
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/161403

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/161403
mailto:wrap@warwick.ac.uk

Compositionality, Stability and Robustness in

Probabilistic Machine Learning

by

Ayman Boustati

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Mathematics for Real-World Systems CDT

January 2021

Declarations

I declare that the entirety of the thesis is my own work except for the analytical
results in Appendix B.1, Appendix C.1, Appendix C.2 and Appendix D.2, where
these results have been included for completion.

Three of the four content chapters in this thesis have been part of peer-
reviewed published work and the remaining one is published as a pre-print:

• Chapter 3 is based on the work in Boustati, A., Damoulas, T. and Savage,
R. S. (2019). Non-linear Multitask Learning with Deep Gaussian Processes.
arXiv e-prints, arXiv:1905.12407 [stat.ML], with code publicly available at
https://github.com/aboustati/dgplib.

• Chapter 4 is based on the work in Boustati, A., Vakili, S., Hensman, J. &
John, ST (2020). Amortized variance reduction for doubly stochastic objec-
tive. Proceedings of the 36th Conference on Uncertainty in Artificial Intelli-
gence (UAI). It also appears in Boustati, A., John, S., Vakili, S., & Hensman,
J. (2021). U.S. Patent Application No. 16/984,824.

• Chapter 5 is based on the work in Richter, L.∗, Boustati, A.∗, Nüsken,
N., Ruiz, F. J. & Akyildiz, Ö. D. (2020). VarGrad: A Low-Variance Gra-
dient Estimator for Variational Inference. Advances in Neural Information
Processing Systems (NeurIPS) 33, with code publicly available at https:
//github.com/aboustati/vargrad.

• Chapter 6 is based on the work in Boustati, A.∗, Akyildiz, Ö. D.∗, Damoulas,
T. & Johansen, A., M. (2020). Generalised Bayesian Filtering via Sequential
Monte Carlo. Advances in Neural Information Processing Systems (NeurIPS)
33, with code publicly available at https://github.com/aboustati/robust-smc.

∗Equal contribution.

i

https://github.com/aboustati/dgplib
https://github.com/aboustati/vargrad
https://github.com/aboustati/vargrad
https://github.com/aboustati/robust-smc

Acknowledgments

First and foremost, I would like to thank my supervisor Dr Theo Damoulas. He
adopted me mid-way through my PhD and gave me the guidance and mentorship
to see it through until the end. I learned a lot from him and, needless to say, this
thesis would not have been possible without his guidance and support.

I am also very grateful to my previous supervisor Dr Rich Savage who started
me off on this road and set my academic foundations. I also learned a lot from him
during our time working together.

During my PhD, I had the good fortune to be in two research groups! I
learned a lot from both sets of groupmates and developed friendships along the
way. I would like to acknowledge everyone in the Warwick Machine Learning Group
(WMLG) and in Team Savage. In particular, thanks to Iliana Peneva and Jim
Skinner for their friendship and for the pizza nights, and also Ale Avalos for her
friendship and support.

I was lucky to be part of a great group at the Mathematics for Real-World
Systems CDT and the Centre for Complexity Science. I would like to express my
gratitude to all the students and staff who made my time there a very rewarding
experience. Specifically, I would like to thank Professor Magnus Richardson and
Professor Colm Connaughton for managing a great programme, and also Heather
Robson for her support and for helping me with obtaining my scholarship to study
there. Many people have played a part in making my time there very special. I
am thankful to my office-mates in D2.05 and D2.17: Sami Al-Izzi, Aditi Shenvi,
Joe Hilton, Roger Hill, Bhavan Chahal, Ellen Webborn, Jon Skipp and Kutwulano
Bashe, for making my days at the office very exciting. I have also met some great
friends on this programme. Thanks to the “Mostly not London” machine learning
crew: Michael Pearce, Jev Gamper, Janis Klaise and Matt Groves for the ran-
dom discussions and complaints. Also thanks to the MathSys/Complexity friends:
Nadia Jankovicova, Laura Guzman Rincon, Alvaro Cabrejas Egea, Rob Eyre, Gio-
vanni Mizzi, Tim Pollington, Chris Davis, Peter De Ford, Max Smilovitskiy, Jeremy
Reizenstein, Jason Lewis and Helen Kochkina for their friendship over the PhD
years.

During my PhD, I had the privilege to be part of the Alan Turing Institute.
I would like to thank everyone there for making this experience very fun and re-
warding. In particular, I want to thank Tim Pearce and Nicolas Anastassacos (the
Logistic Depression crew) for their friendship and for the blue sky discussions on
machine learning and other random topics, and my desk buddy Jessie Liu for the fun
escapades. I am also thankful to Alex Bird, Merve Alanyali and Ollie Hamelijnck

ii

ACKNOWLEDGMENTS iii

for the casual technical and non-technical chats.
I was very fortunate to spend three months at Secondmind.ai in Cambridge

as an intern. I would like to express my gratitude to everyone there, especially to
the probabilistic modelling team. I would like to single out Dr James Hensman who
brought me on board and from whom I learned a lot about probabilistic modelling
and research in general. I am also very thankful to Dr ST (Ti) John for her patience
with me and her mentorship during my time there and afterwards. I am also grateful
to Dr Sattar Vakili for his help and contribution to my project.

The work in this thesis could not have been done without the help of my
collaborators. Thanks to Deniz Akyildiz for being a great friend and collaborator,
and an excellent StarCraft II partner! I would also like to thank Professor Adam
Johansen for his help and insights into our collaboration. It was also a great pleasure
collaborating with Lorenz Richter, Nikolas Nüsken and Francisco Ruiz.

I am very grateful to Dr Maurizio Filippone for acting as my external ex-
aminer and initiating great discussions during my viva. I would also like to thank
Professor Colm Connaughton again for organising a plain sailing viva, despite the
challenges of the Covid-19 pandemic.

Finally, I would not be where I am today without the endless love, patience
and support of my family. They believed in me from the beginning and supported
me during the good and bad times. I am eternally grateful to my father, Mamoun
Boustati, my mother, Nazli Alouch and my sister, Alma Boustati. Sadly, I have lost
my loving grandmother, Majida Takieddine, during the final months of my PhD.
She has always been a source of comfort and inspiration to me. To her memory, I
dedicate this thesis.

Abstract

Probability theory plays an integral part in the field of machine learning.
Its use has been advocated by many [MacKay, 2002; Jaynes, 2003] as it allows
for the quantification of uncertainty and the incorporation of prior knowledge by
simply applying the rules of probability [Kolmogorov, 1950]. While probabilistic
machine learning has been originally restricted to simple models, the advent of
new computational technologies, such as automatic differentiation, and advances in
approximate inference, such as Variational Inference [Blei et al., 2017], has made it
more viable in complex settings. Despite this progress, there remain many challenges
to its application to real-world tasks. Among those are questions about the ability of
probabilistic models to model complex tasks and their reliability both in training and
in the face of unexpected data perturbation. These three issues can be addressed by
examining the three properties of compositionality, stability and robustness in these
models. Hence, this thesis explores these three key properties and their application
to probabilistic models, while validating their importance on a range of applications.

The first contribution in this thesis studies compositionality. Composition-
ality enables the construction of complex and expressive probabilistic models from
simple components. This increases the types of phenomena that one can model and
provides the modeller with a wide array of modelling options. This thesis exam-
ines this property through the lens of Gaussian processes [Rasmussen and Williams,
2006]. It proposes a generic compositional Gaussian process model to address the
problem of multi-task learning in the non-linear setting.

Additionally, this thesis contributes two methods addressing the issue of sta-
bility. Stability determines the reliability of inference algorithms in the presence of
noise. More stable training procedures lead to faster, more reliable inferences, espe-
cially for complex models. The two proposed methods aim at stabilising stochastic
gradient estimation in Variational Inference using the method of control variates
[Owen, 2013].

Finally, the last contribution of this thesis considers robustness. Robust ma-
chine learning methods are unaffected by unaccounted-for phenomena in the data.
This makes such methods essential in deploying machine learning on real-world
datasets. This thesis examines the problem of robust inference in sequential prob-
abilistic models by combining the ideas of Generalised Bayesian Inference [Bissiri
et al., 2016] and Sequential Monte Carlo sampling [Doucet and Johansen, 2011].

iv

List of Figures

2.1 A graphical depiction of the general state-space HMM 14
2.2 Samples from a GP for 3 kernels, the Squared Exponential, the Matérn-

3/2 and ArcCosine with n = 1. 17
2.3 Samples from a conditional GP for 3 kernels, the Squared Exponen-

tial, the Matérn-3/2 and ArcCosine with n = 1. 18
2.4 Samples from 4 Squared Exponential DGPs with different numbers

of layers. 21
2.5 Samples from 4 Matérn-3/2 DGPs with different numbers of layers. . 22
2.6 Samples from 4 ArcCosine DGPs with different numbers of layers. . 22

3.1 Illustration of the fit of linear (ICM-GP) vs non-linear (MTL-DGP)
multi-task GP models on a toy dataset. 53

3.2 A graphical representation of the proposed non-linear multi-task DGP
model. 55

3.3 Average classification accuracy and its standard error on the MNIST
variations experiments. 65

3.4 Example of the learning behaviour of mMDGP. 71
3.5 Hinton diagram showing the ARD weights for one of the MDGP runs

on Sarcos. 72

4.1 Illustration of the dependence of the gradient variance on the mini-
batch. 74

4.2 Variance reduction at different points in the objective optimisation. . 86
4.3 Gradient variance ratio at three different points in the joint optimi-

sation of the model and control variate parameters 87
4.4 The difference between optimisation traces for different control vari-

ate objectives. 89

5.1 Verification of Proposition C.1.1 and Remark C.1.3 on the logistic
regression model. 101

v

vi LIST OF FIGURES

5.2 The distribution of δCV
i

E[aVarGrad] associated with the biases of two DVAE
encoders with 200 latent dimensions. 102

5.3 Estimates of the variance of the gradient component w.r.t. the pos-
terior mean of one of the weights for the logistic regression model. . 103

5.4 Estimates of the gradient variance of a two-layer linear DVAE at 4
points during the optimisation for different gradient estimators. . . . 104

5.5 Optimisation trace versus epoch and wall-clock time for a two-layer
linear DVAE on a fixed binarisation of Omniglot. 105

6.1 The mean metrics over state dimensions for the Wiener velocity ex-
ample with pc = 0.1. 115

6.2 The mean metrics over state dimensions for the TAN example for
different pc. 118

6.3 The inferred marginal filtering distributions for the velocity in the z
direction for the TAN example and the effective sample size with time.119

6.4 The mean metrics over state dimensions for the asymmetric Weiner
velocity example. 119

6.5 The GP fit on the measurement time series for one of the London air
quality sensors. 122

List of Tables

3.1 Average NLPP scores on the SARCOS dataset over 7 tasks. 67
3.2 ROC-AUC results on the FAIMS dataset averaged over 10 runs. . . 69

4.1 Average optimisation step time in milliseconds (on the CPU) for lo-
gistic regression and DGP for different linear control variate objective
functions. 90

6.1 GP regression NMSE and 90% empirical coverage for the credible
intervals of the posterior predictive distribution. 121

vii

Notation and Abbreviations

Symbols

x A scalar-valued quantity

x A vector-valued quantity

X A matrix-valued quantity

X A vector space

xᵀ The transpose of x

x? The optimal value of x

x(s) The sth Monte Carlo sample

x̂ The Monte Carlo estimate of x, 1
S

∑S
s=1 x(s)

x̃ The Monte Carlo estimate of x with a scaled zero-mean control variate ω, x̂− ω̂

x̄ The − accent is reserved for contextual use

x̌ The ∨ accent is reserved for contextual use

{xn}Nn=1 A collection of N objects

x1:N A collection of N objects

xn The nth member of a collection

R Real numbers

ID The D ×D identity matrix

Functions

f(· ; θ) Explicit parameterisation of a function f with θ

fθ(·) Implicit parameterisation of a function f with θ

p(·) A probability density function or probability mass function

viii

NOTATION AND ABBREVIATIONS ix

δy(·) The Dirac delta measure concentrated at y

1Y(·) The indicator function on the set Y

‖ · ‖2 The Euclidean (Square) norm

‖ · ‖p The p-norm

KL (p ‖ q) The Kullback-Leibler divergence from q to p

ELBO(φ) The Evidence Lower BOund as a function of φ

Operators

:= Equality by definition

≡ Equality by identity

≈ Approximately equal to

∝ Proportional to

� The Hadamard (element-wise) product

∼ Distributed as

\ The set difference operator

| The conditioning operator

|S| The cardinality of the set S

E[·] The expectation operator

Var[·] The variance operator

Cov[· , ·] The covariance operator

Tr · The trace operator

∇θ The gradient operator with respect to θ

∂θ The partial derivative operator with respect to θ

O(·) Big Oh denoting computational or space complexity

Abbreviations

ANNl Artificial Neural Network with l layers

APF Auxiliary Particle Filter

x NOTATION AND ABBREVIATIONS

ARD Automatic Relevance Determination

BFP Bootstrap Particle Filter

BNNl Bayesian Neural Network with l layers

DGM Data Generating Mechanism

DGP Deep Gaussian Process

DVAE Discrete Variational Auto-Encoder

EC Empirical Coverage

ELBO Evidence Lower BOund

ESS Effective Sample Size

FFBS Forward Filtering Backward Smoothing

GBI Generalised Bayesian Inference

GP Gaussian Process

HMM Hidden Markov Model

ICM Intrinsic Coregionalisation Model

i.i.d. independently and identically distributed

IS Importance Sampling

KL Kullback-Leibler

LGSSM Linear-Gaussian State-Space Model

MC Monte Carlo

NELBO Negative Evidence Lower Bound

NLPP Negative Log Predictive Probability

NMSE Normalised Mean-Squared Error

PF Particle Filter

PSD Positive Semi-Definite

RMSE Root Mean-Squared Error

ROC-AUC Area Under Receiver Operating Characteristic Curve

RTS Rauch–Tung–Striebel smoother

SGD Stochastic Gradient Descent

SIS Sequential Importance Sampling

SMC Sequential Monte Carlo

NOTATION AND ABBREVIATIONS xi

SVI Stochastic Variational Inference

TAN Terrain Aided Navigation

VAE Variational Auto-Encoder

VI Variational Inference

cGP coregionalised Gaussian Process

cMDGP coregionalised Multi-task DGP

iDGP independent Deep Gaussian Process

iGP independent Gaussian Process

mMDGP multiprocess Multi-task Deep Gaussian Process

sMDGP shared Multi-task Deep Gaussian Process

w.r.t. with respect to

Contents

Chapter 1 Introduction 1
1.1 The Three Key Themes . 2

1.1.1 Compositionality . 2
1.1.2 Stability . 3
1.1.3 Robustness . 3

1.2 Motivation . 4
1.3 Contributions and Thesis Structure 5
1.4 Publications . 6

Chapter 2 The Fundamentals of Probabilistic Machine Learning 8
2.1 Probabilistic Models . 9

2.1.1 Parametric Models . 11
2.1.2 Non-Parametric Models . 14

2.2 Inference . 23
2.2.1 Bayes’s Rule and the Difficulty of Bayesian Inference 23
2.2.2 Inference versus Learning . 24

2.3 Variational Inference . 26
2.3.1 The Mathematical Formulation of VI 26
2.3.2 Flavours of Approximate Posterior Families for Variational

Inference . 28
2.3.3 Optimising the Variational Objective 30

2.4 Inference in Gaussian Process Models 34
2.4.1 Exact Inference in Gaussian Process Regression 34
2.4.2 Sparse Variational Inference in Gaussian Process Model . . . 35
2.4.3 Inference in Deep Gaussian Process Models 38

2.5 Sequential Monte Carlo . 40
2.5.1 Importance Sampling . 41
2.5.2 Sequential Importance Sampling 42
2.5.3 Sequential Monte Carlo & Particle Filtering 44

2.6 Generalised Bayesian Inference . 45

xii

CONTENTS xiii

2.6.1 Inference as an Optimisation Problem 46
2.6.2 The Special Case of Bayes’s Rule 47

2.7 Variance Reduction . 48
2.7.1 Control Variates . 48
2.7.2 Importance Sampling . 49

Chapter 3 Multitask Learning with Gaussian Process Compositions 51
3.1 Motivation . 51
3.2 Background . 53

3.2.1 Modelling with Gaussian Processes 53
3.2.2 Extension to Deep Gaussian Processes 54

3.3 Modelling Approach . 55
3.3.1 DGP Multi-task Formulation 55
3.3.2 Model Specification . 59

3.4 Related Work . 60
3.4.1 Linear Process Mixing . 62
3.4.2 Process Convolution . 62
3.4.3 Regularisation Methods . 63

3.5 Experimental Evaluation . 64
3.5.1 MNIST Variations . 65
3.5.2 SARCOS Robot Inverse Dynamics 67
3.5.3 FAIMS Diabetes Diagnosis 68

3.6 Concluding Remarks . 69

Chapter 4 Amortised Variance Reduction 73
4.1 Motivation . 73
4.2 Method . 75
4.3 Background & Notation . 76

4.3.1 Controlling Mini-batch Gradients 76
4.3.2 Training the Recognition Network 78
4.3.3 Pseudocode . 80

4.4 Illustrative Example: A Control Variate for Gaussian Base Randomness 81
4.4.1 Linear Gaussian Control Variates 82
4.4.2 Higher-order Polynomials . 82
4.4.3 Brief Discussion . 83

4.5 Related Work . 83
4.6 Experimental Validation . 84

4.6.1 Setup . 85

xiv CONTENTS

4.6.2 Verification of Variance Reduction 85
4.6.3 Simultaneous Optimisation of Objective Function and Control

Variate Coefficient . 87
4.6.4 Practical Effectiveness . 88

4.7 Concluding Remarks . 90

Chapter 5 A Low Variance Gradient Estimator for Variational Infer-
ence 92
5.1 Motivation . 92
5.2 Background . 94
5.3 The Log-Variance Loss and its Connection to VarGrad 95

5.3.1 The Log-Variance Loss . 95
5.3.2 VarGrad: Derivation of the Gradient Estimator from the Log-

Variance Loss . 96
5.4 Relationship to Reinforce with Score-based Control Variates 97

5.4.1 Reinforce with Score Control Variates 98
5.4.2 VarGrad as an Approximation to Reinforce with Optimal Con-

trol Variate Coefficients . 98
5.4.3 Variance of the VarGrad Estimator 99

5.5 Related Work . 100
5.6 Experiments . 101

5.6.1 Closeness to the optimal control variate 101
5.6.2 Variance reduction and computational cost 102

5.7 Concluding Remarks . 104

Chapter 6 Generalised Bayesian Filtering 106
6.1 Motivation . 106
6.2 Background and Notation . 108

6.2.1 Notation . 108
6.2.2 Generalized Bayesian Inference (GBI) 108
6.2.3 Sequential Monte Carlo for HMMs 110

6.3 Generalised Bayesian filtering . 111
6.3.1 A simple generalised particle filter 111
6.3.2 The β-BPF and the β-APF 112
6.3.3 Selecting β . 112

6.4 Theoretical guarantees . 113
6.5 Experiments . 114

6.5.1 A Linear-Gaussian state-space model 115

CONTENTS xv

6.5.2 Terrain Aided Navigation . 117
6.5.3 Asymmetric Wiener Velocity 118
6.5.4 London air quality Gaussian process regression 120

6.6 Concluding Remarks . 121

Chapter 7 Conclusions 123
7.1 Summary of Contributions . 123
7.2 Future Research Directions . 124

Appendix A Multitask Learning with Gaussian Process Composi-
tions 127
A.1 Experiment Details . 127

A.1.1 MNIST Variations . 127
A.1.2 SARCOS Robot Inverse Dynamics 128
A.1.3 FAIMS Diabetes Diagnosis 129

A.2 Further Results . 131
A.2.1 MNIST Variations . 131
A.2.2 SARCOS Robot Inverse Dynamics 131

Appendix B Amortised Variance Reduction 134
B.1 Theoretical Analysis . 134

B.1.1 Convergence Results . 134
B.1.2 Proofs for Convergence Results 136

B.2 Description of Experiment Models 139
B.2.1 Logistic Regression . 139
B.2.2 Deep Gaussian Processes . 140

B.3 Verification of Variance Reduction 143
B.3.1 Logistic Regression Results on the Titanic Dataset 143
B.3.2 Deep Gaussian Process Results on the Airfoil Dataset 144

B.4 Simultaneous Optimisation of Model and Recognition Network . . . 146
B.4.1 Logistic Regression Results on the Titanic Dataset 146
B.4.2 Deep Gaussian Process Results on the Airfoil Dataset 148

Appendix C A Low Variance Gradient Estimator for Variational In-
ference 151
C.1 Further Analytical Results . 151

C.1.1 Scale of δCV . 151
C.1.2 Effect of Latent Variable Dimension on the Variance of VarGrad153

CONTENTS 1

C.2 Proofs of Analytical Results . 153
C.2.1 Proof of Proposition 5.3.2 . 153
C.2.2 Proof of Lemma 5.4.1 . 154
C.2.3 Proof of Proposition C.1.1 . 154
C.2.4 Proof of Proposition 5.4.2 . 155
C.2.5 Proof of Corollary C.1.4 . 156
C.2.6 Dimension-dependence of the KL-divergence 156

C.3 Details of the Experiments . 157
C.3.1 Logistic Regression . 157
C.3.2 Discrete VAEs . 158

Appendix D Generalised Bayesian Filtering 159
D.1 β-PF . 159

D.1.1 Outline derivation of the loss in (6.11) 159
D.1.2 β-BPF . 159
D.1.3 β-APF . 160

D.2 Theoretical analysis . 162
D.2.1 Proof of Theorem 6.4.1 . 162
D.2.2 Proof of Theorem 6.4.3 . 163

D.3 Experiment Details . 163
D.3.1 Evaluation Metrics . 163
D.3.2 Details on the implementation of the selection criterion in Sec-

tion 6.3.3 . 164
D.3.3 Wiener velocity model experiment details (Section 6.5.1) . . . 165
D.3.4 Terrain Aided Navigation (TAN) experiment details (Section 6.5.2)165
D.3.5 Asymmetric Wiener velocity model experiment details (Sec-

tion 6.5.3) . 167
D.3.6 Air quality experiment details (Section 6.5.4) 167

D.4 Further results . 169
D.4.1 Wiener velocity experiment 169
D.4.2 TAN experiment . 177
D.4.3 London air quality experiment 183

CHAPTER 1

Introduction

“Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situation of the
beings who compose it –an intelligence sufficiently vast to submit these
data to analysis– it would embrace in the same formula the movements
of the greatest bodies of the universe and those of the lightest atom; for it,
nothing would be uncertain and the future, as the past, would be present
to its eyes.”

— Laplace

“The curve described by a simple molecule of air or vapour is regulated
in a manner just as certain as the planetary orbits; the only difference
between them is that which comes from our ignorance.”

— Laplace, two paragraphs later

In 1814, Pierre-Simon de Laplace articulated the notion of scientific deter-
minism in what is commonly referred to as Laplace’s Demon [Laplace, 1814]. This
notion states that if an intelligent entity (the demon) knows the exact state of the
universe and all the laws that govern it, then the intelligence can compute any past
or future state provided it possesses the computational capacity to do so. Laplace
argues that while humans thrive to be this intelligence, they “will always remain
infinitely removed” from it.

All is not lost, however; Laplace advocates using the rules of probability [Kol-
mogorov, 1950] to reason about uncertain events and to propagate this uncertainty
to consequent events.

“Probability is relative, in part to this ignorance, in part to our knowl-
edge. We know that of three or a greater number of events a single one
ought to occur; but nothing induces us to believe that one of them will

1

CHAPTER 1. INTRODUCTION

occur rather than the others. In this state of indecision it is impossible
for us to announce their occurrence with certainty. It is, however, prob-
able that one of these events, chosen at will, will not occur because we
see several cases equally possible which exclude its occurrence, while only
a single one favours it.”

— Laplace

One sticking point to this thought is the complexity of real-world phenom-
ena. While it is both easy and desirable to model simple events using the language
of probability, complex phenomena might prove elusive to such modelling due to
the need to express intricate assumptions as probabilistic statements and the large
computational burden associated with this modelling complexity.

This thesis examines the probabilistic view of modelling complex phenomena
through the lens of machine learning. Machine learning incorporates tools that allow
the modeller to abstract away some of the complexity in the target phenomena by
specifying generic yet flexible models that learn the intricacies of the target systems
through observed data. The probabilistic treatment of such methods can provide
the quantification and propagation of uncertainty advocated by Laplace.

In particular, this thesis studies three desirable properties for probabilistic
machine learning models: compositionality, stability and robustness. These three
properties endow machine learning systems with the ability to deal with the various
challenges in modelling real-world events through observed data.

1.1 The Three Key Themes

This thesis studies various models and computational methods in the field of prob-
abilistic machine learning revolving around the three themes of compositionality,
stability and robustness. An overview of these properties is given below.

1.1.1 Compositionality

Compositionality refers to the ability of simple models to compose with each other
to create a more flexible model. Complex systems are characterised as a combi-
nation of smaller simpler systems. To model a complex system, one can create an
expressive model by combining smaller simpler models that target the components
of the complex system individually. Hence, compositional probabilistic models can
model complex phenomena by combining probabilistic modules such as Gaussian
process modules or probabilistic neural network layers [Tran et al., 2019]. The re-

2

CHAPTER 1. INTRODUCTION

sulting model has a higher learning capacity than its components while maintaining
tractable inference procedures. The idea of compositionality is best embodied by
probabilistic programming languages, which define modelling and inference primi-
tives that allow various components to interact with each other [Tran et al., 2016].

1.1.2 Stability

In learning theory, the notion of stability relates to the sensitivity of a machine
learning procedure to perturbations in the input data [Bousquet and Elisseeff, 2002].
This idea is inherently related to the variance of the algorithm, where high-variance
algorithms have low stability and low-variance algorithms are said to be stable.
Another related concept is that of training stability referring to the sensitivity of
the algorithm to the noise in the training procedure [Anschel et al., 2017; Nikishin
et al., 2018]. This is a common issue in modern machine learning methods that use
stochastic training procedures (e.g., stochastic optimisation or sampling) to tune
the parameters of the model. The notion of training stability is also related to
variance; more specifically, the variance of the objective function (and potentially
its gradients).

While the two views of stability are conceptually related, this thesis studies
the training stability view. This view is more relevant to the probabilistic setting as
the input data in probabilistic models is considered to be fixed and generated from
a known generative process, whereas the training procedure can depend on random
quantities that induce instability.

1.1.3 Robustness

Colloquially, robustness is the resilience property in objects or systems against un-
expected shocks. Similarly, in statistics and machine learning, robustness refers to
the ability of models to withstand small deviations from their assumptions [Hu-
ber, 1981]. In machine learning applications - particularly in probabilistic machine
learning - explicit assumptions are made to model a dataset. These assumptions
are usually simplistic and might not model all aspects of the data. There are many
reasons why the deviation from assumptions can occur, e.g., a) some instances in
the dataset are corrupted and the model does not account for the corruption, b) the
model is misspecified, i.e., its assumptions are significantly different from the true
data generating mechanism, or c) an adversary is manipulating the data that the
model sees. Robust machine learning models can learn reliable hypotheses in these
scenarios without explicitly modelling the source of deviation.

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

Following the arguments of Laplace, modelling real-world phenomena requires the
ability to assign probabilities to observed events and reason about the unknown
by manipulating them with the rules of probability [Kolmogorov, 1950]. Naturally,
these two tasks become more difficult as the complexity of the modelled phenom-
ena increases. For instance, assigning probabilities to multiple observed events and
relating them to unobserved variables becomes more challenging as the number of
variables increases. Furthermore, a large number of variables with complex rela-
tionships between them causes computational difficulties when applying the rules of
probability. Hence, to address complex real-world problems, probabilistic machine
learning methods need to be both flexible and reliable. The choice of the three
themes of compositionality, stability and robustness is motivated by these desider-
ata. Compositionality provides the needed flexibility by giving the modeller tools to
build tailored models from simple building blocks. Stability and robustness ensure
the reliability of these models both in training and in deployment.

It is important to note that there is some inherent trade-off between the
considered properties. For instance, while the composition of multiple components
increases a model’s flexibility, it can also cause instability in training as the model’s
variance becomes higher than that of its components. Similarly, the added flexibility
of compositional models can make them brittle against unexpected perturbations
in the data. Thus, these properties cannot be studied in isolation as they influence
one another. That is why this thesis attempts to study them holistically.

Modern machine learning methods incorporate many aspects of these prop-
erties. For example, the success of Deep Learning [LeCun et al., 2015] is a testament
to the importance of compositionality in modelling. Furthermore, many algorithms
have been designed to induce training stability, e.g., Adam [Kingma and Ba, 2015],
SVRG [Johnson and Zhang, 2013], etc. Robustness, on the other hand, has al-
ways been prevalent in statistics and machine learning going back to as far as the
1960s [Tukey, 1962; Huber, 1981]. However, in the probabilistic treatment of ma-
chine learning, these topics have been less explicitly emphasised and have also been
under-explored. This thesis attempts to fill this gap by explicitly examining them in
the context of probabilistic models and exploring ideas that make them applicable
to real-world settings.

4

CHAPTER 1. INTRODUCTION

1.3 Contributions and Thesis Structure

This thesis starts with a general overview of the fundamentals of probabilistic ma-
chine learning in Chapter 2, focusing on topics in modelling, inference and variance
reduction. Subsequently, it presents four main contributions in chapter 3–6 that re-
volve around the three key themes.

Chapter 3 studies the problem of compositionality in Gaussian process
models. It presents a multi-task discriminative model defined through the non-
linear composition of Gaussian process modules. The resulting formulation is a
multi-task Deep Gaussian process with a latent space that is composed of private
processes that capture within-task information and shared processes that capture
across-task dependencies. Inference in this model is made possible due to its compo-
sitional nature, where standard inference procedures can be easily extended to the
multi-task setting. Two different methods for segmenting the latent space are pro-
posed: 1) through hard coding shared and task-specific processes, or 2) through soft
sharing with Automatic Relevance Determination kernels. This formulation is able
to improve the learning performance and transfer information between the tasks,
outperforming other probabilistic multi-task learning models across real-world and
benchmarking settings.

Chapter 4 & Chapter 5 address the problem of stability, specifically in the
context of Variational Inference. Chapter 4 introduces a control variate scheme
for reducing the variance of doubly stochastic objective functions. These types
of objective functions appear as optimisation targets in Variational Inference for
complex probabilistic models. They incorporate randomness both from mini-batch
sub-sampling of the data and from Monte Carlo estimation of expectations inducing
variance in their gradients. If the gradient variance is high, the optimisation problem
becomes difficult with a slow rate of convergence. Control variates can be used
to reduce the variance, but past approaches do not take into account how mini-
batch stochasticity affects sampling stochasticity, resulting in sub-optimal variance
reduction. This chapter proposes a new approach in which a recognition network is
used to cheaply approximate the optimal control variate for each mini-batch, with
no additional model gradient computations. The properties of this proposal are
illustrated and its performance is tested on logistic regression and deep Gaussian
processes.

Chapter 5 analyses the properties of an unbiased gradient estimator of
the Evidence Lower Bound (ELBO) for Variational Inference, based on the score
function method with leave-one-out control variates in Salimans and Knowles [2014]

5

CHAPTER 1. INTRODUCTION

and Kool et al. [2019]. The chapter shows that this gradient estimator can be
obtained using a novel loss, defined as the variance of the log-ratio between the exact
posterior and the variational approximation, which is called the log-variance loss.
Under certain conditions, the gradient of the log-variance loss equals the gradient
of the (negative) ELBO. It is shown that this gradient estimator, VarGrad, exhibits
lower variance than the score function method in certain settings. Furthermore, the
control variate coefficients that are induced by this estimator are proven to be close
to the optimal ones. The utility of VarGrad is empirically demonstrated showing
that it offers a favourable variance versus computation trade-off compared to other
state-of-the-art estimators on a discrete Variational Auto-Encoder.

Chapter 6 is the final technical chapter and examines the problem of robust-
ness in sequential models. It introduces a framework for robust inference in general
state-space hidden Markov models under likelihood misspecification, leveraging the
loss-theoretic perspective of Generalized Bayesian Inference to define generalised
filtering recursions in hidden Markov models. The new framework can tackle the
problem of inference under model misspecification, arriving at principled procedures
for robust inference against observation contamination by utilising the β-divergence.
Operationalising the proposed framework is made possible via sequential Monte
Carlo methods, where most standard particle methods, and their associated conver-
gence results, are readily adapted to the new setting. The new approach is applied
to object tracking and Gaussian process regression problems, where improved per-
formance over both standard filtering algorithms and other robust filters is observed.

Finally, Chapter 7 summarises the contributions in this thesis, offering a
general discussion of their placement within the wider field and outlooks for future
research.

1.4 Publications

Some of the contents of this thesis appear in three published works and a pre-print.
They are listed below in the chronological order of the thesis.

• Chapter 3 is based in the work in Boustati, Damoulas, and Savage [2019]. The
code for this work is publicly available at https://github.com/aboustati/

dgplib.

• Chapter 4 is based on the work in Boustati, Vakili, Hensman, and John [2020b].
It also appears in the following patent: Boustati, John, Vakili, and Hensman
[2021].

6

https://github.com/aboustati/dgplib
https://github.com/aboustati/dgplib

CHAPTER 1. INTRODUCTION

• Chapter 5 is based on the work in Richter, Boustati, Nüsken, Ruiz, and Aky-
ildiz [2020]. The code for this work is publicly available at https://github.

com/aboustati/vargrad.

• Chapter 6 is based on the work in Boustati, Akyildiz, Damoulas, and Johansen
[2020a]. The code for this work is publicly available at https://github.com/

aboustati/robust-smc.

7

https://github.com/aboustati/vargrad
https://github.com/aboustati/vargrad
https://github.com/aboustati/robust-smc
https://github.com/aboustati/robust-smc

CHAPTER 2

The Fundamentals of
Probabilistic Machine Learning

Traditionally, the field of machine learning has focused on inventing algorithms to
solve learning tasks. The algorithm is all-encompassing and includes all aspects
of the modelling such as incorporating the data, learning from the data (training)
and prediction. This algorithmic view has been dominant in the study of machine
learning until this day; however, one of the drawbacks of this type of thinking
is its rigidity. Algorithms are designed to solve specific tasks and they implicitly
incorporate assumptions and inductive biases. Hence, to address new tasks, one
needs to come up with new algorithms since an algorithm’s assumptions do not
necessarily hold for all tasks. Probabilistic machine learning offers an alternative
view: one which separates the assumptions from the learning mechanism and makes
these assumptions explicit.

Probabilistic machine learning is model-based, i.e., its focal point is a model
that explicitly incorporates all the assumptions and the knowledge that the modeller
has about the problem or task. More concretely, a probabilistic model describes an
idealised mechanism that might have generated the data. This is done by intro-
ducing a set of random variables that interact in some way to generate the data.
Probabilistic statements are added to determine the relationship between the ran-
dom variables. The random variables that constitute the model can either be ob-
servable or latent. After seeing the observable variables, one can draw conclusions
on the plausible values of the latent (unknown) variables1. This procedure is called

1In some literature, the term “latent variables” is reserved to a special type of unknown quanti-
ties that have one-to-one association with the observables, i.e., each observable is associated with
a separate unknown quantity. Other types of unknown quantities are usually referred to as unob-
served or unknown variables (sometimes also model parameters). This thesis does not adopt this
terminology. Instead, the term “latent variables” is used to denote any unknown quantity. The
specific case of models containing one-to-one association is referred to as a latent variable model.
The terminology of this thesis is adopted from Bishop [2006].

8

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Inference.
One of the key distinctions between the algorithmic view of machine learning

and the probabilistic modelling view is the separation of modelling and inference.
In probabilistic machine learning, the model simply describes a mechanism that
can generate data without specifying how to fit it to what has been observed. In
the inference stage, the model is fit to the data using a specific inferential mecha-
nism. The separation of these two concepts provides the modeller with flexibility
since inference procedures are usually model agnostic and vice versa. This allows
the modeller to mix-and-match models with inference procedures according to the
problem specification.

Furthermore, the probabilistic machine learning framework allows for the
explicit specification of the modeller’s prior beliefs, through the choice of a prior
belief distribution over the latent variables. These beliefs are chosen in addition to
the structural priors that are usually present in algorithmic machine learning models,
e.g., Convolutional Neural Networks [LeCun et al., 1989]. The explicit specification
of prior beliefs allows the modeller to update their beliefs after observing data, thus
quantifying the uncertainty in the latent variables in relation to the specified prior.

This chapter introduces the fundamentals of probabilistic machine learning.
It mainly covers an overview of popular families of probabilistic models in Section 2.1
and popular inference mechanisms in Section 2.2. Section 2.7, introduces some ideas
on variance reduction that are essential for Chapter 4 and Chapter 5.

2.1 Probabilistic Models

In its most basic form, a probabilistic model is composed of two components: ob-
servable variables and latent variables. Observable variables constitute the data,
y ∈ Y. These are the variables that can be observed reliably, e.g., the body-mass
index of a group of sixth-form students, the symptoms observed in participants of a
clinical trial, readings from a Geiger counter, etc. Reliable observation means that
one can measure the observable quantity; however, it does not relate to the quality
of the measurements, i.e., noisy measurements are still valid reliable observations.

The latent variables x ∈ X are the unobserved quantities in the model. The
term latent means that these quantities are computed through the observed data,
i.e., they come after the observables are considered. Examples of these include the
athletic ability of the sixth-formers, whether the clinical trial participants have a
certain disease, the underlying level of background radiation in the area where the
Geiger counter is used, etc.

9

Chapter 2: The Fundamentals of Probabilistic Machine Learning

It is important to note that the relationship between the observable variables
and the latent variables need not necessarily be causal. A mere correlation with the
observable variables is enough to allow the user to make inferences about the latent
variables.

In mathematical terms, one represents a model by a joint probability distri-
bution on the shared space of latents and observables,

M≡ pθ(x,y), (2.1)

where θ ∈ Θ is a set of parameters that index the set of models. These types of
parameters are known as hyper-parameters or nuisance parameters. While hyper-
parameters are latent in the sense that they are unobserved, one makes the distinc-
tion between them and the latent variables (known sometimes as model parameters
in this context) since one does not wish to make inferences about them.

The probabilistic model representation in (2.1) can be factorised into two
terms,

pθ(x,y) = pθ(y |x)︸ ︷︷ ︸
Likelihood

pθ(x)︸ ︷︷ ︸
Prior

. (2.2)

In (2.2), pθ(y |x) is known as the likelihood and pθ(x) is known as the prior.
The likelihood is a normalised probability distribution with respect to the data y
conditioned on the latent variables x. It can also be viewed as a function of the
latents that indicates how likely is it to observe the given data for a specific value
of x. The prior is a normalised2 probability distribution with respect to the latents,
that encodes the modeller’s prior beliefs about them. These beliefs can be either
objective or subjective and there is a large body of literature advocating for each
of these views [Efron and Hastie, 2016, Chapter 13]; however, this thesis does not
make a distinction.

Finally, the problem of inference (discussed in detail in Section 2.2) is to
simply compute the posterior probability distribution, i.e., the probability of the
latents given the data, pθ(x |y).

The remainder of this section discusses some of the most popular families of
probabilistic models and the tools used to construct them.

2This is not strictly necessary as unnormalised (improper) priors can also be defined; however,
this thesis only considers normalised (proper) priors.

10

Chapter 2: The Fundamentals of Probabilistic Machine Learning

2.1.1 Parametric Models

Parametric models are a family of probabilistic models where the latent variables
have a finite dimension. The model parameters (latent variable) are sufficient, in
the sense that they summarise a given dataset and any future predictions become
independent of the data given the parameters. This restriction on the dimensionality
of the latent variables bounds the model complexity at the cost of its flexibility.
There are many examples of parametric models in the machine learning literature,
such as linear models, cubic splines [Hastie et al., 2009], neural networks [LeCun
et al., 2015], mixture models with finite mixture components [Bishop, 2006], etc.

2.1.1.1 Linear Models

Linear models specify a linear relationship between the observable variables and the
latent variables. This relationship gives rise to a very large class of models that ad-
dress many machine learning tasks such as regression, classification, dimensionality
reduction, etc.

Consider a set of three random variables X ∈ XN ,Y ∈ YN and W ∈ W.
These variables can be thought of as matrix valued without loss of generality, where
X and Y have a design matrix structure, i.e., X = (x1, . . . ,xN)ᵀ with xn ∈ X and
Y = (y1, . . . ,yN)ᵀ with yn ∈ Y. Now consider the linear relationship

ψ = WXᵀ. (2.3)

A linear model for Y is specified by parameterising its distribution with ψ,

Y ∼ p(Y ; ψ), (2.4)

where the semi-colon is used to denote the parameterisation explicitly. Using the
construction in (2.4), one can arrive at many well-known machine learning models.
For instance, consider the case of linear latent variable models [Bishop, 2006]. One
can arrive at this class of models by identifying X as a latent variable and placing
a prior p(X) on it. Next, W can be considered as a nuisance parameter, giving the
following generative model

Prior: X ∼ p(X), (2.5)

Likelihood: Y |X ∼ p(Y ; ψ). (2.6)

The model in (2.5) & (2.6) specifies the general construction for linear latent

11

Chapter 2: The Fundamentals of Probabilistic Machine Learning

variable models. Depending on the specification of the prior and the likelihood, one
can arrive at a specific model, e.g., specifying a Gaussian prior and an isotropic
Gaussian likelihood, recovers Probabilistic Principle Component Analysis [Tipping
and Bishop, 1999].

Another possibility is to consider W in (2.3) as latent, and X as fixed and
indexing Y3. This leads to the well-known class of generalised linear models,

Prior: W ∼ p(W), (2.7)

Likelihood: Y |W ∼ p(Y ; ψ). (2.8)

Specifying the prior in (2.7) as Gaussian and the likelihood in (2.8) also as Gaussian,
recovers linear regression, while changing the likelihood to a Bernoulli with a logistic
link-function recovers logistic regression.

Finally, one can consider both X and W as latent, placing priors on both

Prior: W ∼ p(W), (2.9)

Prior: X ∼ p(X), (2.10)

Likelihood: Y |W,X ∼ p(Y ; ψ). (2.11)

The generative model in (2.9)–(2.11), leads to a family of matrix factorisation mod-
els, e.g., probabilistic matrix factorisation [Mnih and Salakhutdinov, 2008].

2.1.1.2 Non-linear Models

The linear relationship in (2.3), can be easily extended to the non-linear case, in
which, W and X are composed non-linearly,

ν = Φ(W,X), (2.12)

where Φ is a non-linear map. Typically, W are considered as the parameters of this
map and X as its inputs, so one can write

ν = ΦW(X). (2.13)

There are many choices for the functional form for ΦW(·); however, by far the
most popular choice is a neural network, i.e., compositions of affine transformations
with non-linear activation functions.

3In the context, indexing means a surjective correspondence between the elements of X and the
elements of Y, i.e., x ∈ YX .

12

Chapter 2: The Fundamentals of Probabilistic Machine Learning

As in the linear case, one can recover various models by fixing one of X or W
and placing a prior on the other. For instance, if X is considered latent and W is
fixed, one recovers auto-associative (auto-encoding) neural networks [Bishop, 2006];
whereas fixing X and considering W as latent, one recovers standard supervised
neural networks.

2.1.1.3 Graphical and Sequential Models

In many cases, the latent variables in a probabilistic model can be partitioned into
groups, where the groups have different probabilistic relationships with one another
and with the observables. This type of model can be represented as a graph, where
each node represents a unique group and the edges indicate probabilistic dependence.
In the two most popular formulations, the edges can either be directed or undirected,
corresponding to either a Bayesian Network (Bayes Net) and a Markov Random
Field respectively.

In a Bayesian Network, the directed edges represent conditioning where the
child nodes are conditioned on their parents. Conditional independence statements
can be read by applying the d-separation criterion. Consequently, the joint model
can be factorised according to the conditioning statements, where each variable only
depends on its parents. In many cases, this allows for efficient inference.

Sequential models are a sub-family of graphical models with a chain struc-
ture, i.e., the latent variables are sequentially connected to one another. General
state-space (first-order) Hidden Markov Models (HMMs) are some of the most com-
mon sequential models, where the chain connecting the latent variables is formed
by connecting each node to the next node via a directed link. The observables are
connected to the latent variables by directed links as well; however, they are not
connected to each other. The graphical depiction of a general state-space HMM is
given in Fig. 2.1, and the joint distribution is factorised as

p({yt}Tt=1, {xt}Tt=0) = f0(x0)
T∏
t=1

(gt(yt |xt)ft(xt |xt−1)) , (2.14)

where the {yt}Tt=1 is the collection of observed variables from time t = 1 to t = T

and {xt}Tt=0 is the corresponding collection of latent variables. The factor gt(yt |xt)
is known as the emission or observation density and represents the likelihood for
observation t, and ft(xt |xt−1) is the transition density or the Markov kernel, rep-
resenting the prior on the latent xt.

13

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Markov process : x0 x1 x2 · · · xT

Observations : y1 y2 · · · yT

f0 f1 f2

g1

f3

g2

fT

gT

Figure 2.1: A graphical depiction of the general state-space HMM, where the latent
variables are connected together in a directed chain and the observables are only
connected to the corresponding latent variables.

2.1.2 Non-Parametric Models

In contrast to parametric models, non-parametric models do not assume finite-
dimensional latent variables. In most cases, the latent variables are characterised as
infinite-dimensional stochastic processes whose finite representation is realised upon
observing the data. Non-parametric models are more flexible than their parametric
counterparts since the complexity of the model scales with the complexity of the
data. This property is appealing in terms of modelling quality, where one can
model complex relationships in the data without being constrained by the structure
of the parameters; however, this comes at the cost of computational efficiency since
one needs to necessarily memorise all of the data in order to make inferences and
predictions [Ghahramani, 2013].

This section explores a class of non-parametric models known as Gaussian
processes. This is a flexible model family that can be used in many machine learning
tasks.

2.1.2.1 Gaussian Processes

Gaussian processes (GPs) are an infinite collection of real-valued random variables
any finite number of which are jointly Gaussian [Rasmussen and Williams, 2006]. As
the name suggests, a GP, {f(ξ)}ξ∈Ξ, is a real-valued stochastic process defined over
the index set Ξ ⊆ RD. It is fully specified by its mean function, m : Ξ 7→ R, and its
covariance function (or kernel), k : Ξ× Ξ 7→ R. This means that for a finite collec-
tion of indices {ξ1, . . . , ξN}, one can compute the Gaussian marginals by evaluating
these functions at the corresponding indices, i.e., f = (f(ξ1), . . . , f(ξN)) ∼ N (µ, Σ)
where,

µi = m(ξi) = E[f(ξi)],

Σij = k(ξi, ξj) = Cov[f(ξi), f(ξj)].

14

Chapter 2: The Fundamentals of Probabilistic Machine Learning

While there are no restrictions on the form of the mean function, the covariance
function needs to obey two properties: symmetry and positive semi-definiteness.
Symmetry simply states that k(ξ, ξ′) = k(ξ′, ξ) for all ξ, ξ′ ∈ Ξ. Positive semi-
definiteness is a more complex notion. A kernel is said to be positive semi-definite if
it gives rise to a positive-semi definite (PSD) Gram matrix [Kanagawa et al., 2018].
A Gram matrix is a matrix arising from the pairwise evaluation of the kernel at a
finite collection of indices, i.e., Gij = k(ξi, ξj). An N ×N matrix, G, is said to be
PSD if its quadratic form is greater than or equal to zero, i.e.,

vᵀGv ≥ 0,

for all vectors v ∈ RN .

