues resulting from TD would be an interesting 

addition to the existing cannon of literature. We also 

suggest the need for scholars to develop a taxonomy 

that gives businesses a ‘TD scorecard’, which might 

allow them to measure their business health against 

potential technology-related risks. This could offer a 

practical application of our typology for practitioners. 

8. References 

[1] W. Cunningham, “Experience Report - The 

WyCash Portfolio Management System Report,” 

in Addendum to the proceedings on Object-

oriented programming systems, languages, and 

applications (Addendum) (OOPSLA ’92), 1992. 

[2] E. Tom, A. Aurum, and R. Vidgen, “An 

exploration of technical debt,” J. Syst. Softw., vol. 

86, no. 6, pp. 1498–1516, 2013, doi: 

10.1016/j.jss.2012.12.052. 

[3] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, 

“Identifying self-admitted technical debt in open 

source projects using text mining,” pp. 418–451, 

Page 652



2018, doi: 10.1007/s10664-017-9522-4. 

[4] E. Lim, N. Taksande, and C. Seaman, “A 

balancing act: What software practitioners have to 

say about technical debt,” IEEE Software. 2012, 

doi: 10.1109/MS.2012.130. 

[5] T. Besker, A. Martini, and J. Bosch, “Managing 

architectural technical debt: A unified model and 

systematic literature review,” J. Syst. Softw., vol. 

135, pp. 1–16, Jan. 2018, doi: 

10.1016/j.jss.2017.09.025. 

[6] T. Sharma and D. Spinellis, “The Journal of 

Systems and Software A survey on software 

smells,” J. Syst. Softw., vol. 138, pp. 158–173, 

2018, doi: 10.1016/j.jss.2017.12.034. 

[7] N. Rios, R. O. Spínola, M. Mendonça, and C. 

Seaman, “The most common causes and effects of 

technical debt: First results from a global family of 

industrial surveys,” in International Symposium on 

Empirical Software Engineering and 

Measurement, 2018, no. October, pp. 1–10, doi: 

10.1145/3239235.3268917. 

[8] C. J. Woodard, N. Ramasubbu, F. T. Tschang, and 

V. Sambamurthy, “Design capital and design 

moves: The logic of digital business strategy,” 

MIS Q. Manag. Inf. Syst., vol. 37, no. 2, pp. 537–

564, 2013, doi: 10.25300/MISQ/2013/37.2.10. 

[9] C. Seaman et al., “Using technical debt data in 

decision making: Potential decision approaches,” 

in MTD 2012 - Proceedings, 2012, doi: 

10.1109/MTD.2012.6225999. 

[10] Z. Li, P. Avgeriou, and P. Liang, “A systematic 

mapping study on technical debt and its 

management,” J. Syst. Softw., vol. 101, pp. 193–

220, Mar. 2015, doi: 10.1016/j.jss.2014.12.027. 

[11] D. Sculley et al., “Machine Learning : The High-

Interest Credit Card of Technical Debt,” NIPS 

2014 Work. Softw. Eng. Mach. Learn., 2014, doi: 

10.1007/s13398-014-0173-7.2. 

[12] D. Sculley et al., “Hidden technical debt in 

machine learning systems,” in Advances in Neural 

Information Processing Systems, 2015. 

[13] F. Gillette, “The rise and inglorious fall of 

Myspace,” Bloomberg Businessweek, 2011. 

[14] J. Elkington, “Cannibals with Forks: The triple 

bottom line of 21st century,” Altern. Manag. Obs., 

no. April, 1997. 

[15] T. Dyllick and K. Muff, “Clarifying the Meaning 

of Sustainable Business: Introducing a Typology 

From Business-as-Usual to True Business 

Sustainability,” Organ. Environ., vol. 29, no. 2, 

pp. 156–174, 2016, doi: 

10.1177/1086026615575176. 

[16] D. Graeber, “Debt: The first five thousand years,” 

Mute, 2009. 

[17] P. Vernimmen, Y. Le Fur, M. Dallochio, A. Salvi, 

and P. Quiry, “Bonds,” in Corporate Finance, 

2017. 

[18] S. Cecchetti, M. Mohanty, and F. Zampolli, “The 

Real Effects of Debt,” BIS Work. Pap., 2011. 

[19] K. H. Rolland, L. Mathiassen, and A. Rai, 

“Managing digital platforms in user organizations: 

The interactions between digital options and 

digital debt,” Inf. Syst. Res., vol. 29, no. 2, pp. 

419–443, 2018, doi: 10.1287/isre.2018.0788. 

[20] N. S. R. Alves, T. S. Mendes, M. G. De 

Mendonça, R. O. Spínola, F. Shull, and C. 

Seaman, “Identification and management of 

technical debt : A systematic mapping study,” vol. 

70, pp. 100–121, 2016, doi: 

10.1016/j.infsof.2015.10.008. 

[21] S. De Haes and W. Van Grembergen, “An 

exploratory study into IT governance 

implementations and its impact on business/IT 

alignment,” Inf. Syst. Manag., vol. 26, no. 2, pp. 