For brevity, a Gaussian process can also be denoted as

f(ξ) ∼ GP(m(·), k(·, ·)),

which is the adopted notation in this thesis.

An important property of GPs is their consistency 4. This simply means that
if a GP is specified on two sets of indices ξ1 and ξ2, such that[

f(ξ1)
f(ξ2)

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

then it satisfies that f(ξ1) ∼ N (µ1, Σ11). An implication of the consistency prop-
erty is that one can easily condition on a finite subset of the GP. By the Gaussian
conditional identity,

f(ξ2) | f(ξ1) ∼ N (µ2 + Σ21Σ−1
11 (f(ξ1)− µ1) , Σ22 −Σ21Σ−1

11 Σ12). (2.15)

The conditional implication is very important as it enables inference when
using GPs as components in probabilistic models (see Section 2.4). Finally, by
Kolmogorov’s extension theorem [Matthews, 2017], one can use (2.15) to define
the conditional Gaussian process. Let f(ξ) be the conditioning set corresponding
to elements ξ from the index set, one can define a GP conditioned on this set as

4This is a direct consequence of Kolmogorov’s extension theorem applied to Gaussian processes
[Matthews, 2017]

15

Chapter 2: The Fundamentals of Probabilistic Machine Learning

GP(mξ(·), kξ(·, ·)), where

mξ(·) = m(·) + k(·, ξ)k(ξ, ξ)−1 (f(ξ)−m(ξ)) , (2.16)

kξ(·, ·) = k(·, ·)− k(·, ξ)k(ξ, ξ)−1k(ξ, ·). (2.17)

Intuition and Examples: One can think of Gaussian processes in two ways: a) a
stochastic process indexed by some set, b) a probability distribution over functions.
The second view is more relevant to machine learning applications, where one can
model task outputs as an unknown (latent) function of some inputs and place a GP
prior over this latent mapping.

The properties of a function mapping modelled as a GP depend on the choice
of the mean function and the covariance function. In a sense, these two objects
encode the behaviour and the likelihood of an array of candidate functions that the
modelled mapping can take. The mean function is usually responsible for capturing
trends and the covariance function captures global qualities such as smoothness,
stationarity, etc. In many machine learning applications, the mean function is usually
set to a constant zero function and the entirety of the prior specification is entrusted
to the covariance function. Thus, the choice of covariance function is essential to
the fit quality of a model utilising GP priors.

There are many choices of covariance functions encoding different behaviours.
The most popular choice is the Squared Exponential covariance function [Rasmussen
and Williams, 2006] given as

kSE(ξ, ξ′) = σ2 exp
(
‖ξ − ξ′‖22

2`2

)
, (2.18)

where σ2 and ` are the kernel hyperparameters, known as the signal variance and the
lengthscale respectively. The signal variance controls the amplitude of the functions
and the lengthscale controls the volatility of the functions. Functions modelled with
a Squared Exponential GP are infinitely differentiable.

Another popular class of covariance functions is the Matérn class [Rasmussen
and Williams, 2006] given as

kMatérn(ξ, ξ′) = σ2 21−ν

Γ(ν)

(√
2ν‖ξ − ξ′‖2

`

)ν
Kν

(√
2ν‖ξ − ξ′‖2

`

)
, (2.19)

where σ2 is the signal variance, ` is the lengthscale, ν is a positive parameter, Γ(·)
is the gamma function and Kν(·) is a modified Bessel function. The parameter
ν is usually set to half integers with the most popular values being 5/2, 3/2 and

16

Chapter 2: The Fundamentals of Probabilistic Machine Learning

1/2. This parameter determines the roughness of the functions, with the number of
continuous derivatives given as bνc.

The Squared Exponential and the Matérn kernels are examples of station-
ary covariance functions. Hence, one can encode non-stationary behaviour in the
candidate function by specifying an alternative non-stationary covariance function.
An example of such covariance functions is the ArcCosine [Cho and Saul, 2009] co-
variance function (sometimes also known as the neural network covariance function
[Williams, 1997]), given as

kArcCosine(ξ, ξ′) = 1
π
‖ξ‖n2‖ξ′‖n2Jn(θ), (2.20)

where θ = arccos ξ·ξ′
‖ξ‖2‖ξ′‖2 is the angle between the kernel’s input and Jn(θ) =

(−1)n sin2n+1(θ)
(

1
sin(θ)

∂
∂θ

)n (
π−θ

sin(θ)

)
is a family of functions the captures the angular

dependence. The family of ArcCosine covariance functions defines non-stationary
processes that mimic the behaviour of neural networks.

Fig. 2.2 shows 5 samples drawn from GPs with a zero mean function and three
different kernels: the Squared Exponential, the Matérn-3/2 and ArcCosine with n =
1. The difference between the three kernels can be seen from the figure. The Squared
Exponential covariance function produces smooth samples, in contrast to the rough
samples produces by the Matérn-3/2 kernel. Both the Squared Exponential and the
Matérn-3/2 GP draws exhibit stationarity, while the ArcCosine GP draws are non-
stationary. Finally, Fig. 2.3 shows the effect of conditioning on a set of 5 points. The
properties of the kernels are retained upon conditioning; however, all draws from
the conditional GP pass through the elements of the conditioning set, restricting
the space of possible samples.

4 2 0 2 4

2

1

0

1

2

3

f(
)

Squared Exponential GP

4 2 0 2 4

2

1

0

1

2

3

f(
)

Matérn-3/2 GP

4 2 0 2 4

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

f(
)

ArcCosine GP

Figure 2.2: Samples from a GP for 3 kernels, the Squared Exponential, the Matérn-
3/2 and ArcCosine with n = 1.

17

Chapter 2: The Fundamentals of Probabilistic Machine Learning

4 2 0 2 4

2

1

0

1

2

f(
)

Squared Exponential GP

4 2 0 2 4

2

1

0

1

2

3

f(
)

Matérn-3/2 GP

4 2 0 2 4

2

1

0

1

2

f(
)

ArcCosine GP

Figure 2.3: Samples from a conditional GP for 3 kernels, the Squared Exponential,
the Matérn-3/2 and ArcCosine with n = 1. Elements of the conditioning set are
marked with the black crosses.

2.1.2.2 Modelling with Gaussian Processes

GPs can be used in probabilistic modelling as priors on some of the model compo-
nents. As mentioned earlier, GPs can be interpreted as distributions over functions;
hence, they are most widely used as priors over functions, mapping the elements of
their index set to random variables. This is very common in discriminative mod-
elling, where one wishes to model observed outcomes based on some context (inputs).
In this setting, the inputs are regarded as elements of the index set and the function,
mapping the inputs to the outcomes, is modelled as a GP.

Consider the non-linear setting in (2.13) in Section 2.1.1.2. Instead of pa-
rameterising Φ(·) by W, one can specify it non-parameterically by placing a GP
prior on the mapping from X to ν and considering X as the index, i.e.,

ν = Φ(X), Φ(X) ∼ GP(m(·), k(·, ·)). (2.21)

Example: Gaussian process regression Let Y = (y1, . . . ,yN)ᵀ ∈ RN×Dout be
the matrix representing Dout-dimensional i.i.d Gaussian observations corresponding
to the X = (x1, . . . ,xN)ᵀ ∈ RN×Din inputs that are organised in a design matrix.
One can model the relationship between X and Y as

Y = f(X) + ε, ε ∼ N (0, σ2IN). (2.22)

Assuming a GP prior on the mapping f , i.e., f(·) ∼ GP(m(·), k(·, ·)), one can then
write its realisation at X as a multivariate Gaussian, F := f(X) ∼ N (m(X), k(X,X))
and the joint model can be written as

p(Y,F) = p(Y |F)p(F), (2.23)

18

Chapter 2: The Fundamentals of Probabilistic Machine Learning

with P (Y |F) = N (F, σ2IN) and p(F) = N (m(X), k(X,X)).
More generally, GPs can be used in discriminative tasks to model input-

varying parameters of the likelihood and applying the correct link function,e.g.,
Gaussian process classification, Log-Gaussian Cox processes.

It is important to note that GPs are not only restricted to discriminative
probabilistic models. For instance, one can easily place a prior on the index X in
(2.21) to obtain a generative model known as the Gaussian Process Latent Variable
Model (GPLVM) [Lawrence, 2005]. Moreover, it is also feasible to envision more
complex probabilistic models where some of the variables are modelled as GPs, e.g.,
a state-space model with GP components [Turner et al., 2010].

2.1.2.3 Deep Gaussian Processes

While GPs offer a flexible, non-parametric prior over functions, they are limited
in expressivity by their marginal Gaussianity assumption and the choice of the
kernel. There is a great host of work that derive more general stochastic processes,
e.g., Student’s t processes [Shah et al., 2014] and Elliptical Processes [B̊ankestad
et al., 2020], and more flexible kernels, e.g., spectral mixture kernels [Wilson and
Adams, 2013] and non-separable kernels [Wang et al., 2020]. However, this type
of prior specification is still somewhat restrictive and is based on rigid modelling
assumptions. Another alternative is to specify a prior as a stochastic process made
by composing multiple Gaussian processes. This is known as a Deep Gaussian
Process (DGP) prior [Damianou and Lawrence, 2013]. Again, recall the non-linear
setting in (2.13), one can set a DGP prior on Φ by assuming

ν = Φ(X) = ϕL(ϕL−1(. . . ϕ1(X))), (2.24)

with
ϕl(·) ∼ GP(ml(·), kl(·, ·)), ∀ l ∈ {1, . . . , L}. (2.25)

DGP priors can be used as a drop-in replacement to GP priors in any proba-
bilistic model. Although, it is important to note that the result of the DGP compo-
sition is generally not a Gaussian process and forgoes the interpretability that comes
with specifying a GP prior. DGPs retain other properties that make standard GPs
appealing in probabilistic modelling such as their non-parametric construction but
with added flexibility and expressiveness.

Intuition and Examples: As in the case of shallow GPs, DGPs can be seen
as distributions over functions, albeit with different properties to GPs. An intu-

19

Chapter 2: The Fundamentals of Probabilistic Machine Learning

itive way to look at DGPs, is to consider the case of a shallow GP indexed by a
deterministic transformation of the index set. This transformed process is not nec-
essarily Gaussian with respect to the original index set; however, depending on the
applied transformation, it might be able to capture input-to-output relationships
that cannot be modelled with a GP on the original index set. This is similar to a
change of basis in parametric discriminative models, e.g., one can model a quadratic
function in a linear regression setting by transforming the inputs with a quadratic
transformation.

In all but the simplest problems, it is difficult to specify an input trans-
formation that accurately captures the input-to-output relationship. A solution to
this in the parametric case is to use a parameterised adaptive transformation whose
parameters are inferred when fitting the model. While this can also be applied
to the inputs of GPs and can yield expressive priors [Wilson et al., 2016], another
method is to specify this transformation non-parametrically with another GP. The
latter construction forms a two-layer DGP, where the original inputs are stochasti-
cally warped with the first GP and the outputs are modelled as a function of the
transformed inputs with a GP prior. The same reasoning carries over for DGP con-
structions with L layers; however, in this case, the inputs are warped with a DGP
with L− 1 layers.

There are two advantages to this function prior construction. The first ad-
vantage is the additional expressivity it gives. For instance, non-stationary processes
can be constructed by composing stationary GPs into a DGP. The second advan-
tage is the propagation of uncertainty in the warping from the inputs to the outputs.
In most machine learning problems, the input transformation is unknown; hence,
deterministic transformations can overfit to a specific training dataset. DGPs cir-
cumvent that by transforming the inputs stochastically, thus allowing uncertainty
in the transformation to propagate from one layer to the next.

Fig. 2.4, Fig. 2.5 and Fig. 2.6, show draws from zero-mean DGP priors for
different kernels and different number of layers. Notice the qualitative difference in
the draws from the shallow GP case in Fig. 2.2. For instance, the samples from the
Squared Exponential DGP in Fig. 2.4 exhibit non-stationary behaviour. This is no
present in the shallow Squared Exponential GP in Fig. 2.2.

An interesting property seen in Fig. 2.4, Fig. 2.5 and Fig. 2.6, is the degen-
eracy of the DGP samples with the number of layers. This is a known issue in these
types of models [Duvenaud et al., 2014] that can be avoided by using the identity
mean function [Salimbeni and Deisenroth, 2017], or by introducing skip connections

20

Chapter 2: The Fundamentals of Probabilistic Machine Learning

4 2 0 2 4

1

0

1

2

f(
)

Squared Exponential 2-layer DGP

4 2 0 2 4

2

1

0

1

f(
)

Squared Exponential 3-layer DGP

4 2 0 2 4

2

1

0

1

f(
)

Squared Exponential 4-layer DGP

4 2 0 2 4
2

1

0

1

2

f(
)

Squared Exponential 5-layer DGP

Figure 2.4: Samples from 4 Squared Exponential DGPs with different numbers of
layers.

from the inputs to each layer [Neal, 1996; Duvenaud et al., 2014].

21

Chapter 2: The Fundamentals of Probabilistic Machine Learning

4 2 0 2 4

2

1

0

1

2

f(
)

Matérn-3/2 2-layer DGP

4 2 0 2 4

2

1

0

1

2

f(
)

Matérn-3/2 3-layer DGP

4 2 0 2 4

1

0

1

f(
)

Matérn-3/2 4-layer DGP

4 2 0 2 4
2

1

0

1

2

f(
)

Matérn-3/2 5-layer DGP

Figure 2.5: Samples from 4 Matérn-3/2 DGPs with different numbers of layers.

4 2 0 2 4

2

0

2

4

6

f(
)

ArcCosine 2-layer DGP

4 2 0 2 4

0

5

10

15

f(
)

ArcCosine 3-layer DGP

4 2 0 2 4

0

5

10

15

f(
)

ArcCosine 4-layer DGP

4 2 0 2 4

20

10

0

f(
)

ArcCosine 5-layer DGP

Figure 2.6: Samples from 4 ArcCosine DGPs with different numbers of layers.

22

Chapter 2: The Fundamentals of Probabilistic Machine Learning

2.2 Inference

Inference is the mechanism in which a modeller reasons about the plausible values
of the latent variables in a probabilistic model. Computationally, this manifests
in calculating the posterior distribution, p(x |y). The full posterior distribution
describes the uncertainty in the values of the latent variables and allows the modeller
to make decisions based on those values. This section delves into the topic of
inference in probabilistic models. In particular, it focuses on Bayesian inference
and some of its approximations. It introduces inference tools that are necessary for
the rest of this thesis.

2.2.1 Bayes’s Rule and the Difficulty of Bayesian Inference

The posterior can be easily derived by using by Bayes’s Rule,

p(x |y) = p(y |x)p(x)
p(y) . (2.26)

As the name suggests, Bayes’s rule was first conceived by the Reverend Thomas
Bayes and was published postmortem by Richard Price in 1763 [Bayes, 1763]. How-
ever, its current mathematical form is attributed to Pierre-Simon Laplace [Laplace,
1820].

Bayes’s rule is a simple application of the sum, product and conditioning
rules of probability; however, its interpretation is far-reaching. Bayes’s rule pro-
vides a consistent method with which an agent can update its beliefs: an agent
updates its prior beliefs about some proposition, by observing data that relate to
this proposition. It is important to emphasise that the agent updates its prior beliefs
after seeing evidence; it does not discard them or replace them with other beliefs.

Mathematically, the agent’s prior beliefs are encoded in the prior, p(x), and
its observations in the likelihood, p(y |x). The two are combined into the posterior
p(x |y) which represents the agent’s updated beliefs.

Mechanistically, one can also view Bayes’s rule as a filtering process. In
this context, the likelihood acts as a filter which only allows propositions that are
consistent with the observed data. The prior is filtered through the likelihood to
obtain the posterior.

While the above views provide an intuitive understanding of Bayes’s rule in
(2.26), they omit one technical ingredient. The normaliser p(y) ensures that the
posterior p(x |y) is a normalised probability distribution, i.e., it integrates to one.
This is an essential ingredient to the application of Bayes’s rule and is, unfortunately,

23

Chapter 2: The Fundamentals of Probabilistic Machine Learning

the source of its computational difficulty.
Note that one can write

p(y) =
∫
p(y |x)p(x) dx, (2.27)

for continuous latent variables or p(y) = ∑
i p(y |xi)p(xi) for discrete latent vari-

ables. This provides a conceptually easy way to computing the normalising constant;
however, computationally this can be prohibitive since the integral in (2.27) is sel-
dom tractable except for the simplest models5. For this reason, one usually evaluates
Bayes’s rule approximately, either analytically, e.g., with Laplace’s approximation,
or numerically, e.g., with Monte Carlo methods or Variational Inference.

Finally, an important property of Bayes’s rule is that it is continuously ap-
plicable. Imagine the agent has access to two conditionally independent pieces of
information (i.e., observed data) y1 and y2. These data are observed sequentially,
where the agent observes y1 first, and consequently y2 at a later point in time.
Bayes’s rule is applicable at any time period and for any prior information; hence,
the agent can either wait until it observes all the information and then updates its
prior beliefs, or it can update its beliefs after observing y1 and then use the posterior
p(x |y1) as a prior when observing y2. This is shown below

p(x |y1,y2) = p(y1,y2 |x)p(x)
p(y1,y2)

= p(y2 |x)p(y1 |x)p(x)
p(y2 |y1)p(y1)

= p(y2 |x)p(x |y1)
p(y2 |y1)

= p(y2 |x)p(x |y1)p(x)∫
p(y2 |x)p(x |y1) dx. (2.28)

2.2.2 Inference versus Learning

In probabilistic machine learning, it is important to make the distinction between
inference and learning. As explained before, inference refers to the concept of fitting
the model to observed data by computing the posterior. This concept is similar to
how learning is viewed in classical machine learning, where the term refers to fitting
the model to training data. In contrast, the concept of learning in probabilistic
machine learning is more nuanced. It refers to estimating the values of the hyper-

5In a similar vein, for discrete problems the equivalent sum can be very expensive for high-
dimensional state-spaces as it scales exponentially with dimension.

24

Chapter 2: The Fundamentals of Probabilistic Machine Learning

parameters (nuisance parameters) of the probabilistic model (see Section 2.1 for
definition) from the available data.

Hyper-parameters index a set of models; hence, the problem of learning is
equivalent to that of model selection6. Consider two different probabilistic models
pθ(x,y) and pρ(x,y) that are indexed by two different sets of hyper-parameters
θ and ρ respectively. This can also be equivalently written by explicitly con-
ditioning the random variables on the model, i.e., pθ(x,y) ≡ p(x,y |Mθ) and
pρ(x,y) ≡ p(x,y |Mρ), where Mθ and Mρ represent the model indexed by the
hyper-parameters.

In the absence of knowledge about which model to choose, a reasonable
criterion is to pick the model with the higher probability given the data, i.e.,

M? = arg max
{Mθ ,Mρ}

(p(Mθ |y), p(Mρ |y)). (2.29)

One can make this selection with the odds ratio, i.e., choose Mθ if p(Mθ |y)
p(Mρ |y) ≥ 1,

otherwise chooseMρ. While the above gives an intuitive criterion to choose between
models, in practice it can be intractable to compute the model posterior odds as it
requires another application of Bayes’s rule. However, one can reduce this task to a
simpler one by noting that

p(Mθ |y)
p(Mρ |y) = p(y |Mθ)p(Mθ)

p(y) /
p(y |Mρ)p(Mρ)

p(y)

= p(y |Mθ)p(Mθ)
p(y |Mρ)p(Mρ) , (2.30)

where p(y |Mθ) =
∫
p(y |x,Mθ)p(x |Mθ) dx ≡

∫
pθ(y |x)pθ(x) dx = pθ(y) and

equivalently for Mρ. Notice that (2.30) rewrites the model posterior odds ratio as
the ratio of model likelihoods multiplied by the ratio of the model priors. Further-
more, note that the model likelihood is nothing but the marginal likelihood in (2.27)
under this specific model that appears in Bayes’s rule in (2.26). Assuming that the
two models are apriori equally likely, one can see that learning can be performed by
comparing the marginal likelihood - which is also referred to as the model evidence

6It is worth noting that this is not a universal view on model selection. Some literature differen-
tiates between model selection, and hyper-parameter tuning (also known as parameter estimation
or as system identification). In this view, model selection refers to a discrete choice between com-
peting models that are structurally different from each other; whereas, hyper-parameter tuning is
viewed as a second level inference problem that uses maximum likelihood on a continuous set of
variables. This thesis considers both problems as model selection (learning) problems, since both
problems are addressed using the mechanism of the model evidence [MacKay, 2002]. The view
adopted in this thesis is advocated in Rasmussen and Williams [2006].

25

Chapter 2: The Fundamentals of Probabilistic Machine Learning

due to this property - of one model versus the other.
In case of multiple models are under consideration, one can extend this cri-

terion by simply choosing the model with the highest marginal-likelihood, under
the assumption of uniformly distributed models. This is known as model evidence
maximisation or type-II maximum likelihood. It also holds if the space of mod-
els is continuous, where one can maximise the parameterised marginal likelihood
analytically or numerically.

Finally, one can also adopt a Bayesian treatment for the learning problem
by explicitly computing the model posterior via some inference methods and then
averaging over the different models weighted by their posterior probability.

2.3 Variational Inference

Variational Inference (VI) is one of the most widely used approximate Bayesian
inference schemes in machine learning. In general, VI approximates probability
densities through optimisation [Blei et al., 2017]. In the specific case of Bayesian
inference, VI is used to find an approximation to the probability density of the
posterior distribution. More explicitly, the standard VI procedure for approximate
Bayesian inference aims at finding a probability density that minimises a discrepancy
between itself and the true posterior density. This, of course, is an arduous task,
unless the approximating density is restricted to be a member of an “easy-to-work-
with” family.

2.3.1 The Mathematical Formulation of VI

VI aims to approximate the true posterior density p(x |y) with a simpler density
q(x), such that a certain measure of discrepancy D between the two densities is
minimised, i.e.,

q?(x) = arg min
q∈Q

D(q(x) ‖ p(x |y)), (2.31)

where Q denotes a family of densities. In most settings, D is set to be a statistical
divergence 7, in particular, the Kullback-Leibler (KL) divergence defined as:

KL (q ‖ p) =
∫
X
q log q

p
dµ, (2.32)

7A statistical divergence or contrast functional is a function D(· ‖ ·) : S × S → R over the
product space S × S of densities with common support such that 1) D(q ‖ p) ≥ 0, ∀ q, p ∈ S and
2) D(q ‖ p) = 0 ⇐⇒ q = p [Eguchi et al., 1985]. Note that D is not necessarily symmetric.

26

Chapter 2: The Fundamentals of Probabilistic Machine Learning

where X is the common probability space and µ is a reference measure. In this
thesis, X will be set to the Euclidean space Rn and µ is the Lebesgue measure (or
the counting measure for the case of discrete random variables). The KL diver-
gences between the approximating density and the true posterior with respect to
the Lebesgue measure is written as

KL (q(x) ‖ p(x |y)) =
∫
q(x) log q(x)

p(x) dx, (2.33)

where the integration is over the common support of the two densities. Hence, the
standard variational optimisation problem that gives the VI solution is written as

min
q∈Q

KL (q(x) ‖ p(x |y)) . (2.34)

The objective function in (2.34) cannot be computed exactly since p(x |y) is
unknown (if it was known then the inference problem is already solved!). However,
one can easily formulate an alternative optimisation problem, whose solution coin-
cides with (2.34). Recall that, by Bayes rule p(x |y) = p(y |x)p(x)

p(y) . Substituting that
into the KL divergence in (2.34) yields

KL (q(x) ‖ p(x |y)) = KL
(
q(x) ‖ p(y |x)p(x)

p(y)

)
=
∫
q(x) log q(x)

p(y |x)p(x)
p(y)

dx

= log p(y)︸ ︷︷ ︸
Log-marginal likelihood

−
∫
q(x) log p(y |x)p(x)

q(x) dx︸ ︷︷ ︸
Evidence Lower Bound

. (2.35)

The first term on the right-hand side of (2.35) is the logarithm of the marginal
likelihood (also known as the evidence) and the second term is called the Evidence
Lower Bound (ELBO), since it lower bounds the evidence term due to the non-
negativity of the KL divergence on the left-hand side. Notice the log-marginal
likelihood does not involve the approximate posterior q(x), hence it can be discarded
from the optimisation problem. Consequently, the VI problem can be rewritten as
the minimisation of the negative ELBO, i.e.

q?(x) = arg min
q∈Q
−ELBO(q). (2.36)

Note that, unlike (2.34), the objective function in (2.36) is computable. Finally, an

27

Chapter 2: The Fundamentals of Probabilistic Machine Learning

alternative for the ELBO can be written as

ELBO(q) =
∫
q(x) log p(y |x)p(x)

q(x) dx

=
∫
q(x) log p(y |x)−

∫
q(x) log q(x)

p(x) dx

= Eq(x)[log p(y |x)]︸ ︷︷ ︸
Expected log-likelihood

−KL (q(x) ‖ p(x))︸ ︷︷ ︸
KL regulariser

. (2.37)

The form of the ELBO in (2.37) offers an alternative view on the VI problem, where
it could be understood under the lens of empirical loss minimisation, albeit in the
space of measures rather than parameters [Zellner, 1988]. The optimisation problem
in VI trades-off the fit to the observed data encoded in the expected log-likelihood
term with fidelity to the prior in the KL regulariser term.

2.3.2 Flavours of Approximate Posterior Families for Variational
Inference

In general, it is possible to obtain the exact posterior as a solution to the VI problem
if the family Q is set to all probability measures P [Zellner, 1988]. This choice,
however, is usually computationally infeasible and one sets Q ⊂ P to avoid this
intractability. This introduces bias to the inference problem but at the trade-off
of computational tractability and lower variance (e.g., compared to Monte Carlo
methods). This section will briefly discuss choices of Q that are commonly used in
probabilistic machine learning applications.

2.3.2.1 The Mean-field Approximating Family

The simplest choice for the approximating family Q is to assume that the latent
space has an independence structure a posteriori and set Q to be the family of
all distributions that adheres to this independence structure [Bishop, 2006]. More
concretely, if the latent variable x can be partitioned into P disjoint elements, i.e.,
x = [x1, · · · ,xP], one can assume that the approximate posterior factorises with
respect to these groups such that

q(x) =
P∏
i=1

qi(xi). (2.38)

28

Chapter 2: The Fundamentals of Probabilistic Machine Learning

This choice is known as the mean-field approximating family and leads to the fol-
lowing local solution for each of the factors under the mean-filed assumption

q?i (xi) ∝ exp
(
Eq−i(x)[log p(y,x)]

)
, (2.39)

where q−i(x) = ∏
j 6=i∧j∈{1,··· ,P} qj(xj). Note that the solution in (2.39) is not a

global solution to the VI problem as it assumes all the factors other than i are fixed.
However, one can still use this solution as an update step to a coordinate descent
algorithm that minimises the negative ELBO, by cycling through the factors and
iteratively updating each at a time [Bishop, 2006; Blei et al., 2017]. In this case,
convergence to a local optimum is guaranteed as the ELBO is convex with respect
to each of the factors qi(xi) [Boyd and Vandenberghe, 2004; Bishop, 2006].

2.3.2.2 Parameterised Approximations

Another option for restricting the variational family Q is to specify a functional
form for q(x) parameterised by a set of variational parameters φ ∈ Φ, which will
be denoted as qφ(x). In this case, the ELBO can be written as a function of the
variational parameters, i.e., ELBO(qφ) =: ELBO(φ), and the optimisation can
be performed in the parameter space. This reduces the variational optimisation
problem into a standard parametric optimisation problem, where many off-the-shelf
optimisers can be used to optimise the ELBO. This is particularly appealing when
the gradients of the ELBO w.r.t. φ are available, which enables using gradient-based
optimisation algorithms. However, one needs to be careful when using this family
as the choice of parameterisation can have a significant effect on the VI solution
[Gorinova et al., 2020].

One can also employ the mean-field assumption in conjunction with the pa-
rameterised approximations to simplify the objective function and reduce the num-
ber of parameters.

2.3.2.3 Amortised Approximations

In the case of latent variable models, the interest is usually in the marginals of the
latent variables per observation point. In this case, it is advantageous to parame-
terise the approximate posterior marginals with a function of the observables. For
a latent variable xn associated with an observation yn, the approximate posterior
marginal can be written as

qn(xn) = qfφ(yn)(xn), (2.40)

29

Chapter 2: The Fundamentals of Probabilistic Machine Learning

where fφ(·) is a function of the observables that is parameterised by φ and outputs
the parameters of qn. A standard example of this family of approximations is a
Gaussian marginal whose mean vector and covariance matrix are the outputs of a
neural network [Kingma and Welling, 2014]. One typically assumes a mean-field
factorisation for the full-approximate posterior such that

q({xn}Nn=1) =
N∏
n=1

qn(xn) =
N∏
n=1

qfφ(yn)(xn). (2.41)

The main benefit in this type of approximations over free-form mean-field approxi-
mations is scalability in the number of data points, where the number of variational
parameters is fixed and independent of the size of the dataset. As such, this type of
approximations are known as amortised approximations [Gershman and Goodman,
2014; Rezende et al., 2014; Kingma et al., 2015]. Another advantage for this family
is that it enables obtaining reasonable guesses for posterior marginals of the latents
corresponding to unseen data, where one can simply evaluate the parameterising
function on new data points to obtain the posterior marginals of their latents.

While this type of approximation provides significant gains in computation,
it is not as expressive as the free-form approximations. This is mainly due to the
limited capacity of the amortising function fφ(·) [Cremer et al., 2018]. The dif-
ference in expressiveness between the free-form approximations and the amortised
approximations is known as the amortisation gap, which reduces as the capacity of
fφ(·) increases.

2.3.3 Optimising the Variational Objective

When a mean-field factorisation is assumed with free-form distributions, it is pos-
sible to optimise the ELBO by performing the coordinate updates in (2.39) and
cycling through the factors as discussed in Section 2.3.2.1. For exponential-family
conditional models, the optimal local coordinate descent update will be in the same
family and can be written as an update in parameters of the corresponding expo-
nential family form [Ghahramani and Beal, 2000]. Note that in the general case,
there are no guarantees on the convexity of the ELBO, even when a mean-field
factorisation is assumed. Consequently, the coordinate descent updates, as well as
other methods that will be presented later, are only guaranteed to arrive at a local
optimum.

For the general parameterised case, including amortised approximations, one
can optimise the ELBO by following its gradient with respect to the variational

30

Chapter 2: The Fundamentals of Probabilistic Machine Learning

parameters. Like many parametric optimisation problems, VI can be solved with
gradient-based methods such as Gradient Descent, Quasi-Newton, etc. The challenge
in this case is to compute or estimate the gradient of the ELBO. The rest of this
section will explore some of the techniques that are used to compute this gradient.

2.3.3.1 Closed-form gradients and automatic differentiation

Closed-form gradients can be obtained by analytically computing the expectations
in (2.37) and differentiating with respect to the variational parameters. In the early
days of VI, the ELBO gradient was computed analytically and the user had to im-
plement it in code to be able to perform the optimisation. However, more recently,
automatic differentiation has been used to automate this task, where the user only
implements the objective function (after analytically computing the expectations)
as a computational graph and the automatic differentiation engine outputs the gra-
dient [Kucukelbir et al., 2017]. The applications of VI in this thesis generally use
automatic differentiation to obtain the gradient.

2.3.3.2 Mini-batching and stochastic gradients

Large datasets create computational problems for inference algorithms in general
due to the requirements to process the entire dataset to make inferential queries.
Standard VI suffers from the same problem where the computation of the expected
log-likelihood term becomes prohibitive for large datasets. Stochastic Variational
Inference (SVI) [Hoffman et al., 2013], presents a solution to this problem, using
a stochastic estimate of the gradient from data subsamples. Consequently, the
gradient estimate is used in a (stochastic) gradient-based optimiser to optimise the
ELBO.

Let y = [y1, · · · ,yN] denote a dataset of N points. For independently and
identically distributed data, the joint distribution factorises as p(y,x) = p(x)∏N

n=1 p(yn |x)
(or p(y,x) = ∏N

n=1 p(yn |xn)p(xn) in the case of latent variable models that assume
prior independence). Substituting this form into the ELBO in (2.35) (or (2.37)) de-

31

Chapter 2: The Fundamentals of Probabilistic Machine Learning

composes its expression into a sum of terms each corresponding a single data-point,

ELBO(φ) =
∫
qφ(x) log

N∏
n=1

p(yn |x)p(x)
qφ(x) dx

=
N∑
n=1

∫
qφ(x) log p(yn |x)p(x)

qφ(x) dx

=
N∑
n=1

Eqφ(x)

[
log p(yn |x)p(x)

qφ(x)

]
. (2.42)

Cheap estimates of the ELBO gradient can be obtained by sub-sampling the dataset.
Let B ⊂ {1, · · · , N} be a random subset of indices, then the gradient of the ELBO
can be estimated as

∇φELBO(φ) ≈ N

|B|
∑
b∈B
∇φEqφ(x)

[
log p(yb |x)p(x)

qφ(x)

]
. (2.43)

The stochastic gradient in (2.43) can be used to optimise the ELBO by up-
dating the values of the variational parameters φ with Stochastic Gradient Descent
(SGD) [Robbins and Monro, 1951] (or variants such as Adam [Kingma and Ba,
2015]).

Note that for SVI to be applicable, the variational approximation needs to
have global parameters that are not associated with a specific data-point and can
be updated each step. This criterion is satisfied in the amortised parameterisation
case; however, in the general parameterisation case, the model needs to contain
global latent parameters in order for this to hold.

2.3.3.3 Intractable expectations and Monte Carlo gradients

Obtaining the gradient of the ELBO is still possible even if the expectations cannot
be computed in closed-form. One can obtain an unbiased estimate of the ELBO
gradient with Monte Carlo (MC) sampling at the expense of increased variance.
In general, various unbiased MC gradient estimators could be used for the ELBO
gradient (see Mohamed et al. [2020] for a comprehensive overview); however, this
section will only focus on two.

The first estimator is known as the score function estimator or Reinforce

32

Chapter 2: The Fundamentals of Probabilistic Machine Learning

[Williams, 1992] and can be derived as follows:

∇φELBO(φ) =∇φEqφ(x)

[
log p(y |x)p(x)

qφ(x)

]
= ∇φ

∫
qφ(x) log p(y |x)p(x)

qφ(x) dx

=
∫
∇φ

[
qφ(x) log p(y |x)p(x)

qφ(x)

]
dx

=
∫

(∇φqφ(x)) log p(y |x)p(x)
qφ(x) dx +

∫
qφ(x)∇φ log p(y |x)p(x)

qφ(x) dx

=
∫
qφ(x)∇φqφ(x)

qφ(x) log p(y |x)p(x)
qφ(x) dx−

∫
qφ(x)∇φ log qφ(x) dx

(2.44)

=Eqφ(x)

[
(∇φqφ(x)) log p(y |x)p(x)

qφ(x)

]
, (2.45)

where one can arrive at (2.45) from (2.44) by noting that ∇φ log qφ(x) = ∇φqφ(x)
qφ(x) for

the first term, and
∫
qφ(x)∇φ log qφ(x) dx =

∫
∇φqφ(x) dx = ∇φ

∫
qφ(x) dx = 0.

Exchanging the derivatives and integrals is allowed by the dominated convergence
theorem [Capinski and Kopp, 2013].

One can estimate the expression in (2.45) using MC sampling to arrive at
the score function estimator,

ĝReinforce(φ) := 1
S

S∑
s=1

(
∇φqφ(x(s))

)
log p(y |x

(s))p(x(s))
qφ(x(s))

, x(s) i.i.d.∼ qφ(x).

(2.46)
The score function estimator usually has a high variance [Mohamed et al.,

2020]; however, it is still an appealing choice as it is general purpose and does not
require p(y |x) to be differentiable.

The second estimator is known as the reparameterisation estimator or the
pathwise estimator [Rezende et al., 2014; Kingma et al., 2015; Titsias and Lázaro-
Gredilla, 2014]. The reparameterisation estimator is applicable to continuous ran-
dom variables that can be generated by pushing a base randomness through a differ-
entiable function. For a parametric differentiable map Tφ(·), the reparameterisation
estimator with respect to φ exists if

x ∼ qφ(x) ≡ x = Tφ(ε), ε ∼ q(ε), (2.47)

where q(ε) is a base distribution that does not depend on φ. The procedure on the
right-hand side of the equivalence relation in (2.47) is know as the sampling path
of x. If this parametric sampling path exists then, by the Law of the Unconscious

33

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Statistician [Grimmett and Stirzaker, 2001], one can write the ELBO gradient as

∇φELBO(φ) =∇φEqφ(x)

[
log p(y |x)p(x)

qφ(x)

]
= ∇φEq(ε)

[
log p(y | Tφ(ε))p(Tφ(ε))

qφ(Tφ(ε))

]

=Eq(ε)

[
∇φ log p(y | Tφ(ε))p(Tφ(ε))

qφ(Tφ(ε))

]
, (2.48)

where exchanging the derivatives and integrals is again allowed by the dominated
convergence theorem.

The expression in (2.48) gives rise to the reparameterisation estimator for
the ELBO gradient given as

ĝreparam(φ) := 1
S

S∑
s=1
∇φ log p(y | Tφ(ε(s)))p(Tφ(ε(s)))

qφ(Tφ(ε(s)))
, ε(s) i.i.d.∼ q(ε). (2.49)

The reparameterisation estimator is unbiased and typically exhibits less vari-
ance than the score function estimator. Unfortunately, this type of estimators is not
general-purpose as it requires a differentiable sampling path, as well as a differen-
tiable likelihood p(y |x). This means that it is only applicable to continuous latent
variables since discrete variables do not admit a differentiable sampling path. How-
ever, some work has been done on deriving continuous relaxations for the discrete
case at the expense of introducing bias to the estimator [Maddison et al., 2017; Jang
et al., 2017].

2.4 Inference in Gaussian Process Models

Inference in models containing GPs can be more slightly more challenging than in
the parametric case. Since GPs are by definition stochastic processes, one is usually
interested in obtaining the posterior distribution over the entire process rather than
its finite realisation. Fortunately, one can use the marginalisation and conditioning
properties of GPs presented in Section 2.1.2.1 to aid in this endeavour. the following
explores inference in models involving GPs and DGPs.

2.4.1 Exact Inference in Gaussian Process Regression

Recall the GP regression setting of Section 2.1.2.2, where from (2.22) and (2.23) one
can write

p(Y,F) = N (m(X), k(X,X)). (2.50)

34

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Now consider another point in the process f∗ corresponding to the index x∗, one
can write the joint as

p(Y,F, f∗) = N
([

m(X)
m(x∗)

]
,

[
k(X,X) + σ2IN k(X,x∗)

k(x∗,X) k(x∗,x∗)

])
. (2.51)

One can then use the Gaussian identities to obtain a conditional distribution
on Y, i.e.,

p(F, f∗ |Y) = N (µpost,Σpost), (2.52)

where,

µpost = m(Xaug) + k(Xaug,X)(k(X,X) + σ2IN)−1Y, (2.53)

Σpost = k(Xaug,Xaug)− k(Xaug,X)
(
k(X,X) + σ2IN

)−1
k(X,Xaug), (2.54)

and Xaug :=
[
X
x∗

]
. The distribution in (2.52) is the posterior distribution of a

finite realisation of the process f∗ given the data Y . Notice that this is also a finite
marginal of another GP which, by Kolmogorov’s extension theorem, is given as
GP(mpost(·), kpost(·, ·)), where

mpost(·) = m(·) + k(·,X)(k(X,X) + σ2IN)−1Y), (2.55)

kpost(·, ·) = k(·, ·)− k(·,X)
(
k(X,X) + σ2IN

)−1
k(X, ·). (2.56)

Finally, going back to (2.50), one can obtain the marginal likelihood of this
model by integrating out the latent variables F,

p(Y) =
∫
p(Y,F) dF = N (m(X), k(X,X) + σ2IN). (2.57)

As explained in Section 2.2.2, the marginal likelihood in (2.57) can be used to learn
the hyper-parameters of the model such as the kernel parameters and the mean
function.

2.4.2 Sparse Variational Inference in Gaussian Process Model

Exact inference and learning in GP models is computationally expensive, since eval-
uating the posterior and the marginal likelihood is O(N3) where N is the number of
observations, i.e., number of rows of Y. Furthermore, exact inference is intractable
for non-conjugate models, leaving only a very small host of problems where GP

35

Chapter 2: The Fundamentals of Probabilistic Machine Learning

posteriors could be computed exactly. There is a large body of work that deals with
the problem of intractability by approximating the posterior using different meth-
ods such as Laplace’s approximation, Variational Inference, Expectation Propaga-
tion [Rasmussen and Williams, 2006], Markov Chain Monte Carlo approximations
[Filippone et al., 2013], etc.

For the problem of scalability, by far the most popular solution is Sparse
Approximations, which aim to reduce the size of the problem by performing inference
on a subset of the latent variables and, consequently, conditioning on them [Snelson
and Ghahramani, 2005; Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009].
Most of this work is interpreted as an approximation to the model rather than to the
posterior [Quiñonero-Candela and Rasmussen, 2005], with one notable exception:
the sparse variational inference framework for GPs. This framework approximates
the posterior process with a sparse approximation using variational inference to
not only improve the scalability of the inference, but to also allow for inference in
non-conjugate models.

Consider a general discriminative GP model specified in Section 2.1.2.2. The
joint model is given by

p(F,Y) = p(Y |F)p(F), (2.58)

where p(Y |F) is a likelihood parameterised by F and p(F) is the marginal of the
GP prior evaluated at the indices X, i.e., p(F) = N (m(X), k(X,X)). The goal of
the inference is to find the posterior measure of the stochastic process given the
data, i.e., p(f(·) |Y). In the exact inference case with conjugate likelihoods (see
Section 2.4.1) this was arrived at by using a Kolmogorov’s extension theorem ar-
gument. Unfortunately, for variational inference (see Section 2.3), this argument
does not hold as approximating the marginals with VI and then extending them
to a stochastic process might not yield a principled approximation to the posterior
process. Therefore, one needs to directly approximate the posterior process rather
than its marginals. In the VI setting, this requires defining the KL-divergence be-
tween stochastic processes rather than densities. This is not straightforward since
an infinite-dimensional analogue to the Lebesgue measure that dominates the true
and approximating posterior measures does not exist. Therefore, more sophisticated
mathematical machinery is required to define the KL-divergence between stochas-
tic processes. Unfortunately, this is beyond the scope of this thesis; however, the
interested reader is referred to Matthews et al. [2016] for an in-depth treatment for
this problem. The rest of this section sketches the variational approximation for the
finite marginals of the posterior process, noting that the results carry over mutatis
mutandis to the infinite-dimensional case using the arguments in Matthews et al.

36

Chapter 2: The Fundamentals of Probabilistic Machine Learning

[2016].

The Sparse Variational Approximation Consider the target posterior density
p(F∗,F |Y), where F∗ denotes a finite set of function values corresponding to in-

dices in the set X∗. Also consider a further partition into two sets, F∗ =
[
F∗\−

F̄

]
,

where F̄ are M function values corresponding to indices in the set Z. The ele-
ments of Z are referred to as the inducing locations or inducing inputs and F̄ are
called the inducing variables. One can think of F∗ as a very large set of func-
tion values that are of interest in prediction; however, it needs to be stressed that
this set is finite and does not represent the whole process. One can use VI to
approximate p(F∗,F |Y) = p(F∗\−, F̄,F |Y) by another density q(F∗\−, F̄,F) :=
p(F∗\−,F | F̄)q(F̄), where p(F∗\−,F | F̄) is posited to be the marginal of a con-
ditional GP (cf. (2.16) & (2.17)) and q(F̄) = N (m,S) is a free-form Gaussian
density.

Consequently, one can perform VI by minimising the KL divergence from the
true posterior p(F∗\−, F̄,F |Y) to its approximation q(F∗\−, F̄ ,F), which is given
as

KL
(
q(F∗\−, F̄,F) ‖ p(F∗\−, F̄,F |Y)

)
=
∫
q(F∗\−, F̄,F) log q(F∗\−, F̄,F)

p(F∗\−, F̄,F |Y)
dF∗\− dF̄ dF (2.59)

=
∫
p(F∗\−,F | F̄)q(F̄) log p(F∗\−,F | F̄)q(F̄)p(Y)

p(F∗\−,F | F̄)p(F̄)p(Y |F)
dF∗\− dF̄ dF (2.60)

=
∫
p(F∗\−,F | F̄)q(F̄) log q(F̄)p(Y)

p(F̄)p(Y |F)
dF∗\− dF̄ dF (2.61)

= −
∫
p(F | F̄)q(F̄) log p(Y |F) dF̄ dF +

∫
q(F̄) log q(F̄)

p(F̄)
dF̄ + log p(Y) (2.62)

= −Eq(F)[log p(Y |F)] + KL
(
q(F̄) ‖ p(F̄)

)
︸ ︷︷ ︸

Negative ELBO

+ log p(Y)︸ ︷︷ ︸
Log-marginal likelihood

, (2.63)

where the factorisation of the true posterior in (2.60) is possible by assuming that
F is sufficient for Y and q(F) over which the expectation term is taken is q(F) =∫
p(F | F̄)q(F̄) dF̄ = N (µ,Σ), where

µ = m(X) + k(X,Z)k(Z,Z)−1(m−m(Z)), (2.64)

Σ = k(X,X)− k(X,Z)k(Z,Z)−1(k(Z,Z)− S)k(Z,Z)−1k(Z,X). (2.65)

37

Chapter 2: The Fundamentals of Probabilistic Machine Learning

As noted before, while this derivation is applied to the finite case, the form
of KL-divergence between the approximating process and the true posterior pro-
cess still reduces to (2.63)[Matthews et al., 2016]. For the infinite dimensional
case, the distribution of the approximating processes is given as q(f(·), F̄,F) =
p(f(·) | F̄)p(F | F̄)q(F̄), where p(f(·) | F̄) is the GP conditional defined in (2.16) and
(2.17) and conditioned on Z.

The ELBO term in (2.63) is parameterised by the variational parameters
m and S, as well as by the inducing locations Z. These can be jointly optimised
using numerical optimisation methods such as LBFG-S [Nocedal and Wright, 2000].
Alternatively, in the case of GP regression with Gaussian noise, the ELBO can be
optimised in closed form with respect to m and S leaving only Z for numerical
optimisation [Titsias, 2009]. In both situations, inference is reduced from O(N3) to
O(NM2) for a single output dimension. Furthermore, it is also possible to apply SVI
(cf. Section 2.3.3) to this ELBO by mini-batching the data, which reduced the cost
of inference to O(|B|M2), where |B| is the size of the mini-batch. However, in this
case, the only way to optimise the ELBO is through stochastic numerical algorithms,
such as SGD [Hensman et al., 2013]. Finally, computing the expectation term in
(2.63) exactly is only possible for certain likelihoods such as the Gaussian or the
Poisson; therefore, one can use numerical solutions, such as sampling and quadrature
[Hensman et al., 2015], to compute this term.

2.4.3 Inference in Deep Gaussian Process Models

Inference in DGPs (see Section 2.1.2.3) is harder than in GPs due to their composi-
tional formulation. For instance, exact inference is not possible even in the Gaussian
likelihood case due to the non-linearity in the kernels [Damianou and Lawrence,
2013]. While there are many formulations for approximate inference in DGP mod-
els [Bui et al., 2016; Cutajar et al., 2017; Havasi et al., 2018], this thesis focuses
on one particular method based on the sparse variational approximation, known as
the doubly stochastic sparse variational approximation [Salimbeni and Deisenroth,
2017].

Consider a discriminative DGP model with L layers with the following joint
model,

p({Fl}Ll=1,Y) = p(Y |FL)
(

L∏
l=2

p(Fl |Fl−1)
)
p(F1), (2.66)

where p(Y |FL) is a likelihood parameterised by the function values of the final layer
FL, p(Fl |Fl−1) are the marginals of the GP prior for layer each layer l evaluated

38

Chapter 2: The Fundamentals of Probabilistic Machine Learning

at the previous function values Fl−1, and p(F1) is the marginal of the GP prior for
the first layer evaluated at the indices X.

Similar to the shallow GP case, the goal is to find the distribution of the pos-
terior processes p(f1(·), . . . , fL(·) |Y). For this, consider again the finite marginals
case as in Section 2.4.2, where the process in layer l is represented by a finite set of

points (F∗l,Fl) and F∗l =
[
F∗\−

F̄l

]
. Hence, the posterior can be represented by

p(F∗1,F1, . . . ,F∗L,FL |Y)

= p(F1∗\−, F̄1,F1, . . . ,FL∗\−, F̄L,FL |Y)

= p(Y |FL)r(FL∗\−,FL)p(F̄L) . . . r(F1∗\−,F1)p(F̄1)
p(Y) , (2.67)

where r(Fl∗\−,Fl) = p(Fl∗\−,Fl | F̄l,Fl−1∗\−,Fl−1) is the GP conditional marginal
((2.16) & (2.17)), conditioned on the inducing variables F̄l evaluated at the function
values from the previous layer Fl−1∗\−,Fl−1 (no conditioning for the first layer),
p(F̄l) is the GP marginal prior for layer l at the inducing locations Zl. Note that
this factorisation assumes independent inducing variables between layers, i.e., the
inducing locations are not propagated through the GP cascade (Ustyuzhaninov et al.
[2020] relax this assumption).

This posterior can be approximated by the following structured mean-field
density

p(F1∗\−, F̄1,F1, . . . ,FL∗\−, F̄L,FL |Y)

≈ q(F1∗\−, F̄1,F1) . . . q(FL∗\−, F̄L,FL |FL∗\−,FL−1) (2.68)

:= r(F1∗\−,F1)q(F̄1) . . . r(FL∗\−,FL)q(F̄L). (2.69)

As in the shallow case, q(F̄l) = N (ml,Sl) is a free-form Gaussian density.

One can formulate the VI objective by computing the KL-divergence from
(2.69) to (2.67) to yield the ELBO,

ELBO({ml,Sl,Zl}Ll=1) = Eq(FL)[log p(Y |FL)]−
L∑
l=1

KL
(
q(F̄l) ‖ q(F̄l)

)
. (2.70)

The expectation term in (2.70) is intractable since computing q(FL) requires
marginalising all the function values in the previous layer {Fl}Ll=1. However, sam-
pling from it is trivial through ancestral sampling, where each Fl is sampled from

39

Chapter 2: The Fundamentals of Probabilistic Machine Learning

q(Fl) =
∫
p(Fl | F̄l)q(F̄l) dF̄l and fed into the next layer. Since, q(Fl) is Gaussian,

it is possible to construct a reparameterisation estimator for the gradient of (2.70)
with respect to the variational parameters. Consequently, the ELBO can be opti-
mised with gradient-based optimisers such as SGD [Robbins and Monro, 1951] and
Adam [Kingma and Ba, 2015].

It is worth stressing that there are alternative approximate inference formu-
lations for DGPs. Some are based on VI such as Cutajar et al. [2017], where the
weight-space view [Rasmussen and Williams, 2006] is taken to represent the DGP
with basis functions derived by sampling random features from the covariance func-
tion of each layer. Others use alternative approximate inference strategies such as
Markov Chain Monte Carlo methods (MCMC) in Havasi et al. [2018] or Expectation
Propagation (EP) in Bui et al. [2016].

2.5 Sequential Monte Carlo

Monte Carlo (MC) sampling is an alternative method for approximate Bayesian
inference. Instead of approximating the true posterior distribution p(x |y) with
a simpler distribution q(x), one aims at drawing samples from the true posterior,
which are then used to compute the desired quantities; usually expectations of
test functions with respect to the posterior, i.e., Ep(x |y)[ϕ(x)], where ϕ(·) is a test
function.

There are many schemes to draw samples from a target distribution such
as Inversion Sampling, Rejection Sampling, Markov Chain Monte Carlo (MCMC),
Quasi-Monte Carlo (QMC), etc. (cf. Owen [2013]). However, this section deals with
a specific algorithm known as Importance Sampling (IS) and two of its extensions
known as Sequential Importance Sampling (SIS) and Sequential Monte Carlo (SMC).

To simplify notation in this section, the posterior density p(x |y) will be
written as π(x) and, for consistency, the prior density p(x) will be written as π0(x).
Most probabilistic queries involving π(x) can be addressed by computing the ex-
pectation Eπ(x)[ϕ(x)] =

∫
ϕ(x)π(dx), where ϕ(·) is the test function and π(dx)

denotes the posterior measure. Therefore, the following exposition will focus on the
computation of this expectation.

40

Chapter 2: The Fundamentals of Probabilistic Machine Learning

2.5.1 Importance Sampling

When Eπ(x)[ϕ(x)] is unavailable in closed form, the Monte Carlo method allows for
the numerical approximation of this expectation via sampling [Owen, 2013], i.e.

Eπ(x)[ϕ(x)] ≈ 1
N

S∑
s=1

ϕ(x(s)), x(s) ∼ π(x). (2.71)

This turns the problem of integration into the problem of drawing samples
from π(x). Most sampling schemes involve drawing samples from an alternative
distribution, known as the proposal distribution, and consequently transforming the
samples such that they follow the original distribution which is called the target
distribution. Importance Sampling (IS) is one of those schemes. IS involves sampling
from a proposal distribution q(x) and then correcting for the discrepancy between
π(x) and q(x) by weighting those samples [Owen, 2013]. More formally, IS can be
seen as a change of measure procedure on the original expectation, i.e.

Eπ(x)[ϕ(x)] =
∫
ϕ(x)π(dx) (2.72)

=
∫
ϕ(x)π(dx)

q(dx) q(dx) (2.73)

= Eq(x)

[
ϕ(x)π(dx)

q(dx)

]
, (2.74)

where q(dx) denotes the proposal measure and π(dx)
q(dx) is the Radon-Nikodym deriva-

tive of π(dx) w.r.t. q(dx). If both π(dx) and q(dx) are dominated by the Lebesgue
measure (which is assumed throughout this thesis), this derivative can be written
as the ratio of the two densities π(x)

q(x) . Thus, the IS estimate of the expectation is
given by

Eπ(x)[ϕ(x)] = Eq(x)

[
ϕ(x)π(x)

q(x)

]
≈ 1
S

S∑
s=1

ϕ(x(s))π(x(s))
q(x(s))

, x(s) ∼ q(x). (2.75)

The IS estimate in (2.75) assumes that both densities, π(x) and q(x), are
normalised and can be evaluated. However, this is usually not the case in practical
Bayesian inference since the posterior normalising constant is usually unknown.
Hence, the IS estimator needs to be adjusted to take this into account. The Self-
normalised Importance Sampling estimator provides an extension to the IS estimator
that takes into account the absence of the normalising constant at the cost of some
bias [Naesseth et al., 2019]. Let π(x) = Π(x)

Z , where Π(x) = p(y |x) is the joint

41

Chapter 2: The Fundamentals of Probabilistic Machine Learning

distribution and Z = p(y) is the normalising constant which is also the marginal
likelihood. One can write

Eπ(x)[ϕ(x)] = Eq(x)

[
ϕ(x)π(x)

q(x)

]
= 1
Z
Eq(x)

[
ϕ(x)Π(x)

q(x)

]
(2.76)

=
Eq(x)

[
ϕ(x)Π(x)

q(x)

]
Eπ0(x)[p(y |x)] =

Eq(x)
[
ϕ(x)Π(x)

q(x)

]
Eq(x)[Π(x)] , (2.77)

where a change of measure was applied on the normalising constant. Denoting
ω(x) := Π(x)

q(x) and evaluating both expectations with MC, one can arrive at the
Self-normalised IS estimator

Eπ(x)[ϕ(x)] ≈
∑S
s=1 ϕ(x(s))ω(x(s))∑S

s=1 ω(x(s))
, x(s) ∼ q(x). (2.78)

The estimator in (2.78) is slightly biased since it is given as the ratio of two other MC
estimators. However, this is a reasonable trade-off in practice since it provides means
to sample from the posterior distribution without knowledge of the normalising
constant. Furthermore, the quantity 1

S

∑S
s=1 ω(x(s)) provides an estimate of the

marginal likelihood, which is computed for free when evaluating this estimator.
Denoting the normalised weights as w(s) = ω(x(s))

1
S

∑S

s=1 ω(x(s))
, one can write the

approximate posterior density obtained with Self-normalised Importance Sampling
as

π(x) ≈ π̂(x) =
S∑
s=1

w(s)δx(s)(x), (2.79)

where δy(·) denotes the Dirac delta function.
Another way of seeing the estimator in (2.78), is to plug in the approxima-

tion (2.79) into the original expectation and then evaluate the integral in closed
form. This provides an alternative view on importance sampling, where the target
distribution is approximated by a set of particles sampled from the proposal distri-
bution and weighted according to their likelihood. The algorithmic procedure for
this posterior approximation is given in Algorithm 1. Note that for the remainder of
this exposition, the Self-normalised Importance Sampling procedure will be simply
referred to as Importance Sampling (IS).

2.5.2 Sequential Importance Sampling

The effectiveness of IS hinges on the proposal distribution q(x) and proposal design
is an important problem in the IS literature. While there are many ways one can

42

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Algorithm 1 Posterior Approximation with (Self-normalised) Importance Sam-
pling

Input: Observations y, number of samples S, proposal distribution q(x).
Sample: x(s)

t ∼ q(x) . for s = 1 to S.
Weight: w(s) ∝ p(y |x(s))π0(x(s))

q(x(s)) . for s = 1 to S.
Return π̂(x) = ∑S

s=1 w(s)δx(s)(x)

specify a proposal [Naesseth et al., 2019], this section will focus on auto-regressive
designs and the Sequential Importance Sampling (SIS) algorithm [Doucet and Jo-
hansen, 2011]. SIS is a variant of IS that specifies an auto-regressive representation
of the proposal distribution and computes the weights sequentially. In SIS, the
proposal distribution is specified as

qt(x1:t) = qt(xt |x1:t−1)qt−1(x1:t−1), (2.80)

i.e., the proposal distribution decomposes into a sequence of conditional distribu-
tions. Notice that, in SIS the latent variables are now indexed by t. If the problem
is sequential in nature, then the latent variables will admit this indexing; however, if
the interest is in one set of latent variables, e.g., xT , then x1:T−1 could be considered
as auxiliary variables and marginalised out at the end of the sampling procedure
[Naesseth et al., 2019].

Decomposing the proposal as in (2.80), allows for the recursive computation
of the unnormalised importance weights ωt(x) as follows

ωt(x) = Π(x1:t)
qt(x1:t)

(2.81)

= Π(x1:t−1)
qt−1(x1:t−1)

Π(x1:t)
Π(x1:t−1)qt(x |x1:t−1) (2.82)

= ωt−1(x) Π(x1:t)
Π(x1:t−1)qt(x |x1:t−1) . (2.83)

This recursion inspires a sequential version of the IS algorithm, where the weights
are updated according to (2.83). The SIS algorithm for approximating a posterior
distribution is presented in Algorithm 2.

While conceptually elegant, SIS suffers from a major drawback: the variance
of the weights scales unfavourably with the dimension T of the problem [Naesseth
et al., 2019]. This causes weight degeneracy (also known as particle degeneracy), a
phenomenon where a very small set of weights take on very large values while the

43

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Algorithm 2 Posterior Approximation with Sequential Importance Sampling
Input: Observations y, number of samples S, sequence of proposal distributions
{qt(xt |x1:t−1)}Tt=1 with q1(x1 |x1:0) ≡ q1(x1).
for t = 1 to T do

Sample: x(s)
t ∼ qt(xt |x1:t−1) . for s = 1 to S.

Weight: w(s)
t ∝ w(s)

t−1
p(y |x(s)

1:t)π0(x(s)
1:t)

p(y |x(s)
1:t−1)π0(x(s)

1:t−1)q(x(s)
t |x

(s)
1:t−1)

. for s = 1 to S.
end for
Return π̂(x1:T) = ∑S

s=1 w(s)δx(s)
1:T

(x1:T) or π̂(x) = ∑S
s=1 w(s)δx(s)

T

(x)

rest approach zero. This means that the approximation to the target distribution
is effectively represented by a very small set of particles. The next section discusses
Sequential Monte Carlo algorithms which are designed to alleviate this problem.

2.5.3 Sequential Monte Carlo & Particle Filtering

Sequential Monte Carlo (SMC) methods are a family of sampling algorithms that
extend SIS and are designed to mitigate the problem of particle degeneracy that
SIS suffers from. The key innovation in SMC methods is the use of smart proposals
that take into account information from the intermediate target distributions. More
concretely, the SMC proposal distribution at time t is given as

qt(x1:t) = qt(xt |x1:t−1)πt−1(x1:t−1) (2.84)

≈ qt(xt |x1:t−1)π̂t−1(x1:t−1). (2.85)

This is contrasted with the SIS proposal in (2.80) which does not use information
from the previous target.

In practice, the proposal alteration in (2.85) reduces to an extra sampling
step where the particles at time t − 1 are resampled according to their weights
then propagated to the next iteration t. By convention, this thesis will execute the
resampling step at the end of the iteration.

The resampling step can also be viewed from the perspective of evolutionary
algorithms, where particles with high fitness (large weights) have a higher probability
of surviving to the next round and propagating their off-spring than particles with
low weights. This view is more intuitive in explaining how SMC algorithms reduce
particle degeneracy.

44

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Algorithm 3 Posterior Approximation with Sequential Monte Carlo
Input: Observations y, number of samples S, sequence of proposal distributions
{qt(xt |x1:t−1)}Tt=1 with q1(x1 |x1:0) ≡ q1(x1).
for t = 1 to T do

Sample: x̄(s)
t ∼ qt(xt |x1:t−1) . for s = 1 to S.

Weight: w(s)
t ∝

p(y |x(s)
1:t−1,x̄

(s)
t)π0(x(s)

1:t−1,x̄
(s)
t)

p(y |x(s)
1:t−1)π0(x(s)

1:t−1)q(x̄(s)
t |x

(s)
1:t−1)

. for s = 1 to S.

Resample: x(s)
t ∼

∑S
s=1 δx̄(s)

t

(x) . for s = 1 to S.
end for
Return π̂(x1:T) = ∑S

s=1 w(s)δx(s)
1:T

(x1:T) or π̂(x) = ∑S
s=1 w(s)δx(s)

T

(x)

Deploying the SMC proposal in (2.85) yields the following weight update

ωt(x) = Π(x1:t)
qt(x1:t)

(2.86)

= Π(x1:t)
π(x1:t−1)qt(x |x1:t−1) (2.87)

∝ Π(x1:t)
Π(x1:t−1)qt(x |x1:t−1) . (2.88)

The SMC algorithm for approximating the posterior distribution is given in
Algorithm 3. Note that the resampling step in this algorithm is given generically
as multinomial sampling with replacement. In practice, many alternative choices
can help in reducing the variance, e.g., stratified resampling, systematic resampling
and adaptive resampling. Nevertheless, discussion of more sophisticated resampling
schemes is beyond the scope of this thesis.

As a final note, when deployed in the context of general state-space Hidden
Markov Models, SMC algorithms are known as Particle Filters. While some authors
use the two terms synonymously, this thesis makes this distinction clear.

2.6 Generalised Bayesian Inference

Bayesian inference is compelling when the probabilistic model is well-specified, i.e.,
the modeller believes that the observations are generated from one of the likelihood
models that are under consideration. This view is known as the M-closed view
[Bernardo and Smith, 2009]. Under this view the posterior distribution captures all
the uncertainty in the latent variables given the prior and the true model, allowing
the modeller to make optimal decisions. However, in most real-world scenarios the
true model is not possible to consider. If the modeller acknowledges that any model

45

Chapter 2: The Fundamentals of Probabilistic Machine Learning

specification is merely a proxy for the real-world data generating process and that
the purpose of inference is to arrive at the “best” approximate belief distribution to
inform a decision problem, then the modeller is set to be operating in an M-open
perspective [Bernardo and Smith, 2009].

2.6.1 Inference as an Optimisation Problem

In the M-open perspective, one can view inference as an optimisation problem that
minimises a statistical divergence between the assumed likelihood model and the
true data generating mechanism. Indeed, standard Bayesian updating is an instance
of this set-up which minimises the KL-divergence between the assumed likelihood
model and the true data generating mechanism [Zellner, 1988; Bissiri et al., 2016;
Jewson et al., 2018].

More generally, one does not even need to specify a model for the observa-
tions. It is sufficient to only consider a loss-function connecting the latent variables
to the observations and update one’s beliefs about the latent variables accordingly.
This approach is proposed in Bissiri et al. [2016] under the name of Generalised
Bayesian Inference (GBI).

Recall the simple Bayesian updating setup in (2.26). Bissiri et al. [2016]
showed that (2.26) can be seen as a special case of a more general update rule,
which can be described as a solution of an optimisation problem in the space of
measures [Zellner, 1988]. In particular, let L(ν ; p,y) be a loss-function where ν is a
probability measure and p is the prior belief distribution, a belief distribution over
x (the latent variables) that incorporates in the information in y (the observations)
can be constructed by solving

ν? = arg min
ν
L(ν ; p,y). (2.89)

To obtain a Bayes-type updating rule, one needs to specify this loss function as a
sum of a “data term” and a “regularisation term” [Bissiri et al., 2016] given as

L(ν ; p,y) = λ1(ν,y) + λ2(ν, p), (2.90)

where λ1 defines a data dependent “loss” and λ2 controls the discrepancy between
the prior and the final belief distribution ν̂. Bissiri et al. [2016] show that the
solution to the optimisation problem in (2.89) with a loss of the form (2.90) does
indeed represent a belief distribution about the latent variables x. Moreover, the
form of (2.90) that satisfies the von Neumann-Morgenstern utility theorem [von

46

Chapter 2: The Fundamentals of Probabilistic Machine Learning

Neumann and Morgenstern, 1947] and Bayesian additivity8 is given by

L(ν ; p,y) =
∫
`(x,y)ν(dx) + KL(ν || p), (2.91)

which leads to a Bayes-type update [Bissiri et al., 2016; Jewson et al., 2018], given
by

pg(x |y) = p(x)exp(−`(x,y))
Z

, (2.92)

where `(x,y) is is a loss function connecting the observations to the latent variables
and Z =

∫
exp(−`(x,y))p(x) dx. In (2.92), the suffix g in pg(·) is used to signify

the generality of this distribution, i.e., it is a posterior belief distribution that could
potentially be different from the standard Bayes posterior.

2.6.2 The Special Case of Bayes’s Rule

As a special case, if one defines `(x,y) in (2.92) as the cross-entropy (derived from
the KL-divergence) of an assumed likelihood, p(y |x), relative to the real data gener-
ating mechanism, h0(y) (approximated by its empirical measure, h̄0(y), constructed
from observations), the standard Bayes rule (2.26) arises as a solution. To see this,
set

`(x,y) = −
∫

log p(y |x)h0(dy) (2.93)

≈ −
∫

log p(y |x)h̄0(dy) (2.94)

= −
∫

log p(y |x)δy(dy) (2.95)

= − log p(y |x). (2.96)

Plugging (2.96) into (2.92) recovers Bayes’s rule in (2.26).
The above motivates the use of Bayes’s rule in M-open problems as a princi-

pled procedure to update belief distributions. However, in some real-world settings,
Bayes’s rule (i.e. the cross-entropy loss) might not be the best choice. This occurs
when the assumed likelihood is greatly misspecified; for instance, in settings where
it is known that some observations are contaminated with heavy-tailed noise that
is not modelled by the assumed likelihood. In this example, the use of the cross-
entropy loss can be detrimental since it gives large influence to fitting the tails of the

8Bayesian additivity, also referred to as coherence in Bissiri et al. [2016], says that applying a
sequence of updates with subsets of the data should give rise to the same posterior distribution as
single update employing all of the data.

47

Chapter 2: The Fundamentals of Probabilistic Machine Learning

data-generating process (i.e. zero-avoiding behaviour)[Jewson et al., 2018]. In this
instance, other loss functions can provide more reliable posterior belief distributions.
Chapter 6 is partly dedicated to addressing this problem in filtering settings.

Finally, the choice of the loss function is not restricted to information-
theoretic losses such as the cross-entropy. Many losses from the machine learning
literature (e.g. mean absolute error and the hinge loss) can be used in this setting.

2.7 Variance Reduction

For a generic test function φ(x), with x ∼ p(x), let E [φ(x)] ≈ φ̂(x) := 1
N

∑N
n=1 φ(x(n))

where x(n) ∼ p(x). The variance of φ̂(x) is given as σ2
φ

N , where σ2
φ is the variance

of the random variable under the test function. This expression reveals that the
variance of the estimators depends on two sources. The inherent variability in the
estimated quantity σ2

φ and the number of MC samples N used in the estimator.
Hence, to reduce this variance of an estimator, a simple strategy is to increase the
number of MC samples. This is not an appealing choice in many applications as it
can drastically increase the computation time for the estimator, especially in ML
applications where φ(x) is usually expensive to compute and N is chosen to be very
small, e.g., in many applications N is set to be 1.

An alternative strategy is to target σ2
φ directly. This can be done by con-

structing a different estimator φ̃(x) such that its expectation is equal to the original
expectation required to be estimated, i.e., E[φ̃(x)] = E [φ(x)]. This strategy is com-
monly referred to as variance reduction and is very prevalent throughout the Monte
Carlo methods literature [Owen, 2013].

This section reviews two standard variance reduction strategies for Monte
Carlo methods: control variates and importance sampling. These are essential tools
for developing methods that can improve the stability of inference procedures.

2.7.1 Control Variates

To reduce the variance of an unbiased stochastic estimator, one can construct an al-
ternative estimator which has the same value in expectation but with lower variance.
Control variates present an approach of doing so by injecting known information into
the original estimator thus reducing its variance. More concretely, for an unbiased
MC estimator φ̂(x), define an new estimator φ̃diff(x) := φ̂(x)− (ω̂(x)−W), where
ω(·) is an alternative test function such that E[ω(x)] = W . It is easy to see that both
φ̂(x) and φ̃diff(x) are equal in expectation (since ω̂(x)−W is zero in expectation).
In this case, φ̃diff(x) is known as the difference estimator [Owen, 2013], and ω(x) is

48

Chapter 2: The Fundamentals of Probabilistic Machine Learning

known as the control variate. The difference estimator has lower variance than the
original MC estimator if φ(x) and ω(x) are functionally similar.

More generally, one can define the so called regression estimator as

φ̃reg(x) := φ̂(x)− c(ω̂(x)−W), (2.97)

where c is a constant term called the control variate coefficient. For the regression
estimator, c can be chosen such the new estimator has a lower variance than the
original estimator. Minimising the variance of the regression estimator variance
Var[φ̃(x)] gives the optimal coefficient c? = Cov[φ(x), ω(x)]/Var[ω(x)], which leads
to

Var[φ̃(x)] = (1− ρ2
φ,ω) Var[φ̂(x)], (2.98)

where ρφ,ω is the Pearson correlation coefficient between φ(x) and ω(x). It is clear
from the equation in (2.98) that the only requirement for variance reduction is
that φ(x) and ω(x) are correlated. In practice, computing c? is not possible, as
Cov[φ̂(x), ω̂(x)] and Var[ω̂(x)] cannot be evaluated exactly in most cases. Therefore,
these need to be estimated, for example, from the sampling statistics. Chapter 4 is
devoted to exploring two methods for estimating c? in the context of optimisation
of stochastic gradients.

As a final note, the control variate formulation was presented above for the
scalar case. In general, the control variate can be vector values. In this case, the
regression estimator is given by

φ̃reg(x) := φ̂(x)− cᵀ(ω̂(x)−W), (2.99)

where the heavy font indicates vector-valued terms, and the optimal control variate
coefficient is

c? = Var[ω(x)]−1 Cov[φ(x),ω(x)]. (2.100)

2.7.2 Importance Sampling

Importance sampling can also be thought of as a variance reduction method. Recall
that the variance of a standard MC estimator, φ̂(x), is given by Var[φ̂(x)] = σ2

φ

N ,
where σ2

φ =
∫
φ2(x)p(x) dx − φ2(x) dx. Also recall the IS estimator for φ̃(x) =

1
N

∑N
n=1

p(x(n))
q(x(n))φ(x(n)) in Section 2.5.1, where x(n) ∼ q(x) and q(x) is the proposal

49

Chapter 2: The Fundamentals of Probabilistic Machine Learning

distribution. The variance of this estimator is given as [Owen, 2013]

Var[φ̃(x)] =
∫
φ2(x)p(x)
q(x) p(x) dx.

Taking the difference of the two estimators

Var[φ̂(x)]−Var[φ̃(x)] =
∫ (

1− p(x)
q(x)

)
φ2(x)p(x) dx, (2.101)

one can see that for variance reduction to occur, the integral in (2.101) needs to be
positive. This occurs for choices of q(x) where p(x)

q(x) > 1 when φ2(x)p(x) is small,
and p(x)

q(x) < 1 when φ2(x)p(x) is large, or p(x)
q(x) < 1 in any part of the domain.

50

CHAPTER 3

Multitask Learning with
Gaussian Process Compositions

Compositional models enable solving complex learning tasks by combining simple
building blocks and specifying the relationship between them. Many machine learn-
ing tasks go beyond single task prediction to involve multiple tasks that can be
reasoned about jointly through the transfer of relevant information between the
tasks. Compositionality is a desirable property in this scenario since it allows easy
specification of the dependencies between the tasks and of the criteria for the transfer
of information between them.

This chapter describes a compositional probabilistic model based on Gaus-
sian process modules – the gold-standard for modern Bayesian non-parametric mod-
elling – for learning multiple tasks simultaneously. This setting is known as multi-
task learning, where the information transfer mechanism is specified in the model
structure and is reasoned about jointly during the inference procedure.

3.1 Motivation

Multi-task learning is a broad framework that aims to leverage the shared informa-
tion between the training signals of related tasks in order to improve generalisation
across them. This framework has been applied to various models such as neural
networks [Caruana, 1997], support vector machines [Evgeniou and Pontil, 2004] and
probabilistic models [Bonilla et al., 2007].

In probabilistic machine learning, a widely successful formulation of multi-
task learning builds on the Gaussian process (GP) literature. In general, GPs [Ras-
mussen and Williams, 2006] provide a powerful and flexible non-parametric family
of machine learning models, suitable for many nonlinear tasks. Their multi-task
counterparts have also been widely adopted as a viable probabilistic alternative to

51

Chapter 3: Multitask Learning with Gaussian Process Compositions

classical multi-task learning models. However, the vast majority of GP multi-task
models make a strong linearity assumption on the task dependencies, i.e. the tasks
constitute a linear mixture of latent processes [Goovaerts, 1997; Teh et al., 2005;
Bonilla et al., 2007; Alvarez et al., 2011; Wilson et al., 2012; Nguyen and Bonilla,
2014]. Indeed, some attempts have been made to introduce non-linear task rela-
tionships to GP models [Boyle and Frean, 2004; Alvarez and Lawrence, 2009; Alaa
and van der Schaar, 2017; Requeima et al., 2019]; however, at the expense of ad-
ditional limiting assumptions or deviation from the desirable plug-and-play nature
of GP models, e.g. Alaa and van der Schaar [2017] and Requeima et al. [2019] are
restricted to datasets with fully observed outputs for all input locations.

To further highlight the limitation of linear mixing models, consider the fol-
lowing toy example with two tasks composed by non-linearly combining two private
processes and a shared process:

g(x) = − sin (8π(x+ 1))/(2x+ 1)− x4,

h1(x) = sin(3x), h2(x) = 3x,

f1(x) = cos2 (g(x)) + h1(x),

f2(x) = sin (10x)g2(x) + h2(x),

with x ∈ [0, 1]. Here, f1 and f2 are the two tasks, generated by g, h1, h2. Clearly,
f1 and f2 have a complex non-linear relationship that linear mixing models struggle
to capture as illustrated in Fig. 3.1.

To address this issue, this chapter proposes a Deep Gaussian Process (DGP)
approach to non-linear multi-task learning (illustrated in blue in Fig. 3.1). DGPs a
hierarchical composition of GPs that retain the advantages of GP-based models such
as their non-parametric formulation, quantification of uncertainty and robustness
to overfitting, while at the same time offering a richer class of models with the
ability to learn complex representations from data. The proposed framework can
capture highly non-linear relationships between tasks, extending the popular linear
construction, while retaining most of its flexibility.

This chapter presents a compositional modelling strategy which assumes that
similar tasks arise from a collection of underlying latent processes, some shared be-
tween the tasks and some that are task-specific. These are combined non-linearly
using a further GP layer, enabling modelling of richer task relationships. Closed-
form inference in the resulting model is intractable, thus the doubly stochastic vari-
ational approximation in Salimbeni and Deisenroth [2017] is extended to handle the

52

Chapter 3: Multitask Learning with Gaussian Process Compositions

0.5

1.0

1.5

2.0
f 1

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

f 2

Ground truth
ICM-GP

MTL-DGP
Training points

Figure 3.1: Illustration of the fit of linear (ICM-GP) vs non-linear (MTL-DGP)
multi-task GP models on a toy dataset with non-linear dependencies between the
tasks. The ICM-GP model suffers from negative transfer due to its linear coregion-
alization assumption. The non-linear multi-task DGP is robust against it.

multi-task DGP case, where the compositional nature of the model allows for easy
derivation. The capabilities of this model are demonstrated through experimenta-
tion on three datasets, showing that the multi-task learning formulation for DGPs
outperforms other single-task and multi-task GP-based models and neural networks
on multiple benchmarks, illustrating the effectiveness of compositional models in
this setting.

3.2 Background

3.2.1 Modelling with Gaussian Processes

As discussed in Section 2.1.2.2, GPs can be used in predictive modelling where the
labels are modelled as a transformation of a non-parametric latent function of the

53

Chapter 3: Multitask Learning with Gaussian Process Compositions

inputs [Rasmussen and Williams, 2006]

yn|f ; xn ∼ p(yn|f(xn)),

where f is a latent function drawn from a GP which is usually set to be zero-
mean, i.e. f(·) ∼ GP(0, k(·, ·)), and p(·) is an appropriate likelihood, e.g. Gaussian
or Bernoulli. Exact inference in this model is possible only when the likelihood
is Gaussian and with computational complexity of O(N3). To relax these con-
straints, one can use a sparse variational approximation that allows the use of other
likelihoods and reduces the computational complexity to O(NM2) [Titsias, 2009;
Hensman et al., 2013], where M is the number of inducing locations (pseudo inputs)
which is typically much smaller than N .

The sparse variational approximation - presented in detail in Section 2.4.2
- seeks to approximate the true GP posterior p, with an approximate posterior
q, by minimising the Kullback-Leibler (KL) divergence between q and p. This is
equivalent to maximising a lower bound on the marginal likelihood of the model,
known as the evidence lower bound (ELBO)

L = Eq(F,U)

[
log p(Y,F,U)

q(F,U)

]
, (3.1)

where Y = [y1, . . . ,yN] are the outputs, F = [f(x1), . . . , f(xN)] are the latent
function values and U = [f(z1), . . . , f(zM)] are the function values at the inducing
locations zm.

3.2.2 Extension to Deep Gaussian Processes

In addition to allowing for more scalable inference in standard GP models, the
sparse variational approximation enables tractable inference in models involving the
composition of GPs; for instance DGPs. Recall from Section 2.1.2.3, a DGP is a
composition of functions with GP priors on each and i.i.d Gaussian noise between
the layers [Damianou and Lawrence, 2013]

yn|fL; xn ∼ p(yn|fL(fL−1(. . . f1(xn)))),

where f l(·) ∼ GP(ml(·), kl(·, ·)) (to simplify notation, the inter-layer noise is ab-
sorbed into the kernel kl(·, ·) for l ∈ {1, . . . , L − 1}). Inference in this model is
possible through the use of the variational sparse approximation framework, where
the ELBO is given by [Damianou and Lawrence, 2013; Salimbeni and Deisenroth,

54

Chapter 3: Multitask Learning with Gaussian Process Compositions

�
� �

�
�

��

(⋅)ℎ�
�

(⋅)��

(⋅)� �
�

�
�

�

� = 1 … �
� = 1 … � �

� = 1 … �

Figure 3.2: A graphical representation of the proposed non-linear multi-task DGP
model. The unshaded circles represent latent variables, the shaded circles represent
observed variables and the squares are computational graph nodes. Some circles are
colour coded to match their corresponding terms in (3.3), (3.10) and (3.14).

2017]

LDGP = Eq({Fl,Ul}L
l=1)

[
log p(Y, {F

l,Ul}Ll=1)
q({Fl,Ul}Ll=1)

]
. (3.2)

See Section 2.4.3 for more details.

3.3 Modelling Approach

3.3.1 DGP Multi-task Formulation

Consider the case with T tasks. Let Xt be the N t × Din data matrix for task
t ∈ {1, . . . , T} and Yt be an N t × Dout matrix corresponding to the outputs for
task t. This chapter proposes a model where all T tasks share a set of I latent
representations {Gi}Ii=1 generated by a set of I functions {gi(·)}Ii=1, where gi :
RDin → RDGi . In addition, they possess a set of Jt task specific representations
{Ht

j}J
t

j=1 generated by a set of J t task specific functions {htj(·)}J
t

j=1 for each task t,

where htj : RDin → RD
Ht
j . The features in the combined latent space {Λt}Tt=1 (with

Λt = {{Gi}Ii=1, {Ht
j}J

t

j=1}) are warped with a task specific random function f t(·)
with f t : RDt → RDout to generate noiseless outputs Ft for task t (Fig. 3.2).1

Independent GP priors are placed on both the shared and task specific latent

1Dt =
∑I

i=1 D
Gi +

∑J

j=1 D
Ht

j

55

Chapter 3: Multitask Learning with Gaussian Process Compositions

functions:

gi ∼ GP(mi(X), ki(X,X′)),

htj ∼ GP(mt
j(Xt), ktj(Xt,Xt′)),

f t|g, ht ∼ GP(mt(Λt), kt(Λt,Λt)).

This generative process describes a 2-level hierarchical model with GPs that can
be formulated as a 2-layer DGP, where the first layer is responsible for extracting
shared and task specific features, while the second layer transforms the features into
task specific outputs.

Sparse Variational Approximation Exact inference in this model is intractable
due to the non-linear dependencies introduced between the inner layers [Damianou
and Lawrence, 2013] and between the tasks in the output layers. Hence, approxi-
mate inference is used where the doubly stochastic variational sparse approximation
framework in Salimbeni and Deisenroth [2017] is extended to handle the multitask
case.

Define the joint distribution of an expanded model as

p({Yt,Ft, F̄t, {Ht
j , H̄t

j}J
t

j=1}Tt=1, {Gi, Ḡi}Ii=1) =
T∏
t=1

Nt∏
n=1

p(ytn|Ft)
T∏
t=1

p(Ft|F̄t,Λt)p(F̄t)
T∏
t=1

Jt∏
j=1

p(Ht
j |H̄t

j)p(H̄t
j)

I∏
i=1

p(Gi|Ḡi)p(Ḡi),

(3.3)

where the inducing variables {Ḡi}Ii=1, {{H̄t
j}J

t

j=1}Tt=1, {F̄t}Tt=1 are introduced and
correspond to the values of the latent functions evaluated at a set of M inducing
locations, i.e. Ḡi = gi(ZGi), H̄t

j = htj(ZHt
j
), F̄t = f t(ZFt). Augmenting the model

this way allows factorising the joint GP priors into the prior on the inducing variables
and the GP conditional given the inducing variables [Titsias, 2009]. For instance,
in the case of the tuple (Gi, Ḡi), one observes the following factorisation:

p(Gi, Ḡi; X,ZGi) = p(Gi|Ḡi; X,ZGi)p(Ḡi; ZGi), (3.4)

where

p(Ḡi; ZGi) = N (Ḡi|mi(ZGi), ki(ZGi ,ZGi)), (3.5)

p(Gi|Ḡi; X,ZGi) = N (Gi|µ̄i, Σ̄i), (3.6)

56

Chapter 3: Multitask Learning with Gaussian Process Compositions

with

µ̄i = mi(X) +αi(X)T (Ḡi −mi(ZGi)), (3.7)

Σ̄i = ki(X,X)−αi(X)Tki(ZGi ,ZGi)αi(X), (3.8)

αi(X) = ki(ZGi ,ZGi)−1ki(ZGi ,X). (3.9)

Similarly for (Ht
j , H̄t

j) and (Ft, F̄t) taking the input pairs (Xt,ZHt
j
) and (Λt,ZFt)

respectively.

Expanding the probability space this way allows defining an approximate
variational posterior

q({Ft, F̄t, {Ht
j , H̄t

j}J
t

j=1}Tt=1, {Gi, Ḡi}Ii=1) =
T∏
t=1

p(Ft|F̄t,Λt)q(F̄t)
T∏
t=1

Jt∏
j=1

p(Ht
j |H̄t

j)q(H̄t
j)

I∏
i=1

p(Gi|Ḡi)q(Ḡi), (3.10)

where the approximate posteriors q’s on the right-hand side are parameterised Gaus-
sians, e.g. q(Ḡi) = N (Ḡi|mi,Si) 2 and similarly for H̄t

j and F̄t.

Evidence Lower Bound (ELBO) One can derive an ELBO by taking the ex-
pected log-ratio of the (3.3) and (3.10)

L =E
q({Ft,F̄t,{Ht

j ,H̄
t
j}
Jt
j=1}

T
t=1,{Gi,Ḡi}Ii=1)

[

log
∏T
t=1[∏Nt

n=1 p(ytn|Ft)]������
p(Ft|F̄t,Λt)p(F̄t)∏Jt

j=1�����
p(Ht

j |H̄t
j)p(H̄t

j)]
∏I
i=1[�����p(Gi|Ḡi)p(Ḡi)]∏T

t=1[������
p(Ft|F̄t,Λt)q(F̄t)∏Jt

j=1�����
p(Ht

j |H̄t
j)q(H̄t

j)]
∏I
i=1[�����p(Gi|Ḡi)q(Ḡi)]]

. (3.11)

2Si is usually parameterised as LiLᵀ
i , where is Li is a triangular matrix. This parameterisation

reduces the number of free parameters and insures that the Gaussian covariance matrix is symmetric
and positive definite.

57

Chapter 3: Multitask Learning with Gaussian Process Compositions

Since the approximate posterior q has a factorised form (3.10), one can rewrite
equation (3.11) as follow:

L =
T∑
t=1

Nt∑
n=1

E
q({Ft,F̄t,{Ht

j ,H̄
t
j}
Jt
j=1}

T
t=1,{Gi,Ḡi}Ii=1)[log p(ytn|f tn)]

−
T∑
t=1

KL
[
q(F̄t)

∥∥∥p(F̄t)
]
−

T∑
t=1

Jt∑
j=1

KL
[
q(H̄t

j)
∥∥∥p(H̄t

j)
]
−

I∑
i=1

KL
[
q(Ḡi)

∥∥∥p(Ḡi)
]

(3.12)

The KL terms in equation (3.12) come from marginalising out the factors in the
posterior that do not depend on the operand in the expectation terms. As discussed
in Salimbeni and Deisenroth [2017], for a DGP the nth marginal of the top layer
only depends on the nth marginals of all the previous layers. Hence, in the case of
the presented model,

q(f tn) =
∫
q(f tn|λtn)q(λtn)dct

n, (3.13)

where q(f tn|λtn) =
∫
p(f tn|F̄t;λtn,ZFt)q(F̄t)dF̄t and

q(λtn) =
∫ ∏Jt

j=1 p(htnj |H̄t
j ; xtn,ZHt

j
)q(H̄t

j)
∏I
i=1 p(gni|Ḡi; xtn,ZGi)q(Ḡi)dH̄t

jdḠi. By
simplifying the expected log-likelihood term, one can rewrite (3.12) as follows (the
dependence on the inducing locations Z are reintroduced back to the notation for
completion)

L =
T∑
t=1

Nt∑
n=1

Eq(f tn)[log p(ytn|f tn)]−
T∑
t=1

KL
[
q(F̄t)

∥∥∥p(F̄t; ZFt)
]

−
T∑
t=1

Jt∑
j=1

KL
[
q(H̄t

j)
∥∥∥p(H̄t

j ; ZHt
j
)
]
−

I∑
i=1

KL
[
q(Ḡi)

∥∥∥p(Ḡi; ZGi)
]
. (3.14)

An important note is that the integral in (3.13) is intractable, hence it is
not possible to compute the expected log-likelihood term in (3.14) in closed form.
However, it is straightforward to sample from the marginal posterior q(f tn) using
the re-parameterisation trick [Rezende et al., 2014; Kingma et al., 2015], allowing
the approximate computation of the lower bound and its gradients by Monte Carlo
sampling. This bound has complexityO(NM2(∑I

i=1D
Gi+∑T

t=1
∑Jt

j=1D
Ht
j+Dout)).

Are deeper architectures needed? The description of the model is presented
for a 2-layer DGP; however, this framework is general and can be applied to a DGP
with an arbitrary depth. Looking at the ELBO in (3.14), the contribution of the
first layer appears in the KL terms involving the Ḡi’s and the H̄t

j ’s. Therefore, a

58

Chapter 3: Multitask Learning with Gaussian Process Compositions

layer of this structure can, in principle, be added at any level of a DGP cascade by
simply adapting the ELBO to include these terms. Since the sparse approximation
and the inference framework in Salimbeni and Deisenroth [2017] do not require the
computation of the full covariance within the layers, it is possible to propagate a
Monte Carlo sample through this layer structure at any point in the cascade without
the need to compute inter-task covariances. This enables approximate evaluation of
the expected log-likelihood term in (3.14).

It is worth noting, however, that increasing the depth this way adds extra
complexity to the model and potentially violates the generative assumption of the
non-linear combination of shared and task-specific processes. Hence, it is recom-
mended that such an extension should only be considered when the structure of the
problem requires it.

3.3.2 Model Specification

So far, the description of the modelling approach has been in an unspecified setting.
One can use the proposed framework as a base to construct a plethora of multi-task
DGP models. This section discusses three straightforward instantiations of this
framework.

The multiprocess Multi-task DGP (mMDGP) follows the formulation in
Section 3.3.1 closely. The model consists of a two layer GP with the inner layer
(latent space) split into a set of independent shared processes and independent task
specific processes. The outputs of those processes are concatenated and fed into
the top layer which constitute independent task specific GPs. The GPs in the top
layer admit Automatic Relevance Determination (ARD) kernels [Rasmussen and
Williams, 2006]

k(λ, λ′) = σ2κ
(Dλ∑
i=1

ωks(λi − λ′i)
)
, (3.15)

where κ(·) is a positive definite function, s(·) is a distance function and σ and ωi are
the kernel parameters, which are learned by maximising the ELBO as a surrogate
to the model’s marginal likelihood.

The use of the ARD kernel in the top layer enables each output process to
weigh the information from the latent processes differently, thus balancing the use
of shared information and task-specific information (see Fig. 3.5 in Section 3.5.2 for
illustration). This can guard against some types of negative transfer. For instance,
if a contaminating task is present in the dataset, the model can, in principle, learn

59

Chapter 3: Multitask Learning with Gaussian Process Compositions

ARD weights such that all its information is absorbed in the task-specific compo-
nents.

The shared Multi-task DGP (sMDGP) consists of a 2-layer DGP where all
the latent processes are shared between the tasks with no task-specific processes. It
also employs an ARD kernel in the top layer. The role of ARD in this version is
akin to Manifold Relevance Determination [Damianou et al., 2012], where the ARD
weights determine a soft segmentation of the latent space.

The Coregionalised Multi-task DGP (cMDGP) is similar to sMDGP, with
a single shared latent space. The middle layer forms a collection of coregionalised
GPs [Goovaerts, 1997; Alvarez et al., 2011], i.e. unlike sMDGP the outputs of the
processes in the latent space are not concatenated but linearly mixed with different
mixing coefficients for different tasks. In addition, the top layer is set to a single
coregionalised GP that outputs all the tasks. This formulation is similar to Alaa
and van der Schaar [2017], used for survival analysis with competing risks. However,
the inference scheme presented in Alaa and van der Schaar [2017] is only applicable
with certain covariance functions and is not suitable for the asymmetric multi-task
learning case (where only a subset of the outputs is observed for a single input
location). Conversely, using the doubly stochastic formulation for the ELBO allows
using any valid covariance function and enables the inference on partially observed
outputs.

3.4 Related Work

There is a rich literature on multi-task learning in GP models. Most GP multi-
task models correlate the outputs by mixing a set of independent processes with a
different set of coefficients for each output. Examples of such models include: the
semi-parametric latent factor model (SLFM) [Teh et al., 2005], intrinsic coregional-
isation model (ICM) [Bonilla et al., 2007; Skolidis and Sanguinetti, 2011] and the
linear model for coregionalisation (LMC) [Goovaerts, 1997; Alvarez et al., 2011].
Nguyen and Bonilla [2014] extend SLFM to handle dependent tasks in very large
datasets using the framework in Hensman et al. [2013]. In Titsias and Lazaro-
Gredilla [2011], the authors give this type of model a Bayesian treatment by placing
a spike-and-slab prior on the mixing coefficients, and in Aglietti et al. [2019], the
authors treat the coefficients as stochastic processes indexed by task descriptors in
a spatial Cox process setting.

60

Chapter 3: Multitask Learning with Gaussian Process Compositions

More complex models that can handle complex relationships between the
outputs are formulated in Wilson et al. [2012] and Nguyen and Bonilla [2013] intro-
ducing mixing weights with input dependencies, and in Boyle and Frean [2004] and
Alvarez and Lawrence [2009] by convolving processes.

In the DGP literature, there are two notable formulations for the multi-task
setting. Kandemir [2015] proposes to linearly combine the hidden layers of different
DGP models trained on different tasks, inducing information transfer between the
models. Alaa and van der Schaar [2017] uses the ICM kernel in the hidden and out-
put layers of the DGPs for multi-task learning for survival analysis with competing
risks. The framework in this chapter is a general formulation of the models above,
replacing the linear mixing of latent processes with another GP, thus allowing to
model more complex relationships between the tasks. The work of Requeima et al.
[2019] on the Gaussian Process Autoregressive Regression (GPAR) model offers an
alternative formulation to non-linear multi-output learning in GPs, This model as-
sumes an inherent ordering of the outputs and places independent GP priors on
them, where the current GP output is concatenated with the inputs of the proceed-
ing GP at the observed location. This model can be interpreted as a particular DGP
structure with skip connections. However, in the multi-task setting, this model as-
sumes an inherent ordering of the tasks and that the dataset is closed downwards,
i.e. for task t, all the previous t− 1 outputs are observed for each input location in
the dataset; otherwise this can be remedied with ad-hoc imputation of the missing
data.