123–137, 2009. 

[22] D. Dougherty, “Interpretive barriers to successful 

product innovation in large firms,” Organ. Sci., 

vol. 3, no. 2, pp. 179–202, 1992. 

[23] B. A. Bechky, “Sharing meaning across 

occupational communities: The transformation of 

understanding on a production floor,” Organ. Sci., 

vol. 14, no. 3, pp. 312–330, 2003. 

[24] R. A. Crowson, Classification and Biology. 

Routledge, 2017. 

[25] D. H. Doty and W. H. Glick, “Typologies As a 

Unique Form Of Theory Building: Toward 

Improved Understanding and Modeling,” Acad. 

Manag. Rev., vol. 19, no. 2, pp. 230–251, Apr. 

1994, doi: 10.5465/amr.1994.9410210748. 

[26] P. O’Raghallaigh, D. Sammon, and C. Murphy, 

“Theory-building using Typologies - A Worked 

Example of Building a Typology of Knowledge 

Activities for Innovation,” in DSS, 2010. 

[27] N. Brown et al., “Managing technical debt in 

software-reliant systems,” in Proceedings of the 

FSE/SDP Workshop on the Future of Software 

Engineering Research, FoSER 2010, 2010, doi: 

10.1145/1882362.1882373. 

[28] P. Kruchten, R. L. Nord, and I. Ozkaya, 

“Technical debt: From metaphor to theory and 

practice,” IEEE Software. 2012, doi: 

10.1109/MS.2012.167. 

[29] R. L. Nord, I. Ozkaya, P. Kruchten, and M. 

Gonzalez-Rojas, “In Search of a Metric for 

Managing Architectural Technical Debt,” in 

WICSA/ECSA 2012, Aug. 2012, pp. 91–100, doi: 

10.1109/WICSA-ECSA.212.17. 

[30] J. Yli-Huumo, A. Maglyas, and K. Smolander, 

“How do software development teams manage 

technical debt? – An empirical study,” J. Syst. 

Softw., vol. 120, pp. 195–218, 2016, doi: 

10.1016/j.jss.2016.05.018. 

[31] W. N. Behutiye, P. Rodríguez, M. Oivo, and A. 

Tosun, “Analyzing the concept of technical debt in 

the context of agile software development: A 

systematic literature review,” Inf. Softw. Technol., 

vol. 82, pp. 139–158, 2017, doi: 

10.1016/j.infsof.2016.10.004. 

[32] A. Martini, T. Besker, and J. Bosch, “Technical 

Debt tracking: Current state of practice,” Sci. 

Comput. Program., vol. 163, pp. 42–61, Oct. 

2018, doi: 10.1016/j.scico.2018.03.007. 

Page 653



[33] T. Besker, A. Martini, and J. Bosch, “Managing 

architectural technical debt: A unified model and 

systematic literature review,” J. Syst. Softw., vol. 

135, 2018, doi: 10.1016/j.jss.2017.09.025. 

[34] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, 

and I. Gorton, “Measure it? Manage it? Ignore it? 

software practitioners and technical debt,” in 

ESEC/FSE 2015, Aug. 2015, pp. 50–60, doi: 

10.1145/2786805.2786848. 

[35] V. Lenarduzzi, T. Besker, D. Taibi, A. Martini, 

and F. Arcelli Fontana, “A systematic literature 

review on Technical Debt prioritization: 

Strategies, processes, factors, and tools,” J. Syst. 

Softw., vol. 171, p. 110827, Jan. 2021, doi: 

10.1016/j.jss.2020.110827. 

[36] J. Holvitie et al., “Technical debt and agile 

software development practices and processes: An 

industry practitioner survey,” Inf. Softw. Technol., 

vol. 96, no. November 2017, pp. 141–160, Apr. 

2018, doi: 10.1016/j.infsof.2017.11.015. 

[37] S. McConnell, “Managing Technical Debt.” 

https://www.youtube.com/watch?v=lEKvzEyNtbk

. 

[38] W. Cunningham, “Debt Metaphor,” YouTube, 

2009. 

https://www.youtube.com/watch?v=pqeJFYwnkjE 

(accessed Jun. 14, 2021). 

[39] A. Martini and J. Bosch, “The Danger of 

Architectural Technical Debt: Contagious Debt 

and Vicious Circles,” Proc. - 12th Work. 

IEEE/IFIP Conf. Softw. Archit. WICSA 2015, pp. 

1–10, 2015, doi: 10.1109/WICSA.2015.31. 

[40] A. Nugroho, J. Visser, and T. Kuipers, “An 

empirical model of technical debt and interest,” in 

Proceedings - International Conference on 

Software Engineering, 2011, doi: 

10.1145/1985362.1985364. 

[41] A. Potdar, “An Exploratory Study on Self-

Admitted Technical Debt,” 2014, doi: 

10.1109/ICSME.2014.31. 