A similar idea to multi-task learning is multi-view learning, where multiple
views of the data are combined into a single latent representation. In the Gaus-
sian process literature, Manifold Relevance Determination (MRD) [Damianou et al.,
2012] is a latent variable model for multi-view learning, where the latent space is
softly separated into a component that is shared between all of the views and pri-
vate components that are view-specific. The work in this chapter attempts the
inverse mapping, i.e. disentangling multiple representations from a common feature
space. In sMDGP, the idea of the soft separation in the latent space is used, and in
mMDGP a hard separation is encoded between private components and task-specific
components of the latent space.

The following explores briefly the connection of the proposed model to some
of the above models and other models in the wider multi-task learning literature.

61

Chapter 3: Multitask Learning with Gaussian Process Compositions

3.4.1 Linear Process Mixing

To make the relationship of the proposed model to other GP-based models more
explicit, consider the following construction of a multi-output function f(x) of T
outputs, where the tth output is

f t(x) =
I∑
i=1

wtigj(x) +
J∑
j=i

htj(x), (3.16)

{wti}Ii=1 is a set of weights associated with output t, and the gj(·)’s and htj(·)’s
are basis functions that are shared and output specific, respectively. In the proba-
bilistic literature, the set of basis functions are modelled as independent GPs with
their choice of covariance function determining the particular model, e.g. setting
independent GP priors on the basis functions with different covariance functions
recovers the Semi-parametric Latent Factor Model of Teh et al. [2005]. Since the
output processes are a sum of GPs, it follows that they themselves are also GPs
with a tractable cross-covariance that depends on the weights on the shared basis
functions.

One can generalise the construction in (3.16) to

f t(x) = ϕt(g1(x), . . . , gI(x), ht1(x), . . . , htJ(x)), (3.17)

where ϕt(·) is an arbitrary function. Depending on the choice of ϕt(·), this construc-
tion combines the basis functions non-linearly; for instance, allowing interactions
between the shared and output specific processes. Treating this construction prob-
abilistically, one can place GP priors on the basis function as well as the warping
function ϕt(·), which recovers the proposed model. It is important to note that due
to the non-linearity of ϕt(·), the resulting output processes are no longer Gaussian
and their cross-covariance cannot be characterised in terms of the shared basis func-
tions only. As a side note, choosing a GP with linear covariance function as a prior
on ϕt(·) recovers the linear model described in (3.16).

3.4.2 Process Convolution

One can formulate a GP as the convolution of a base process with a smoothing
kernel, i.e.

f(z) =
∫
χ
G(x− z)u(z)dz, (3.18)

62

Chapter 3: Multitask Learning with Gaussian Process Compositions

where the smoothing kernel G(·) is square integrable (i.e.
∫
G2(x − u)du < ∞)

and the base process u(·) is a white noise process, or more generally any random
process (although if non-Gaussian then the resulting convolution process is not a
GP) [Calder and Cressie, 2007]. In the multi-output process convolution litera-
ture, different outputs are assumed to share the same base process u, with different
smoothing kernels for each output. Hence, the cross-covariance between the output
processes can be derived tractably as convolution is a linear operation.

Using (3.18) and conditioned on the latent processes, one can write the top
layer of the presented model as

f t(x) =
∫
χ
Gt(g− zg,ht − zh)ut(z)dz, (3.19)

assuming a separable smoothing kernel Gt(g− zg,ht− zh) = Gt(g− zg)Gt(ht− zh)
(which is the case for processes with ARD kernels), one can rewrite (3.19) as

f t(x) =
∫
χ
Gt(g− zg)Gt(ht − zh)ut(z)dz

=
∫
χ
Gt(g− zg)υt(zg)dzg, (3.20)

where υt is also random process. Since by construction, g itself is a random (Gaus-
sian) process, one can see that the output correlation is induced in the smoothing
kernel rather than the base process. Conditioning the smoothing kernel on a random
process is explored in Higdon [1998] and Higdon et al. [1999] to induce non-stationary
behaviour in the output process. To the best of the author’s knowledge this work
is the first instance to consider this conditioning for information sharing behaviour.

3.4.3 Regularisation Methods

The ELBO defined in (3.14) has a similar formulation to the general multi-task
objective function in regularisation-based multi-task learning literature [Evgeniou
and Pontil, 2004]. A general formulation of which is given by

L = 1
T

T∑
t=1

Lt(θ, φ; Yt) + Ω(θ) +
T∑
t=1

Ψt(φt), (3.21)

where θ are shared parameters, φ = {φt}Tt=1 are task specific parameters and
{Lt}Tt=1, Ω and {Ψt}Tt=1 are the task specific losses, shared regulariser and task
specific regularisers respectively. The choice and strength of regularisation controls
the information transfer between tasks.

63

Chapter 3: Multitask Learning with Gaussian Process Compositions

A direct analogy can be drawn from (3.14) to (3.21), where the expected log-
likelihood terms correspond to the loss functions and the KL terms correspond to the
regularisers, respectively. This forms a new link between the probabilistic and the
regularisation points-of-view of multi-task learning and motivates the prospect of
choosing alternative prior processes to induce desirable behaviour in the model, e.g.
sparsity in the latent space [Argyriou et al., 2007]. Furthermore, one can also frame
(3.14) as a Generalised Variational Inference objective [Knoblauch et al., 2019],
where the KL terms are viewed as prior regularisers. Changing the form of these
regularisers can induce different information sharing behaviour in the approximate
predictive posteriors of the tasks. Unfortunately, exploring this point further is
beyond the scope of this work.

3.5 Experimental Evaluation

In this section, the three instantiations of the presented framework (described in
Section 3.3.2) are tested on three datasets. The three models are are collectively re-
ferred to as MDGP. For all of the experiments, the chapter’s proposal is compared
to three other GP-based models: iDGP: independent single-task 2-layer DGPs
[Damianou and Lawrence, 2013; Salimbeni and Deisenroth, 2017] trained on each
task individually; iGP: a independent single-task variational sparse Gaussian pro-
cess [Hensman et al., 2013] trained on each task individually; cGP: a multi-task
variational sparse Gaussian process [Nguyen and Bonilla, 2014; Bonilla et al., 2007].
This model uses the intrinsic coregionalisation kernel (ICM) [Goovaerts, 1997] for
multi-task learning.

Furthermore, further comparisons are introduced to standard multi-task neu-
ral network of similar complexity [Bakker and Heskes, 2003]: mANN2 and mANN3:
two and three layer multi-head feed-forward networks respectively, with uncertainty
computed by MC Dropout [Gal and Ghahramani, 2016]; mBNN2 and mBNN3:
two and three layer multi-head variational Bayesian neural networks respectively.

All the GP models use the Matérn-5/2 kernel and the same number of induc-
ing points per task. The variational parameters and hyperparameters (of the kernels
-including ARD weights- and likelihoods) are jointly learnt through the maximisa-
tion of the models’ ELBO. The Adam Optimiser [Kingma and Ba, 2015] is used
on the neural network and DGP-based models, and L-BFGS [Nocedal and Wright,
2000] is used for the shallow GP-based models (except when mini-batching occurs
where Adam is used again). See Appendix A.1 for a more detailed description of
the experimental setup.

64

Chapter 3: Multitask Learning with Gaussian Process Compositions

0.75
0.80
0.85

Sc
or

e
Task: Standard MNIST

0.2

0.4

0.6

Sc
or

e

Task: Images BG MNIST

0.25

0.50

0.75

Sc
or

e

Task: Random BG MNIST

sMDGP
mMDGP

cMDGP
iDGP

cGP
iGP

mANN2
mANN3

mBNN2
mBNN3

Figure 3.3: Average classification accuracy and its standard error on the MNIST
variations experiments. The dashed line highlights the multi-task GP baseline.
Higher is better.

3.5.1 MNIST Variations

This experiment uses the MNIST digits dataset [Lecun et al., 1998], as well as two
other variations. The first variation, Images Background (BG) MNIST, re-
places the background with randomly extracted patches from 20 black and white
images. The second variation, termed Random Background (BG) MNIST, re-
places the black background for the digits with random noise 3. These two variations
are more challenging for classification due to the presence of non-monochromatic

3https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/
variations-on-the-mnist-digits

65

https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits

Chapter 3: Multitask Learning with Gaussian Process Compositions

backgrounds.

1000 images are sampled from the training split each of the three datasets.
Hence, a total of 3000 training data points for 3 multi-class classification tasks are
available. The average accuracy and its standard error are reported on the standard
test split for the datasets over 10 runs. The purpose of this experiment is to test
the ability of the model to transfer information from a relatively easy task, standard
MNIST classification, to more challenging tasks, i.e. images BG MNIST and random
BG MNIST.

Figure 3.3 suggests that MDGP models are successfully able to use common
information shared between the three tasks to improve the learning performance
on the difficult tasks (image BG MNIST and random BG MNIST). However, one
can see that cMDGP suffers from negative transfer on the first task, due to its
inability to weigh the contributions of the latent processes differently for each task.
In contrast, mMDGP and sMDGP do not suffer from this problem, highlighting
their robustness to this type of negative transfer from the use of ARD weights on
the warping layer.

MDGP models achieve a considerable performance gain on the third task
(random BG MNIST) compared to all the other models, by a factor of almost 50%.
This task is the most challenging out of the three as the background here is not
structured. This improvement highlights the importance of the non-linear mixing
of the latent processes to deal with complex task structures.

To illustrate the learning behaviour of mMDGP, one can examine the induc-
ing inputs from the inner layer. As specified in Section 3.3.2, mMDGP has an inner
layer with hard separation between the task-specific and shared processes. This
modelling choice was made expecting the task-specific part to learn private task
information, while the shared part would learn global information shared across
the tasks. Figure 3.4, obtained from one of the experiment runs, confirms this
assumption. On the left one can see the initial value of an inducing location be-
fore optimisation. The optimisation transforms the initialisation in the task-specific
component and the shared component of the inner layer in different ways. The
task-specific component encodes the background information specific to the task,
blurring the digit. The shared component, on the other hand, retains the structure
of the digit removing background information.

66

Chapter 3: Multitask Learning with Gaussian Process Compositions

Table 3.1: Average NLPP scores on the SARCOS dataset over 7 tasks. The figures
presented are the mean score (and standard error) over 10 runs. The lowest statis-
tically significant scores based on a Wilcoxon test are presented in boldface. Lower
is better.

Number of Training Inputs
100 200 500 1000 2000 5000

sMDGP 1.47(0.26) 0.98(0.11) 0.74(0.05) 0.15(0.1) −0.01(0.1) −0.16(0.1)
mMDGP 1.34(0.21) 1.05(0.10) 0.67(0.12) 0.16(0.10) 0.01(0.11) −0.12(0.10)
cMDGP 1.32(0.21) 0.95(0.1) 0.72(0.06) 0.24(0.11) 0.05(0.10) −0.09(0.10)
iDGP 1.32(0.17) 0.99(0.11) 0.75(0.06) 0.64(0.04) 0.36(0.09) 0.02(0.08)
cGP 1.51(0.06) 1.42(0.04) 1.35(0.04) 1.27(0.08) 0.12(0.11) 0.02(0.11)
iGP 1.43(0.03) 1.38(0.02) 1.34(0.03) 1.28(0.07) 1.17(0.09) 0.91(0.12)
mANN2 28.22(5.39) 10.56(1.69) 3.20(0.53) 1.66(0.33) 1.26(0.30) 1.16(0.31)
mANN3 21.72(4.20) 9.53(1.70) 3.14(0.51) 1.92(0.33) 1.48(0.34) 1.42(0.33)
mBNN2 1.58(0.22) 1.11(0.20) 0.55(0.09) 0.31(0.06) 0.16(0.04) 0.05(0.03)
mBNN3 1.71(0.28) 1.18(0.18) 0.63(0.09) 0.37(0.06) 0.21(0.04) 0.09(0.03)

3.5.2 SARCOS Robot Inverse Dynamics

This experiment considers the SARCOS regression dataset relating to the inverse
dynamics problem for a seven degrees-of-freedom anthropomorphic robot arm [Vi-
jayakumar et al., 2002; Rasmussen and Williams, 2006]. The dataset consists of
44,484 training observations with 21 input variables and 7 outputs (tasks). Addi-
tionally, there are 4,449 testing examples with all the 7 outputs available.

The experimental procedure starts by sampling N training data points from
the training set, for N in {100, 200, 500, 1000, 2000, 5000}. This constitutes the
training set for one experimental run. For each of the N sampled points select 1
of the 7 outputs uniformly at random. Split the experimental training set into 7
according to which joint the label corresponds to. These 7 splits constitute 7 tasks.
The models are trained on the training set after standardising the features and the
targets and test for all 7 labels on the test set. The negative log predictive proba-
bility (NLPP) and the root mean squared error (RMSE) are reported, aggregated
across the 7 tasks over averaged 10 runs (with standard errors). The NLPP score
is used to assess a model’s ability to quantify uncertainty as it incorporates the
mean prediction as well as the predictive variance, while the RMSE score is used to
measure the quality of the mean predictions only. The results for this experiment
are presented in Table 3.1 and Table A.2 (in the appendix).

Looking at the NLPP scores in Table 3.1, one observes that for all data
regimes MDGP models perform well, outperforming the shallow models for all con-
figurations. As the dataset size increases the MDGP models are able to outperform

67

Chapter 3: Multitask Learning with Gaussian Process Compositions

the rest by a wider margin. The gain in performance of cMDGP is not as pro-
nounced as for mMDGP and sMDGP, highlighting the importance of task-specific
warping functions with ARD kernels for this problem.

To take a closer look at the effect of the ARD kernel, Fig. 3.5 shows a Hinton
diagram of the ARD weights for one run of mMDGP on 5000 datapoints. The hard
separation of latent processes is highlighted in the colour scheme. One can see that
the model assigns different weights on the random processes for different tasks. It
also on average assigns more weight to the shared processes than the task-specific
processes, indicating that the model utilises the shared representation. A similar
diagram for sMDGP is shown Fig. A.1 in the appendix.

3.5.3 FAIMS Diabetes Diagnosis

Field Asymmetric Ion Mobility Spectrometry (FAIMS) is a method for detecting
Volatile Organic Compounds (VOCs) which for example contribute to a given odour.
VOCs are known to carry information on a range of disease states in humans, and
technologies such as FAIMS can be used to cheaply and non-invasively diagnose a
patient’s disease from a simple biological sample such as urine [Covington et al.,
2015].

The author has access to data from a case-control study of 125 patients who
have been tested for diabetes. 48 out of 125 have been found to have diabetes (the
disease group), while the rest are disease-free (the control group). The data consists
of three experimental runs per patient, corresponding to sequential FAIMS analyses
on the same urine sample. These are expected to contain similar but not identical
signals, as different VOCs evaporate at different rates, meaning the overall VOC
signal varies over time. Each experimental run is treated as a task, i.e. three binary
classification tasks in total. By doing so, one aims to share statistical strength
between runs to improve the accuracy of prediction and overcome the scarcity of
training data.

Due to the large size of the feature space and its sparsity, the Sparse Principal
Component Analysis decomposition [Hastie et al., 2009; Mairal et al., 2009] is used
on the features selecting the first 20 principal components. This pipeline is standard
for this type of datasets [Martinez-Vernon et al., 2018]. A 10-fold cross-validation is
performed on 70:30 train-test splits. The value of the area under the Receiver Op-
erating Characteristic Curve (ROC-AUC) is reported for each task averaged across
the folds, as well as the average ROC-AUC for all tasks and runs and their standard
errors. A single task Random Forest classifier [Hastie et al., 2009] as a is included as

68

Chapter 3: Multitask Learning with Gaussian Process Compositions

Table 3.2: ROC-AUC results on the FAIMS dataset averaged over 10 runs. The
figures in parentheses are the standard errors. Higher is better.

ROC-AUC: mean(standard error)

Model Task 1 Task 2 Task 3 All

sMDGP 0.73(0.03) 0.80(0.02) 0.8(0.02) 0.78(0.02)
mMDGP 0.75(0.03) 0.81(0.02) 0.8(0.02) 0.78(0.02)
cMDGP 0.72(0.02) 0.81(0.02) 0.79(0.02) 0.77(0.01)
iDGP 0.62(0.02) 0.75(0.02) 0.76(0.03) 0.71(0.02)
cGP 0.58(0.03) 0.64(0.02) 0.66(0.02) 0.63(0.02)
iGP 0.57(0.02) 0.56(0.03) 0.61(0.04) 0.58(0.02)
iRF 0.71(0.03) 0.71(0.02) 0.72(0.02) 0.71(0.01)
mANN2 0.54(0.03) 0.54(0.02) 0.50(0.03) 0.53(0.02)
mANN3 0.54(0.01) 0.52(0.03) 0.53(0.03) 0.53(0.02)
mBNN2 0.47(0.02) 0.48(0.02) 0.43(0.03) 0.46(0.01)
mBNN3 0.44(0.04) 0.48(0.04) 0.45(0.02) 0.45(0.02)

a baseline, which has been shown to perform well on this problem [Martinez-Vernon
et al., 2018]. The results of this experiment are shown in Table 3.2.

One observes that MDGP models outperform the other GP-based models.
They also significantly outperform the iRF baseline on the second task. Interestingly,
both iDGP and cGP outperform iGP on average, indicating that representation
learning as well as information sharing are important for this problem. MDGP
models are able to leverage information transfer and nonlinear projection to perform
well on this type of problems compared to the other tested models.

3.6 Concluding Remarks

This chapter introduced a new framework for multi-task learning for DGPs based
on the composition of GP modules, presenting a general formulation of a multi-
process layer structure that can learn shared information between the tasks, as well
as task-specific information. Inference in this model is possible through the multi-
task extension to the doubly stochastic variational approximation, with practically
fast inference in CPU time (Table A.3 in Appendix A.2.2). Three instantiations of
this framework with different properties were proposed. The experimental results
showed that the multi-task formulation presented in this paper is indeed effective in
capturing non-linear task relationships and improves the learning performance on
multi-task problems.

The presented framework demonstrated the effectiveness of compositional
structures for complex learning scenarios such as multi-task learning. The impor-

69

Chapter 3: Multitask Learning with Gaussian Process Compositions

tance of compositionality is seen in the ease in which the complex modelling as-
sumptions where specified, as well as in the straightforward extension of standard
inference procedures to accommodate the increased complexity of the model. An
interesting future research direction is to assess the viability of other inference al-
gorithms such as the Random Feature Expansions of Cutajar et al. [2017] for this
type of GP-based compositional models.

This model was implemented with GPflow [Matthews et al., 2017] and is
publicly available on GitHub. 4

4https://github.com/aboustati/dgplib

70

https://github.com/aboustati/dgplib

Chapter 3: Multitask Learning with Gaussian Process Compositions

Initialisation

Task specific

Shared

Figure 3.4: Example of the learning behaviour of mMDGP. The image on the left
is the initial value for one of the inducing locations. The top right image is the
learned inducing location for the task-specific layer for the Standard MNIST task.
The bottom right image is the learned inducing location for the shared layer. The
background information is encoded in the task-specific representation, where the
digit is blurred The shared information contains the digit on an unstructured back-
ground.

71

Chapter 3: Multitask Learning with Gaussian Process Compositions

1 2 3 4 5 6 7
Task

1

2

3

4

5

6

7

8

9

10

La
te

nt
 P

ro
ce

ss

Shared Task Specific

Figure 3.5: Hinton diagram showing the ARD weights for one of the MDGP runs
on Sarcos with 5000 training datapoints. Blocks in blue are shared latent processes,
while blocks in red are task-specific. This indicates that the model assigns different
weights for the latent processes for each task.

72

CHAPTER 4

Amortised Variance Reduction

Inference in modern probabilistic models requires the estimation of quantities that
are based on random variables. This usually introduces extra variance in the in-
ference procedure leading to training instability. This is particularly significant for
compositional models since they constitute multiple probabilistic modules that are
evaluated jointly. Hence, to improve the stability of the inference in the presence of
variance, it is important to examine variance reduction methods and their applica-
tion to inference in probabilistic models.

This chapter studies the problem of training stability applied to Variational
Inference (VI) procedures. VI is the go-to choice for inference in complex composi-
tional models [Damianou and Lawrence, 2013; Tran et al., 2016] due to its scalability
(in terms of both dataset size and model complexity) and computational efficiency.
However, when applied to these types of models, it can suffer from instability due
to the high variance induced by the complexity of the model. This chapter utilises
the idea of control variates (see Section 2.7.1 for background) to reduce the variance
in the stochastic optimisation problem in VI, thus improving the overall stability of
this inference procedure.

4.1 Motivation

In general, many machine learning tasks can be formulated as an optimisation prob-
lem, where the model parameters θ are inferred by optimising an objective function
L = ∑N

n=1 `n(θ) which is a finite sum over contributions from individual data points
n. In the specific case of VI, this type of objectives contain analytically intractable
expectation terms, `n(θ) = Ep(ε)[fn(ε,θ)], over a random variable ε ∼ p(ε). This is
present in most formulations of VI such as Black Box Variational Inference [Ran-
ganath et al., 2014], Variational Auto-Encoders [Kingma and Welling, 2014], or Deep

73

Chapter 4: Amortised Variance Reduction

Figure 4.1: In reparameterised variational inference, the gradient is a function of
the randomness sample ε ∼ p(ε). This relationship gB(ε) (solid lines) depends on
the mini-batch B (orange vs blue). Here, the linear control variates with batch-
dependent coefficients cBε (dashed lines) and the best batch-independent control
variate c̄ε (dotted grey line) are shown. The right-hand plot shows the distribution of
the expectation estimators for each mini-batch: no control variate (outline), batch-
independent control variate (shaded), and batch-dependent control variate (filled).
The batch-dependent control variate significantly reduces the variance, whereas here
the batch-independent control variate increases the variance for the blue mini-batch.

Gaussian Processes [Salimbeni and Deisenroth, 2017].

In practice, such objectives are treated using Monte Carlo (MC) sampling to
obtain an unbiased stochastic estimate of the expectation, ˆ̀

n = 1
S

∑S
s=1 fn(ε(s)

n ,θ),
where ε(s)

n ∼ p(ε). Stochastic Gradient Descent (SGD) or other gradient-based
optimisers are then used on the noisy gradients [Robbins and Monro, 1951] to learn
the optimal parameters. For large N , the evaluation of the full sum in L is often
computationally intractable. This is usually addressed by subsampling mini-batches
B ⊂ {1, . . . , N} of size |B| from the full data set, introducing additional noise and
leading to a doubly stochastic objective function of the form:

L̂ := N

|B|S
∑
b∈B

∑S

s=1
fb(ε(s)

b ,θ), (4.1)

with E[L̂] = L.

74

Chapter 4: Amortised Variance Reduction

The variance of the gradients of L affects both the convergence rate of the
optimisation and how close the optimiser can get to the optimum. This motivates
various approaches for reducing either mini-batch variance (e.g., Johnson and Zhang
[2013]) or the variance due to MC estimation of the expectation [Ranganath et al.,
2014; Roeder et al., 2017]. A common approach for variance reduction for Monte
Carlo methods are control variates (see Section 2.7.1), which have recently been
adopted in the optimisation literature (see Section 4.5 for details). Their focus is on
deriving and applying control variate schemes to MC objectives, specifically in the
context of VI.

So far the schemes in the literature do not consider the mini-batching case
and do not explicitly take into account how the context of the data point b affects the
dependence of fb on ε. This dependence is illustrated in Fig. 4.1 with the example
of Bayesian logistic regression. The gradient gB(ε) as a function of the randomness
ε of a doubly stochastic objective is shown for two different mini-batches B. In
this simplified case, each batch consists of a single context point. The different
context points induce different relationships between randomness and the gradient.
This means the two gradients correlate differently with the randomness, yielding
different optimal control variates. For comparison, a batch-independent control
variate is included, which is averaged over all contexts. As shown in the right-hand
panel in Fig. 4.1, adapting the control variate to the batch significantly reduces the
variance.

This chapter proposes a novel idea for computing control variates that adapt
to the context (mini-batch) of the controlled estimators (the gradient). The new
formulation takes into account the dependence of the MC estimate on the data
by using a recognition network to learn an adaptive control variate coefficient. A
low-variance objective is derived, to train the network to approximate the optimal
control variate coefficient per batch. Additionally, two computationally cheaper,
higher-variance alternatives are proposed to the aforementioned network objective.
All control variate objectives re-use the already computed model gradients, and
hence do not require extra back-propagation steps.

4.2 Method

This section introduces the mini-batch dependence of the gradients and the control
variates and propose learning context-aware control variate coefficients and derives
objectives for the control variate coefficients that allow amortisation through a recog-
nition network.

75

Chapter 4: Amortised Variance Reduction

4.3 Background & Notation

Recall that control variates aim to reduce the variance of an unbiased stochastic
estimator1 ĝθ(ε) for an intractable expectation E[g(ε)], where ε ∼ p(ε) is a random
variable.

For a control variate w(ε) whose expectation W is known analytically, the
regression estimator is given by

g̃(ε) = ĝ(ε)− c(ŵ(ε)−W). (4.2)

In this chapter, the term control variate is overridden to refer to (w(ε)−W) rather
than w(ε). As discussed in Section 2.7.1, computing the optimal control variate
coefficient c? analytically is not possible and is usually estimated from the optimi-
sation statistics, e.g., running averages [Paisley et al., 2012]. Another option is to
pre-specify a fixed c [Miller et al., 2017; Grathwohl et al., 2018]. However, neither
option is convincing for the doubly stochastic case. The first option has very a high
variance due to the presence of mini-batch stochasticity in addition to sampling
stochasticity. The second option is sub-optimal as fixing an arbitrary value for c
does not guarantee the optimal variance reduction of Eq. (2.98).

In the next section, c is treated as a context-dependent adaptive parameter
that is learned throughout the optimisation. This addresses the drawbacks in the two
options above, providing a more stable mechanism to approximate this coefficient
in the doubly stochastic setting, leading to optimal variance reduction.

4.3.1 Controlling Mini-batch Gradients

Gradient-based optimisation requires the derivatives of the objective (4.1) with re-
spect to the model parameters {θp}Pp=1. The estimated gradient contains a sum over
mini-batch elements b,

∂L̂
∂θp
∝
∑
b∈B

∂fb
∂θp

(εb,θ) =
∑
b∈B

ĝbp(εb) =: Ĝp, (4.3)

where S = 1 is chosen to simplify the notation; however, the extension to multiple
MC samples is straightforward. Note that B is a random subset of {1, . . . , N}, i.e.,
b are indices into the full data set, and each term gets its own realisation εb of

1The ˆ symbol (as well as ˜) on top of functions of random variables are used to denote
the estimate of this function obtained by evaluating the relevant estimator. In the following the
dependence on θ is dropped to lighten the notation.

76

Chapter 4: Amortised Variance Reduction

the randomness. The aim is to improve the optimisation performance by reducing
the variance of this gradient. As demonstrated in Fig. 4.1, each partial gradient
estimator ĝbp(εb) may have a different dependence on the randomness. To account
for this, separate control variates for each term (data point) in the sum in (4.3)
are introduced. For a single partial gradient, the controlled gradient estimator is
defined as

g̃bp(εb) := ĝbp(εb)− cᵀbpŵ(εb). (4.4)

Here and in the following sub-section, the analytic expectation is subsumed into the
definition of the control variate such that ŵ(ε) already has zero mean. For simplicity,
the same type of control variate is used for all parameters; however, in principle,
different ŵp per parameter θp could be defined. In both cases, the coefficients cbp
are per-parameter. In general, the mapping ŵ(ε) may have a different number of
components than the randomness ε itself; however, for simplicity, both ε and ŵ(ε)
are assumed to be D-dimensional. Note that ŵ(·) does not depend on the batch
element b; the dependence is captured in the coefficients cbp, which is a vector of
length D for each index pair b, p.

Specifying the problem this way allows for explicitly selecting a separate
control variate coefficient per data point. Under this setting, the new estimator for
the gradient is

G̃p =
∑
b∈B

g̃bp(εb) =
∑
b∈B

(ĝbp(εb)− cᵀbpŵ(εb)). (4.5)

The control variate coefficients cbp can be set to optimally reduce the variance of
G̃p by solving

min
C

Tr(Cov[G̃]), (4.6)

where C is the collection of cbp and has shape N × P ×D, as separate coefficients
are needed for all N data points.

Computing and storing these can be computationally prohibitive for large
data sets. However, one can amortise the cost of this computation by using a
recognition network rφ : Y → RP×D that outputs the coefficients for each batch
element throughout the optimisation, where

cbp = [rφ(yb)]p (4.7)

is a vector of dimension D and yb ∈ Y are context points (e.g.feature vector and
target for the bth data point in a supervised learning problem) and φ are the recog-
nition network parameters.

In practice, the recognition network outputs the control variate coefficients

77

Chapter 4: Amortised Variance Reduction

per data point, which are then aggregated per batch. This ensures permutation
invariance to the order of data points in the batch and allows for the randomisation
of batch elements throughout the optimisation procedure.

As the control variate only adds zero-expectation terms to the gradients of the
optimisation objective, the minima of the objective remain unchanged. This means
that the extra parameters of the recognition network will not lead to overfitting. A
theoretical analysis of the convergence is provided in Appendix B.1.

4.3.2 Training the Recognition Network

Intuitively, the recognition network rφ(·) is required to output coefficients that min-
imise the variance of the controlled gradient estimator (4.5). This gives the training
objective for the parameters φ:

min
φ

Tr (Cov[G̃]) = min
φ

P∑
p=1

Var[G̃p]. (4.8)

The pth term in the sum in (4.8) is

Var[G̃p] = Var
[∑
b∈B

(
ĝbp(εb)− cᵀbpŵ(εb)

)]
=
∑
b∈B

Var
[
ĝbp(εb)− cᵀbpŵ(εb)

]
=
∑
b∈B

(
Var

[
ĝbp(εb)] + Var

[
cᵀbpŵ(εb)

]
− 2 Cov

[
ĝbp(εb), cᵀbpŵ(εb)

])
= const +

∑
b∈B

(
E
[
(cᵀbpŵ(εb))2]− 2E

[
(ĝbp(εb))(cᵀbpŵ(εb))

])
. (4.9)

The terms that do not contain cbp and hence do not give gradients for φ are dis-
carded. For most problems, the expectations are intractable, and are estimated with
MC sampling. Define

Ṽp :=
∑
b∈B

(
(cᵀbpŵ(εb))2 − 2(ĝbp(εb))(cᵀbpŵ(εb))

)
. (4.10)

One can now learn the optimal recognition network parameters φ using SGD (or
variants) on

min
φ

P∑
p=1

Ṽp. (4.11)

78

Chapter 4: Amortised Variance Reduction

To learn the parameters φ, one needs to compute gradients of ∑p Ṽp. Examining the
chain rule around the outputs of the recognition network, ∂Ṽp

∂cbpd

∂cbpd
∂φ , the second term

is computed by backpropagation through the network, and the cost of computing
the first term depends on the form of the estimator Ṽp.

The recognition network objective in (4.10) requires the partial gradients per
data point ĝbp(εb) of the original objective function; hence, this is referred to as
partial gradients estimator. In common reverse-mode automatic differentiation
libraries such as TensorFlow and PyTorch, it requires |B| additional backward passes
on the model objective, each at least O(|B|).2 This becomes prohibitively expensive
for large mini-batches. To overcome this limitation in current implementations, the
next two sub-sections derive two additional estimators for the recognition network
objective that are computationally cheaper, albeit with higher variance.

4.3.2.1 The Gradient Sum Estimator

To avoid the partial gradients in (4.10), one can return to the pth term of the sum in
(4.8). Instead of taking the sum out of the variance, the sum over partial gradients
is separated from the control variates:

Var[G̃p] = Var
[∑
b∈B

ĝbp(εb)−
∑
b∈B

cᵀbpŵ(εb)
]

= Var
[
Ĝp −

∑
b∈B

cᵀbpŵ(εb)
]
. (4.12)

One can expand the variance of a sum of two terms as

Var[G̃p] = Var[Ĝp] + Var
[∑
b∈B

cᵀbpŵ(εb)
]
− 2 Cov

[
Ĝp,

∑
b∈B

cᵀbpŵ(εb)
]

= const +
∑
b∈B

(
E[(cᵀbpŵ(εb))2]− 2E[(Ĝp)(cᵀbpŵ(εb))]

)
, (4.13)

and by replacing the expectations with MC estimates, one arrives at a new estimator

Ṽ GS
p :=

∑
b∈B

(
(cᵀbpŵ(εb))2 − 2(Ĝp)(cᵀbpŵ(εb))

)
. (4.14)

This estimator is similar in form to the partial gradients estimator, replacing the
gradient per data point with the sum over the whole mini-batch. It is called this the
gradient sum estimator. As it does not require any additional backward passes,

2A new PyTorch library, BackPACK [Dangel et al., 2020], can now compute partial gradients
with a low computational overhead. This was released after the writing and publication of the
contributions of this chapter.

79

Chapter 4: Amortised Variance Reduction

it is much cheaper to compute. One can intuitively see that this estimator has a
higher variance than the partial gradients estimator as it additionally includes cross
terms that would be zero in expectation.

4.3.2.2 The Squared Difference Estimator

Alternatively, one can continue from (4.12) by expanding the variance into moment
expectations:

Var[G̃p] = E
[(
Ĝp −

∑
b∈B

cᵀbpŵ(εb)
)2]− (E[Ĝp −∑

b∈B
cᵀbpŵ(εb)

])2
,

where the control variate term has no contribution inside the second expectation
by definition, and E[Ĝp] is a constant with respect to the recognition network pa-
rameters φ. Evaluating the remaining expectation using MC gives the squared
difference estimator:

Ṽ SD
p :=

(
Ĝp −

∑
b∈B

cᵀbpŵ(εb)
)2
, (4.15)

which is also cheap to compute. In contrast to Ṽ GS
p , it includes the second moment

of Ĝp. This is similar to a regression problem that uses ŵd(εb) as zero-mean basis
functions to approximate the gradient Ĝp.

Both the gradient sum objective (4.13) and the squared difference objective
(4.15) are unbiased estimators and not approximations of the recognition network
objective in (4.6). Compared to the partial gradients objective (4.10), they have
higher variance, which is empirically assessed in Appendix B.4.2.3.

The remainder of this section lays out pseudocode for joint optimisation of
model and recognition network in Algorithm 4.

4.3.3 Pseudocode

Algorithm 4 describes the proposed amortised control variate scheme in pseudocode.
For simplicity, the method is illustrated on Stochastic Gradient Descent (SGD)
[Robbins and Monro, 1951]; however, any other gradient-based optimiser could be
used instead. The procedure in Algorithm 4 is written in a functional style and
represents a single update step for the parameters theta = (θ1, . . . , θP) of a generic
doubly stochastic objective (4.1), objective(θ,B, ε), where B is a set of mini-batch
indices and ε is a base randomness. The algorithm also updates the parameters
φ = (φ1, . . . , φQ) of the recognition network rφ(·) that amortises the coefficients of
the control variate ŵ(·).

80

Chapter 4: Amortised Variance Reduction

This algorithm can be efficiently executed on two separate compute nodes by
interleaving the evaluation of the target objective and its gradients on one node with
the evaluation of the recognition network and its gradients on another, as suggested
below with (O) and (R). The two nodes only need to sync in line 7. The update of
the recognition network parameters can still run in parallel with the next evaluation
of the target objective gradients.

Algorithm 4 Stochastic Gradient Descent step with amortised control variate gra-
dients

1: function AmortizedCVUpdate({yn}, objective(θ,B, ε), θ, ŵ(·), rφ(·), φ,
learning rates α & β)

2: B ∼ p(B) . draw mini-batch
3: εb ∼ p(ε) ∀b ∈ B . draw base randomness

4: (O) Ĝp ← ∂
∂θp

(objective)(θ,B, {εb}) ∀p . uncontrolled model gradients

5: (R) cbp ← [rφ(yb)]p ∀b, p . evaluate recognition network on context yb for
batch element b

6: (R) Ĥp ←
∑
b∈B cᵀbpŵ(εb) ∀p . control variate

7: (O+R) G̃p ← Ĝp − Ĥp ∀p . controlled model gradients

8: (O) θp ← θp − αG̃p ∀p . SGD updates for model objective parameters 1

9: (R) Ṽp ← (Ĝp − Ĥp)2 ∀p . recognition network objective 2

10: (R) ∂φq ← ∂
∂φq

∑P
p=1 Ṽp ∀q . recognition network gradients

11: (R) φq ← φq − β∂φq ∀q . SGD updates for recognition network
parameters 1

12: return model objective parameters θ, recognition network parameters φ
13: end function

4.4 Illustrative Example: A Control Variate for Gaus-
sian Base Randomness

So far the discussion has been general, but to implement a control variate, one needs
to specify both the distribution of the base randomness ε and the functional form of

1For simplicity SGD updates are shown, but in principle, any other gradient-based optimiser
can be used. The same holds for the recognition network updates.

2The squared difference objective (4.15) is used for illustrative purposes, but this can also be
substituted with the partial gradients objective (4.10) or the gradient sum objective (4.13).

81

Chapter 4: Amortised Variance Reduction

the control variate w(εn). In principle, any functional form for control variates from
the literature can be used with this method, e.g., Paisley et al. [2012]; Ranganath
et al. [2014]; Miller et al. [2017]. For the sake of simplicity, this section illustrates
the proposed methodology on a simpler control variate form for the special case of
Gaussian base randomness, which is of direct interest to many applications in VI.

Without loss of generality, assume ε ∼ N (0, ID)3. This section introduces
explicit forms for w(εn) for this case, starting with linear control variates, and then
extending the discussion to higher-order polynomials.

4.4.1 Linear Gaussian Control Variates

The simplest control variate is an element-wise linear function of εn,

w(εn) = α+ β � εn, εn ∼ N (0, ID), (4.16)

with � representing the element-wise product. Its expectation is W = E[w(εn)] =
α, and the control variate simplifies to β � εn. β can be absorbed into the con-
trol variate coefficient cnp, which results in the following controlled version of the
gradient component p, for data point n:

g̃np(εn) = ĝnp(εn)− cᵀnpεn. (4.17)

Intuitively, one can think of control variates of this form as injecting the estima-
tor with information on the linear dependence of the gradient on the noise. To
understand this further, examine the first-order Taylor expansion of the gradient
component gnp(εn) around εn = 0,

gnp(εn) = gnp(0) +∇gnp(0)ᵀεn +O(ε2
n). (4.18)

If the gradient is sufficiently linear with respect to εn (i.e., the O(ε2
n) terms are

negligible), and when cnp is a good approximation to the Jacobian at 0, the estimator
in (4.17) will have low variance.

4.4.2 Higher-order Polynomials

In general, the gradient is unlikely to be linear with respect to the noise, especially
for complicated models and objectives. To overcome this, higher-order polynomials
can be used to capture some of the non-linear dependence of the gradient on the

3In the general case where ε ∼ N (µ,Σ), one can simply apply the location-scale reparameteri-
sation ε = µ + Cholesky(Σ)ε0 with ε0 ∼ N (0, ID).

82

Chapter 4: Amortised Variance Reduction

noise. Consider

w(εn) =
K∑
k=1

αk � εkn, (4.19)

where the kth power is evaluated element-wise. W can be easily computed and
would correspond to the sum of diagonal parts of the first K moment tensors of
the multivariate Gaussian distribution, scaled by αk. For instance, for K = 2 the
control variate is given by

w(εn) = α1 � εn +α2 � (ε2
n − diag(ID)). (4.20)

This can again be simplified by absorbing the αk into the control variate coeffi-
cient, with slight adjustments to the controlled gradient estimator, according to the
following observation:

Remark 1: A linear combination of control variates is also a valid control variate,
i.e., g̃np(εn) = ĝnp(εn)−∑K

k=1(c(k)
np)ᵀ(ŵk(ε)−Wk) is unbiased. By considering each

term in (4.20) as a separate control variate, one can write the pth component of the
controlled gradient at n as

g̃np(εn) = ĝnp(εn)− (c(1)
np)ᵀεn − (c(2)

np)ᵀ(ε2
n − diag(ID)). (4.21)

The same construction trivially extends to K > 2.

4.4.3 Brief Discussion

The simple examples of the linear and polynomial control variates presented above
illustrate the importance of choosing a good control variate coefficient. For instance,
in the linear case in (4.17) the control variate function w(εn) = εn does not provide
any extra information on the estimator on its own, as it essentially just adds noise to
the MC estimate. However, the selection of a good control variate coefficient cn for
data point n introduces structure to the noise, that contains information about the
behaviour of the controlled quantity with respect to the Gaussian noise in the form
of the Jacobian in (4.18). Indeed the optimal coefficient c∗n for the linear control
variate contains the Jacobian term.

4.5 Related Work

Control variates are widely used to reduce the gradient variance of stochastic ob-
jectives, mainly motivated by VI. A comprehensive review can be found in Geffner

83

Chapter 4: Amortised Variance Reduction

and Domke [2018]. Some of the relevant work is highlighted here and compared to
the contribution in this chapter.

Paisley et al. [2012] first introduce the idea of using control variates to reduce
the gradient variance in VI. They propose using a bound on the objective or an
approximation of the model as control variates. Ranganath et al. [2014] build on
this work, using the score function of the approximate posterior to control the
gradient of Black Box Variational Inference objectives.

Inspiration for this work comes from Grathwohl et al. [2018], where they use
a recognition network to approximate the model and its gradient as a control variate.
Miller et al. [2017] approximate the reparameterisation gradient for Gaussian vari-
ational distributions by its first-order Taylor expansion, using this approximation
as a control variate. The work in this chapter is related to this construction where
the recognition network can be viewed as a cheap approximation to the linear term
in the Taylor expansion of the gradient (i.e., the Hessian of the model objective) in
the case of the linear construction in Section 4.4.

The unifying work of Geffner and Domke [2018] categorises different control
variate schemes for VI objectives. Additionally, they propose combining them to
achieve greater variance reduction. They derive an optimal rule for this combination
based on Bayesian risk minimisation.

The related works listed above do not consider the effect of mini-batching
on the proposed control variates; therefore, the work in this chapter complements
the methods mentioned above. Indeed, Geffner and Domke [2018] show that a
combination of control variates is usually more desirable than a single scheme. The
method that will be presented can be considered an extra addition to the control
variate toolkit for doubly stochastic objectives, to take the effect of mini-batch
stochasticity on the control variates into account. It can also be combined with
other variance reduction methods such as extra sampling.

4.6 Experimental Validation

The discussion thus far applied to the general class of doubly stochastic objec-
tives. For experimental validation, the focus will be on objectives from VI problems.
Amortising the computation of the control variate coefficients in this setting is ad-
vantageous since context arises naturally from the data in the underlying models.

In this section, the aim is to answer three questions: a) To what extent can
amortisation with a recognition network reduce the variance compared to a fixed
context-free control variate coefficient? b) How well can the recognition network be

84

Chapter 4: Amortised Variance Reduction

trained in an online setting? c) What difference can an amortised control variate
make in practice?

4.6.1 Setup

The questions above are investigated on a classification task on the titanic dataset
using a Bayesian logistic regression model and on a regression task on the airfoil
dataset using a Deep Gaussian Process (DGP) [Salimbeni and Deisenroth, 2017]. A
detailed description of the models and datasets can be found in Appendix B.2.

The Bayesian logistic regression model uses the reparameterisation gradient
formulation of the VI problem. A Gaussian approximate posterior is chosen, where
the mean vector and the full covariance matrix are learned. A unit Gaussian prior
is placed on the weights.

The DGP model uses a 2-layer construction with an inner layer dimension
of 5, and a Squared Exponential kernel for the GP priors. The inference uses the
doubly stochastic formulation [Salimbeni and Deisenroth, 2017]. The parameters
of the approximate Gaussian posterior are learned, while the hyperparameters are
kept fixed. Finally, the inducing locations are fixed and selected as the centroids of
k-means clusters from the data.

Throughout, Adam [Kingma and Ba, 2015] is used for optimising both the
model objective function and the recognition network objective. The gradient es-
timators use a single MC sample, and when stated, are controlled with the linear
a or the quadratic control variates introduced in Section 4.4. The recognition net-
work is initialised with Xavier initialisation [Glorot and Bengio, 2010] and use ReLU
activations in the hidden layers.

This chapter’s proposal is compared to a context-free control variate. In this
instance, this is implemented as an optimisable quantity that does not depend on
data and uses the same optimisation objectives, (4.13) & (4.15), as the recognition
network, i.e., c is independent of the mini-batch B in these objectives. This is
equivalent to approximating the coefficient with an exponentially weighted moving
average of the empirical covariance of the gradient and the control variate estimates.

4.6.2 Verification of Variance Reduction

The first question considered is whether the recognition network has the capacity
to amortise the control variate coefficients and how well it can learn these versus a
context-free coefficient? To test this, the model parameters are frozen at three points
in the optimisation, early (10 steps), mid (200 steps), and late (1000 steps). In each

85

Chapter 4: Amortised Variance Reduction

(a) Logistic regression on titanic.

(b) DGP on airfoil.

Figure 4.2: Variance reduction at different points in the objective optimisation (lower
is better); early: 10 steps, mid: 200 steps, late: 1000 steps. The results are shown
for the linear control variate from Section 4.4. The different colours represent dif-
ferent recognition network architectures. The recognition network training uses the
squared difference objective optimised with Adam with learning rate of 10−2 for the
logistic regression and 10−3 for the DGP. For a small number of iterations on the
recognition network, it struggles to learn a good control variate coefficient. Contin-
uing the network optimisation, it is able to learn good control variate coefficients
that significantly reduce the variance in comparison to the context-free coefficient.
Also notable is that the variance reduction is more pronounced at the later stages
of the model optimisation.

period, the control variate coefficients are optimised for 1000 iterations. The variance
reduction is recorded at different points of the recognition network optimisation by
sampling 100 gradient values and computing their empirical variance. The variance
reduction is measured by the ratio Var[‖G̃N‖]/Var[‖ĜN‖], where G̃N and ĜN are
the controlled and uncontrolled gradients, respectively, over the mini-batch (size
10), and ‖ · ‖ is the gradient norm. Different network sizes are compared to examine
the effect of network architecture on variance reduction.

Fig. 4.2 shows that amortising the control variate coefficients induces greater
variance reduction than context-free coefficients (labelled as None in the figure)
The variance reduction does not occur immediately, as the control variate coeffi-

86

Chapter 4: Amortised Variance Reduction

cients need to be optimised in all cases to reduce the variance. Also notable is that
the amount of variance reduction depends on the optimisation stage of the model; at
later stages of the model optimisation, the variance reduction is more pronounced.
This is likely a property of both the model and the control variate where the gradi-
ents at the beginning of the optimisation have more pronounced non-linearity with
respect to the noise. This can also be seen in the amount of variance reduction in
logistic regression compared to the DGP. The gradients in the logistic regression
models are approximately linear with respect to the noise, while the DGP gradients
have a more complex dependency on the noise. Finally, one can see that the variance
reduction potential depends on the capacity of the network, where wider and deeper
networks learn better control variate coefficients. Deeper networks reduce the vari-
ance more than wider networks, corresponding to a highly non-linear mapping from
the context points to the control variate coefficient.

4.6.3 Simultaneous Optimisation of Objective Function and Con-
trol Variate Coefficient

(a) Logistic regression on titanic.

(b) DGP on airfoil.

Figure 4.3: Gradient variance ratio at three different points in the joint optimisa-
tion of the model and control variate parameters (lower is better); the vertical line
corresponds to a ratio of 1 (i.e. no reduction). Both the model and the control
variate objectives are optimised with Adam with learning rate of 10−2 for the model
and 10−2 and 10−3 for the logistic regression and DGP control variate coefficients
respectively. The recognition network learns a good control variate coefficient and
continues to improve throughout the optimisation, outperforming the context-free
control variate.

87

Chapter 4: Amortised Variance Reduction

In practice, the recognition network must be able to learn the control variate
coefficients while the model is being optimised, resulting in a moving target. In this
sub-section, the viability of chasing this target is investigated by simultaneously
optimising the model objective and recognition network. A recognition network
with three layers of size 128 each is used, as this architecture showed the largest
variance reduction in Section 4.6.2. In each step in the optimisation procedure,
one gradient estimate of the model objective is computed for a mini-batch of size
10. Consequently, a single Adam step is taken on the recognition network, then
the control variate correction is applied to the sampled gradient. Finally, an Adam
step is taken on the model parameters with the controlled gradient. The variance
of the gradient is measured at different periods in the optimisation by sampling 100
gradient values at each period and taking the empirical variance of their norm.

The recognition network is able to learn good control variate coefficients in
this dynamic regime, see Fig. 4.3. The variance reduction improves later on in the
optimisation as observed in Section 4.6.2. Again, one observes that the amortised
control variate results in greater variance reduction than the context-free one.

4.6.4 Practical Effectiveness

To show how this approach works in practice, it is used for training the logistic
regression and DGP models. The alternating optimisation procedure described in
Section 4.6.3 is applied to each for 2000 iterations with mini-batches of size 10. The
mean value of the Negative Evidence Lower Bound (NELBO) is recorded, from 100
MC samples for the logistic regression and 10 MC samples for the DGP at every
iteration computed on the full data sets.

The resulting traces are shown in Fig. 4.4; in both cases, one can see that the
optimisation with controlled gradients starts in a worse regime than the uncontrolled
gradients (curves on or above the dashed line); however, it improves as better control
variate coefficients are learned. The gap between the one-sample MC estimator and
the controlled estimators widens later for logistic regression and fluctuates for the
DGP with some instability in the end. This is because the linear control variate
sufficiently approximates the dependence of the gradient on the randomness in the
case of logistic regression, whereas for the DGP this dependence is more complex.
This can be verified in Fig. 4.3b, where the variance reduction diminishes later on
in the optimisation.

For both models, amortising the control variate coefficients results in lower
NELBO values on average in comparison to the uncontrolled and the context-free
controlled cases. One also notices that the optimisation of the control variate coef-

88

Chapter 4: Amortised Variance Reduction

(a) Logistic regression on titanic.

(b) DGP on airfoil.

Figure 4.4: The difference between optimisation traces for different control vari-
ate objectives, using the uncontrolled one-sample MC estimate of the gradient as a
baseline (lower is better). Linear control variates are used in this experiment. The
gap between the baseline and controlled models widens throughout the optimisa-
tion. Amortised control variate coefficients result in wider gaps indicating better
optimisation performance.

ficients is insensitive to the choice of the objective function, with similar behaviour
for the gradient sum and squared difference objectives for both the amortised and
context-free cases.

Table 4.1 shows the average cost for the controlled optimisation steps for the
two problems. Amortising the control variate coefficients with a recognition network
of size [128, 128, 128] has an additional overhead of around 25% on the context-free
coefficient on the CPU, which is a good investment for high-variance objectives.
The overhead depends on many factors such as the recognition network size, control
variate formulation, mini-batch size and number of gradient components. These
should all be taken into account when implementing this scheme.

89

Chapter 4: Amortised Variance Reduction

Table 4.1: Average optimisation step time in milliseconds (on the CPU) for logistic
regression and DGP for different linear control variate objective functions. Mean
figures are presented with the standard error in parentheses. The statistics are
computed based on 100 repetitions of 10 runs. The implementation uses TensorFlow
2.0 [Abadi et al., 2016] and GPflow [Matthews et al., 2017; van der Wilk et al., 2020].

Method Logistic DGP
Squared diff. - amortised 1.20(0.06) 3.77(0.22)
Grad. sum - amortised 1.25(0.11) 3.78(0.19)
Squared diff. - context-free 0.87(0.09) 3.17(0.13)
Grad. sum - context-free 0.84(0.08) 3.07(0.08)

4.7 Concluding Remarks

This chapter introduced a control variate formulation that exploits the structure of
doubly stochastic objectives to reduce Monte Carlo sampling variance from mini-
batch gradient estimators. This has direct application in VI problems, where the
inference procedure is stabilised due to the resulting low variance gradients.

This contribution proposed three objectives for an amortising recognition
network that can learn context-aware control variate coefficients. Training the net-
work re-uses the gradients of the model objective and does not require additional
passes through the model.

Empirical assessment showed that an approximation to the optimal con-
trol variate per mini-batch can be performed during optimisation and reduces the
gradient variance in practice compared to a context-free global approach. In the ex-
periments, linear and quadratic control variates for Gaussian base randomness were
used, but this approach is general and can be applied to other control variate formu-
lae and randomness schemes. This is particularly important for complex objectives
such as in DGP models, where the simple linear and quadratic control variates fail
to stabilise the optimisation in its later stages. This failure motivates combining
this method with more adaptive control variates, e.g., Radial Basis Network control
variates.

The computational overhead of the proposed control variate could be fur-
ther reduced with the right compute architecture. Although evaluating the target
objective may not benefit from additional compute nodes, one can use a dedicated
node for efficiently evaluating the recognition network in parallel as detailed in Sec-
tion 4.3.3.

90

Chapter 4: Amortised Variance Reduction

While this chapter’s proposal aims to only reduce the MC sampling variance
in doubly stochastic objectives, another promising research direction is to also tar-
get the variance due to mini-batching by combining the current scheme with other
variance reduction methods targeting the data sub-sampling variance, e.g., Stochas-
tic Variance Reduced Gradient (SVRG) [Johnson and Zhang, 2013] and Stochastic
Gradient Recursive Algorithm (SARAH) [Nguyen et al., 2017].

91

CHAPTER 5

A Low Variance Gradient
Estimator for Variational

Inference

As seen in the previous chapter, the stability of Variational Inference (VI) proce-
dures for probabilistic models, especially compositional models, is inherently tied to
the variance of the gradients of their objectives. While Chapter 4 studied the stabili-
sation of VI with doubly stochastic objectives, this chapter examines the special case
of objectives that admit score function (Reinforce) estimators (cf. Section 2.3.3).
This estimator is essential in making VI applicable to various problems such as
the problem of inference for models with discrete latent structures or with non-
differentiable likelihoods. However, the score function estimator is notoriously high
variance, causing significant instability when optimising the VI objective. Hence,
this chapter attempts to improve the stability of VI by introducing an alternative
gradient estimator to the score function estimator, that is shown to have lower
variance.

5.1 Motivation

Estimating the gradient of the expectation of a function is a problem with appli-
cations in many areas of machine learning, ranging from variational inference to
reinforcement learning [Mohamed et al., 2020]. Different gradient estimators lead
to different algorithms; two examples of estimators are the score function gradient
[Williams, 1992] and the reparameterisation gradient [Kingma et al., 2015; Rezende
et al., 2014; Titsias and Lázaro-Gredilla, 2014]. In the specific case of VI, the
variational optimisation problem can be solved with gradient-based stochastic opti-
misation tools when the ELBO is not available in closed form. Thus, MC estimators

92

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

of the ELBO gradient, ∇φELBO(φ), can be used in the optimisation. This chap-
ter studies a multi-sample estimator of the gradient of the ELBO, which was first
introduced by Salimans and Knowles [2014] and Kool et al. [2019]. This estimator
is based on the score function method [Williams, 1992] with leave-one-out control
variates and is referred to as VarGrad in this thesis.

This chapter explores the connection between this estimator and an alter-
native divergence measure between the variational distribution qφ(x) and the exact
posterior p(x |y). This divergence differs from the standard KL used in VI, and is
defined as the variance – under some arbitrary distribution r(x) – of the log-ratio
log qφ(x)

p(x |y) and is called the log-variance loss [Nüsken and Richter, 2020]. It is pos-
sible to recover the gradient estimator of Salimans and Knowles [2014] and Kool
et al. [2019] by taking the gradient with respect to the variational parameters φ
of the log-variance loss and evaluating the result at r(x) = qφ(x). This property
gives this gradient estimator its name, VarGrad, and suggests a simple algorithm for
computing the gradient estimator, based on differentiating through the log-variance
loss.

The relationship between VarGrad and the score function estimator [Williams,
1992; Carbonetto et al., 2009; Paisley et al., 2012; Ranganath et al., 2014] with a
control variate is studied, where the control variate coefficients of VarGrad shown to
be close to the (generally intractable) optimal coefficients. This difference is shown
both theoretically and empirically to be small in many cases; for example when the
KL from qφ(x) to the posterior is either small or large, which is generally the case in
the late and early stages of the optimisation, respectively. This explains the success
of the VarGrad estimator in stabilising inference procedures in a variety of settings
[Kool et al., 2019, 2020].

Since it is based on the score function (cf. Section 2.3.3), VarGrad is a
black-box, general-purpose estimator because it makes no assumptions on the model
p(x,y), such as differentiability with respect to the latent variables x. It introduces
no additional parameters to be tuned and it is not computationally expensive. Sec-
tion 4.6 shows empirically that VarGrad exhibits a favourable variance versus com-
putation trade-off compared to other unbiased gradient estimators, including the
score function gradient with control variates [Williams, 1992; Ranganath et al.,
2014], REBAR [Tucker et al., 2017], RELAX [Grathwohl et al., 2018], and ARM
[Yin and Zhou, 2019]. It also shows that VarGrad is successful in stabilising the
inference procedure where the standard score function estimator is not.

93

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

5.2 Background

This section briefly recaps the score function estimator (introduced in (2.45) in Sec-
tion 2.3.3) and reviews its improved version based on leave-one-out control variates.

Consider a probabilistic model p(x,y), where x denotes the latent variables
and y denotes the observations.The interest is in computing the posterior p(x |y) =
p(x,y)/p(y), where p(y) =

∫
p(x,y) dx is the marginal likelihood. VI approximates

the posterior p(x |y) with a parameterised family of distributions qφ(x) (with φ ∈
Φ), called the variational family and finds the parameters φ? that minimise the KL
divergence, φ? = arg minφ∈Φ KL (qφ(x) || p(x |y)). As discussed in Section 2.3, this
optimisation problem is intractable because the KL itself depends on the intractable
posterior. Variational inference sidesteps this problem by maximising instead the
ELBO

ELBO(φ) = Eqφ(x)

[
log p(x,y)

qφ(x)

]
, (5.1)

which is a lower bound on the marginal likelihood, since log p(y) = ELBO(φ) +
KL (qφ(x) || p(x |y)). As the expectation in (5.1) is typically intractable, varia-
tional inference uses stochastic optimisation to maximise the ELBO. In particular,
it forms unbiased Monte Carlo estimators of the gradient ∇φELBO(φ). Note that
the negative of the ELBO gradient coincides with the gradient of the KL divergence
with respect to the variational parameters φ, since the marginal likelihood p(y) does
not depend on φ, i.e., ∇φKL (qφ(x) || p(x |y)) = −∇φELBO(φ).

The score function estimator [Williams, 1992; Carbonetto et al., 2009; Paisley
et al., 2012; Ranganath et al., 2014], also known as Reinforce, expresses the gradient
as an expectation that depends on the log-ratio qφ(x)/p(x,y) weighted by the score
function ∇φ log qφ(x). The resulting estimator is

∇φKL [qφ(x) || p(x |y)] ≈ ĝReinforce(φ) = 1
S

S∑
s=1

log
(
qφ(x(s))
p(x(s),y)

)
∇φ log qφ(x(s)),

(5.2)
where x(s) i.i.d.∼ qφ(x). Due to its high variance, the score function estimator requires
additional variance reduction tricks in practice; Ranganath et al. [2014] use Rao-
Blackwellization and control variates. The control variates used in this case are
multiples of the score function, a � ∇φ log qφ(x), where � denotes the Hadamard
(element-wise) product and the coefficient a is chosen to minimise the estimator
variance forming a regression estimator (2.97).

Salimans and Knowles [2014] and Kool et al. [2019] leverage the multi-sample
estimator by using S − 1 samples to compute the control variate coefficient a and

94

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

then average over the resulting estimators, obtaining a leave-one-out estimator

ĝLOO(φ) = 1
S − 1

(
S∑
s=1

fφ(x(s))∇φ log qφ(x(s))− f̄φ
S∑
s=1
∇φ log qφ(x(s))

)
, x(s) i.i.d.∼ qφ(x),

(5.3)

where for simplicity of notation, fφ(x) is defined as the log-ratio log qφ(x)
p(x,y) and f̄φ as

its empirical average, which is a multi-sample Monte Carlo estimate of the negative
ELBO, i.e.,

fφ(x) = log qφ(x)
p(x,y) and f̄φ = 1

S

S∑
s=1

fφ(x(s)) ≈ −ELBO(φ). (5.4)

The score function method makes no assumptions on the model p(x,y) or the dis-
tribution qφ(x); the only requirements are to be able to sample from qφ(x) and to
evaluate log qφ(x) and log p(x,y).

5.3 The Log-Variance Loss and its Connection to Var-
Grad

This section establishes the connection between the leave-one-out estimator in (5.3)
and a novel divergence, called the log-variance loss [Nüsken and Richter, 2020],
which is introduced in in Section 5.3.1. Its connection to (5.3) is established in
Section 5.3.2. Due to this connection, from this point this thesis refers to the
estimator in (5.3) as VarGrad.

5.3.1 The Log-Variance Loss

The log-variance loss is defined as the variance, under some arbitrary distribution
r(x), of the log-ratio log qφ(x)

p(x |y) . It has the property of reproducing the gradients of
the KL divergence under certain conditions (see Proposition 5.3.2 for details).

Definition 5.3.1. For a given distribution r(x), the log-variance loss Lr(·) is given
by

Lr(qφ(x) || p(x |y)) = 1
2Varr

[
log

(
qφ(x)
p(x |y)

)]
. (5.5)

The distribution r(x) is referred to as the reference distribution under which
the discrepancy between qφ(x) and the posterior p(x |y) is computed. When the
support of the reference distribution contains the supports of qφ(x) and p(x |y),

95

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

(5.5) is a divergence; it is zero if and only if qφ(x) = p(x |y). The factor 1/2 in (5.5)
is included because it simplifies some expressions later in this section.

It is worth noting that, for a fixed reference distribution r(x), one can fit the
variational parameters by minimising (5.5),

φ? = arg min
φ∈Φ
Lr(qφ(x) || p(x |y)). (5.6)

(5.6) leads to an alternative variational inference problem. This optimisation prob-
lem has the same solution φ? as standard variational inference based on the KL di-
vergence when the variational family contains the true posterior, i.e., when p(x |y) ∈
{qφ(x) : φ ∈ Φ}. In such case, the minimum of both objectives coincide and is at-
tained at qφ?(x) = p(x |y). In contrast, when the variational family does not contain
the true posterior, the problem in (5.6) may lead to a different solution that depends
on the reference distribution r(x).

Under certain conditions, the gradient of the log-variance loss and the gra-
dient of the standard KL divergence coincide. In particular, taking the gradient of
(5.5) with respect to the variational parameters φ and then evaluating the result for
a reference distribution r(x) = qφ(x) gives the gradient of the KL. This property is
detailed in Proposition 5.3.2.

Proposition 5.3.2. The gradient with respect to φ of the log-variance loss, evalu-
ated at r(x) = qφ(x), equals the gradient of the KL divergence,

∇φLr(qφ(x) || p(x |y))
∣∣∣
r=qφ

= ∇φKL(qφ(x) || p(x |y)). (5.7)

Proof. See Appendix C.2.1.

Proposition 5.3.2 implies that the gradient of the KL divergence can be esti-
mated by instead estimating the gradient of the log-variance loss.

Remark 5.3.3. The result in Proposition 5.3.2 is obtained by setting r(x) = qφ(x)
after taking the gradient with respect to φ. The same result does not hold if r(x) =
qφ(x) is set before differentiating.

5.3.2 VarGrad: Derivation of the Gradient Estimator from the
Log-Variance Loss

One can show a connection between the leave-one-out estimator in Equation (5.3)
[Salimans and Knowles, 2014; Kool et al., 2019] and the log-variance loss from Sec-
tion 5.3.1. The log-variance loss is usually intractable as it depends on the posterior

96

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

p(x |y), similar to the KL divergence in standard VI. However, the marginal like-
lihood p(y) can be dropped from the definition in (5.5) since it has zero variance,
i.e.

Lr(qφ(x) || p(x |y)) = 1
2Varr

[
log

(
qφ(x)
p(x,y)

)]
= 1

2Varr [fφ(x)] , (5.8)

where fφ(z) is defined in (5.4).
Empirically, the log-variance loss can be estimated from S MC samples,

Lr(qφ(x) || p(x |y)) ≈ 1
2(S − 1)

S∑
s=1

(
fφ(x(s))− f̄φ

)2
, x(s) i.i.d.∼ r(x), (5.9)

where Bessel’s correction [Kenney, 1939] is used to ensure unbiased estimation.
Applying Proposition 5.3.2 by differentiating through (5.9), one arrives at

the VarGrad estimator

ĝVarGrad(φ) = 1
S − 1

(
S∑
s=1

fφ(x(s))∇φ log qφ(x(s))− f̄φ
S∑
s=1
∇φ log qφ(x(s))

)
, (5.10)

with x(s) i.i.d.∼ qφ(x). The expression for VarGrad in (5.10) is identical to the ex-
pression of the leave-one-out estimator in (5.3) and is an unbiased estimator of the
gradient of the standard KL (and equivalently the ELBO).

Deriving VarGrad as above gives a convenient way of computing this esti-
mator; hence, from a probabilistic programming perspective, setting the reference
r(x) = qφ(x) after differentiating w.r.t. φ amounts to sampling x(s) ∼ qφ(x) and de-
taching the resulting samples from the computational graph. This novel algorithmic
procedure for computing this estimator is given in Algorithm 5. Its implementation
is simple: one only needs to sample x(s) ∼ qφ(x), apply the stop_gradient opera-
tor1, evaluate the log-ratio fφ(x(s)) for each sample, and then differentiate through
the empirical variance of this log-ratio.

5.4 Relationship to Reinforce with Score-based Control
Variates

This section develops VarGrad’s relationship to the score function estimator (Rein-
force), specifically when the latter is used with a control variate. One can recover the
optimal control variate coefficient for the Reinforce estimator by adding a correction

1This is available in most modern automatic differentiation frameworks, albeit under different
names.

97

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

Algorithm 5 Pseudocode for VarGrad
Input: Variational parameters φ, data y

for s = 1, . . . , S do
x(s) ← sample(qφ(·)) . Sample from the approximate posterior
x(s) ← stop_gradient(x(s)) . Detach samples from the computational graph
f

(s)
φ ← log qφ(x(s))− log p(x(s),y) . Estimate the negative ELBO

end for
L̂ ← 1

2Variance({f (s)
φ }Ss=1) . Estimate the log-variance loss

return grad(L̂) . Differentiate through the loss w.r.t. φ

term δCV to the control variate coefficient induced by VarGrad aVarGrad.

5.4.1 Reinforce with Score Control Variates

Due to its high variance, Reinforce typically needs variance reduction in practice.
Ranganath et al. [2014], introduces a regression estimator (2.97) where the score is
used as a control variate

ĝCV(φ) = ĝReinforce(φ)− a �
(

1
S

S∑
s=1
∇φ log qφ(x(s))

)
. (5.11)

From (2.100), the optimal control variate coefficient for the ith gradient com-
ponent is given as

a?i =
Covqφ

(
fφ(x)∂φi log qφ(x), ∂φi log qφ(x)

)
Varqφ

(
∂φi log qφ(x)

) . (5.12)

The coefficient in (5.12) cannot usually be computed in closed-form due to the
intractable expectations in the fraction. In practice, this coefficient is estimated
with extra MC samples; however, this estimation can suffer from both bias and
variance issues since it is takes the form of a ratio of two MC estimators 2.

5.4.2 VarGrad as an Approximation to Reinforce with Optimal
Control Variate Coefficients

One can recover VarGrad (5.10), up to a factor of proportionality, by setting the
control variate coefficient in (5.11) to aVarGrad := a = f̄φ1 , where 1 is a vector of
ones. In this case, the proportionality relation is ĝVarGrad = S

S−1 ĝCV. Furthermore,

2Note that this does not alter the bias and variance of the original regression estimator as any
value of a yields an unbiased estimator; however, this can affect the extent of variance reduction
that the regression estimator induces.

98

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

the VarGrad coefficient, aVarGrad, can be related to the optimal coefficient a? as
follows:

Lemma 5.4.1. The optimal control variate coefficient can be written as the expected
value of aVarGrad plus a control variate correction term δCV, i.e.,

a∗ = Eqφ
[aVarGrad] + δCV = −ELBO(φ) + δCV, (5.13)

where aVarGrad = f̄φ and the components of the correction term δCV are given by

δCV
i =

Covqφ

(
fφ(x),

(
∂φi log qφ(x)

)2)
Varqφ

(
∂φi log qφ(x)

) . (5.14)

Proof. See Appendix C.2.2.

In certain settings, the correction term δCV becomes negligible, implying that
ĝVarGrad and ĝReinforce equipped with the optimal control variate coefficients behave
almost identically. These settings are explored analytically in Appendix C.1. In
addition, Section 5.6 provides empirical evidence of this finding.

5.4.3 Variance of the VarGrad Estimator

The variance of ĝVarGrad(θ) can be compared to the variance of ĝReinforce(θ) as follows

Proposition 5.4.2. Consider the two gradient estimators ĝReinforce(φ) and ĝVarGrad(φ),
each with S Monte Carlo samples, as defined in (5.2) and (5.10), respectively. If

− δCV
i

Eqφ
[aVarGrad] = δCV

i

ELBO(φ) <
1
2 (5.15)

then there exists S0 ∈ N such that

Var (ĝVarGrad,i(φ)) ≤ Var (ĝReinforce,i(φ)) , for all S ≥ S0. (5.16)

Proof. See Appendix C.2.4.

If the correction δCV is negligible (see Proposition C.1.1 for analytical guar-
antees on this case), then the assumption in Equation (5.15) is satisfied and Propo-
sition 5.4.2 guarantees that VarGrad has lower variance than Reinforce when S is
large enough. Appendix C.1.2 considers the relationship between the two estimators
w.r.t. the dimensionality of the latent variables.

99

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

5.5 Related Work

In the last few years, many gradient estimators of the ELBO have been proposed; see
Mohamed et al. [2020] for a comprehensive review. Among those, the score function
estimators [Williams, 1992; Carbonetto et al., 2009; Paisley et al., 2012; Ranganath
et al., 2014] and the reparameterisation estimators [Kingma and Welling, 2014;
Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014], as well as combinations of
both [Ruiz et al., 2016; Naesseth et al., 2017], are arguably the most widely used.
NVIL [Mnih and Gregor, 2014] and MuProp [Gu et al., 2016] are unbiased gradient
estimators for training stochastic neural networks.

Other gradient estimators are specific for discrete-valued latent variables.
The concrete relaxation [Maddison et al., 2017; Jang et al., 2017] describes a way
to form a biased estimator of the gradient, which REBAR [Tucker et al., 2017] and
RELAX [Grathwohl et al., 2018] use as a control variate to obtain an unbiased
estimator. Other recent estimators have been proposed by Lee et al. [2018]; Peters
and Welling [2018]; Shayer et al. [2018]; Cong et al. [2019]; Yin and Zhou [2019];
Yin et al. [2019]. Section 5.6 compares VarGrad with some of these estimators,
showing that it exhibits a favourable performance versus computational complexity
trade-off.

The VarGrad estimator was first introduced by Salimans and Knowles [2014]
and Kool et al. [2019]. It also relates to VIMCO [Mnih and Rezende, 2016] in that
it is a leave-one-out estimator. This chapter has described an alternative derivation
of VarGrad, based on the log-variance loss.

The log-variance loss from Section 5.3.1 defines an alternative divergence
between the approximate and the exact posterior distributions. In the context of
optimal control of diffusion processes and related forward-backward stochastic dif-
ferential equations, it arises naturally to quantify the discrepancy between measures
on path space [Nüsken and Richter, 2020]. Other forms of alternative divergences
have also been explored in the VI literature; for example the χ2-divergence [Di-
eng et al., 2017], the Rényi divergence [Li and Turner, 2016], the Langevin-Stein
[Ranganath et al., 2016a], the α-divergence [Hernández-Lobato et al., 2016], other
f -divergences [Wang et al., 2018], a contrastive divergence [Ruiz and Titsias, 2019],
and also the inclusive KL [Naesseth et al., 2020].

100

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

0 10 50 100 500 1000
epochs

10 3

10 2

10 1

CV
/

[a
Va

rG
ra

d]
Logistic regression

dims = 20
dims = 50
dims = 100
dims = 200

(a)

0 10 50 100 500 1000
epochs

0

20

40

60

80

100

120

140

E
st

im
at

e
fo

r
K

L(
q

(z
)||

p(
z|

x)
)

Logistic regression

dims = 20
dims = 50
dims = 100
dims = 200

(b)

0 10 50 100 500 1000
epochs

15

20

25

30

35

40

45

D
en

om
in

at
or

Logistic regression

dims = 20
dims = 50
dims = 100
dims = 200

(c)

Figure 5.1: Verification of Proposition C.1.1 and Remark C.1.3 on the logistic re-
gression model. (a) shows that the ratio

∣∣∣δCV
i /Eqφ

[aVarGrad]
∣∣∣ is small and uniformly

bounded over epochs, illustrating that the VarGrad estimator stays close to the
optimal control variate coefficients during the whole optimisation procedure. Addi-
tionally, this ratio decreases with increasing dimensionality of the latent variables.
(b) displays an estimate of the KL divergence across epochs and demonstrate the
beneficial effect of higher dimensions, since the bound of Equation (C.3) is expected
to scale like O(KL−1/2) in the early phase. (c) plots an estimate of the denomina-
tor of the bound (Equation (C.3)), which increases or stays constant over epochs,
demonstrating that the ratio in Equation (C.3) stays stable (and small) over epochs.

5.6 Experiments

In order to empirically verify its properties, VarGrad was tested on two popular mod-
els: Bayesian logistic regression on a synthetic dataset and a Discrete Variational
Auto-Encoder (DVAE) [Salakhutdinov and Murray, 2008; Kingma and Welling,
2014] on a fixed binarisation of Omniglot [Lake et al., 2015]. The DVAE results
are illustrated with a two-layer linear model [Maddison et al., 2017], which is an
example of a compositional latent variable model. The details of the experimental
setup are in Appendix C.3. The code for the experiments is publicly available at
https://github.com/aboustati/vargrad.

5.6.1 Closeness to the optimal control variate

Section 5.4 showed that VarGrad is close to the optimal control variate and Ap-
pendix C.1 relates this to the ratio

∣∣∣δCV
i /Eqφ

[aVarGrad]
∣∣∣, which is usually small over

the whole optimisation procedure. This behaviour is expected to be even more pro-
nounced with growing dimensionality of the latent space. Figure 5.1 confirms this
result by showing the ratio

∣∣∣δCV
i /Eqφ

[aVarGrad]
∣∣∣ for the logistic regression model. It

also shows the change with the number of iterations of the KL divergence (panel b)
and the denominator of the bound in Equation (C.3) (panel c).

The ratio
∣∣∣δCV
i /Eqφ

[aVarGrad]
∣∣∣ is also observed to be very small for the DVAE

101

https://github.com/aboustati/vargrad

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

1 0 1 2
CV/ [aVarGrad] 1e 8

epochs = 0

4 2 0 2 4
CV/ [aVarGrad] 1e 8

epochs = 1

1.5 1.0 0.5 0.0 0.5 1.0
CV/ [aVarGrad] 1e 7

epochs = 10

2 1 0 1 2
CV/ [aVarGrad] 1e 7

epochs = 100

(a) One layer non-linear (3 layers) DVAE.

3 2 1 0 1 2
CV/ [aVarGrad] 1e 8

epochs = 0

7.5 5.0 2.5 0.0 2.5 5.0
CV/ [aVarGrad] 1e 8

epochs = 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
CV/ [aVarGrad] 1e 7

epochs = 10

1 0 1 2
CV/ [aVarGrad] 1e 7

epochs = 100

(b) Two-layer linear DVAE.

Figure 5.2: The distribution of δCV
i

E[aVarGrad] associated with the biases of two DVAE
encoders with 200 latent dimensions. The DVAEs are trained on Omniglot with
the log-variance loss using Adam with a learning rate of 0.001. The estimates are
computed with MC sampling with 2000 samples.

in both the linear and non-linear settings in Fig. 5.2. This indicates that Var-
Grad can be used as a computationally cheaper substitute to a controlled Reinforce
estimator, circumventing the need for extra computation to compute the optimal
control variate coefficient. Results on how this affects the variance of the gradient
estimator in practice are shown in the next section.

5.6.2 Variance reduction and computational cost

Figure 5.3 shows the variance of different gradient estimators across optimisation
iterations in the logistic regression setting. VarGrad is seen to have significantly
lower variance across all iterations in comparison to the standard Reinforce estimator
(5.2). In fact, there is only a small observed difference between the variance of
VarGrad and the variance of an oracle estimator based on Reinforce with access
to the optimal control variate coefficient a?. Figure 5.3 also shows the variance of
the sampled estimator, the Reinforce-based regression estimator with an estimate
of the optimal control variate coefficient; this confirms the difficulty of estimating
the coefficient in it in practice. All methods use S = 4 Monte Carlo samples, and
the control variate coefficient is estimated with either 2 extra samples (sampled
estimator) or 1,000 samples (oracle estimator).

A similar trend can be observed for the DVAE in Figure 5.4, where VarGrad is
compared to a wider list of estimators from the DVAE literature. VarGrad achieves
considerable variance reduction over the adaptive (RELAX) [Grathwohl et al., 2018]

102

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

0 20 40 60 80 100
epoch

102

103

104

105

Va
ri

an
ce

Reinforce
Sampled estimator
Oracle estimator
VarGrad

Figure 5.3: Estimates of the variance of the gradient component w.r.t. the posterior
mean of one of the weights for the logistic regression model. The variance of VarGrad
is close to the oracle estimator based on Reinforce with access to the optimal control
variate coefficient a?. Moreover, the sampled estimator (based on Reinforce with
an estimate of a?) shows the difficulty of estimating the optimal control variate
coefficient in practice.

and non-adaptive (Controlled Reinforce) [Ranganath et al., 2014] model-agnostic
estimators. Structured adaptive estimators such as Dynamic REBAR [Tucker et al.,
2017] and RELAX + REBAR [Grathwohl et al., 2018] start with a higher variance at
the beginning of optimisation, which reduces towards the end. ARM [Yin and Zhou,
2019], which uses antithetic sampling, achieves the most reduction; however, it is
only applicable to models with Bernoulli latent variables. Notably, the extra variance
reduction seen in some of the methods does not translate to better optimisation
performance on this example as seen in Figure 5.5.

Finally, Figure 5.5 compares VarGad with other estimators by training a
DVAE on Omniglot. The figure shows the negative ELBO as a function of the
epoch number (left plot) and against the wall-clock time (right plot) for three dif-
ferent Adam [Kingma and Ba, 2015] learning rates: 0.001, 0.0005 and 0.0001. The
negative ELBO is computed on the standard test. VarGrad achieves similar perfor-
mance to state-of-the-art estimators, such as REBAR [Tucker et al., 2017], RELAX
[Grathwohl et al., 2018], and ARM [Yin and Zhou, 2019], while being simpler to
implement (see Algorithm 5) and without any tunable hyperparameters.

In comparison to the standard score function estimator, Figure 5.5 shows
that VarGrad induces more stable inference, where for the large learning rate of
0.001, one can see that optimisation with the score function estimator diverges.
Optimisation with VarGrad does not suffer from this issue and converges at a fast

103

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

0 10 100 200
epochs

10 1

100

101

102

103

104

105

106

Va
ri

an
ce

DVAE gradient variance averaged over variational parameters

VarGrad, S=2
VarGrad, S=5
VarGrad, S=10
Dynamic REBAR, S=1
Controlled Reinforce, S=1
Controlled Reinforce, S=5
RELAX, S=1
RELAX + REBAR, S=1
ARM, S=1

Figure 5.4: Estimates of the gradient variance of a two-layer linear DVAE at 4
points during the optimisation for different gradient estimators. The plot compares
VarGrad to Reinforce with score function control variates [Ranganath et al., 2014],
dynamic REBAR [Tucker et al., 2017], RELAX, RELAX + REBAR [Grathwohl
et al., 2018] and ARM [Yin and Zhou, 2019]. The number of samples used to
compute each gradient estimator is given in the figure legend.

rate compared to the other estimators.

5.7 Concluding Remarks

This chapter studied a new perspective on the VarGrad estimator, an estimator of
the gradient of the KL that is based on Reinforce with leave-one-out control variates.
This estimator is an important tool in the VI toolbox, that makes it applicable to
inference problems for complex models with discrete latent structures. This chapter
established the connection between VarGrad and a novel divergence, known as the
log-variance loss [Nüsken and Richter, 2020]. It also showed that, under certain
conditions, the VarGrad control variate coefficients are close to the optimal ones.
This reduction in variance induces more stability during the optimisation of the VI
objective. This increased stability was illustrated on a simple logistic regression
model (in Fig. 5.3) and a more complex compositional latent variable model, the
two-layer linear DVAE (in Fig. 5.5).

In this chapter, the log-variance loss was used as a proxy loss whose gradient
matches that of the ELBO under certain conditions. An interesting idea for future
work is to explore the direct optimisation of this loss for alternative choices of the
reference distribution r(x), thus generalising the VarGrad estimator.

104

Chapter 5: A Low Variance Gradient Estimator for Variational Inference

25 50 75 100 125 150 175 200
epoch

130

140

150

160

170

180

190

Te
st

 N
eg

at
iv

e
E

LB
O

VarGrad, S=2
VarGrad, S=5

VarGrad, S=10
Dynamic REBAR, S=1

Controlled Reinforce, S=1
Controlled Reinforce, S=5

RELAX, S=1
RELAX + REBAR, S=1

ARM, S=1

0 100 200 300 400 500 600
wall-clock time (seconds)

(a) Learning rate of 0.001

25 50 75 100 125 150 175 200
epoch

130

140

150

160

170

180

190

Te
st

 N
eg

at
iv

e
E

LB
O

VarGrad, S=2
VarGrad, S=5

VarGrad, S=10
Dynamic REBAR, S=1

Controlled Reinforce, S=1
Controlled Reinforce, S=5

RELAX, S=1
RELAX + REBAR, S=1

ARM, S=1

0 100 200 300 400 500 600
wall-clock time (seconds)

(b) Learning rate of 0.0005

25 50 75 100 125 150 175 200
epoch

130

140

150

160

170

180

190

Te
st

 N
eg

at
iv

e
E

LB
O

VarGrad, S=2
VarGrad, S=5

VarGrad, S=10
Dynamic REBAR, S=1

Controlled Reinforce, S=1
Controlled Reinforce, S=5

RELAX, S=1
RELAX + REBAR, S=1

ARM, S=1

0 100 200 300 400 500 600
wall-clock time (seconds)

(c) Learning rate of 0.0001

Figure 5.5: Optimisation trace versus epoch (left) and wall-clock time (right) for
a two-layer linear DVAE on a fixed binarisation of Omniglot. The plot compares
VarGrad to Reinforce with score function control variates [Ranganath et al., 2014],
dynamic REBAR [Tucker et al., 2017], REALX, RELAX + REBAR [Grathwohl
et al., 2018] and ARM [Yin and Zhou, 2019]. The number of samples used to
compute each gradient estimator is given in the figure legend. VarGrad demonstrates
favourable scalability and performance when compared to the other estimators.

105

CHAPTER 6

Generalised Bayesian Filtering

The previous two chapters studied methods to alleviate the instability of inference
methods due to the variance induced when estimating quantities that are based on
random variables. Another principal source of instability is due to the training data
itself. If the observed data differs from its the assumed distribution in a probabilistic
model, then the inference procedure becomes unstable and can fail to produce a
reliable posterior distribution. Therefore, it is essential to consider this potential
mismatch between reality and assumptions when building probabilistic models and
performing inference on them.

Models and inference procedures that are stable in the presence of this type
of mismatch are known as robust methods and are commonplace in statistics and
machine learning. This chapter studies the robustness problem in sequential prob-
abilistic models. It builds on the idea of Generalized Bayesian Inference, deriving
a new sampling scheme that can handle contamination in the observations; hence,
providing robust inference in these types of models.

6.1 Motivation

Estimating the hidden states in dynamical systems is a long-standing problem in
many fields of science and engineering. This can be formulated as an inference
problem of a general state-space hidden Markov model (HMM) defined via two
processes, the hidden process (xt)t≥0, and the observation process (yt)t≥1. More
precisely, consider the general state-space hidden Markov models of the form

xt ∼ π0(x0), (6.1)

xt|xt−1 ∼ ft(xt|xt−1), (6.2)

yt|xt ∼ gt(yt|xt), (6.3)

106

Chapter 6: Generalised Bayesian Filtering

where xt ∈ X for t ≥ 0, yt ∈ Y for t ≥ 1, ft is a Markov kernel on X and
gt : Y × X → R+ is the likelihood function. For convenience, assume X ⊆ RDx and
Y ⊆ RDy ; however, the extension to general Polish spaces follows directly. The key
inference problem in this model class is estimating is the filtering distributions, i.e.
the posterior distributions of the hidden states (xt)t≥0 given the observations y1:t

denoted as (πt(xt|y1:t))t≥1. This is commonly known as Bayesian filtering [Anderson
and Moore, 1979; Särkkä, 2013].

Under assumptions of linearity and Gaussianity, the inference problem for
the hidden states of HMMs can be solved analytically via the Kalman filter [Kalman,
1960]. However, inference for general HMMs of the form (6.1)–(6.3) with nonlin-
ear, non-Gaussian transitions and likelihoods lacked a general, principled solution
until the arrival of the particle filtering schemes [Gordon et al., 1993]. Particle fil-
ters (PFs) have become ubiquitous for Bayesian filtering in the general setting. In
short, the PFs retain a weighted collection of Monte Carlo samples representing the
filtering distribution πt(xt|y1:t) and recursively approximate the sequence of distri-
butions (πt)t≥0 using a particle mutation-selection scheme [Doucet et al., 2000] (cf.
Section 2.5.3).

While PFs (and other inference schemes for HMMs) implicitly assume that
the assumed model is well-specified, it is important to consider whether the proposed
model class includes the true data-generating mechanism (DGM). In particular,
for general state-space HMMs, misspecification can occur if the true dynamics of
the hidden process significantly differ from the assumed model ft, or if the true
observation model is markedly different from the assumed likelihood model gt, e.g.
corruption by heavy-tailed noise. The latter case is of widespread interest within the
field of robust statistics [Huber, 1981] and has recently attracted significant interest
in the machine learning community [Futami et al., 2018].

When the true DGM cannot be modelled, one principled approach to ad-
dress misspecification is Generalized Bayesian Inference (GBI) [Bissiri et al., 2016]
(cf. Section 2.6). Recall that this approach views classical Bayesian inference as a
loss minimisation procedure in the space of probability measures, a view first devel-
oped by Zellner [1988]. In particular, the standard Bayesian update can be derived
from this view, where a loss function is constructed using the Kullback-Leibler (KL)
divergence from the empirical distribution of the observations to the assumed like-
lihood [Bissiri et al., 2016]. The KL divergence is sensitive to outliers [Knoblauch
et al., 2019], hence the overall inference procedure is not robust to observations
that are incompatible with the assumed model. A principled remedy is to replace
the KL divergence with an alternative discrepancy, such as the β-divergence, which

107

Chapter 6: Generalised Bayesian Filtering

makes the overall procedure more robust [Cichocki and Amari, 2010] while retaining
interpretability.

Previous work on robust particle filters has considered the handling of out-
liers, sensor failures and misspecification of the transition model [Pitt and Shephard,
1999; Maiz et al., 2009, 2012; Xu et al., 2013; Calvet et al., 2015; Teixeira et al., 2017;
Hu et al., 2007; Akyildiz and Mı́guez, 2020]. However, these approaches are either
based on problem-specific heuristic outlier detection schemes or make strong as-
sumptions about the DGM to justify the use of heavy-tailed distributions [Xu et al.,
2013]. This requires knowledge of the contamination mechanism that is implicitly
embedded in the likelihood.

This chapter proposes a principled approach to robust filtering that does not
impose additional modelling assumptions. The GBI approach of Bissiri et al. [2016]
is adapted to the Bayesian filtering setting, where sequential Monte Carlo (SMC)
methods for inference are developed. The performance of this approach is illustrated
using the β-divergence, to mitigate the effect of outliers. This approach significantly
improves the PF performance in settings with contaminated data, while retaining a
general and principled approach to inference.

6.2 Background and Notation

6.2.1 Notation

The following notation is used throughout this chapter. The space of bounded,
Borel measurable functions on X is denoted as B(X). The Dirac measure located
at z is denoted as δz(dx) and note that f(z) =

∫
f(x)δz(dx) for f ∈ B(X). Denote

the Borel subsets of X as B(X) and the set of probability measures on (X ,B(X))
as P(X). For a probability measure µ ∈ P(X) and ϕ ∈ B(X), write µ(ϕ) :=∫
ϕ(x)µ(dx). Given a probability measure µ, the notation is abused to denote its

density with respect to the Lebesgue measure as µ(x).

6.2.2 Generalized Bayesian Inference (GBI)

Recall from Section 2.6 that Generalized Bayesian Inference (GBI) [Bissiri et al.,
2016] extends standard Bayesian inference to the M-open setting, where the gener-
ative model is not well-specified. In particular, it shows that the standard Bayes
update rule in (2.26) can be seen as a special case of the more general loss-based
update rule in (2.92). This is presented again in the sequel in the notation of this
chapter.

108

Chapter 6: Generalised Bayesian Filtering

For a prior belief distribution π0 and a loss function `(x,y) connecting the
observations to the model parameters, one can obtain a posterior belief distribution
πG(x) on the model parameters with the following rule:

πG(x) := πG(x |y) = π0(x)G(x |y)
Z

, (6.4)

with G(x |y) := exp(−`(x,y)) and Z :=
∫
G(x |y)π0(x) dx. Specifying `(x,y) as

the cross-entropy (from the KL-divergence) of the assumed likelihood relative to the
empirical distribution of the data recovers the standard Bayes update.

As noted before, the standard Bayes update is not robust to outliers due to
the properties of KL divergence [Knoblauch et al., 2019]. Hence, substituting the
cross-entropy with a more robust loss such as the β-cross-entropy [Futami et al.,
2018], based on the β-divergence, can make the inference more robust. Specifically,
in this setting the generalised Bayes update for the likelihood g(y |x) is written as

π(x) = π0(x)G
β(y |x)
Zβ

, (6.5)

where

Gβ(y |x) = exp
(1
β
g(y |x)β − 1

β + 1

∫
g(y′ |x)β+1 dy′

)
. (6.6)

One can consider Gβ(y |x) as a generalised likelihood, resulting from the use of
a different loss function compared to the standard Bayes procedure. Here β is a
hyperparameter that is selected depending on the degree of misspecification. In
general β ∈ (0, 1) and

lim
β→0

Gβ(y |x) = g(y |x). (6.7)

Thus, intuitively, β values near zero are suitable for mild model misspecification and
β values near one are suitable when the assumed model is expected to significantly
deviate from the true model. The experimental section devotes some attention to
the selection of β and sensitivity analysis.

Generalised Bayesian updating enables robustification against outliers if a
suitable divergence is chosen [Ghosh and Basu, 2016; Knoblauch et al., 2018, 2019].

109

Chapter 6: Generalised Bayesian Filtering

6.2.3 Sequential Monte Carlo for HMMs

One can use SMC algorithms in Section 2.5.3 to conduct inference in HMMs of the
form (6.1)–(6.3) where π0(·) is a prior probability distribution on the initial state
x0, ft(x|x′) is a Markov transition kernel on X and gt(yt |xt) is the likelihood for
observation yt. This assumes that the hidden process and observation processes
are realised at discrete time intervals, i.e., x1:T represents the hidden process with
xt ∈ X and y1:T an observation process with yt ∈ Y, and the observation sequence
y1:T is assumed to be fixed but otherwise arbitrary.

The typical interest in probabilistic models is the estimation of expectations
of general test functions with respect to the posterior distribution, in this case, of
the hidden process πt(xt |y1:t) and the associated joint distributions pt(x0:t |y1:t).
More precisely, given a bounded test function ϕ ∈ B(X), the interest is in estimating
integrals of the form

πt(ϕ) =
∫
ϕ(xt)πt(xt |y1:t). (6.8)

Kalman filtering [Kalman, 1960; Anderson and Moore, 1979] can be used to obtain
closed form expressions for (πt, pt)t≥0 if ft and gt are linear-Gaussian. However,
for non-linear or non-Gaussian cases, the target distributions are almost always
intractable, requiring an alternative approach, such as SMC methods [Doucet et al.,
2000; Doucet and Johansen, 2011], which are known as Particle Filters (PFs) when
employed in the HMM setting.

In a typical iteration, a PF method proceeds as follows: given a collec-
tion of samples {x(i)

t−1}Ni=1 representing the posterior πt−1(xt−1 |y1:t−1), it first sam-
ples from a (possibly observation dependent) proposal x̄(i)

t ∼ qt(xt |x(i)
1:t−1,y1:t).

It then computes weights for each sample (particle) x̄(i)
t−1 in the collection for a

given observation yt, evaluating its fitness with respect to the likelihood gt as
w(i)
t ∝ gt(yt | x̄

(i)
t) ft(x̄(i)

t |x
(i)
t−1)

qt(x̄(i)
t |x

(i)
1:t−1,yt)

, where ∑N
i=1 w(i)

t = 1. Finally, an optional re-

sampling step 1 is used to prevent degeneracy, leading to x(i)
t ∼

∑N
i=1 w(i)

t δx̄(i)
t

(dxt).
One can then construct the empirical measure πNt (dxt |y1:t) = 1

N

∑N
i=1 δx(i)

t

(dxt),
and the estimate of πt(ϕ) in (6.8) is given by

πNt (ϕ) = 1
N

N∑
i=1

ϕ(x(i)
t). (6.9)

1In the simplest form, drawing N times with replacement from the weighted empirical measure
to obtain an unweighted sample whose empirical distribution approximates the same target; see
[Gerber et al., 2019] for an overview of resampling schemes and their properties.

110

Chapter 6: Generalised Bayesian Filtering

Algorithm 6 The generalised particle filter
Input: Observation sequence y1:T , number of samples N , proposal distributions
q1:T (·).
Initialize: Sample {x̄(i)

0 }Ni=1 for the prior π0(x0).
for t = 1 to T do

Sample: x̄(i)
t ∼ qt(xt |x

(i)
1:t−1,yt) . for i = 1 to N .

Weight: w(i)
t ∝ exp(−`(x̄(i)

t ,yt))
ft(x̄(i)

t |x
(i)
t−1)

qt(x̄(i)
t |x

(i)
1:t−1,yt)

. for i = 1 to N .

Resample: x(i)
t ∼

∑N
i=1 w(i)

t δx̄(i)
t

(dxt) . for i = 1 to N .
end for

If the proposal is chosen as the transition density, i.e., qt(xt |x(i)
1:t−1,yt) = ft(xt |x(i)

t−1),
the bootstrap particle filter (BPF) [Gordon et al., 1993] is obtained. This corre-
sponds to the simple procedure of sampling x̄(i)

t from ft(xt |x(i)
t−1), and setting its

weight w(i)
t ∝ gt(yt | x̄

(i)
t).