[42] G. Digkas, M. Lungu, P. Avgeriou, A. 

Chatzigeorgiou, and A. Ampatzoglou, “How Do 

Developers Fix Issues and Pay Back Technical 

Debt in the Apache Ecosystem ?,” pp. 153–163, 

2018. 

[43] R. S. Kaplan and D. P. Norton, “Using the 

Balanced Scorecard as a Strategic Nanagement 

System,” Harv. Bus. Rev., 1996. 

[44] W. E. Stewart, “Balanced scorecard for projects,” 

Proj. Manag. J., vol. 32(1), pp. 38–53, 2001. 

[45] M. Martinsons, R. Davison, and D. Tse, “The 

balanced scorecard: a foundation for the strategic 

management of information systems,” Decis. 

Support Syst., vol. 25, no. 1, pp. 71–88, Feb. 1999, 

doi: 10.1016/S0167-9236(98)00086-4. 

[46] C. Gralha, N. Lincs, D. Damian, A. I. T. 

Wasserman, and M. Goul, “The Evolution of 

Requirements Practices in Software Startups,” pp. 

823–833, 2018, doi: 10.1145/3180155.3180158. 

[47] US Securities and Exchange Commission, “SEC 

Charges Knight Capital With Violations of Market 

Access Rule,” 2013. 

[48] G. Spanos and L. Angelis, “The impact of 

information security events to the stock market: A 

systematic literature review,” Computers and 

Security. 2016, doi: 10.1016/j.cose.2015.12.006. 

[49] C. Seaman and Y. Guo, Measuring and 

Monitoring Technical Debt. 2011. 

[50] P. Constantinides, O. Henfridsson, and G. G. 

Parker, Platforms and infrastructures in the digital 

age, vol. 29, no. 2. pubsonline.informs.org, 2018. 

[51] J. Yli-Huumo, A. Maglyas, and K. Smolander, 

“The Sources and Approaches to Management of 

Technical Debt: A Case Study of Two Product 

Lines in a Middle-Size Finnish Software 

Company,” in Lecture Notes in Computer Science, 

vol. 8892, no. June 2016, 2014, pp. 93–107. 

[52] M. Dutt, “Sustainable investment: A new 

landscape,” OECD Obs., May 2020, doi: 

10.1787/7cd0e90e-en. 

[53] R. S. Kaplan and D. McMillan, “Updating the 

Balanced Scorecard for Triple Bottom Line 

Strategies,” SSRN Electron. J., 2020, doi: 

10.2139/ssrn.3682788. 

[54] J. Sandebrg, J. Holmstrom, and K. Lyytinen, 

“Digitization and Phase Transitions in Platform 

Organizing Logics: Evidence from the Process 

Automation Industry,” MIS Q., vol. 44, no. 1, pp. 

129–153, Jan. 2020, doi: 

10.25300/MISQ/2020/14520. 

[55] J. Slay and M. Miller, “Lessons Learned from the 

Maroochy Water Breach,” in Critical 

Infrastructure Protection, 2008, pp. 73–82. 

[56] B. Mo, Yilin and Weerakkody, Sean and Sinopoli, 

“Physical Authentication of Control Systems: 

Designing Watermarked Control Inputs to Detect 

Counterfeit Sensor Outputs,” IEEE Control Syst., 

vol. 35, no. 1, pp. 93–109, Feb. 2015, doi: 

10.1109/MCS.2014.2364724. 

[57] R. M. Atlas and T. C. Hazen, “Oil Biodegradation 

and Bioremediation: A Tale of the Two Worst 

Spills in U.S. History,” Environ. Sci. Technol., 

vol. 45, no. 16, pp. 6709–6715, Aug. 2011, doi: 

10.1021/es2013227. 

[58] I. Žliobaitė, “Measuring discrimination in 

algorithmic decision making,” Data Min. Knowl. 

Discov., 2017, doi: 10.1007/s10618-017-0506-1. 

[59] D. Kuss and M. Griffiths, “Social Networking 

Sites and Addiction: Ten Lessons Learned,” Int. J. 

Environ. Res. Public Health, vol. 14, no. 3, p. 311, 

Mar. 2017, doi: 10.3390/ijerph14030311. 

[60] M. Conway, “Determining the Role of the Internet 

in Violent Extremism and Terrorism: Six 

Suggestions for Progressing Research,” Stud. 

Confl. Terror., vol. 40, no. 1, pp. 77–98, Jan. 

2017, doi: 10.1080/1057610X.2016.1157408. 

[61] N. Grinberg, K. Joseph, L. Friedland, B. Swire-

Thompson, and D. Lazer, “Fake news on Twitter 

during the 2016 U.S. presidential election,” 

Science (80-. )., vol. 363, no. 6425, pp. 374–378, 

Jan. 2019, doi: 10.1126/science.aau2706. 

 

Page 654


	1. Introduction
	2. Background
	3. Methodology
	4. Development of a Typology of Technical Debt
	4.2 Impacts of TD
	6. Conclusion
	8. References