6.3 Generalised Bayesian filtering

6.3.1 A simple generalised particle filter

As explained in Section 6.2.2, given a standard probability model comprised of the
prior π0(x) and a likelihood g(y |x), the general Bayes update defines an alternative,
generalised likelihood G(y |x). The sequence of generalised likelihoods, denoted as
Gt(yt|xt) for t ≥ 1, in an HMM yields a joint generalised posterior density which
factorises as

pt(x0:t |y1:t) ∝ π0(x0)
t∏

k=1
fk(xk |xk−1)Gk(yk |xk), (6.10)

where Gt(yt |xt) := exp(−`t(xt,yt)). Inference can be done via SMC applied to this
sequence of twisted probabilities defining a Feynman-Kac flow [Del Moral, 2004].

Comparing the update rule in (6.4) to the standard Bayes update suggests
a generalisation of the particle filter. In particular, under the model in (6.1)–(6.3),
one can perform generalised inference using (ft)t≥1 as usual, but replacing the like-
lihood with (Gt)t≥1. Hence, a generalised sequential importance resampling PF
(given fully in Algorithm 6) keeps the sampling step intact, but applies a different
weight computation step w(i)

t ∝ exp(−`(x̄(i)
t ,yt))

ft(x̄(i)
t |x

(i)
t−1)

qt(x̄(i)
t |x

(i)
1:t−1,yt)

. Indeed, most PFs
(including the APF, see Algorithm 8 in the appendix) and related algorithms can

111

Chapter 6: Generalised Bayesian Filtering

be adapted to the GBI context.

6.3.2 The β-BPF and the β-APF

The β-BPF is derived by selecting `t(xt,yt) as the β-divergence and applying the
BPF procedure with the associated generalised likelihood. In this case, the loss is

`βt (xt,yt) = 1
β + 1

∫
gt(y′t |xt)β+1 dy′t −

1
β
gt(yt |xt)β. (6.11)

One can then construct the general β-likelihood as

Gβt (yt |xt) ∝ exp(−`βt (xt,yt)). (6.12)

In this instance, the use of the β-divergence provides the sampler with robust prop-
erties [Cichocki and Amari, 2010]. This can informally be seen from the form of the
loss function in (6.11), where positive values of β temper the likelihood extending
its tails making the loss more forgiving to outliers. The β-BPF procedure is given in
Algorithm 7 in the appendix. The β-APF (Algorithm 8 in the appendix) is an Aux-
iliary Particle Filter [Pitt and Shephard, 1999; Johansen and Doucet, 2008] adapted
to the GBI setting, and is derived similarly to the β-BPF.

Note that the integral term in (6.11) is independent of xt and can be ab-
sorbed, without evaluation, into the normalising constant when xt is a location
parameter for a symmetric gt(·) and Y is a linear subspace of RDy (recall that
yt ∈ Y). More generally, if gt(·) is a member of the exponential family, the integral
can be computed by identifying gβt (·) with the kernel of another member of the same
family with canonical parameters scaled by β. The overhead of computing Gβt (·) is
negligible in this instance, which is not too restrictive in the context of misspecified
models. For other likelihoods, unbiased estimators for Gβt (·), e.g. Poisson estima-
tor [Beskos et al., 2006], can be used in a random weight particle filter framework
[Fearnhead et al., 2008], where the overhead of computing Gβt (·) will depend on the
variance of the estimator and the convergence results from this setting apply but as
[Fearnhead et al., 2008] demonstrate this cost need not be prohibitive.

6.3.3 Selecting β

It is often the case that the primary goal of inference, particularly in the presence
of model misspecification, is prediction. Hence, this thesis proposes choosing diver-
gence parameters that lead to maximally predictive posterior belief distributions.
In particular, for the β-BPF and β-APF, define Lβ(yt, y̌t) as a loss function of the

112

Chapter 6: Generalised Bayesian Filtering

observations yt and the predictions y̌t. One can then choose β as the solution to
the following decision-theoretic optimisation problem:

min
β

aggTt=1(Ep(y̌t|y1:t−1)Lβ(xt, x̌t)), (6.13)

where agg denotes an aggregating function. This approach requires some training
data to allow the selection of β. In filtering contexts, this can be historical data
from the same setting or other available proxies. For offline inference one could also
employ the actual data within this framework. Since, this proposal relies on the
quality of the observations, which in the case of outlier contamination is violated by
definition. To remedy this, one can choose robust versions for agg and L, e.g. the
median and the (standardised) absolute error respectively.

6.4 Theoretical guarantees

Theoretical guarantees for SMC methods can be extended to the generalised Bayesian
filtering setting. Since the generalised Bayesian filters can be seen as standard SMC
methods with modified likelihoods, the same analytical tools can be used in this
setting. This section provides guarantees for the β-BPF but emphasises that the
same results can be obtained much more broadly (including for the β-APF via the
approach of Johansen and Doucet [2008]). The generalised filters and generalised
posteriors for the HMM in the β-divergence setting are denoted as πβt and pβt re-
spectively. Consequently, corresponding quantities constructed by the β-BPF are
denoted as πβ,Nt and pβ,Nt .

Although the generalised likelihoods Gβt (yt |xt) are not normalised, they
can be considered as potential functions [Del Moral, 2004]. Since Gβt (yt |xt) < ∞
whenever gt(yt |xt) < ∞ and β is fixed, one can adapt the standard convergence
results into the generalised case.

Assumption 1. For a fixed arbitrary observation sequence y1:T ∈ YT , the potential
functions (Gβt)t≥1 are bounded and

Gβt (yt |xt) > 0, ∀t ∈ {1, . . . , T} and xt ∈ X .

This assumption holds for most used likelihood functions and their gener-
alised extensions.

113

Chapter 6: Generalised Bayesian Filtering

Theorem 6.4.1. For any ϕ ∈ B(X) and p ≥ 1,

‖πβ,Nt (ϕ)− πβt (ϕ)‖p ≤
ct,p,β‖ϕ‖∞√

N
, (6.14)

where ct,p,β <∞ is a constant independent of N .

The proof sketch and the constant ct,p,β are given in Appendix D.2.1. This
Lp bound provides a theoretical guarantee on the convergence of particle approxi-
mations to generalised posteriors. The special case when p = 2 also provides the
error bound for the mean-squared error. It is well known that Theorem 6.4.1 with
p > 2 leads to to a law of large numbers via Markov’s inequality and a Borel-Cantelli
argument:

Corollary 6.4.2. Under the setting of Theorem 6.4.1,

lim
N→∞

πβ,Nt (ϕ) = πβt (ϕ) a.s., for t ≥ 1. (6.15)

Finally, a central limit theorem for estimates of expectations with respect
to the smoothing distributions can be obtained by considering the path space X⊗t.
Recall the joint posterior pβt (x1:t|y1:t) and consider a test function ϕt : X⊗t → R.
Denote ϕβt :=

∫
ϕβt (x1:t)pβt (x1:t|y1:t) and denote the β-BPF estimate of ϕt with

ϕβ,Nt :=
∫
ϕt(x1:t)pβ,Nt (dx1:t).

Theorem 6.4.3. Under the regularity conditions given in [Chopin, 2004, Theo-
rem 1], √

N
(
ϕβ,Nt − ϕβt

)
d−→ N

(
0, σ2

t,β(ϕt)
)
,

as N →∞ where σ2
t,β(ϕt) <∞.

The expression for σ2
t,β(ϕt) is given in Appendix D.2.1. These results illus-

trate that the standard guarantees for generic particle filtering methods extend to
the generalised case.

6.5 Experiments

This section focuses on β-BPF illustrating its the properties and empirically ver-
ifying its robustness. It includes four experiments in both linear and non-linear
settings and for different types of contamination. Furthermore, Section 6.5.2 specif-
ically investigates the β-APF comparing its behaviour to the β-BPF. Throughout,
the normalised mean squared error (NMSE) and the 90% empirical coverage are

114

Chapter 6: Generalised Bayesian Filtering

used as goodness-of-fit measures. The NMSE scores indicate the mean fit for the
inferred posterior distribution and the empirical coverage measures the quality of
its uncertainty quantification. Any claim in performance difference is based on the
Wilcoxon signed-rank test. Further results and in-depth details of the experimental
setup are given in Appendix D.4 and Appendix D.3 respectively.

6.5.1 A Linear-Gaussian state-space model

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.1

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

Figure 6.1: The mean metrics over state dimensions for the Wiener velocity example
with pc = 0.1. The top panel presents the NMSE results (lower is better) and the
bottom panel presents the 90% empirical coverage results (higher is better), on 100
runs. The vertical dashed line in gold indicate the value of β chosen by the selection
criterion in Section 6.3.3. The horizontal dashed line in black in the lower panel
indicates the 90% mark for the coverage.

The Wiener velocity model [Särkkä and Solin, 2019] is a standard model
in the target tracking literature, where the velocity of a particle is modelled as
a Wiener process. The discretised version of this model can be represented as a

115

Chapter 6: Generalised Bayesian Filtering

Linear-Gaussian State-Space model (LGSSM),

xt = Axt−1 + νt−1, νt ∼ N (0,Q), (6.16)

yt = Hxt + εt, εt ∼ N (0,Σ), (6.17)

where A,Q are state-transition parameters dictated by the continuous-time model
and H is the observation matrix (see Appendix). This model was simulated in
two-dimensions with Σ = I, contaminating the observations with a large scale, zero-
mean Gaussian, N (0, 1002) with probability pc. The aim is to obtain the filtering
density under the heavily-contaminated setting where optimal filters struggle to
perform. This scheme compares the proposed β-BPF, for a range of values for β, to
the standard BPF with a Gaussian likelihood (BPF), the (optimal) Kalman filter
and an Oracle BPF with likelihood corresponding to the true generative model, i.e.,
with a Gaussian mixture likelihood with mixture components matching the noise
processes and mixture probabilities matching contamination probability.

The goal of this section is to answer four questions in this simple setup: (a)
Does the β-BPF produce accurate and well-calibrated posterior distributions in the
presence of contaminated data? (b) Is it sensitive to the choice β? (c) Does the
method described in Section 6.3.3 for selecting β return a near-optimal result? (d)
How does the robustification procedure compare to the inference with knowledge of
the true model?

Fig. 6.1 shows the results for pc = 0.1. Observe that (a) the β-BPF out-
performs the Kalman filter and the standard BPF for β ≤ 0.2 while producing
well-calibrated posteriors accounting for the uncertainty (for β ∈ [0.01, 0.2] the cov-
erage approaches the 90% threshold), (b) drastic performance gains are seen (with
median NMSE scores around 10× smaller than the BPF and 100× smaller that the
Kalman filter) for a large range of β values, (c) the β-choice heuristic 2 chooses a
well-performing β (gold vertical lines in Fig. 6.1), and (d) the performance of the
β-BPF is very close the Oracle (with knowledge of the true model) for a range of β
values. Note that, for most values of β, the β-BPF significantly outperforms both
the Kalman filter and the standard BPF predictively. The full set of results for the
predictive performance are presented in Table D.1 in Appendix D.4.1.

2This choice criterion is applied on an alternative dataset that is obtained from the same simu-
lation but with 90% fewer observations.

116

Chapter 6: Generalised Bayesian Filtering

6.5.2 Terrain Aided Navigation

Terrain Aided Navigation (TAN) is a challenging estimation problem, where the
state evolution is defined as in (6.16) (in three dimensions), but with a highly non-
linear observation model,

yt = h(xt) + εt, (6.18)

where h(·) is a non-linear function, typically including a non-analytic Digital Eleva-
tion Map (DEM). This problem simulates the trajectory of an aeroplane or a drone
over a terrain map, where its elevation is observed over the terrain and its distance
from its take-off hub from on-board sensors (see supplement for more details). For
this example, transmission failure of the measurement system was simulated as im-
pulsive noise on the observations, i.e., i.i.d. draws from a Student’s t distribution
with ν = 1 degrees of freedom, i.e., εt ∼ (1− pc)N (0, 202) + pctν=1(0, 202).

Both the β-BPF and the β-APF are applied to this problem and are com-
pared to the standard BPF with the Gaussian (BPF) and two other robust PF
methods from the literature: Student’s t (t-BPF) [Xu et al., 2013] and the APF
[Pitt and Shephard, 1999]. The degrees of freedom for the t-BPF is set to the same
value as the contamination ν = 1.

From Fig. 6.2, for low contamination, both the β-BPF and the β-APF out-
perform the standard Gaussian BPF, the t-BPF and the APF. This shows that the
use of t-distribution for the low contamination setting is inappropriate. This gap in
the performance tightens, naturally, as pc grows since t-distribution becomes a good
model for the observations. Notably, the performance gaps between the standard
PFs and their β-robustified counterparts are similar, indicating that the use of the
β-divergence in a particle filtering procedure does indeed robustify the inference.

Figure 6.3 shows the filtering distributions for the sixth state dimension (ver-
tical velocity) obtained from an illustrative run with pc = 0.1. The left panel shows
the filtering distributions from the (Gaussian) BPF (up) and the β-BPF (down).
The locations of the most prominent outliers are marked with dashed vertical lines
in black. Fig. 6.3 displays the significant difference between the two approaches:
while the uncertainty for the standard BPF collapses when it meets the outliers,
e.g. around t = 1700, the β-BPF does not suffer from this problem. This perfor-
mance difference is partly related to the stability of the weights. The right panel in
Fig. 6.3 demonstrates the effective sample size (ESS) with time for the two filters
showing that the β-BPF consistently exhibits larger ESS values, avoiding particle
degeneracy. The ESS values for the BPF, on the other hand, sharply decline when

117

Chapter 6: Generalised Bayesian Filtering

10 3

10 2

10 1
N

M
SE

TAN experiment: aggregate metrics

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Contamination probability pc

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

BPF t-BPF -BPF = 0.1 APF -APF = 0.1

Figure 6.2: The mean metrics over state dimensions for the TAN example for differ-
ent pc. The top panel presents the NMSE results (lower is better) and the bottom
panel presents the 90% empirical coverage results (higher is better), both evaluated
on 50 runs. The horizontal dashed line in black in the lower panel indicate the 90%
mark for the coverage.

it meets outliers. A similar result is observed for the APF versus the β-APF in the
figures in the Appendix D.4.2. Further results on predictive performance can be
found in Appendix D.4.2.

6.5.3 Asymmetric Wiener Velocity

In the case of simple, symmetric noise settings with additive contamination the use
of heavy-tailed likelihoods such as Student’s t may be still seen as a viable alternative
to robustify the inference. However, there are some realistic settings in which such
off-the-shelf heavy-tailed replacements are not feasible or require considerable model-
specific work. Consider, as a simple illustration, the Wiener velocity example in
Section 6.5.1, where the observation noise in (6.17) is replaced with

εt ∼ 1[−∞,0]N (0, 1) + 1[0,+∞]N (0, 102). (6.19)

This simulates an asymmetric noise scenario. The observations are further contam-
inated with multiplicative exponential noise, i.e. εt ← ξεt, for ξ ∼ Exp(1000) with

118

Chapter 6: Generalised Bayesian Filtering

150

100

50

0

50

m s
BPF: velocity in z direction, NMSE = 0.1511, 90% Coverage = 0.691

1000 1200 1400 1600 1800 2000
150

100

50

0

50

m s

-BPF: velocity in z direction, NMSE = 0.0944, 90% Coverage = 0.856

True trajectory

-BPF filtering dist. for =0.1

BPF filtering dist.

Prominent outliers

1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

Effective sample size with time

BPF -BPF Prominent Outliers

Figure 6.3: The left panel shows the inferred marginal filtering distributions for the
velocity in the z direction for the BPF and β-BPF with β = 0.1. The right panel
shows the effective sample size with time. The locations of the most prominent
(largest deviation) outliers are shown as dashed vertical lines in black in both panels.

probability pc. This sums up to a multiplicatively corrupted asymmetric noise dis-
tribution which could, for example, represent a sensor with asymmetric noise profile
in a failing regime which occasionally exhibits excessive gain.

For this example, it is easy to derive a BPF with the asymmetric likelihood.
It is also easy to extend this likelihood to the β-BPF case. Thus the BPF and the
β-BPF (β = 0.1) are tested versus two versions of the t-BPF, where the t-likelihood
is set to a short scale, σ = 1, in one version and to a long scale, σ = 10, in the other
version.

1 10

10 1

100

N
M

SE

1 10

0.25

0.50

0.75

90
%

 E
C BPF

t-BPF
-BPF

Asymmetric Wiener velocity: aggregate metrics for pc = 0.1

Figure 6.4: The mean metrics over state dimensions for the asymmetric Weiner
velocity example with pc = 0.1. The left panel presents the NMSE results (lower is
better) and the right panel presents the 90% empirical coverage results (higher is
better), evaluated on 100 runs. The x-axis ticks indicate the scale used for Student’s
t likelihood. The horizontal dashed line in black in the right panel indicates the 90%
mark for the coverage.

119

Chapter 6: Generalised Bayesian Filtering

Fig. 6.4 shows the results for this experiment. The BPF is unable to handle
the multiplicative exponential contamination, as can be seen by the NMSE val-
ues. It also provides poor posterior coverage. The t-BPF fares better with this
type of contamination where one can see a trade-off between accuracy and coverage
depending on the chosen scale of the likelihood. This is due to the symmetry of
the t-distribution which overestimates one of the tails depending on the scale. The
β-BPF does not have this trade-off and outperforms the t-BPF on both metrics.

While one might attempt to model the noise with an asymmetric construction
of the t-distribution which approximates the noise structure, in more general settings
using heavy-tailed distributions requires approximations of the noise structure and
making modelling choices which could be arbitrarily complex. This is in contrast
to specifying a single tuning parameter as in the β-divergence case. The β-BPF
requires no further modelling than the original problem and can be used as a drop-
in replacement for nearly all types of likelihood structures.

6.5.4 London air quality Gaussian process regression

To measure air quality, London authorities use a network of sensors around the
city recording pollutant measurements. Sensor measurements are susceptible to
significant outliers due to environmental effects, manual calibration and sensor de-
terioration. This experiment uses Gaussian process (GP) regression to infer the
underlying signal from a PM2.5 sensor.

For 1-D time series data, GP inference [Rasmussen and Williams, 2006] can
be accelerated to linear time in the number of observations by formulating an equiv-
alent stochastic differential equation whose solution precisely matches the GP un-
der consideration 3 [Särkkä et al., 2013]. The resulting model is a LGSSM of the
form (6.16)–(6.17) where the smoothing distribution matches the GP marginals at
discrete-times. One can then apply smoothing algorithms, such as Rauch Tung
Striebel (RTS) [Rauch et al., 1965] or Forward Filters Backward Smoothing (FFBS)
[Briers et al., 2010], to obtain the GP posterior. These require a forward filtering
step with the Kalman filter for RTS or a PF for FFBS. A Matérn 5/2 GP with
fixed hyperparameters was fit to a time series from one of the sensors. The me-
dian of the signals from the wider sensor network was computed to obtain a simple
approximation of the ground truth.

Section 6.5.4 compares results with a Gaussian likelihood for GP regression
with Kalman (RTS) smoothing, the standard BPF (FFBS) and two runs for the

3The SDE representation of a GP depends on the form of the covariance function. This experi-
ment uses a GP with the Mateŕn 5/2 kernel, which admits a dual SDE representation.

120

Chapter 6: Generalised Bayesian Filtering

β-BPF (FFBS) (β = 0.1 by predictive selection as Section 6.3.3 and β = 0.2 by
overall best performance). For both choices of β, the β-BPF outperforms all other
methods on both metrics .

median (IQR)
Filter (Smoother) NMSE EC
Kalman (RTS) 0.144(0) 0.685(0)
BPF (FFBS) 0.116(0.015) 0.650(0.020)
(β = 0.1)-BPF (FFBS) 0.061(0.003) 0.760(0.015)
(β = 0.2)-BPF (FFBS) 0.059(0.002) 0.803(0.020)

Table 6.1: GP regression NMSE (lower is better) and 90% empirical coverage for
the credible intervals of the posterior predictive distribution, on 100 runs. Bold
indicates statistically significant best result from Wilcoxon signed-rank test. All
presented results are statistically different from each other according to the test.

To further investigate the GP solution of the β-BPF (FFBS), Fig. 6.5 shows
the fit for β = 0.1 in comparison to Kalman (RTS) smoothing. The latter is sensitive
to outliers forcing the GP mean towards them while the β-BPF is robust and ignores
them.

6.6 Concluding Remarks

This chapter addressed the problem of robustness in sequential probabilistic mod-
els. It presented a generalised filtering framework based on GBI, which tackles
likelihood misspecification in general state-space HMMs. This approach leveraged
SMC methods, where analytical results were extended to the generalised case. The
β-BPF and β-APF were presented as simple instantiations of this approach based
on the β-divergence which provide the inference with robustness against observa-
tion contamination. While standard algorithms failed in both linear and non-linear
settings when met with outliers, the proposed filters exhibited robustness against
them showing significant gains in performance.

Throughout this chapter, the model parameters were assumed to be fixed.
Relaxing this assumption opens up the question of the online learning of the model
parameters (system identification) in the presence of misspecification. The presented
framework can directly incorporate most estimators found in the SMC literature,
and the computation of derivatives can be tackled with automatic differentiation
tools. However, there is still a need to validate this proposition and characterise the

121

Chapter 6: Generalised Bayesian Filtering

0

20

40

pm
2.

5
Matérn 5/2 GP with Kalman (RTS): NMSE = 0.1435, 90% Coverage = 0.685

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

pm
2.

5

Matérn 5/2 GP with -BPF (FFBS): NMSE = 0.0597, 90% Coverage = 0.760

Ground truth
Training data

Kalman smoothing dist.
-BPF smoothing dist. for = 0.1

Figure 6.5: The GP fit on the measurement time series for one of the London
air quality sensors. The top panel shows the posterior from the Kalman (RTS)
smoothing. The bottom panel shows the posterior from the β-BPF (FFBS) for
β = 0.1. The Kalman (RTS) solution is sensitive to the outliers forcing the GP
mean towards them, while the β-BPF (FFBS) solution is robust.

effect of data contamination on the quality of parameter estimation.
The code for this chapter is publicly available at https://github.com/

aboustati/robust-smc.

122

https://github.com/aboustati/robust-smc
https://github.com/aboustati/robust-smc

CHAPTER 7

Conclusions

The goal of this thesis was to contribute to the field of probabilistic machine learn-
ing by formulating methods that endow probabilistic models with compositionality,
stability and robustness. The focus on these properties was motivated by the de-
sire to make probabilistic models more flexible (compositionality) and more reliable
(stability and robustness). This thesis presented four novel ideas addressing these
issues and demonstrating their importance on a range of experimental settings.

This section summarises the contributions of this thesis and signposts direc-
tions for future research.

7.1 Summary of Contributions

Addressing compositionality, this thesis studied this property in GP models in Chap-
ter 3. It formulated a non-linear multitask learning framework based on the com-
position of GP modules to yield a multitask version of the DGP. It showed that,
due to the compositional nature of this model, approximate inference can be con-
ducted by simply extending standard inference procedures for GPs. Furthermore,
it showed how this compositional framework relates to other ideas in the literature
such as linear compositions and regularisation. The experimental results showed the
importance of compositionality in multi-task learning problems, where the proposed
approach outperformed others on a variety of benchmarks.

Chapter 4 and Chapter 5 examined the problem of stability and contributed
two methods for producing low variance gradient estimators for VI. Chapter 4 stud-
ied the stability in the generic case of doubly stochastic objectives, an important type
of objectives in VI. It proposed amortising the computation of the control variate co-
efficients with a recognition network that cheaply approximates the optimal control
variate coefficients per mini-batch. One of the main contributions of this chapter
was to derive various computationally feasible objective functions for training the

123

Chapter 7: Conclusions

recognition network. The control variate method of this chapter was illustrated on
linear and quadratic control variates, with experiments showing successful variance
reduction that leads to the stabilisation of the optimisation procedure.

Chapter 5 addressed the problem of reducing the variance of score function
gradients by optimising a proxy objective function whose gradients match that of
the ELBO in VI. The new gradient estimator was shown to have low variance, thus
inducing stability in VI, especially for models with a discrete latent structure. The
new estimator was proven to approximate the optimal score-based control variate for
Reinforce gradients. The experimental results showed its effectiveness in stabilising
the training of Discrete Variational Auto-Encoders.

Chapter 6 dealt with robustness in sequential models. Through the lens of
GBI, it described a novel framework to perform robust inference with SMC algo-
rithms. The use of the β-divergence as a loss function for GBI provided PFs with
robustness against contaminated data. The empirical results showed the impor-
tance of robust inference in real-world applications, where non-robust methods were
unable to produce a good fit on a range of datasets.

7.2 Future Research Directions

The work in this thesis creates many avenues for future research in the topics of
compositionality, stability and robustness in probabilistic models.

The Big Picture The end goal of studying the three topics is to transition beyond
machine learning models to machine learning systems. Machine learning systems
integrate all aspects of the modelling pipeline, from data-preparation to decision-
making, into an end-to-end system. Two important questions come to light from this
perspective: How can the propagation of uncertainty, from one stage of the pipeline
to the next, be handled? How can the modularity of the system be insured? The
adoption of compositional probabilistic models as building blocks addresses both
questions, but consideration should be given to some of the challenges that arise
from their use. For instance, the propagation of uncertainty relies on the quality
of uncertainty estimation, in each component, at each stage. Hence, an important
area of investigation is the study of reliable inference procedures that can produce
high-quality posterior approximations. The modern formulation of VI is appealing
in this setting, as it provides a simple optimisation-driven interface for inference
between the different parts of the system. However, the use of simple parametric
approximations to the posterior distributions often hinders the effectiveness of VI

124

Chapter 7: Conclusions

and the quality of the posterior uncertainty that it outputs. Although, there has
recently been significant progress on devising more expressive approximations, such
as Normalising Flows [Rezende and Mohamed, 2015], Hierarchical VI posteriors
[Ranganath et al., 2016b] and Implicit Mixture distributions [Domke and Sheldon,
2018]. These approximations are more flexible than standard parametric VI ap-
proximations, but suffer from additional computational overhead. In Chapter 3, the
use of the Variational Sparse Approximation illustrates this problem. The para-
metric mean-field assumption on the DGP posterior enables efficient inference, but
is unable to capture the covariance between the modules, both within and across
the DGP layers. A potential solution to this problem is to correlate the mean-field
components of the approximate posterior with parameterised copulas that can learn
some of the correlation between the modules. This is an example of the Hierarchical
VI posteriors mentioned above.

One can also look to a different solution to the inference problem than VI.
Markov Chain Monte Carlo (MCMC) has been a mainstay in approximate infer-
ence in probabilistic machine learning since the inception of the field [Neal, 1996].
While MCMC is considered the “gold standard” in approximate inference, its use
in large compositional models has been limited due to its substantial computational
requirements, especially with large datasets. Recently, however, there have been
many developments towards reducing this cost by devising new sampling algorithms
[Welling and Teh, 2011; Chen et al., 2014] or extending current algorithms to work
with data sub-sampling [Quiroz et al., 2019]. This culminated in the wide adoption
of MCMC sampling algorithms for training Bayesian deep neural networks [Wenzel
et al., 2020], another paradigm of compositional models. While it is difficult to
predict what the future might hold for these different algorithmic paradigms, it is
clear that the developments in computer hardware will have a big influence on their
adoption for inference in machine learning systems.

Stability also plays an important role in the systems view of machine learning.
This thesis’s contributions on stability were mainly focused on reducing the variance
of the ELBO gradient in VI. The method of control variates was used to motivate the
two contributions on stability. However, the use of control variates as a stabilising
mechanism is not restricted to optimisation-based inference methods like VI. In fact,
the method was first conceived to stabilise sampling algorithms such as MCMC,
and there has recently been a large body of work exploring its use for large-scale
and high-dimensional inference problems [Müller et al., 2020; Si et al., 2020]. For
instance, the amortised control variates method in Chapter 4 was an example of
an adaptive optimiser [Andrychowicz et al., 2016], but similar adaptive sampling

125

Chapter 7: Conclusions

algorithms can be constructed for other inference paradigms. Regardless of the
inference procedure, the study of inference stability is essential in developing reliable
probabilistic machine learning systems.

Furthermore, the ideas on stability that were presented in this thesis are
only the first steps towards developing more stable inference procedures for large-
scale, modular and end-to-end systems. In this thesis, these ideas were applied to
a single model. However, the application of similar types of stabilising mechanisms
to multiple models and datasets can be very beneficial, as it could enable efficient
and reliable retraining of large machine learning systems, making their deployment
more viable.

Finally regarding robustness, this thesis only addressed the problem of robust
inference under data contamination, but this is only one example of misspecification
that can occur in real-world scenarios. The performance of probabilistic machine
learning systems depends on the type of unseen situations, especially those involv-
ing adversarial attacks, dataset shifts or model misspecification. The use of the
β-divergence in the GBI framework was shown to be effective against the data con-
tamination setting; however, the effectiveness of this framework for other misspeci-
fication scenarios was not considered. This question paves the way for another line
of future research that investigates the efficacy of alternative probabilistic inference
frameworks such as GBI to other misspecification scenarios.

126

APPENDIX A

Appendix for Multitask
Learning with Gaussian Process

Compositions

A.1 Experiment Details

A.1.1 MNIST Variations

This section the experimental setup used to obtain the results in Section 3.5.1.

Data The three background datasets from https://sites.google.com/a/lisa.

iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits was
used. For each dataset, 1000 images were sampled from the training split and com-
bined into a single 3 task multi-class classification dataset. For testing, the whole
test split for each task was used.

Experimental procedure The training dataset sub-sampling procedure was re-
peated 10 times to obtain 10 different training datasets. The models were fit on
each of the of the training datasets and the average accuracy and its standard error
on the test split were reported.

GP models initialisation All GP models use the Matérn-5/2 covariance func-
tion. For the covariance functions that act on the data, the kernel parameters are
initialised to the same values for all the models. The lengthscale is set to l = 40
and the signal variance v = 30. One exception is the mMDGP model where the
kernel parameters in the shared component are initialised as before, but the task
specific component is initialised to l = 20 and v = 60. This is done to break the

127

https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits

Chapter A: Multitask Learning with Gaussian Process Compositions

symmetry with the shared component. Additionally, for the deep models, the kernel
parameters on the top layer are initialised to l = 20 and v = 30. All models use
the same initial set of inducing inputs per task, initialised as the k-means centroids
from the training data. Each task admits 50 inducing inputs. Deep models have an
inner layer of size 30.

Neural network architecture All neural networks have inner layers with 128
neurons with ReLU activations. The standard networks use dropout with probabil-
ity 0.2 and L2 regularisation. The Bayesian neural networks use a standard normal
prior on the weights. All weights are initialised with Glorot initialisation.

Optimisation Shallow GP models use L-BFGS. Deep GP models use Adam with
a learning rate 0.01 run for 10000 iterations. Mini-batching is used on the DGP
models with a mini-batch size of 100. The standard neural networks use Adam with
a learning rate of 0.001, 10000 iterations and mini-batch size of 64. The Bayesian
neural networks use Adam with learning rate 0.0001, 10000 iterations and mini-batch
size of 64.

A.1.2 SARCOS Robot Inverse Dynamics

This section details the experimental setup used to obtain the results in Section 3.5.2.

Data The dataset from http://www.gaussianprocess.org/gpml/data/ was used.
This dataset relates to the inverse dynamics problem for a seven degrees-of-freedom
anthropomorphic robot arm [Vijayakumar et al., 2002; Rasmussen and Williams,
2006]. The dataset consists of 44,484 training observations with 21 variables (7 joint
positions, 7 joint velocities, 7 joint accelerations) and the corresponding real-valued
torques for 7 joints, i.e. 7 tasks corresponding to each joint torque. Additionally,
there are 4,449 testing examples with all the 7 joint torques available for each.

Experimental procedure For N in {100, 200, 500, 1000, 2000, 5000}, N training
data points are sampled from the training set. This constitutes the training set for
one experimental run. For each of the N sampled points select 1 of the 7 labels
uniformly at random. Split the experimental training set into 7 according to which
joint the label corresponds to. These 7 splits constitute 7 tasks. The models are
trained on the training set after standardising the features and the targets and test
for all 7 labels on the test set. For each N , the experimental procedure is repeated
for 10 times.

128

http://www.gaussianprocess.org/gpml/data/

Chapter A: Multitask Learning with Gaussian Process Compositions

GP models initialisation All GP models use the Matérn-5/2 covariance func-
tion. For the covariance functions that act on the data, the kernel parameters are
initialised to the same values for all the models. The lengthscale is set to l = 10 and
the signal variance v = 1. One exception is the mMDGP model where the kernel
parameters in the shared component are initialised as before, but the task specific
component is initialised to l = 10 and v = 0.5. This is done to break the symmetry
with the shared component. Additionally, for deep models, the kernel parameters
on the top layer are initialised to l = 10 and v = 1. All models use the same initial
set of 100 inducing inputs distributed per task, initialised by random sampling from
the training data. The likeihood noise variance is initialised to σ2 = 10−6. Deep
models have an inner layer of size 10.

Neural network architecture All neural networks have inner layers with 128
neurons with ReLU activations. The standard networks use dropout with probabil-
ity 0.2 and L2 regularisation. The Bayesian neural networks use a standard normal
prior on the weights. All weights are initialised with Glorot initialisation.

Optimisation Shallow GP models use L-BFGS for dataset sizes less than or equal
to 1000, and Adam with the same settings as deep models otherwise. DGP models
use Adam with a learning rate 0.01 run for 10000 iterations. Mini-batching is used
on the DGP models when the dataset size is greater than 1000 with a mini-batch
size of 500. The standard neural networks use Adam with a learning rate of 0.0001,
10000 iterations and mini-batch size of 64. The Bayesian neural networks use Adam
with learning rate 0.0001, 10000 iterations and mini-batch size of 64.

A.1.3 FAIMS Diabetes Diagnosis

This section details the experimental setup used to obtain the results in Section 3.5.3.

Data The data from a case-control study of 125 patients who have been tested
for diabetes was used. 48 out of 125 have been found to have diabetes (the disease
group), while the rest are disease-free (the control group). The data consists of three
experimental runs per patient, corresponding to sequential FAIMS analyses on the
same urine sample. Each experimental run is treated as a task, i.e. three binary
classification tasks in total.

Experimental procedure Sparse Principal Component Analysis decomposition
was performed on the features selecting the first 20 principal components. 10-fold

129

Chapter A: Multitask Learning with Gaussian Process Compositions

cross-validation was performed on 70:30 train-test splits.

GP models initialisation All GP models use the Matérn-5/2 covariance func-
tion. For the covariance functions that act on the data, the kernel parameters are
initialised to the same values for all the models. The lengthscale is set to l = 0.5
and the signal variance v = 1.5. One exception is the mMDGP model where the
kernel parameters in the shared component are initialised as before, but the task
specific component is initialised to l = 1.5 and v = 1.5. This is done to break the
symmetry with the shared component. Additionally, for deep models, the kernel
parameters on the top layer are initialised to l = 1 and v = 2. All models use the
same initial set of inducing inputs per task, initialised as the k-means centroids from
the training data. Each task admits 30 inducing inputs. Deep models have an inner
layer of size 3.

Neural network architecture All neural networks have inner layers with 128
neurons with ReLU activations. The standard networks use dropout with probabil-
ity 0.2 and L2 regularisation. The Bayesian neural networks use a standard normal
prior on the weights. All weights are initialised with Glorot initialisation.

Optimisation Shallow GP models use L-BFGS. DGP models use Adam with a
learning rate 0.001 run for 20000 iterations. The standard neural networks use
Adam with a learning rate of 0.0001, 20000 iterations and mini-batch size of 64.
The Bayesian neural networks use Adam with learning rate 0.0001, 20000 iterations
and mini-batch size of 64.

130

Chapter A: Multitask Learning with Gaussian Process Compositions

A.2 Further Results

A.2.1 MNIST Variations

Table A.1: Classification accuracy on the MNIST variations experiment using all
three tasks. Higher is better

Accuracy
Task sMDGP mMDGP cMDGP iDGP cGP iGP mANN2 mANN3 mBNN2 mBNN3
Standard MNIST 0.89(0.0) 0.87(0.00) 0.80(0.08) 0.85(0.00) 0.87(0.00) 0.87(0.00) 0.88(0.00) 0.88(0.00) 0.83(0.00) 0.83(0.00)
Random BG MNIST 0.64(0.0) 0.61(0.01) 0.61(0.03) 0.18(0.00) 0.59(0.04) 0.19(0.00) 0.59(0.00) 0.59(0.00) 0.51(0.01) 0.49(0.01)
Images BG MNIST 0.78(0.0) 0.74(0.00) 0.70(0.07) 0.19(0.01) 0.58(0.06) 0.21(0.01) 0.62(0.00) 0.61(0.00) 0.53(0.01) 0.53(0.01)
All 0.77(0.0) 0.74(0.00) 0.70(0.06) 0.41(0.01) 0.68(0.04) 0.42(0.00) 0.70(0.00) 0.69(0.00) 0.63(0.01) 0.61(0.01)

A.2.2 SARCOS Robot Inverse Dynamics

Table A.2: Average RMSE scores on the SARCOS score over 7 tasks. The figures
presented are the mean score (and standard error) over 10 runs. The lowest statis-
tically significant scores based on a Wilcoxon test are presented in boldface. Lower
is better.

Number of Training Inputs
100 200 500 1000 2000 5000

sMDGP 0.78(0.05) 0.64(0.05) 0.53(0.03) 0.31(0.03) 0.26(0.02) 0.22(0.02)
mMDGP 0.80(0.05) 0.69(0.05) 0.51(0.05) 0.31(0.03) 0.26(0.03) 0.23(0.02)
cMDGP 0.78(0.07) 0.64(0.05) 0.52(0.03) 0.33(0.03) 0.27(0.03) 0.23(0.02)
iDGP 0.78(0.06) 0.64(0.05) 0.53(0.03) 0.47(0.02) 0.36(0.03) 0.26(0.02)
cGP 0.98(0.01) 0.96(0.01) 0.93(0.03) 0.86(0.06) 0.29(0.03) 0.26(0.03)
iGP 0.98(0.02) 0.95(0.02) 0.92(0.02) 0.89(0.05) 0.80(0.07) 0.63(0.07)
mANN2 0.73(0.06) 0.58(0.04) 0.41(0.03) 0.34(0.02) 0.31(0.02) 0.30(0.02)
mANN3 0.77(0.07) 0.62(0.05) 0.45(0.03) 0.39(0.02) 0.36(0.02) 0.35(0.02)
mBNN2 0.80(0.07) 0.62(0.05) 0.44(0.03) 0.34(0.02) 0.27(0.02) 0.22(0.02)
mBNN3 0.79(0.07) 0.64(0.05) 0.46(0.03) 0.36(0.02) 0.29(0.02) 0.24(0.02)

131

Chapter A: Multitask Learning with Gaussian Process Compositions

Table A.3: ELBO computation cost in CPU time for different multitask GP models.
These are timed on a system with the following specifications: OS: Linux 4.9.202-
1-Manjaro with X96-64 instruction set. CPU: Intel Core i7-4712HQ @ 2.30GHz.
RAM: 16GB.

SARCOS: ELBO computation
time (batch size = 500)

Model Wall-clock time
in milliseconds

sMDGP 7.89(0.15)
mMDGP 8.89(0.25)
cMDGP 7.67(0.29)
iDGP 6.43(0.16)
cGP 2.41(0.04)
iGP 3.22(0.06)

132

Chapter A: Multitask Learning with Gaussian Process Compositions

1 2 3 4 5 6 7
Task

1

2

3

4

5

6

7

8

9

10

La
te

nt
 P

ro
ce

ss

Figure A.1: Hinton diagram illustrating the ARD weights for on of the sMDGP
runs on Sarcos with 5000 training datapoints. This indicates that the model assigns
different weights for the latent processes for each task.

133

APPENDIX B

Appendix for Amortised
Variance Reduction

B.1 Theoretical Analysis

B.1.1 Convergence Results

Control variates are introduced to reduce the gradient variance and thereby improve
the optimisation behaviour. This section shows how controlling the gradient can
improve the convergence behaviour of Stochastic Gradient Descent (SGD) [Robbins
and Monro, 1951], in an idealised scenario.

Consider the function f(ε,θ) : RD × RP → R, where ε is a random variable
distributed according to p(ε). The goal is to solve the following optimisation problem
using SGD,

min
θ

Ep(ε)[f(ε,θ)]. (B.1)

Ep(ε)[f(ε,θ)] is assumed to be strongly convex and smooth as defined below.
SGD starts with an initial guess for the optimal parameter θ0. The parameter

is then sequentially updated according to

θt+1 = θt − ηtĝ(εt,θt), (B.2)

where εt is an independent realisation (over t) of ε at time t, ĝ(εt,θt) = ∇θf(εt,θt),
and ηt ∈ R is a constant.

To reduce the variance in the update direction, one can set

g̃(ε,θ) = ĝ(ε,θ)− c(ε,θ), (B.3)

where c(ε,θ) : RD×RP → RP is a control term designed to reduce the randomness

134

Chapter B: Amortised Variance Reduction

in ĝ(ε,θ). This gives a new update rule

θt+1 = θt − ηtg̃(εt,θt). (B.4)

One can show show that adding a control term as in (B.3) yields a better
convergence rate for SGD under the following assumptions:

Assumption 2 (Smoothness). f(ε,θ) is L smooth in θ (for some L > 0), i.e.

f(ε,θ′)− f(ε,θ) ≤ (θ′ − θ)ᵀ∇f(ε,θ) + 1
2L‖θ

′ − θ‖22,

Assumption 3 (Strong Convexity). f(ε,θ) is H strongly convex in θ (for some
H > 0), i.e.

f(ε,θ′)− f(ε,θ) ≥ (θ′ − θ)ᵀ∇f(ε,θ) + 1
2H‖θ

′ − θ‖22,

Assumption 4 (Efficient Control Variate). The norm of the controlled gradient is
bounded by a constant M as

E
[
‖∇f(ε,θ∗)− c(ε,θ)‖22

]
≤ME[f(ε,θ)− f(ε,θ∗)].

Theorem B.1.1 (Convergence Rate). Under assumptions 2, 3 and 4, with ηt =
η ≤ 1

2L+M for all t, the update rule given by (B.4) offers a linear convergence rate.
Specifically, there exists 0 < c < 1 (depending on H, L and M as specified in
Appendix B.1.2) such that

E
[
‖θt − θ∗‖22

]
≤ ct‖θ0 − θ∗‖22. (B.5)

Proof. See Appendix B.1.2.

Although the above assumptions do not necessarily hold in practice, The-
orem B.1.1 is useful in giving intuition into the convergence speed of the method
proposed in Chapter 4. This theorem gives a sufficient condition for the control
variate which guarantees a fast convergence rate similar to that of (non-stochastic)
gradient descent and Stochastic Variance Reduced Gradient descent (SVRG) [John-
son and Zhang, 2013]. Specifically, if Assumption 3 holds, this method offers the
so-called linear convergence rate.

Assumption 3 can be relaxed to the following assumption.

135

Chapter B: Amortised Variance Reduction

Assumption 5. The norm of the controlled gradient is bounded as

E
[
‖∇f(ε,θ∗)− c(ε,θ)‖22

]
≤ M̄.

Under assumptions 2, 3 and 5, with ηt = η ≤ 1
2L for all t, for the update

rule given by (B.4), there exists 0 < c̄ < 1 (depending on H and L as specified in
Appendix B.1.2) such that

E
[
‖θt − θ∗‖22

]
≤ c̄t‖θ0 − θ∗‖22 + 2η2M̄(1− c̄t)

1− c̄ . (B.6)

This result shows that the more efficient the control variate (the smaller M̄), the
smaller the error in optimisation (‖θt − θ∗‖22). For the detail on the proof of (B.6)
see Appendix B.1.2.

B.1.2 Proofs for Convergence Results

Proof of Theorem B.1.1. The following lemma is established based on the smooth-
ness and strong convexity of f(ε,θ).

Lemma B.1.2. By smoothness (Assumption 1) and strong convexity (Assumption
2) of f(ε,θ),

E[f(ε,θ)− f(ε,θ∗)] ≥ 1
2LE

[
‖∇f(ε,θ)−∇f(ε,θ∗)‖22

]
. (B.7)

Let h(ε,θ) = f(ε,θ)−f(ε,θ∗)−∇f(ε,θ∗)>(θ−θ∗). By convexity of f(ε,θ),
h(ε,θ) ≥ 0. Let θ′ = θ − η∇h(ε,θ). Notice that ∇h(ε,θ) = ∇f(ε,θ)−∇f(ε,θ∗).

h(ε,θ′)− h(ε,θ) ≤ −η∇h(ε,θ)ᵀ∇h(ε,θ) + 1
2Lη

2‖∇h(ε,θ))‖22

=
(1
2Lη

2 − η
)
‖∇h(w, ε))‖22.

With the choice of η = 1
L and noticing h(ε,θ′) ≥ 0:

−h(ε,θ) ≤ − 1
2L‖∇h(ε,θ))‖22.

136

Chapter B: Amortised Variance Reduction

Taking expectations,

1
2LE[‖∇h(ε,θ))‖22] ≤ E[h(ε,θ)]

= E[f(ε,θ)− f(ε,θ∗)−∇f(ε,θ∗)>(θ − θ∗)]

≤ E[f(ε,θ)− f(ε,θ∗)],

which completes the proof of this lemma.

Now, let vt = ∇f(εt−1,θt−1)− c(εt−1,θt−1). Then

E[‖θt − θ∗‖22]

= ‖θt−1 − θ∗‖22 − 2η(θt−1 − θ∗)>E[vt] + η2E[‖vt‖22]

= ‖θt−1 − θ∗‖22 − 2η(θt−1 − θ∗)>E[∇f(εt−1,θt−1)] + η2E[‖vt‖22]

≤ ‖θt−1 − θ∗‖22 − 2ηE[[f(ε,θt−1)− f(ε,θ∗)] + η2E[‖vt‖22]. (B.8)

For the last term E[‖vt‖22],

E[‖vt‖22]

= E
[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗) +∇f(εt−1,θ
∗)− c(εt−1,θt−1)‖2

]
≤ 2E

[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗)‖22
]

+ 2E
[
‖∇f(εt−1,θ

∗)− c(εt−1,θt−1)‖22
]

≤ (4L+ 2M)E[f(εt−1,θt−1)− f(εt−1,θ
∗)], (B.9)

where the last inequality holds by Assumption 3.

By strong convexity of f(ε,θ),

‖θt−1 − θ∗‖22 ≤
2
H
f(ε,θt−1)− f(ε,θ∗). (B.10)

Combining the last 3 inequalities yields

E[‖θt − θ∗‖22]

≤ E[‖θt−1 − θ∗‖22]− 2η(1− η(2L+M))E[f(ε,θt−1)− f(ε,θ∗)]

≤
(
1− ηH(1− η(2L+M))

)
E[‖θt−1 − θ∗‖22].

137

Chapter B: Amortised Variance Reduction

For η ≤ 1
2L+M and c = (1− ηH(1− η(2L+M)),

E[‖θt − θ∗‖22] ≤ ct‖θ0 − θ∗‖22,

which completes the proof of Theorem B.1.1.
When Assumption 3 does not hold and Assumption 4 holds, following the

same line of reasoning and replacing the upper bound on E
[
‖∇f(εt−1,θ

∗)−c(εt−1,θt−1)‖22
]

with M̄ ,

E[‖vt‖22]

= E
[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗) +∇f(εt−1,θ
∗)− c(εt−1,θt−1)‖2

]
≤ 2E

[
‖∇f(εt−1,θt−1)−∇f(εt−1,θ

∗)‖22
]

+ 2E
[
‖∇f(εt−1,θ

∗)− c(εt−1,θt−1)‖22
]

≤ 4LE[f(εt−1,θt−1)− f(εt−1,θ
∗)] + 2M̄. (B.11)

Combining inequalities (B.8), (B.10) and (B.11),

E[‖θt − θ∗‖22]

≤
(

1− ηH(1− 2Lη)
)
E[‖θt−1 − θ∗‖22] + 2η2M̄.

For η ≤ 1
2L and c̄ = (1− ηH(1− 2Lη)),

E[‖θt − θ∗‖22] ≤ c̄E[‖θt−1 − θ∗‖22] + 2η2M̄.

Equivalently,

E[‖θt − θ∗‖22] + 2η2M̄

c̄− 1 ≤ c̄
(
E[‖θt−1 − θ∗‖22] + 2η2M̄

c̄− 1

)
,

which shows

E[‖θt − θ∗‖22] + 2η2M̄

c̄− 1 ≤ c̄
t
(
‖θ0 − θ∗‖22 + 2η2M̄

c̄− 1

)
.

Thus, for the E[‖θt − θ∗‖22],

E[‖θt − θ∗‖22] ≤ c̄t‖θ0 − θ∗‖22 + 2η2M̄(c̄t − 1)
c̄− 1 .

138

Chapter B: Amortised Variance Reduction

B.2 Description of Experiment Models

This section give detailed descriptions of the models used in the experiments in
Section 4.6 in Chapter 4.

B.2.1 Logistic Regression

Summary A classification task on the titanic dataset with a Bayesian logistic
regression model. Inference is performed using the reparameterisation gradient for-
mulation of VI, where a Gaussian approximate posterior was selected and its mean
vector and full covariance matrix are learnt. A unit Gaussian prior was placed on
the weights.

Dataset The titanic dataset consists of 2201 training examples. Each data point
comprises a binary class label and a feature vector of length 4. Standard nor-
malisation was performed on the features, i.e., subtracting the mean and divid-
ing by the standard deviation. The dataset can be obtained from the follow-
ing URL: http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/

jmlr/data.tar.gz.

Model description In the Bayesian logistic regression model, the output log-odds
are modelled as a linear transformation of the inputs, i.e., logit(t) = ωᵀx ⇐⇒ t =
s(ωᵀx), where t is the target output, x is a feature vector (with a leading element
with value 1 to represent the bias), ω is a weight vector and s(z) = 1

1+e−z is the
logistic sigmoid function. This model can be treated probabilistically by setting a
prior on the weights ω and a likelihood model on the targets t. The following model
is specified:

p(ω) = N (0,Σ),

p(t|ω) = Bernoulli(s(ωᵀx)).

Inference problem The aim is to find the posterior distribution of the weight
given the targets T = (t1; . . . ; tN),

p(ω|T) =
∏N
n=1 p(tn|ω)p(ω)∫ ∏N
n=1 p(tn|ω)p(ω)dω

.

139

http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz
http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/data.tar.gz

Chapter B: Amortised Variance Reduction

In VI, p(ω|T) is approximated with another distribution q(ω) = N (m,S), which
can be obtained by minimising the Negative Evidence Lower Bound (NELBO):

L(θ) = −
N∑
n=1

Eq(ω)[log p(tn|ω)] + KL(q(ω)||p(ω))

≈ −
N∑
n=1

1
S

S∑
s=1

log p(tn|ω(ε(s)
n)) + KL(q(ω)||p(ω)), ε(s)

n ∼ N (0, I), (B.6)

where θ = (m,L) with S = LLᵀ and ω(ε) = m + Lε is overloaded to represent the
location-scale transformation (reparameterisation trick).

Instantiation For the experiments in Section 4.6, the model is instantiated by
setting the prior covariance to Σ = I. For the doubly stochastic objective function
in (B.6),the number of Monte Carlo samples is set to S = 1 and the N data points
are subsampled into mini-batches of size |B| = 10 (some results for |B| = 100 are
also shown in Appendix B.4.1).

B.2.2 Deep Gaussian Processes

Summary A regression task on the airfoil dataset using a Deep Gaussian Process
(DGP).A 2-layer model with an inner-layer dimension of 5 was used, and a Squared
Exponential kernel for the GP priors. The doubly stochastic formulation of the
VI problem [Salimbeni and Deisenroth, 2017] was used. The parameters of the
approximate Gaussian posterior are learnt, keeping the hyperparameters fixed. The
inducing locations are fixed and selected as the centroids of k-means clusters from
the data.

Dataset The airfoil dataset consists of 1500 training examples. Each data point
comprises a target label in R and a feature vector of length 5. Standard normal-
isation was performed on the features, i.e., subtracting the mean and dividing by
the standard deviation. The dataset can be obtained from the following URL:
https://drive.google.com/file/d/0BxWe_IuTnMFcYXhxdUNwRHBKTlU/view.

Model description The description of the 2-layer DGP model used in this ex-
periment is given in the following. For a target t ∈ R with corresponding inputs
x ∈ F , the input-to-output relationship is modelled as

t = f2(f1(x)) + η, η ∼ N (0, σ2).

140

https://drive.google.com/file/d/0BxWe_IuTnMFcYXhxdUNwRHBKTlU/view

Chapter B: Amortised Variance Reduction

GP priors were set on f1 and f2, yielding the following full probabilistic
model:

p(u1) = N (0,Ku1u1),

p(f1|u1) = N (id(X) + Kf1u1K−1
u1u1u1,Kf1f1 −Kf1u1K−1

u1u1K
ᵀ
f1u1

),

p(u2) = N (0,Ku2u2),

p(f2|u2) = N (Kf2u2K−1
u2u2u2,Kf2f2 −Kf2u2K−1

u2u2K
ᵀ
f2u2

),

p(t | f1, f2) = N (f2(f1), σ2I).

Here, Z1 is a design matrix of M inducing locations. Ku1,u1 = k1(Z1,Z1) is an
M × M Gram matrix generated by a kernel function k1(·, ·). Similarly Kf1f1 =
k1(X,X) is an N ×N Gram matrix, where X is the design matrix of N inputs xn,
and id(·) is the identity function. Ku2u2 = k2(Z2,Z2) is also an M×M Gram matrix
generated by k2(·, ·), where Z2 are the inducing locations for the second layer, and
Kf2,f2 = k2(f1(X), f1(X)) is an N × N Gram matrix of the transformation of the
inputs by the first layer. Finally, u1 and u2 are the auxiliary inducing points. In-
depth treatment on the DGP model can be found in Section 2.1.2.3 & Section 2.4.3
in Chapter 2 and in Salimbeni and Deisenroth [2017].

Inference problem The aim is to find the posterior distribution f1 and f2 (and
by extension u1 and u2) given the targets T = (t1; . . . ; tN),

p(u1, f1,u2, f2|T) =
∏N
n=1 p(tn|f1, f2)p(f2|u2)p(u2)p(f1|u1)p(u1)∫ ∏N

n=1 p(tn|f1, f2)p(f2|u2)p(u2)p(f1|u1)p(u1) df2 du2 df1 du1
.

The doubly stochastic formulation of VI for DGPs [Salimbeni and Deisenroth, 2017]
for this intractable problem is used, where p(u1, f1,u2, f2|T) ≈ p(f2|u2)q(u2)p(f1|u1)q(u1),
with q(u1) = N (m1,L1Lᵀ

1) and q(u2) = N (m2,L2Lᵀ
2). The parameters θ =

(m1,L1,m2,L2) of the approximation can be learned by optimising the following
NELBO:

L(θ) =−
N∑
n=1

Eq(f2|f1)q(f1)[log p(tn|f1, f2)] + KL(q(u1)||p(u1)) + KL(q(u2)||p(u2))

≈−
N∑
n=1

1
S

S∑
s=1

log p(tn|f1(ε(s)
1n), f2(ε(s)

2n))]

+ KL(q(u1)||p(u1)) + KL(q(u2)||p(u2)), ε
(s)
1n , ε

(s)
2n ∼ N (0, I), (B.7)

141

Chapter B: Amortised Variance Reduction

where f1(ε) = m̄1 +L̄1ε is overloaded to represent the location-scale transformation,
and m̄1 and L̄1 are the parameters of the marginal q(f1) =

∫
p(f1|u1)q(u1) du1.

Similarly for f2(ε).

Instantiation For the experiments in Section 4.6, the model is instantiated by
setting k1(·, ·) and k2(·, ·) as Squared Exponential kernels, with lengthscales fixed
to 2 and signal variances also fixed to 2. The number of inducing locations was set
to M = 10 and their values to the centroids of k-means clusters of the real inputs
from the dataset. The likelihood variance was set to σ2 = 0.01 and the width of
the GP inner layer to 5. For the doubly stochastic NELBO in (B.7), the number
of Monte Carlo samples was set to S = 1 and the N data points are subsampled
into mini-batches of size |B| = 10 (some results for |B| = 100 are also shown in
Appendix B.4.1).

142

Chapter B: Amortised Variance Reduction

B.3 Verification of Variance Reduction

This section provides extra results for the experiment in Section 4.6.2 for different
recognition network objectives and different Adam learning rates on these objectives.
The corresponding configurations are in the figure captions.

B.3.1 Logistic Regression Results on the Titanic Dataset

Figure B.1: Logistic regression. Squared difference objective. Recognition network
learning rate = 10−3.

Figure B.2: Logistic regression. Gradient sum objective. Recognition network learn-
ing rate = 10−3.

143

Chapter B: Amortised Variance Reduction

Figure B.3: Logistic regression. Squared difference objective. Recognition network
learning rate = 10−2.

Figure B.4: Logistic regression. Squared difference objective. Recognition network
learning rate = 10−2.

B.3.2 Deep Gaussian Process Results on the Airfoil Dataset

Figure B.5: DGP. Squared difference objective. Recognition network learning rate
= 10−3.

144

Chapter B: Amortised Variance Reduction

Figure B.6: DGP. Gradient sum objective. Recognition network learning rate =
10−3.

Figure B.7: DGP. Squared difference objective. Recognition network learning rate
= 10−2.

Figure B.8: DGP. Gradient sum objective. Recognition network learning rate =
10−2.

145

Chapter B: Amortised Variance Reduction

B.4 Simultaneous Optimisation of Model and Recogni-
tion Network

This section provides extra results for the experiment in Section 4.6.3 for different
recognition network objectives, different Adam learning rates on these objectives and
different the mini-batch sizes. The corresponding configurations are in the figure
captions.

B.4.1 Logistic Regression Results on the Titanic Dataset

B.4.1.1 Small mini-batch size, |B| = 10

Figure B.9: Logistic regression. Squared difference objective. |B| = 10. Network of
size [128, 128, 128]. Recognition network learning rate = 10−3.

Figure B.10: Logistic regression. Gradient sum objective. |B| = 10. Network of size
[128, 128, 128]. Recognition network learning rate = 10−3.

146

Chapter B: Amortised Variance Reduction

Figure B.11: Logistic regression. Squared difference objective. |B| = 10. Network
of size [128, 128, 128]. Recognition network learning rate = 10−2.

Figure B.12: Logistic regression. |B| = 10. Gradient sum objective. Network of size
[128, 128, 128]. Recognition network learning rate = 10−2.

B.4.1.2 Large mini-batch size, |B| = 100

Figure B.13: Logistic regression. Squared difference objective. Network of size [128,
128, 128]. |B| = 100. Recognition network learning rate = 10−3.

Figure B.14: Logistic regression. Gradient sum objective. |B| = 100. Network of
size [128, 128, 128]. Recognition network learning rate = 10−3.

147

Chapter B: Amortised Variance Reduction

Figure B.15: Logistic regression. Squared difference objective. |B| = 100. Network
of size [128, 128, 128]. Recognition network learning rate = 10−2.

Figure B.16: Logistic regression. Gradient sum objective. |B| = 100. Network of
size [128, 128, 128]. Recognition network learning rate = 10−2.

B.4.2 Deep Gaussian Process Results on the Airfoil Dataset

B.4.2.1 Small mini-batch size, |B| = 10

Figure B.17: DGP. Squared difference objective. |B| = 10. Network of size [128,
128, 128]. Recognition network learning rate = 10−3.

Figure B.18: DGP. Gradient sum objective. |B| = 10. Network of size [128, 128,
128]. Recognition network learning rate = 10−3.

148

Chapter B: Amortised Variance Reduction

Figure B.19: DGP. Squared difference objective. |B| = 10. Network of size [128,
128, 128]. Recognition network learning rate = 10−2.

Figure B.20: DGP. Gradient sum objective. |B| = 10. Network of size [128, 128,
128]. Recognition network learning rate = 10−2.

B.4.2.2 Large mini-batch size, |B| = 100

Figure B.21: DGP. Squared difference objective. |B| = 100. Network of size [128,
128, 128]. Recognition network learning rate = 10−3.

Figure B.22: DGP. Gradient sum objective. |B| = 100. Network of size [128, 128,
128]. Recognition network learning rate = 10−3.

149

Chapter B: Amortised Variance Reduction

Figure B.23: DGP. Squared difference objective. |B| = 100. Network of size [128,
128, 128]. Recognition network learning rate = 10−2.

Figure B.24: DGP. Gradient sum objective. |B| = 100. Network of size [128, 128,
128]. Recognition network learning rate = 10−2.

B.4.2.3 Variance Reduction Comparison with the Partial Gradients Ob-
jective

This section provides results comparing the partial gradients objective in (4.10),
with the gradient sum (4.13) and squared difference (4.15) objectives. Fig. B.25
shows that the partial gradients objective induces further variance reduction than
the alternatives due to its lower variance. However, note that in practice partial
gradients are expensive to compute with current automatic differentiation libraries,
therefore it is not feasible to use this objective from a computational point-of-view.

Figure B.25: DGP. |B| = 10. Network of size [128, 128, 128]. Recognition network
learning rate = 10−3.

150

APPENDIX C

Appendix for A Low Variance
Gradient Estimator for
Variational Inference

C.1 Further Analytical Results

This section contains further analytical results supplementing the analysis in (5.4).

C.1.1 Scale of δCV

In certain settings, the correction term δCV becomes negligible. This implies that
ĝVarGrad(φ) and ĝCV(φ) (Reinforce with optimal score function control variate co-
efficients) behave almost identically.

Proposition C.1.1. δCV is small in comparison to Eqφ
[aVarGrad] if the KL diver-

gence between qφ(x) and p(x |y) is either large or small. Assume that qφ(x) has
lighter tails than the posterior p(x |y), i.e., there exists a constant C > 0 such that

sup
x

qφ(x)
p(x |y) < C. (C.1)

Furthermore, define the kurtosis of the score function,

Kurt[∂φi log qφ] =
Eqφ [(∂φi log qφ(x))4]

(Eqφ
[(∂φi log qφ(x))2])2 , (C.2)

and assume that it is bounded, i.e., Kurt[∂φi log qφ] < ∞. Then, the ratio between
the control variate correction δCV and the expected control variate coefficient of

151

Chapter C: A Low Variance Gradient Estimator for Variational Inference

VarGrad can be upper bounded by

∣∣∣∣∣ δCV
i

Eqφ
[aVarGrad]

∣∣∣∣∣ ≤ 2
√
C Kurt[∂φi log qφ]∣∣∣∣√KL(qφ(x) || p(x |y))− log p(y)√

KL(qφ(x) || p(x |y))

∣∣∣∣ . (C.3)

Proof. See Appendix C.2.3.

Remark C.1.2. The variational approximation qφ(x) typically underestimates the
spread of the posterior p(x |y) [Blei et al., 2017]; hence, the assumption in Equa-
tion (C.1) is usually satisfied in practice after a few iterations of the optimisation
algorithm. The kurtosis Kurt[∂φi log qφ] quantifies the weight of the tails of the vari-
ational approximation in terms of the score function.

Remark C.1.3. The upper bound in Equation (C.3) identifies two regimes. When
KL(qφ(x) || p(x |y)) is large, the bound asserts that the relative error satisfies∣∣∣∣∣ δCV

i

Eqφ
[aVarGrad]

∣∣∣∣∣ / O (KL(qφ(x) || p(x |y))−1/2
)
, (C.4)

as the second term in the denominator of Equation (C.3) becomes negligible. This
can happen in the early stages of the optimisation process, in which case δCV is
expected to be small. Since the KL divergence increases with the dimensionality of
the latent variable x (see Appendix C.2.6), Equation (C.3) also implies that the ratio
becomes smaller as the number of latent variables grows. Moreover, if the minimum
KL divergence between the variational family and the true posterior is large (i.e.,
if the best candidate in the variational family is still far away from the target), the
correction term δCV

i can be negligible during the whole optimisation procedure, which
is often the case in practice.

In the regime where KL(qφ(x) || p(x |y)) approaches zero (i.e., towards the
end of the optimisation process if the variational family is well specified or includes
the posterior), then Equation (C.3) implies that∣∣∣∣∣ δCV

i

Eqφ
[aVarGrad]

∣∣∣∣∣ / O (KL(qφ(x) || p(x |y))1/2
)
. (C.5)

In this regime, the error w.r.t. the optimal control variate coefficient decreases with
the KL divergence. The estimates in Equation (C.4) and Equation (C.5) combined
suggest that the relative error remains bounded throughout the optimisation. This is
verified experimentally in Section 4.6.

152

Chapter C: A Low Variance Gradient Estimator for Variational Inference

C.1.2 Effect of Latent Variable Dimension on the Variance of Var-
Grad

Corollary C.1.4. Let S be the number of samples and D the dimension of the
latent variable x. Furthermore, let the assumptions of Proposition C.1.1 be satisfied
and assume that KL(qφ(x) || p(x |y)) is strictly increasing in D. Then there exist
S0, D0 ∈ N such that

Var (ĝVarGrad,i(φ)) ≤ Var (ĝReinforce,i(φ)) , for all S ≥ S0 and D ≥ D0. (C.6)

Proof. See Appendix C.2.5.

C.2 Proofs of Analytical Results

C.2.1 Proof of Proposition 5.3.2

Consider the gradient of the KL divergence,

∇φKL(qφ(x) || p(x |y)) =
∫
∇φqφ(x) dx +

∫
log

(
qφ(x)
p(x |y)

)
∇φqφ dx, (C.7)

where the first term can be dropped since
∫
∇φqφ(x) dx = ∇φ

∫
qφ(x) dx = ∇φ(1) =

0.

Now consider the gradient of the log-variance loss. Using the definition from
Equation (5.5), one can see that

∇φLr(qφ(x) || p(x |y)) = 1
2∇φ

∫
log2

(
qφ(x)
p(x |y)

)
r(x) dx− 1

2∇φ
(∫

log
(
qφ(x)
p(x |y)

)
r(x) dx

)2

=
∫

log
(
qφ(x)
p(x |y)

) ∇φqφ(x)
qφ(x) r(x) dx−

(∫
log

(
qφ(x)
p(x |y)

)
r(x) dx

)(∫ ∇φqφ(x)
qφ(x) r(x) dx

)
.

When the gradient is evaluated at r(x) = qφ(x), the right-most term vanishes, since∫ ∇φqφ(x)
r(x) r(x) dx =

∫
∇φqφ(x) dx = 0. Thus, the gradient of the log-variance loss

is equal to the gradient of the kl divergence.

153

Chapter C: A Low Variance Gradient Estimator for Variational Inference

C.2.2 Proof of Lemma 5.4.1

Proof. First, notice that Varqφ
(∂φi log qφ(x)) = Eqφ

[(∂φi log qφ(x))2] since Eqφ
[∂φi log qφ(x)] =

0. Then

a?i =
Eqφ

[
fφ(x)(∂φi log qφ(x))2]

Eqφ

[
(∂φi log qφ(x))2

] (C.8)

=
Eqφ

[
fφ(∂φi log qφ(x))2]− Eqφ

[fφ(x)]Eqφ

[
(∂φi log qφ(x))2]+ Eqφ

[fφ(x)]Eqφ

[
(∂φi log qφ(x))2]

Eqφ

[
(∂φi log qφ(x))2

]
(C.9)

= Eqφ
[f̄φ] + δCV

i . (C.10)

The last line uses the fact that Eqφ
[fφ(x)] = Eqφ

[f̄φ].

C.2.3 Proof of Proposition C.1.1

Proof. Note that

∣∣∣∣∣ δCV
i

Eqφ
[aVarGrad]

∣∣∣∣∣ =

∣∣∣∣∣∣
Covqφ

(
fφ(x), (∂φi log qφ(x))2

)
Eqφ

[fφ(x)] Varqφ
(∂φi log qφ(x))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Eqφ

[
(fφ(x)− Eqφ

[fφ(x)]) (∂φi log qφ(x))2
]

Eqφ
[fφ(x)]Eqφ

[(∂φi log qφ(x))2]

∣∣∣∣∣∣ , (C.11)

where the fact that Eqφ
[∂φi log qφ(x)] = 0 was used. From

E[fφ(x)] = −ELBO(φ) = KL(qφ(x) || p(x |y))− log p(y),

and using the Cauchy-Schwarz inequality, Equation (C.11) can be bounded from
above by

(
Varqφ

(
log qφ(x)

p(x |y)

))1/2

|KL(qφ(x) || p(x |y))− log p(y)|

(
Eqφ

[(∂φi log qφ(x))4]
(Eqφ

[(∂φi log qφ(x))2])2

)1/2

. (C.12)

154

Chapter C: A Low Variance Gradient Estimator for Variational Inference

The second factor equals
√

Kurt[∂φi log qφ]. To bound the first factor, notice that

(
Varqφ

(
log qφ(x)

p(x |y)

))1/2
≤
(
Eqφ

[
log2 qφ(x)

p(x |y)

])1/2
=
(
Eqφ

[
log2 p(x |y)

qφ(x)

])1/2

(C.13)

≤
(

2Eqφ

[
exp

(∣∣∣∣∣log p(x |y)
qφ(x)

∣∣∣∣∣
)
− 1−

∣∣∣∣∣log p(x |y)
qφ(x)

∣∣∣∣∣
])1/2

, (C.14)

where the estimate

ex − 1− x =
∞∑
n=0

xn

n! − 1− x =
∞∑
n=2

xn

n! ≥
1
2x

2, x ≥ 0, (C.15)

with x =
∣∣∣log p(x|y)

qφ(x)

∣∣∣ was used. Now use [Ghosal et al., 2000, Lemma 8.3] to bound
Equation (C.14) from above by

2
√
Ch(qφ(x) || p(x |y)), (C.16)

where

h(qφ(x) || p(x |y)) =
√∫ (√

qφ(x)−
√
p(x |y)

)2
dx (C.17)

is the Hellinger distance. [Reiss, 2012, Lemma A.3.5] gives the bound h(qφ(x) || p(x |y)) ≤√
KL(qφ(x) || p(x |y)). Combining these estimates yields the claimed result.

C.2.4 Proof of Proposition 5.4.2

Proof. Start by defining the short-cuts

A = fφ(x), B = (∂φi log qφ) (x). (C.18)

155

Chapter C: A Low Variance Gradient Estimator for Variational Inference

Now compute the difference of the variances of the estimators to the leading order
in S,

Var(ĝReinforce,i)−Var(ĝVarGrad,i) =
1
S

Var(AB) + S − 2
S(S − 1)E [(A− E[A])(B − E[B])]2 (C.19a)

− Var(A) Var(B)
S(S − 1) − 1

S
E
[
(A− E[A])2(B − E[B])2

]
(C.19b)

= 1
S

(
E
[
A2B2

]
− E[AB]2

)
+ S − 2
S(S − 1)E[AB]2 (C.19c)

− 1
S

(
E
[
A2B2

]
− 2E[A]E

[
AB2

]
+ E[A]2E

[
B2
])

+O
(1
S2

)
(C.19d)

=− 1
S(S − 1)E[AB]2 − 1

S
E[A]

(
E[A]E

[
B2
]
− 2E

[
AB2

])
+O

(1
S2

)
(C.19e)

= 1
S
E[A]

(
2E
[
AB2

]
− E[A]E

[
B2
])

+O
(1
S2

)
(C.19f)

= 1
S
E[A]E

[
B2
] (

2δCV
i + E[A]

)
+O

(1
S2

)
(C.19g)

and note that with E
[
B2] > 0 the leading term is positive if

E[A]δCV
i + 1

2E[A]2 > 0, (C.19h)

which is equivalent to the statement in the proposition.

C.2.5 Proof of Corollary C.1.4

Proof. Note that with Proposition C.1.1,∣∣∣∣∣ δCV
i

Eqφ
[aVarGrad]

∣∣∣∣∣→ 0 (C.20)

for D → ∞, assuming that KL(qφ(x) || p(x |y)) is strictly increasing in D. There-
fore, for large enough D, the condition from Proposition 5.4.2 (see Equation (5.15)),
is fulfilled and the statement follows immediately.

C.2.6 Dimension-dependence of the KL-divergence

The following lemma shows that the KL-divergence increases with the number of
dimensions. This result follows from the chain-rule of KL divergence, see, e.g., Cover

156

Chapter C: A Low Variance Gradient Estimator for Variational Inference

and Thomas [2012].

Lemma C.2.1. Let u(D)(z1, . . . , zD) and v(D)(z1, . . . , zD) be two arbitrary proba-
bility distributions on RD. For J ∈ {1 . . . , D} denote their marginals on the first J
coordinates by u(J) and v(J), i.e.,

u(J)(z1, . . . , zJ) =
∫
· · ·
∫
u(D)(z1, . . . , zD) dzJ+1 . . . dzD, (C.21)

and
v(J)(z1, . . . , zJ) =

∫
· · ·
∫
v(D)(z1, . . . , zD)dzJ+1 . . . dzD. (C.22)

Then

KL(u(1) || v(1)) ≤ KL(u(2) || v(2)) ≤ . . . ≤ KL(u(D) || v(D)), (C.23)

i.e. the function J 7→ KL(u(J) || v(J)) is increasing.

C.3 Details of the Experiments

C.3.1 Logistic Regression

This section describes the experimental setup of the Bayesian logistic regression
example which was discussed in Section 4.6.

Data. A synthetic dataset with N = 100 was used, where input-output pairs are
generated as follows: sample a design matrix X ∈ RN×D for the inputs uniformly
on [−1, 1], random weights w ∈ RD from N (0, 25 ID) and a random bias b ∈ R from
N (0, 1). Set p = σ(Xw + b1), where 1 is an N -dimensional vector of ones and
σ(x) = 1

1+exp(−x) is the logistic sigmoid applied elementwise. Finally, sample the
outputs Y ∼ Bernoulli(p).

Training. For all the experiments listed in the main text, the VarGrad estimator
was used for the gradients of the logistic regression models. The models were trained
using stochastic gradient descent [Robbins and Monro, 1951] with a learning rate of
0.001.

Estimation of intractable quantities. To estimate the intractable quantities
in Figure 5.1, Monte Carlo sampling was used with 2000 samples for δCV and
Eqφ [aVarGrad]. The KL divergence was estimated with the identity KL(qφ(x)|p(x |y)) =
log p(y) − ELBO(φ), where log p(y) is estimated using importance sampling with

157

Chapter C: A Low Variance Gradient Estimator for Variational Inference

10000 samples and ELBO(φ) using standard Monte Carlo sampling with 2000 sam-
ples.

For the variance estimates in Figure 5.3, 1000 Monte Carlo samples were
used. As explained in the main text, to estimate the control variate coefficients,
either 2 samples for the sampled estimator or 1000 samples for the oracle estimator
were used.

C.3.2 Discrete VAEs

This section describes the experimental setting for the Discrete VAE, where it closely
follows the setup in Maddison et al. [2017], which was also replicated in Tucker
et al. [2017] and Grathwohl et al. [2018]. As the aim is to compare the usefulness
of different estimators in the optimisation and time their run-times, the various
benchmarks were re-implemented using JAX [Bradbury et al., 2018; Hennigan et al.,
2020]. Extra care was taken to be as faithful as possible to the implementation
description in their respective papers as well as in optimising the run-time of the
implementations.

Data. A fixed binarisation of Omniglot [Lake et al., 2015] was used, where it
was binarised at the standard cut-off of 0.5. The standard train/test splits for this
dataset was used.

Model Architectures. The DVAE experiments used the two-layer linear archi-
tecture, which has 2 stochastic binary layers with 200 units each, which was used
in Maddison et al. [2017]. Furthermore, for some results, a one layer non-linear
architecture was also used. For both models, the decoders mirror the corresponding
encoders. A Bernoulli(0.5) prior was used on the latent space with fixed parameters.

Training. For training the models, the Adam optimiser [Kingma and Ba, 2015]
was used with learning rates 0.001, 0.0005 and 0.0001.

Estimation of intractable quantities . Monte Carlo sampling with 2000 sam-
ples was used for δCV and Eqφ

[aVarGrad]. Due to the high memory requirements of
these computations and sparsity of the weight gradients, these quantities were only
only computed for the biases. To estimate the gradient variances 1000 Monte Carlo
samples were used.

158

APPENDIX D

Appendix for Generalised
Bayesian Filtering

D.1 β-PF

D.1.1 Outline derivation of the loss in (6.11)

To arrive at the expression of the loss in (6.11), recall the formula for the beta
divergence [Cichocki and Amari, 2010]

Dβ
B(P ||Q) = 1

β(β + 1)

∫
(pβ+1(x) + βqβ+1(x)− (β + 1)p(x)qβ(x)) dµ(x)

=CP + 1
β + 1

∫
qβ+1(x) dx− 1

β

∫
q(x)P(dx)

where P and Q are probability measures on the measurable space (X,A) and µ is a
finite or σ-finite measure on this space, such that P� µ and Q� µ are absolutely
continuous w.r.t. µ and CP is a constant independent of Q. Finally, p = dP

dµ and
q = dQ

dµ are densities and the Radon-Nikodym derivatives for P and Q w.r.t. µ.
Comparison with (2.91) yields (6.6) directly.

D.1.2 β-BPF

This section provides the algorithmic procedure in Algorithm 7 for the β-BPF that
is investigated in this main chapter.

159

Chapter D: Generalised Bayesian Filtering

Algorithm 7 β-Bootstrap Particle Filter
Input: Observation sequence y1:T , number of samples N .
Initialise: Sample {x̄(i)

0 }Ni=1 for the prior π0(x0).
for t = 1 to T do

Sample: x̌(i)
t ∼ ft(xt | x̄

(i)
t−1) . for i = 1 to N .

Weight: w(i)
t ∝ G

β
t (x̌(i)

t) . for i = 1 to N .
Resample: x̄(i)

t ∼
∑N
i=1 w(i)

t δx̌(i)
t

(dxt) . for i = 1 to N .
end for

D.1.3 β-APF

This section provides the algorithmic procedure in Algorithm 8 for the β-APF.
Here qt denotes the proposal distribution at time t which in the case of the fully-
adapted APF would be chosen to be the conditional density of xt given xt−1 and
yt but in general would be chosen as some approximation of this distribution and
Ǧβt (xt−1) is chosen as an approximation of the predictive generalised likelihood, i.e.
Ǧβt (xt−1) ≈

∫
Gβt (xt)ft(xt |xt−1) dxt.

Algorithm 8 β-Auxiliary Particle Filter
Input: Observation sequence y1:T , number of samples N .
Initialise: Sample {x̄(i)

0 }Ni=1 independently from the prior π0(x0).
for t = 1 to T do

Sample:

k(i) ∼ P (i = k |yt) ∝ w(i)
t−1Ǧ

β
t (x̄(i)

t)

x̄(i)
t ∼ qt(x̄t | x̄k

(i)
t−1)

. for i = 1 to N .
Weight:

w(i)
t ∝

ft(x̄(i)
t | x̄k

(i)
t−1)Gβt (x̄(i)

t)
qt(x̄(i)

t | x̄k
(i)
t−1)Ǧβt (x̄k(i)

t−1)
. for i = 1 to N .

end for

As in the case of the standard APF, the use of reference points obtained
from the current states in which one sets Ǧβt (xt−1) = Gβt (µt(xt−1)) with µt(xt−1) =∫

xtf(xt |xt−1) dxt is one simple approach to this, but one which does not work well
in full generality because it is underdispersed with respect to the true predictive
generalised likelihood (cf. [Johansen and Doucet, 2008]). In general, better per-
formance can be obtained by developing a good bespoke approximation to the pre-

160

Chapter D: Generalised Bayesian Filtering

dictive generalised likelihood and the locally-optimal proposal density for any given
application. However, in order to provide a simple generically-applicable strategy
that is reasonably robust, one suggestion is to sett the proposal equal to the transi-
tion density, i.e., qt = ft, and to use a stabilised version of the simple approximation
to the predictive likelihood, provided by

Ǧβt (xt−1) = Gβt (µt(xt−1)) + ct

where ct is a constant chosen, e.g., as 0.05 supxG
β
t (x) to avoid any instability in

the weighting step. Such a strategy was advocated in the iterated version of this
algorithm described by Guarniero et al. [2017] which could in principle also be
adapted to the GBI setting.

161

Chapter D: Generalised Bayesian Filtering

D.2 Theoretical analysis

D.2.1 Proof of Theorem 6.4.1

This is an adaptation of a well-known proof, hence the results will only be sketched,
providing the constant ct,p,β.

The result is proved via induction. For t = 0, the result in the theorem holds
trivially, as it corresponds to the i.i.d. case , e.g., Del Moral [2004, Lemma 7.3.3]
provides an explicit constant. Hence, as an induction hypothesis, assume

‖πβ,Nt−1 (ϕ)− πβt−1(ϕ)‖p ≤
ct−1,p,β‖ϕ‖∞√

N
, (D.1)

where ct−1,p,β < ∞ is independent of N . After the sampling step, obtain the pre-
dictive particles x̄(i)

t are obtained and the predictive measure

π̂β,Nt (dxt |y1:t−1) = 1
N

N∑
i=1

δx̄(i)
t

(dxt),

is formed. One can show that [Mı́guez et al., 2013, Lemma 1]

‖π̂β,Nt (ϕ)− π̂βt (ϕ)‖p ≤
c1,t,p,β‖ϕ‖∞√

N
, (D.2)

where c1,t,p,β <∞ is a constant independent of N . After the computation of weights,
one can construct

π̌β,Nt (dxt) =
N∑
i=1

w(i)
t δx̄(i)

t

(dxt). (D.3)

Following again [Mı́guez et al., 2013, Lemma 1], one readily obtains

‖πβt (ϕ)− π̌β,Nt (ϕ)‖p ≤
c2,t,p,β‖ϕ‖∞√

N
, (D.4)

where

c2,t,p,β = 2‖Gβt ‖∞c1,t,p,β

π̂t(Gβt)
<∞,

where π̂t(Gβt) > 0. Finally, performing multinomial resampling leads to a condition-

162

Chapter D: Generalised Bayesian Filtering

ally i.i.d. sampling case, which yields

‖π̌β,Nt (ϕ)− πβ,Nt (ϕ)‖p ≤
c3,t,p,β‖ϕ‖∞√

N
. (D.5)

Combining (D.4) and (D.5) yields the result with ct,p,β = c2,t,p,β + c3,t,p,β .

D.2.2 Proof of Theorem 6.4.3

The Proposition in Johansen and Doucet [2008] which provides explicit expressions
for sequential importance resampling based particle filters within the general frame-
works of Del Moral [2004]; Chopin [2004]; the same argument holds mutatis mutandis
in the context of the β-BPF. The asymptotic variance expression σ2

t,β(ϕ) is given as
follows. For t = 1 [Johansen and Doucet, 2008],

σ2
1,β(ϕ) =

∫ pβ1 (x1 |y1)
f1(x1) (ϕ1(x1)− ϕ1)2 dx1,

where f1(x1) :=
∫
µ0(x0)f1(x1 |x0) dx0. Then, for t > 1 [Johansen and Doucet,

2008]

σ2
t,β =

∫ pβt (x1 |y1:t)2

f1(x1)

(∫
ϕt(x1:t)pβt (x2:t |y2:t,x1) dx2:t − ϕt

)2
dx1

+
t−1∑
k=2

∫ pβk(x1:k |y1:t)2

pβk−1(x1:k−1 |y1:k−1)fk(xk |xk−1)(∫
ϕt(x1:t)pβt (xk+1:t |yk+1:t,xk) dxk+1:t − ϕt

)2
dx1:k

+
∫ pβt (x1:t |y1:t)2

pβt−1(x1:t−1 |y1:t−1)ft(xt |xt−1)
(ϕt(x1:t)− ϕt)2 dx1:t.

D.3 Experiment Details

D.3.1 Evaluation Metrics

The following metrics metrics are used to evaluate the experiments:

163

Chapter D: Generalised Bayesian Filtering

The Normalised Mean Squared Error (NMSE) is computed per state di-
mension j as

NMSEj =

∥∥∥∑T
t=1 xtj − x̂tj

∥∥∥2

2∑T
t=1 ‖xtj‖

2
2

, (D.6)

with x̂tj = 1
N

∑N
i=1 x̄

(i)
tj , i.e., the mean over resampled particles (trajectories).

The 90% Emprical Coverage (EC) is computed per state dimension j as

ECj =
∑T
t=1 1Ct(xtj)

T
, (D.7)

with
Ct = {z|z ∈ [q0.05({x̄(i)

tj }
N
i=1), q0.95({x̄(i)

tj }
N
i=1)]},

where q is the quantile function.

Predictive Median Absolute Error (MedAE) is computed per observation
dimension j as

MedAE = mediant∈{1,...,T} (|ŷtj − ytj |) , (D.8)

where ŷt ∼
∑N
i=1 witgt(y |x

(i)
t).

Aggregation: Metrics are often presented as aggregates over the state dimensions,
which are simply the mean of the metric across the state dimensions.

D.3.2 Details on the implementation of the selection criterion in
Section 6.3.3

From (6.13), agg was chosen as the median and L as the absolute error. When
the observations are multidimensional, the average loss was taken, weighted by the
inverse of the median of each dimension.

The scores for different values of β from a grid were computed and the β
that minimises the score was chosen. For multiple runs, the modal value of the β’s
over all the runs was reported.

In the interest of simplicity, the entire observation sequence from an alterna-
tive realisation of the same simulation was used to compute the score. However, in
practice one might one to tune β on a sub-sequence to avoid extra computation.

164

Chapter D: Generalised Bayesian Filtering

D.3.3 Wiener velocity model experiment details (Section 6.5.1)

This section details the experimental setup used to obtain the results for Sec-
tion 6.5.1.

Simulator settings The data was synthesised with a Python simulator utilising
NumPy. The system was discretised with ∆τ = 0.1 and simulated for 100 time
steps, i.e.. 1000 time points in total were obtained. For the state evolution process

in Eq. (6.16), the transition matrix was set to A =
[

1 0 ∆τ 0
0 1 0 ∆τ
0 0 1 0
0 0 0 1

]
and the transi-

tion covariance matrix to Q =
[∆τ3

3 0 ∆τ2
2 0

0 ∆τ3
3 0 ∆τ2

2
∆τ2

2 0 ∆τ 0

0 ∆τ2
2 0 ∆τ

]
. For the observation process in

Eq. (6.17), the observation matrix was set to H =
[1 0 0 0

0 1 0 0
]

and the noise covariance
to Σ = I. The initial state of the simulator is set to x0 = [140, 140, 50, 0].

Contamination To simulate contaminated observations extra i.i.d. Gaussian
noise with a standard deviation of 100.0 was applied additively to the observation
sequence with probability pc per observation.

Sampler settings The samplers were intialised by sampling from the prior given
by N (x0,Q) with x0 being the initial state of the simulator and Q as above. The
likelihood covariance was set to the simulator noise covariance and the number of
samples to 1000.

Experiment settings Each experiment consists of 100 runs, where all samplers
are seeded with the same seed per run; however, the seeds vary across the runs. The
same state sequence was used for all runs obtained from the simulator as above.
However, each run simulates a new observation sequence (i.e., the observations
noise changes per run).

D.3.4 Terrain Aided Navigation (TAN) experiment details (Sec-
tion 6.5.2)

This section details the experimental setup used to obtain the results for Sec-
tion 6.5.2.

165

Chapter D: Generalised Bayesian Filtering

Simulator settings The data was synthesised with a Python simulator utilising
NumPy. The system was discretised with ∆τ = 0.1 and simulated for 200 time
steps, i.e., 2000 time points were obtained in total. For the state evolution process
in Eq. (6.16)the transition matrix was set to

A =

1 0 0 ∆τ 0 0
0 1 0 0 ∆τ 0
0 0 1 0 0 ∆τ
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

and the transition covariance matrix to

Q =

4 0 0 0 0 0
0 4 0 0 0 0
0 0 36 0 0 0
0 0 0 0.0841 0 0
0 0 0 0 0.207936 0
0 0 0 0 0 5.29

.

For the observation process, the non-linear observation function was set to

h(xt) =
[

xt3 −DEM(xt1, xt2)√
(xt1 − x01)2 + (xt2 − x02)2

]
,

where DEM is a non-analytic Digital Elevation Map. For this simulation the DEM
was set to

DEM(a, b) = peaks(q · a, q · b) +
6∑
i=1

αi sin(ωi · q · a) cos(ψ · q · b),

with peaks(c, d) = 200(3(1 − c)2 exp(−c2 − (d + 1)2) − 10(c5 − c3 − d5) exp(−c2 −
d2)− 1

3 exp(−(x+ 1)2 + y2)), α = [300, 80, 60, 40, 20, 10], ω = [5, 10, 20, 30, 80, 150],
ψ = [4, 10, 20, 40, 90, 150] and q = 3

2.96×104 . The noise covariance Σ = σ2I with
σ2 = 400. The initial state of the simulator was set x0 = [−7.5× 103, 5× 103, 1.1×
103, 88.15,−60.53, 0].

Contamination To simulate contaminated observations extra i.i.d. Student’s t
noise was applied additively, with 1 degree of freedom and scale σ, where σ is given

166

Chapter D: Generalised Bayesian Filtering

as above. The contamination was applied to observation instances with probability
pc per observation.

Sampler settings The samplers were initialised by sampling from the prior given
by N (x0,Q) with x0 being the initial state of the simulator and Q as above. The
likelihood covariance was set to the simulator noise covariance and the number of
samples to 3000. For the APFs, the same design choices outlined in Appendix D.1.3
were made, i.e., setting the proposal density to the transition density and stabilising
the predictive likelihood approximation with the given additive constant.

Experiment settings Each experiment consists of 50 runs, where all samplers
are seeded with the same seed per run; however, the seeds vary across the runs. The
same state sequence was used for all runs obtained from the simulator as above.
However, each run simulates a new observation sequence (i.e. the observation noise
changes per run).

D.3.5 Asymmetric Wiener velocity model experiment details (Sec-
tion 6.5.3)

This section details the experimental setup used to obtain the results for Sec-
tion 6.5.3.

Simulator settings The same simulator settings as in Appendix D.3.3 were used,
but changing the observation noise to 1[−∞,0]N (0, 1) + 1[0,+∞]N (0, 102).

Contamination To simulate contaminated observations i.i.d. Exponential noise
with a scale of 1000 was applied multiplicatively with probability pc = 0.1 per
observation.

Sampler settings The samplers were initialised by sampling from the prior given
by N (x0,Q) with x0 being the initial state of the simulator and Q as above. We
set the number of samples to 1000.

Experiment settings The same settings as in Appendix D.3.3 were used.

D.3.6 Air quality experiment details (Section 6.5.4)

This section details the setup used to obtain the results for Section 6.5.4.

167

Chapter D: Generalised Bayesian Filtering

Data The data was obtained from https://www.londonair.org.uk/london/asp/

datadownload.asp, and a time window of 200 hours was selected. No preprocessing
was performed on the data.

Kernel The Mateŕn 5/2 kernel was used and the lengthscale was set to l = 0.03
and the signal variance was set to σ2

s = 32. The SDE representation of the Mateŕn
5/2 GP was discretised with a stepsize ∆τ = 0.005 to obtain an LGSSM of the form
(6.16)-(6.17), with transition matrix

A = exp(∆τF) = exp(∆τ
[

0 1 0
0 0 1
−λ3 −3λ2 −3λ

]
),

where λ =
√

5
l and transition covariance matrix Q = P∞ −AP∞Aᵀ, with P∞ =[

σ2
s 0 κ
0 κ 0
−κ 0 σ2

sλ
4

]
, where κ = σ2

sλ
2

3 . For the observation process in (6.17), the observation

matrix was set to H = [1, 0, 0] and the noise variance σ2 = 1. The prior on the
initial state x0 is given as N (m,S), where mᵀ = [0, 0, 0] and S = P∞.

Sampler settings The samples were intialised by sampling from the priorN (m,S).
The number of samples was set to 1000.

Smoother settings The number of samples was set to 1000 for the FFBS smoother.

Experiment settings The sampling procedure was repeated for 100 runs, where
the samplers are seeded differently for each runs. The seeds are shared among
samplers for each run. The Kalman filter does not require multiple runs as the
solution is deterministic.

168

https://www.londonair.org.uk/london/asp/datadownload.asp
https://www.londonair.org.uk/london/asp/datadownload.asp

Chapter D: Generalised Bayesian Filtering

D.4 Further results

D.4.1 Wiener velocity experiment

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.0

Kalman
BPF 0.0001

0.0005
0.001

0.005
0.01

0.05
0.1 0.2 0.5 0.8

0.4

0.6

0.8

90
%

 E
C

Kalman Filter
BPF

-BPF
Predictive Selection

169

Chapter D: Generalised Bayesian Filtering

10 1

100

101

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.05

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8

0.4

0.6

0.8

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.1

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

170

Chapter D: Generalised Bayesian Filtering

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.15

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8

0.2

0.4

0.6

0.8

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

10 1

100

101

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.2

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

171

Chapter D: Generalised Bayesian Filtering

10 2

10 1

100

101

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.25

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.3

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

172

Chapter D: Generalised Bayesian Filtering

10 2

10 1

100

101

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.35

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

10 2

10 1

100

N
M

SE

Wiener velocity: aggregate metrics for pc = 0.4

Kalman
BPF Oracle

0.0001
0.0005

0.001
0.005

0.01
0.05

0.1 0.2 0.5 0.8
0.0

0.2

0.4

0.6

0.8

1.0

90
%

 E
C

Kalman Filter
BPF

Oracle
-BPF

Predictive Selection

Figure D.1: The mean metrics over state dimensions for the Wiener velocity exam-
ple. The top panel presents the NMSE results (lower is better) and the bottom panel
presents the 90% emprirical coverage results (higher is better), on 100 runs. The
vertical dashed line in gold indicate the value of β chosen by the selection criterion
in Section 6.3.3. The horizontal dashed line in black in the lower panel indicates the
90% mark for the coverage.

173

Chapter D: Generalised Bayesian Filtering

5000

0

5000

10000

m

BPF: displacement in x direction, NMSE = 0.0367, 90% Coverage = 0.108

0 250 500 750 1000 1250 1500 1750 2000

5000

0

5000

10000

m

-BPF: displacement in x direction, NMSE = 0.0002, 90% Coverage = 0.354

True trajectory
-BPF filtering dist. for = 0.05

BPF filtering dist.
Prominent outliers

Figure D.2: Marginal filtering distributions for the Kalman filter, the BPF and the
β-BPF.

174

Chapter D: Generalised Bayesian Filtering

5000

0

5000

m

BPF: displacement in y direction, NMSE = 0.0864, 90% Coverage = 0.088

0 250 500 750 1000 1250 1500 1750 2000

5000

0

5000

m

-BPF: displacement in y direction, NMSE = 0.0005, 90% Coverage = 0.389

True trajectory
-BPF filtering dist. for = 0.05

BPF filtering dist.
Prominent outliers

Figure D.3: Marginal filtering distributions for the Kalman filter, the BPF and the
β-BPF.

3000

2000

1000

0

1000

m

BPF: displacement in z direction, NMSE = 0.0379, 90% Coverage = 0.297

0 250 500 750 1000 1250 1500 1750 2000
3000

2000

1000

0

1000

m

-BPF: displacement in z direction, NMSE = 0.0005, 90% Coverage = 0.760

True trajectory
-BPF filtering dist. for = 0.05

BPF filtering dist.
Prominent outliers

Figure D.4: Marginal filtering distributions for the Kalman filter, the BPF and the
β-BPF.

175

Chapter D: Generalised Bayesian Filtering

70

80

90

100

m s
BPF: velocity in x direction, NMSE = 0.0159, 90% Coverage = 0.077

0 250 500 750 1000 1250 1500 1750 2000
70

80

90

100

m s

-BPF: velocity in x direction, NMSE = 0.0024, 90% Coverage = 0.675

True trajectory
-BPF filtering dist. for = 0.05

BPF filtering dist.
Prominent outliers

Figure D.5: Marginal filtering distributions for the Kalman filter, the BPF and the
β-BPF.

Predictive Median Absolute Error
Filter mean standard error
Kalman Filter 5.23 0.06
BPF 2.78 0.09
β = 0.0001 0.97 0.00
β = 0.0005 0.97 0.00
β = 0.001 0.97 0.00
β = 0.005 0.90 0.00
β = 0.01 0.90 0.00
β = 0.05 0.90 0.00
β = 0.1 0.90 0.00
β = 0.2 0.92 0.00
β = 0.5 72.22 12.34
β = 0.8 226.61 11.62

Table D.1: Predictive results on the Weiner velocity example for pc = 0.1. The one
step ahead predictive performance is measure by the median absolute error. The
figures are averaged across 100 runs and the standard error on the average score is
provided.

176

Chapter D: Generalised Bayesian Filtering

D.4.2 TAN experiment

5000

0

5000

10000

m

BPF: displacement in x direction, NMSE = 0.0035, 90% Coverage = 0.115

0 250 500 750 1000 1250 1500 1750 2000

5000

0

5000

10000

m

-BPF: displacement in x direction, NMSE = 0.0001, 90% Coverage = 0.734

True trajectory
-BPF filtering dist. for = 0.1

BPF filtering dist.
Prominent outliers

Figure D.6: Marginal filtering distributions for the BPF (top) and β-BPF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

177

Chapter D: Generalised Bayesian Filtering

3000

2000

1000

0

1000

m
BPF: displacement in z direction, NMSE = 0.0044, 90% Coverage = 0.393

0 250 500 750 1000 1250 1500 1750 2000
3000

2000

1000

0

1000

m

-BPF: displacement in z direction, NMSE = 0.0003, 90% Coverage = 0.931

True trajectory
-BPF filtering dist. for = 0.1

BPF filtering dist.
Prominent outliers

Figure D.8: Marginal filtering distributions for the BPF (top) and β-BPF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

75

80

85

90

95

m s

BPF: velocity in x direction, NMSE = 0.0019, 90% Coverage = 0.614

0 250 500 750 1000 1250 1500 1750 2000

75

80

85

90

95

m s

-BPF: velocity in x direction, NMSE = 0.0016, 90% Coverage = 0.860

True trajectory
-BPF filtering dist. for = 0.1

BPF filtering dist.
Prominent outliers

Figure D.9: Marginal filtering distributions for the BPF (top) and β-BPF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

5000

0

5000

m

BPF: displacement in y direction, NMSE = 0.0070, 90% Coverage = 0.115

0 250 500 750 1000 1250 1500 1750 2000

5000

0

5000

m

-BPF: displacement in y direction, NMSE = 0.0002, 90% Coverage = 0.743

True trajectory
-BPF filtering dist. for = 0.1

BPF filtering dist.
Prominent outliers

Figure D.7: Marginal filtering distributions for the BPF (top) and β-BPF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black. 178

Chapter D: Generalised Bayesian Filtering

90

80

70

60

50

40

m s

BPF: velocity in y direction, NMSE = 0.0115, 90% Coverage = 0.532

0 250 500 750 1000 1250 1500 1750 2000
90

80

70

60

50

40

m s

-BPF: velocity in y direction, NMSE = 0.0090, 90% Coverage = 0.793

True trajectory
-BPF filtering dist. for = 0.1

BPF filtering dist.
Prominent outliers

Figure D.10: Marginal filtering distributions for the BPF (top) and β-BPF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

150

100

50

0

50

m s

BPF: velocity in z direction, NMSE = 0.1511, 90% Coverage = 0.691

0 250 500 750 1000 1250 1500 1750 2000
150

100

50

0

50

m s

-BPF: velocity in z direction, NMSE = 0.0944, 90% Coverage = 0.856

True trajectory
-BPF filtering dist. for = 0.1

BPF filtering dist.
Prominent outliers

Figure D.11: Marginal filtering distributions for the BPF (top) and β-BPF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

0 250 500 750 1000 1250 1500 1750 2000
0

1000

2000

3000
Effective sample size with time

BPF -BPF Prominent Outliers

Figure D.12: Effective sample size with time for the BPF (top) and β-BPF with
β = 0.1.

179

Chapter D: Generalised Bayesian Filtering

5000

0

5000

10000

m

APF: displacement in x direction, NMSE = 0.0013, 90% Coverage = 0.171

0 250 500 750 1000 1250 1500 1750 2000

5000

0

5000

10000

m

-APF: displacement in x direction, NMSE = 0.0000, 90% Coverage = 0.860

True trajectory
-APF filtering dist. for = 0.1

APF filtering dist.
Prominent outliers

Figure D.13: Marginal filtering distributions for the APF (top) and β-APF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

5000

0

5000

m

APF: displacement in y direction, NMSE = 0.0025, 90% Coverage = 0.169

0 250 500 750 1000 1250 1500 1750 2000

5000

0

5000

m

-APF: displacement in y direction, NMSE = 0.0001, 90% Coverage = 0.884

True trajectory
-APF filtering dist. for = 0.1

APF filtering dist.
Prominent outliers

Figure D.14: Marginal filtering distributions for the APF (top) and β-APF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

180

Chapter D: Generalised Bayesian Filtering

3000

2000

1000

0

1000

m

APF: displacement in z direction, NMSE = 0.0024, 90% Coverage = 0.487

0 250 500 750 1000 1250 1500 1750 2000

3000

2000

1000

0

1000

m

-APF: displacement in z direction, NMSE = 0.0002, 90% Coverage = 0.943

True trajectory
-APF filtering dist. for = 0.1

APF filtering dist.
Prominent outliers

Figure D.15: Marginal filtering distributions for the APF (top) and β-APF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

70

80

90

m s

APF: velocity in x direction, NMSE = 0.0034, 90% Coverage = 0.499

0 250 500 750 1000 1250 1500 1750 2000

70

80

90

m s

-APF: velocity in x direction, NMSE = 0.0009, 90% Coverage = 0.947

True trajectory
-APF filtering dist. for = 0.1

APF filtering dist.
Prominent outliers

Figure D.16: Marginal filtering distributions for the APF (top) and β-APF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

181

Chapter D: Generalised Bayesian Filtering

90

80

70

60

50

m s

APF: velocity in y direction, NMSE = 0.0128, 90% Coverage = 0.454

0 250 500 750 1000 1250 1500 1750 2000

90

80

70

60

50

m s

-APF: velocity in y direction, NMSE = 0.0044, 90% Coverage = 0.898

True trajectory
-APF filtering dist. for = 0.1

APF filtering dist.
Prominent outliers

Figure D.17: Marginal filtering distributions for the APF (top) and β-APF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

150

100

50

0

50

100

m s

APF: velocity in z direction, NMSE = 0.1124, 90% Coverage = 0.761

0 250 500 750 1000 1250 1500 1750 2000
150

100

50

0

50

100

m s

-APF: velocity in z direction, NMSE = 0.0910, 90% Coverage = 0.864

True trajectory
-APF filtering dist. for = 0.1

APF filtering dist.
Prominent outliers

Figure D.18: Marginal filtering distributions for the APF (top) and β-APF (bottom)
with β = 0.1. The locations of the most prominent (largest deviation) outliers are
shown as dashed vertical lines in black.

0 250 500 750 1000 1250 1500 1750 2000
0

1000

2000

3000
Effective sample size with time

APF -APF Prominent Outliers

Figure D.19: Effective sample size with time for the APF (top) and β-APF with
β = 0.1.

182

pc

Filter 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

BPF 16.63(0.06) 17.67(0.05) 17.88(0.06) 18.66(0.07) 19.68(0.08) 20.12(0.09) 20.96(0.08) 21.55(0.09)
t-BPF 16.33(0.05) 17.15(0.05) 17.15(0.05) 17.92(0.05) 18.72(0.06) 18.95(0.07) 19.71(0.09) 20.11(0.08)
β-BPF = 0.005 16.26(0.05) 17.01(0.05) 16.96(0.06) 17.60(0.05) 18.34(0.07) 18.48(0.06) 19.24(0.06) 19.60(0.07)
β-BPF = 0.01 16.23(0.04) 16.91(0.05) 16.65(0.05) 17.06(0.05) 17.74(0.05) 17.86(0.06) 18.43(0.05) 18.61(0.06)
β-BPF = 0.05 16.39(0.04) 16.97(0.05) 16.70(0.06) 17.23(0.06) 18.03(0.06) 17.84(0.06) 18.45(0.07) 18.78(0.08)
β-BPF = 0.1 17.46(0.05) 17.92(0.06) 17.90(0.11) 18.61(0.12) 19.49(0.11) 19.15(0.10) 19.76(0.10) 20.24(0.11)
β-BPF = 0.2 16.56(0.04) 17.07(0.05) 16.58(0.04) 17.43(0.04) 17.87(0.06) 17.85(0.05) 18.56(0.06) 18.84(0.06)
APF 15.96(0.05) 17.09(0.04) 17.34(0.05) 18.13(0.05) 19.04(0.08) 19.51(0.06) 20.67(0.07) 21.15(0.09)
β-APF = 0.005 15.71(0.04) 16.49(0.05) 16.57(0.05) 17.19(0.04) 17.80(0.05) 18.15(0.04) 18.96(0.07) 19.19(0.06)
β-APF = 0.01 15.69(0.04) 16.31(0.04) 16.31(0.04) 16.85(0.04) 17.47(0.05) 17.66(0.05) 18.46(0.05) 18.66(0.05)
β-APF = 0.05 15.69(0.04) 16.26(0.04) 16.01(0.04) 16.53(0.03) 17.17(0.05) 17.14(0.06) 17.83(0.05) 17.92(0.05)
β-APF = 0.1 15.84(0.04) 16.46(0.05) 16.16(0.04) 16.56(0.04) 17.30(0.05) 17.16(0.04) 17.89(0.05) 18.09(0.05)
β-APF = 0.2 16.90(0.06) 17.35(0.06) 17.32(0.09) 17.68(0.06) 18.78(0.08) 18.40(0.06) 18.87(0.06) 19.28(0.08)

Table D.2: Predictive results on the TAN example. The one step ahead predictive
performance is measure by the median absolute error. The figures are averaged
across 50 runs and the standard error on the average score is provided.

D.4.3 London air quality experiment

Table D.3: GP regression NMSE (higher is better) and 90% empirical coverage
for the credible intervals of the posterior predictive distribution, on 100 runs. The
bold font indicate the statistically significant best result according to the Wilcoxon
signed-rank test. All presented results are statistically different from each other
according to the test.

median (IQR)

Filter (Smoother) NMSE EC

Kalman (RTS) 0.144(0) 0.685(0)
BPF (FFBS) 0.116(0.015) 0.650(0.020)
(β = 0.005)-BPF (FFBS) 0.102(0.014) 0.67(0.025)
(β = 0.01)-BPF (FFBS) 0.077(0.007) 0.705(0.015)
(β = 0.05)-BPF (FFBS) 0.063(0.003) 0.735(0.015)
(β = 0.1)-BPF (FFBS) 0.061(0.003) 0.760(0.015)
(β = 0.2)-BPF (FFBS) 0.059(0.002) 0.803(0.020)

183

0

10

20

30

40

pm
2.

5

Matérn 5/2 GP with Kalman (RTS): NMSE = 0.1435, 90% Coverage = 0.685

0

10

20

30

40

pm
2.

5

Matérn 5/2 GP with BPF (FFBS): NMSE = 0.1125, 90% Coverage = 0.640

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

pm
2.

5

Matérn 5/2 GP with -BPF (FFBS): NMSE = 0.0614, 90% Coverage = 0.765

Ground truth Training data Kalman smoothing dist. BPF smoothing dist. -BPF smoothing dist. for = 0.1

Figure D.20: The GP fit on the measurement time series for one of the London
air quality sensors. The top panel shows the posterior from the Kalman (RTS)
smoothing. The middle panel shows the posterior from the BPF (FFBS). The
bottom panel shows the posterior from the β-BPF (FFBS) for β = 0.1.

184

Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: A system for large-scale machine learning. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, 2016.

V. Aglietti, T. Damoulas, and E. V. Bonilla. Efficient inference in multi-task Cox
process models. In The 22nd International Conference on Artificial Intelligence
and Statistics (AISTATS), Okinawa, Japan, 2019.

Ö. D. Akyildiz and J. Mı́guez. Nudging the particle filter. Statistics and Computing,
30(2), 2020.

A. M. Alaa and M. van der Schaar. Deep Multi-task Gaussian Processes for Survival
Analysis with Competing Risks. In Advances in Neural Information Processing
Systems (NIPS) 30, Long Beach, USA, 2017.

M. Alvarez and N. D. Lawrence. Sparse convolved Gaussian Process for multi-output
regression. In Advances in Neural Information Processing Systems (NIPS) 21,
Vancouver, Canada, 2009.

M. Alvarez, L. Rosasco, and N. D. Lawrence. Kernels for Vector-Valued Functions:
a Review. Technical Report, MIT, 2011.

B. D. O. Anderson and J. B. Moore. Optimal filtering. Englewood Cliffs, N.J.
Prentice Hall, 1979.

M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul,
and N. de Freitas. Learning to learn by gradient descent by gradient descent. In
Advances in Neural Information Processing Systems (NIPS) 29, Barcelona, Spain,
2016.

O. Anschel, N. Baram, and N. Shimkin. Averaged-DQN: Variance Reduction and
Stabilization for Deep Reinforcement Learning. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), Sydney, Australia, 2017.

185

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances
in Neural Information Processing Systems (NIPS) 19, 2007.

B. Bakker and T. Heskes. Task clustering and gating for Bayesian Multitask Learn-
ing. Journal of Machine Learning Research, 4, 2003.

M. B̊ankestad, J. Sjölund, J. Taghia, and T. B. Schön. The Elliptical Processes: a
new family of flexible stochastic processes. arXiv e-prints, arxiv abs/2003.07201
[stat.ME], 2020.

T. Bayes. An essay towards solving a problem in the doctrine of chances. by the late
Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton,
AMFR S. Philosophical Transactions of the Royal Society of London, (53), 1763.

J. M. Bernardo and A. F. Smith. Bayesian theory, volume 405. John Wiley & Sons,
2009.

A. Beskos, O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead. Exact and com-
putationally efficient likelihood-based estimation for discretely observed diffusion
processes. Journal of the Royal Statistical Society, Series B, 68(3), 2006.

C. M. Bishop. Pattern recognition and machine learning. Springer, New York, NY,
2006.

P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating
belief distributions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(5), 2016.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational Inference: A review for
statisticians. Journal of the American Statistical Association, 112(518), 2017.

E. V. Bonilla, K. M. Chai, and C. Williams. Multi-task Gaussian process prediction.
In Advances in Neural Information Processing Systems (NIPS) 20, Vancouver,
Canada, 2007.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2, 2002.

A. Boustati, T. Damoulas, and R. S. Savage. Non-linear multitask learning with
Deep Gaussian processes. arXiv e-prints, arXiv:1905.12407 [stat.ML], 2019.

A. Boustati, Ö. D. Akyildiz, T. Damoulas, and A. M. Johansen. Generalised
Bayesian filterting via sequential Monte Carlo. In Advances in Neural Information
Processing Systems (NeurIPS) 33, Virtual, 2020a.

186

A. Boustati, S. Vakili, J. Hensman, and S. John. Amortized variance reduction for
doubly stochastic objective. In Proceedings of the 36th Conference on Uncertainty
in Artificial Intelligence (UAI), Virtual, 2020b.

A. Boustati, S. John, S. Vakili, and J. Hensman. Computational inference system,
2021. US Patent App. 16/984,824.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

P. Boyle and M. Frean. Dependent Gaussian Processes. In Advances in Neural
Information Processing Systems (NIPS) 17, Vancouver, Canada, 2004.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and
S. Wanderman-Milne. JAX: composable transformations of Python+NumPy pro-
grams, 2018. URL http://github.com/google/jax.

M. Briers, A. Doucet, and S. Maskell. Smoothing algorithms for state space models.
Annals of the Institute of Statistical Mathematics, 62(1), 2010.

T. D. Bui, D. Hernández-Lobato, J. M. Hernández-Lobato, Y. Li, and R. E. Turner.
Deep Gaussian processes for regression using approximate expectation propaga-
tion. In Proceedings of the 33nd International Conference on Machine Learning
ICML, New York, USA, 2016.

C. A. Calder and N. Cressie. Some topics in convolution-based spatial modeling.
Proceedings of the 56th Session of the International Statistics Institute, 2007.

L. E. Calvet, V. Czellar, and E. Ronchetti. Robust filtering. Journal of the American
Statistical Association, 110(512), 2015.

M. Capinski and P. E. Kopp. Measure, integral and probability. Springer Science &
Business Media, 2013.

P. Carbonetto, M. King, and F. Hamze. A stochastic approximation method for
inference in probabilistic graphical models. In Advances in Neural Information
Processing Systems (NIPS) 22, Vancouver, Canada, 2009.

R. Caruana. Multitask Learning. Machine Learning, 28(1), 1997.

T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte carlo.
In Proceedings of the 31st International Conference on Machine Learning (ICML),
Beijing, China, 2014.

187

http://github.com/google/jax

Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems (NIPS) 22. Vancouver, Canada, 2009.

N. Chopin. Central limit theorem for sequential Monte Carlo methods and its
application to Bayesian inference. The Annals of Statistics, 32(6), 2004.

A. Cichocki and S. Amari. Families of alpha beta and gamma divergences: Flexible
and robust measures of similarities. Entropy, 12(6), 2010.

Y. Cong, M. Zhao, K. Bai, and L. Carin. GO gradient for expectation-based objec-
tives. In 7th International Conference on Learning Representations (ICLR), New
Orleans, USA, 2019.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley &
Sons, 2012.

J. A. Covington, M. P. v. d. Schee, A. S. L. Edge, B. Boyle, R. S. Savage, and R. P.
Arasaradnam. The application of FAIMS gas analysis in medical diagnostics.
Analyst, 2015.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational autoen-
coders. In Proceedings of the 35th International Conference on Machine Learning
(ICML), Stockholm, Sweden, 2018.

K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random feature ex-
pansions for deep gaussian processes. In Proceedings of the 34th International
Conference on Machine Learning (ICML), Sydney, Australia, 2017.

A. C. Damianou and N. D. Lawrence. Deep Gaussian Processes. In Proceedings of
16th International Conference on Artificial Intelligence and Statistics (AISTATS),
Scottsdale, USA, 2013.

A. C. Damianou, C. H. Ek, M. K. Titsias, and N. D. Lawrence. Manifold Relevance
Determination. In Proceedings of the 29th International Conference on Machine
Learning, Edinburgh, UK, 2012.

F. Dangel, F. Kunstner, and P. Hennig. BackPACK: Packing more into backprop. In
8th International Conference on Learning Representations (ICLR), Addis Ababa,
Ethiopia, 2020.

P. Del Moral. Feynman-Kac formulae: Genealogical and interacting particle systems
with applications. Springer, 2004.

188

A. B. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei. Variational inference
via χ-upper bound minimization. In Advances in Neural Information Processing
Systems (NIPS) 30, Long Beach, USA, 2017.

J. Domke and D. R. Sheldon. Importance weighting and variational inference.
In Advances in Neural Information Processing Systems (NeurIPS) 31, Montréal,
Canada, 2018.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing:
Fifteen years later. In The Oxford Handbook of Nonlinear Filtering. Oxford Uni-
versity Press, 2011.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 10(3), 2000.

D. Duvenaud, O. Rippel, R. P. Adams, and Z. Ghahramani. Avoiding pathologies
in very deep networks. In Proceedings of the 7th International Conference on
Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland, 2014.

B. Efron and T. Hastie. Computer Age Statistical Inference: Algorithms, Evidence,
and Data Science. Cambridge University Press, USA, 1st edition, 2016.

S. Eguchi et al. A differential geometric approach to statistical inference on the
basis of contrast functionals. Hiroshima Mathematical Journal, 15(2), 1985.

T. Evgeniou and M. Pontil. Regularized multi–task learning. In Proceedings of the
10th International Conference on Knowledge Discovery and Data Mining (ACM
SIGKDD), Seattle, USA, 2004.

P. Fearnhead, O. Papaspiliopoulos, and G. O. Roberts. Particle filters for partially-
observed diffusion. Journal of the Royal Statistical Society, Series B, 70(4), 2008.

M. Filippone, M. Zhong, and M. Girolami. A comparative evaluation of stochastic-
based inference methods for Gaussian process models. Machine Learning, 93(1),
2013.

F. Futami, I. Sato, and M. Sugiyama. Variational inference based on robust diver-
gences. In Proceedings of the 21st International Conference on Artificial Intelli-
gence and Statistics (AISTATS), Lanzarote, Spain, 2018.

Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In Proceedings of the 33rd International
Conference on Machine Learning (ICML), New York, USA, 2016.

189

T. Geffner and J. Domke. Using large ensembles of control variates for variational
inference. In Advances in Neural Information Processing Systems (NeurIPS) 31,
Montréal, Canada, 2018.

M. Gerber, N. Chopin, and N. Whiteley. Negative association, ordering and conver-
gence of resampling methods. Annals of Statistics, 47(4), 2019.

S. Gershman and N. Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the Annual meeting of the Cognitive Science Society, volume 36,
2014.

Z. Ghahramani. Bayesian non-parametrics and the probabilistic approach to mod-
elling. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 371(1984), 2013.

Z. Ghahramani and M. J. Beal. Propagation algorithms for variational Bayesian
learning. In Advances in Neural Information Processing Systems (NIPS) 13, Den-
ver, USA, 2000.

S. Ghosal, J. K. Ghosh, and A. W. van der Vaart. Convergence rates of posterior
distributions. Annals of Statistics, 28(2), 2000.

A. Ghosh and A. Basu. Robust Bayes estimation using the density power divergence.
Annals of the Institute of Statistical Mathematics, 68(2), 2016.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS), Sardinia, Italy, 2010.

P. Goovaerts. Geostatistics for Natural Resources Evaluation. Oxford University
Press, 1997.

N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEE Proceedings F (Radar and Signal Pro-
cessing), 140(2), 1993.

M. I. Gorinova, D. Moore, and M. D. Hoffman. Automatic Reparameterisation of
Probabilistic Programs. In Proceedings of the 37th International Conference on
Machine Learning (ICML), Vienna, Austria, 2020.

W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Backpropagation
through the Void: Optimizing control variates for black-box gradient estimation.

190

In 6th International Conference on Learning Representations (ICLR), Vancouver,
Canada, 2018.

G. Grimmett and D. Stirzaker. Probability and random processes. Oxford university
press, 2001.

S. Gu, S. Levine, I. Sutskever, and A. Mnih. MuProp: Unbiased backpropaga-
tion for stochastic neural networks. In 4th International Conference on Learning
Representations (ICLR), San Juan, Puerto Rico, 2016.

P. Guarniero, A. M. Johansen, and A. Lee. The iterated auxiliary particle filter.
Journal of the American Statistical Association, 112(520), 2017.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2009.

M. Havasi, J. M. Hernández-Lobato, and J. J. Murillo-Fuentes. Inference in deep
gaussian processes using stochastic gradient hamiltonian monte carlo. In Advances
in Neural Information Processing Systems (NeurIPS) 31, Montréal, Canada, 2018.

T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI),
Bellevue, USA, 2013.

J. Hensman, A. G. d. G. Matthews, and Z. Ghahramani. Scalable variational gaus-
sian process classification. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS), San Diego, USA, 2015.

Y. Hernández-Lobato, J. M. amd Li, M. Rowland, D. Hernández-Lobato, T. Bui,
and R. E. Turner. Black-box α-divergence minimization. In Proceedings of the
33nd International Conference on Machine Learning (ICML), New York, USA,
2016.

D. Higdon. A process-convolution approach to modelling temperatures in the north
atlantic ocean. Environmental and Ecological Statistics, 1998.

D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling. Bayesian
statistics, 1999.

191

http://github.com/deepmind/dm-haiku

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(4), 2013.

X.-L. Hu, T. B. Schon, and L. Ljung. A robust particle filter for state estimation
with convergence results. In 46th IEEE Conference on Decision and Control, New
Orleans, USA, 2007. IEEE.

P. J. Huber. Robust statistics. John Wiley & Sons, 1981.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-softmax.
In 5th International Conference on Learning Representations (ICLR), Toulon,
France, 2017.

E. T. Jaynes. Probability theory: The logic of science. Cambridge University Press,
2003.

J. Jewson, J. Q. Smith, and C. Holmes. Principles of Bayesian inference using
general divergence criteria. Entropy, 20(6), 2018.

A. M. Johansen and A. Doucet. A note on the auxiliary particle filter. Statistics
and Probability Letters, 78(12), 2008.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predic-
tive variance reduction. In Advances in Neural Information Processing Systems
(NIPS) 26, Lake Tahoe, USA, 2013.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal
of Fluids Engineering, 82(1), 1960.

M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian pro-
cesses and kernel methods: A review on connections and equivalences. arXiv
e-prints, arXiv:1805.08845v1 [stat.ML], 2018.

M. Kandemir. Asymmetric Transfer Learning with Deep Gaussian Processes. In
Proceedings of the 32nd International Conference on Machine Learning (ICML),
Lille, France, 2015.

J. F. Kenney. Mathematics of statistics. D. Van Nostrand, 1939.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations (ICLR), San Diego, California,
2015.

192

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In 2nd International
Conference on Learning Representations, Banff, Canada, 2014.

D. P. Kingma, T. Salimans, and M. Welling. Variational Dropout and the Local
Reparameterization Trick. In Advances in Neural Information Processing Systems
(NIPS) 28, Montréal, Canada, 2015.

J. Knoblauch, J. E. Jewson, and T. Damoulas. Doubly robust Bayesian inference
for non-stationary streaming data with β-divergences. In Advances in Neural
Information Processing Systems (NeurIPS) 31, Montréal, Canada, 2018.

J. Knoblauch, J. Jewson, and T. Damoulas. Generalized variational inference. arXiv
e-prints, arXiv:1904.02063 [stat.ML], 2019.

A. N. Kolmogorov. Foundations of the theory of probability. Chelsea Publishing
Company, 1950.

W. Kool, H. van Hoof, and M. Welling. Buy 4 REINFORCE samples, get a baseline
for free! In ICLR Workshop on Deep Reinforcement Learning Meets Structured
Prediction, 2019.

W. Kool, H. van Hoof, and M. Welling. Estimating gradients for discrete random
variables by sampling without replacement. In 8th International Conference on
Learning Representations, Addis Ababa, Ethiopia, 2020.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic
differentiation variational inference. Journal of Machine Learning Research, 18
(14), 2017.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266), 2015.

P. S. Laplace. Essai philosophique sur les probabilités. 1814.

P. S. Laplace. Théorie analytique des probabilités. 1820.

N. Lawrence. Probabilistic non-linear principal component analysis with gaussian
process latent variable models. Journal of machine learning research, 6, 2005.

Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4), 1989.

193

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature, 521(7553), 2015.

W. Lee, H. Yu, and H. Yang. Reparameterization gradient for non-differentiable
models. In Advances in Neural Information Processing Systems (NeurIPS) 31,
Montréal, Canada, 2018.

Y. Li and R. E. Turner. Rényi divergence variational inference. In Advances in
Neural Information Processing Systems (NIPS) 29, Barcelona, Spain, 2016.

D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, USA, 2002.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continu-
ous relaxation of discrete random variables. In 5th International Conference on
Learning Representations (ICLR), Toulon, France, 2017.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th International Conference on Machine Learning
(ICML), Montréal, Canada, 2009.

C. S. Maiz, J. Miguez, and P. M. Djuric. Particle filtering in the presence of outliers.
In 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 2009.

C. S. Maiz, E. M. Molanes-Lopez, J. Miguez, and P. M. Djuric. A particle filtering
scheme for processing time series corrupted by outliers. IEEE Transactions on
Signal Processing, 60(9), 2012.

A. S. Martinez-Vernon, J. A. Covington, R. P. Arasaradnam, S. Esfahani, N. O’
Connell, I. Kyrou, and R. S. Savage. An improved machine learning pipeline for
urinary volatiles disease detection: Diagnosing diabetes. PLOS ONE, 2018.

A. G. d. G. Matthews. Scalable Gaussian process inference using variational meth-
ods. PhD thesis, University of Cambridge, 2017.

A. G. d. G. Matthews, J. Hensman, R. E. Turner, and Z. Ghahramani. On sparse
variational methods and the Kullback-Leibler divergence between stochastic pro-
cesses. In Proceedings of the 19th International Conference on Artificial Intelli-
gence and Statisticsc (AISTATS), Cadiz, Spain, 2016.

194

A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas,
P. León-Villagrá, Z. Ghahramani, and J. Hensman. GPflow: A Gaussian process
library using TensorFlow. The Journal of Machine Learning Research, 18, 2017.

J. Mı́guez, D. Crisan, and P. M. Djurić. On the convergence of two sequential
Monte Carlo methods for maximum a posteriori sequence estimation and stochas-
tic global optimization. Statistics and Computing, 23(1), 2013.

A. Miller, N. Foti, A. D’ Amour, and R. P. Adams. Reducing reparameterization
gradient variance. In Advances in Neural Information Processing Systems (NIPS)
30, Long Beach, USA, 2017.

A. Mnih and K. Gregor. Neural variational inference and learning in belief networks.
In Proceedings of the 31st International Conference on Machine Learning (ICML),
Bejing, China, 2014.

A. Mnih and D. J. Rezende. Variational inference for Monte Carlo objectives. In
Proceedings of the 33nd International Conference on Machine Learning (ICML),
New York, USA, 2016.

A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems (NIPS) 20, Vancouver, Canada, 2008.

S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte carlo gradient estimation
in machine learning. Journal of Machine Learning Research, 21, 2020.

T. Müller, F. Rousselle, A. Keller, and J. Novák. Neural control variates. ACM
Transactions on Graphics, 39(6), 2020.

C. Naesseth, F. J. R. Ruiz, S. Linderman, and D. M. Blei. Reparameterization
gradients through acceptance-rejection methods. In Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS), Fort
Lauderdale, USA, 2017.

C. A. Naesseth, F. Lindsten, and T. B. Schön. Elements of Sequential Monte Carlo.
Foundations and Trends in Machine Learning, 12(3), 2019.

C. A. Naesseth, F. Lindsten, and D. M. Blei. Markovian score climbing: Variational
inference with KL(p||q). ArXiv e-prints, arXiv:2003.10374 [stat.ML], 2020.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

195

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A novel method
for machine learning problems using stochastic recursive gradient. In Proceed-
ings of the 34th International Conference on Machine Learning (ICML), Sydney,
Australia, 2017.

T. Nguyen and E. Bonilla. Efficient Variational Inference for Gaussian Process
Regression Networks. In Proceedings of 16th International Conference on Artificial
Intelligence and Statistics (AISTATS), Scottsdale, USA, 2013.

T. V. Nguyen and E. V. Bonilla. Collaborative Multi-output Gaussian Processes.
In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence
(UAI), Quebec City, Canada, 2014.

E. Nikishin, P. Izmailov, B. Athiwaratkun, D. Podoprikhin, T. Garipov,
P. Shvechikov, D. Vetrov, and A. G. Wilson. Improving stability in deep rein-
forcement learning with weight averaging. In Uncertainty in Artificial Intelligence
Workshop on Uncertainty in Deep Learning, Monterey, USA, 2018.

J. Nocedal and S. J. Wright. Numerical optimization. Springer series in operations
research. Springer, New York, NY, 2000.

N. Nüsken and L. Richter. Solving high-dimensional Hamilton-Jacobi-Bellman PDEs
using neural networks: perspectives from the theory of controlled diffusions and
measures on path space. arXiv e-prints, arXiv:2005.05409 [math.OC], 2020.

A. B. Owen. Monte Carlo theory, methods and examples. 2013.

J. Paisley, D. Blei, and M. Jordan. Variational Bayesian inference with stochastic
search. In Proceedings of the 29th International Conference on Machine Learning,
Edinburgh, UK, 2012.

J. W. T. Peters and M. Welling. Probabilistic binary neural networks. arXiv e-print,
2018.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446), 1999.

J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate
gaussian process regression. Journal of Machine Learning Research, 6(65), 2005.

M. Quiroz, R. Kohn, M. Villani, and M.-N. Tran. Speeding up mcmc by efficient data
subsampling. Journal of the American Statistical Association, 114(526), 2019.

196

R. Ranganath, S. Gerrish, and D. Blei. Black Box Variational Inference. In Proceed-
ings of the 17th International Conference on Artificial Intelligence and Statistics
(AISTATS), Reykjavic, Iceland, 2014.

R. Ranganath, J. Altosaar, D. Tran, and D. M. Blei. Operator variational inference.
In Advances in Neural Information Processing Systems (NIPS) 30, Barcelona,
Spain, 2016a.

R. Ranganath, D. Tran, and D. M. Blei. Hierarchical variational models. In Pro-
ceedings of the 33rd International Conference on Machine Learning, (ICML), New
York, USA, 2016b.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning.
MIT Press, 2006.

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear
dynamic systems. American Institute of Aeronautics and Astronautics Journal, 3
(8), 1965.

R. Reiss. Approximate distributions of order statistics: with applications to non-
parametric statistics. Springer Science & Business Media, 2012.

J. Requeima, W. Tebbutt, W. Bruinsma, and R. E. Turner. The Gaussian process
autoregressive regression model (GPAR). In The 22nd International Conference
on Artificial Intelligence and Statistics (AISTATS), Okinawa, Japan, 2019.

D. J. Rezende and S. Mohamed. Variational inference with normalizing flows. In
Proceedings of the 32nd International Conference on Machine Learning (ICML),
Lille, France, 2015.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. In Proceedings of the 31st
International Conference on Machine Learning (ICML), Beijing, China, 2014.

L. Richter, A. Boustati, N. Nüsken, F. J. R. Ruiz, and Ö. D. Akyildiz. Vargrad: A
low variance gradient estimator for variational inference. In Advances in Neural
Information Processing Systems (NeurIPS) 33, Virtual, 2020.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 1951.

197

G. Roeder, Y. Wu, and D. Duvenaud. Sticking the landing: Simple, lower-variance
gradient estimators for variational inference. In Advances in Neural Information
Processing Systems (NIPS) 30, Long Beach, USA, 2017.

F. J. R. Ruiz and M. K. Titsias. A contrastive divergence for combining variational
inference and MCMC. In Proceedings of the 36th International Conference on
Machine Learning (ICML), Long Beach, USA, 2019.

F. J. R. Ruiz, M. K. Titsias, and D. M. Blei. The generalized reparameteriza-
tion gradient. In Advances in Neural Information Processing Systems (NIPS) 29,
Barcelona, Spain, 2016.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief net-
works. In Proceedings of the 25th International Conference on Machine learning
(ICML), Helsinki, Finland, 2008.

T. Salimans and D. A. Knowles. On using control variates with stochastic approx-
imation for variational bayes and its connection to stochastic linear regression.
arXiv e-print, arXiv:1401.1022 [stat.CO], 2014.

H. Salimbeni and M. Deisenroth. Doubly stochastic variational inference for deep
Gaussian processes. In Advances in Neural Information Processing Systems
(NIPS) 30, Long Beach, USA, 2017.

S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

S. Särkkä and A. Solin. Applied Stochastic Differential Equations. Cambridge Uni-
versity Press, 2019.

S. Särkkä, A. Solin, and J. Hartikainen. Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process regres-
sion through Kalman filtering. IEEE Signal Processing Magazine, 30(4), 2013.

A. Shah, A. G. Wilson, and Z. Ghahramani. Student-t processes as alternatives
to gaussian processes. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland, 2014.

O. Shayer, D. Levi, and E. Fetaya. Learning discrete weights using the local repa-
rameterization trick. In 6th International Conference on Learning Representations
(ICLR), Vancouver, Canada, 2018.

198

S. Si, C. J. Oates, A. B. Duncan, L. Carin, and F.-X. Briol. Scalable control
variates for Monte Carlo methods via stochastic optimization. arXiv e-prints,
arXiv:2006.07487 [stat.ML], 2020.

G. Skolidis and G. Sanguinetti. Bayesian Multitask Classification With Gaussian
Process Priors. IEEE Transactions on Neural Networks, 22(12), 2011.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs.
Advances in Neural Information Processing Systems (NIPS) 18, 2005.

Y. W. Teh, M. Seeger, and M. Jordan, I. Semiparametric Latent Factor Models. In
Proceedings of 10th International Conference on Artificial Intelligence and Statis-
tics (AISTATS), Barbados, 2005.

F. C. Teixeira, J. Quintas, P. Maurya, and A. Pascoal. Robust particle filter for-
mulations with application to terrain-aided navigation. International Journal of
Adaptive Control and Signal Processing, 31(4), 2017.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3),
1999.

M. K. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Pro-
cesses. In Proceedings of 12th International Conference on Artificial Intelligence
and Statistics (AISTATS), Clearwater Beach, USA, 2009.

M. K. Titsias and M. Lazaro-Gredilla. Spike and slab variational inference for multi-
task and multiple kernel learning. In Advances in Neural Information Processing
Systems (NIPS) 25, Granada, Spain, 2011.

M. K. Titsias and M. Lázaro-Gredilla. Doubly stochastic variational Bayes for
non-conjugate inference. In Proceedings of the 31th International Conference on
Machine Learning (ICML), Biejing, China, 2014.

D. Tran, A. Kucukelbir, A. B. Dieng, M. R. Rudolph, D. Liang, and D. M. Blei.
Edward: A library for probabilistic modeling, inference, and criticism. arXiv
e-prints, arXiv:1610.09787 [stat.CO], 2016.

D. Tran, M. Dusenberry, M. van der Wilk, and D. Hafner. Bayesian layers: A module
for neural network uncertainty. In Advances in Neural Information Processing
Systems (NeurIPS) 32, Vancouver, Canada, 2019.

199

G. Tucker, A. Mnih, C. J. Maddison, and J. Sohl-Dickstein. REBAR: low-variance,
unbiased gradient estimates for discrete latent variable models. In Advances in
Neural Information Processing Systems (NIPS) 30, Long Beach, USA, 2017.

J. W. Tukey. The future of data analysis. The annals of mathematical statistics, 33
(1), 1962.

R. Turner, M. Deisenroth, and C. Rasmussen. State-space inference and learning
with gaussian processes. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, 2010.

I. Ustyuzhaninov, I. Kazlauskaite, M. Kaiser, E. Bodin, N. D. F. Campbell, and
C. H. Ek. Compositional uncertainty in deep gaussian processes. In Proceedings
of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), Virtual,
2020.

M. van der Wilk, V. Dutordoir, S. John, A. Artemev, V. Adam, and J. Hensman. A
framework for interdomain and multioutput Gaussian processes. arXiv e-prints,
arXiv:2003.01115 [stat.ML], 2020.

S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S. Schaal. Statistical
learning for humanoid robots. Autonomous Robots, 2002.

J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1947.

D. Wang, H. Liu, and Q. Liu. Variational inference with tail-adaptive f -divergence.
In Advances in Neural Information Processing Systems (NeurIPS) 31, Montréal,
Canada, 2018.

K. Wang, O. Hamelijnck, T. Damoulas, and M. Steel. Non-stationary non-separable
random fields. In Proceedings of the 37th International Conference on Machine
Learning (ICML), Vienna, Austria, 2020.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dy-
namics. In Proceedings of the 28th International Conference on Machine Learning
(ICML), Belleview, USA, 2011.

F. Wenzel, K. Roth, B. S. Veeling, J. Swiatkowski, L. Tran, S. Mandt, J. Snoek,
T. Salimans, R. Jenatton, and S. Nowozin. How good is the bayes posterior in deep
neural networks really? In Proceedings of the 37th International Conference on
Machine Learning (ICML), Proceedings of Machine Learning Research, Virtual,
2020.

200

C. Williams. Computing with infinite networks. In Advances in Neural Information
Processing Systems (NIPS) 9, Denver, USA, 1997.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3–4), 1992.

A. G. Wilson and R. P. Adams. Gaussian process kernels for pattern discovery and
extrapolation. In Proceedings of the 30th International Conference on Machine
Learning (ICML), Atlanta, USA, 2013.

A. G. Wilson, D. A. Knowles, and Z. Ghahramani. Gaussian Process Regresssion
Networks. In Proceedings of the 29th International Conference on Machine Learn-
ing (ICML), Edinburgh, UK, 2012.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning.
In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (AISTATS), Cadiz, Spain, 2016.

D. Xu, C. Shen, and F. Shen. A robust particle filtering algorithm with non-Gaussian
measurement noise using student-t distribution. IEEE Signal Processing Letters,
21(1), 2013.

M. Yin and M. Zhou. ARM: Augment-REINFORCE-merge gradient for stochastic
binary networks. In 7th International Conference on Learning Representations
(ICLR), New Orleans, USA, 2019.

M. Yin, Y. Yue, and M. Zhou. ARSM: Augment-REINFORCE-swap-merge esti-
mator for gradient backpropagation through categorical variables. In Proceedings
of the 36th International Conference on Machine Learning (ICML), Long Beach,
USA, 2019.

A. Zellner. Optimal information processing and Bayes’s theorem. The American
Statistician, 42(4), 1988.

201

	Chapter Introduction
	The Three Key Themes
	Compositionality
	Stability
	Robustness

	Motivation
	Contributions and Thesis Structure
	Publications

	Chapter The Fundamentals of Probabilistic Machine Learning
	Probabilistic Models
	Parametric Models
	Non-Parametric Models

	Inference
	Bayes's Rule and the Difficulty of Bayesian Inference
	Inference versus Learning

	Variational Inference
	The Mathematical Formulation of VI
	Flavours of Approximate Posterior Families for Variational Inference
	Optimising the Variational Objective

	Inference in Gaussian Process Models
	Exact Inference in Gaussian Process Regression
	Sparse Variational Inference in Gaussian Process Model
	Inference in Deep Gaussian Process Models

	Sequential Monte Carlo
	Importance Sampling
	Sequential Importance Sampling
	Sequential Monte Carlo & Particle Filtering

	Generalised Bayesian Inference
	Inference as an Optimisation Problem
	The Special Case of Bayes's Rule

	Variance Reduction
	Control Variates
	Importance Sampling

	Chapter Multitask Learning with Gaussian Process Compositions
	Motivation
	Background
	Modelling with Gaussian Processes
	Extension to Deep Gaussian Processes

	Modelling Approach
	DGP Multi-task Formulation
	Model Specification

	Related Work
	Linear Process Mixing
	Process Convolution
	Regularisation Methods

	Experimental Evaluation
	MNIST Variations
	SARCOS Robot Inverse Dynamics
	FAIMS Diabetes Diagnosis

	Concluding Remarks

	Chapter Amortised Variance Reduction
	Motivation
	Method
	Background & Notation
	Controlling Mini-batch Gradients
	Training the Recognition Network
	Pseudocode

	Illustrative Example: A Control Variate for Gaussian Base Randomness
	Linear Gaussian Control Variates
	Higher-order Polynomials
	Brief Discussion

	Related Work
	Experimental Validation
	Setup
	Verification of Variance Reduction
	Simultaneous Optimisation of Objective Function and Control Variate Coefficient
	Practical Effectiveness

	Concluding Remarks

	Chapter A Low Variance Gradient Estimator for Variational Inference
	Motivation
	Background
	The Log-Variance Loss and its Connection to VarGrad
	The Log-Variance Loss
	VarGrad: Derivation of the Gradient Estimator from the Log-Variance Loss

	Relationship to Reinforce with Score-based Control Variates
	Reinforce with Score Control Variates
	VarGrad as an Approximation to Reinforce with Optimal Control Variate Coefficients
	Variance of the VarGrad Estimator

	Related Work
	Experiments
	Closeness to the optimal control variate
	Variance reduction and computational cost

	Concluding Remarks

	Chapter Generalised Bayesian Filtering
	Motivation
	Background and Notation
	Notation
	Generalized Bayesian Inference (GBI)
	Sequential Monte Carlo for HMMs

	Generalised Bayesian filtering
	A simple generalised particle filter
	The -BPF and the -APF
	Selecting

	Theoretical guarantees
	Experiments
	A Linear-Gaussian state-space model
	Terrain Aided Navigation
	Asymmetric Wiener Velocity
	London air quality Gaussian process regression

	Concluding Remarks

	Chapter Conclusions
	Summary of Contributions
	Future Research Directions

	Appendix Multitask Learning with Gaussian Process Compositions
	Experiment Details
	MNIST Variations
	SARCOS Robot Inverse Dynamics
	FAIMS Diabetes Diagnosis

	Further Results
	MNIST Variations
	SARCOS Robot Inverse Dynamics

	Appendix Amortised Variance Reduction
	Theoretical Analysis
	Convergence Results
	Proofs for Convergence Results

	Description of Experiment Models
	Logistic Regression
	Deep Gaussian Processes

	Verification of Variance Reduction
	Logistic Regression Results on the Titanic Dataset
	Deep Gaussian Process Results on the Airfoil Dataset

	Simultaneous Optimisation of Model and Recognition Network
	Logistic Regression Results on the Titanic Dataset
	Deep Gaussian Process Results on the Airfoil Dataset

	Appendix A Low Variance Gradient Estimator for Variational Inference
	Further Analytical Results
	Scale of CV
	Effect of Latent Variable Dimension on the Variance of VarGrad

	Proofs of Analytical Results
	Proof of Proposition 5.3.2
	Proof of Lemma 5.4.1
	Proof of Proposition C.1.1
	Proof of Proposition 5.4.2
	Proof of Corollary C.1.4
	Dimension-dependence of the KL-divergence

	Details of the Experiments
	Logistic Regression
	Discrete VAEs

	Appendix Generalised Bayesian Filtering
	-PF
	Outline derivation of the loss in (6.11)
	-BPF
	-APF

	Theoretical analysis
	Proof of Theorem 6.4.1
	Proof of Theorem 6.4.3

	Experiment Details
	Evaluation Metrics
	Details on the implementation of the selection criterion in sec:beta-selection
	Wiener velocity model experiment details (sec:constant-velocity)
	Terrain Aided Navigation (TAN) experiment details (sec:tan)
	Asymmetric Wiener velocity model experiment details (sec:asymmetric-velocity)
	Air quality experiment details (sec:air-quality)

	Further results
	Wiener velocity experiment
	TAN experiment
	London air quality experiment

	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/161403

