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Abstract

This article presents a hybrid model for predicting the temperature of molten steel in a ladle furnace (LF). Unique to the
proposed hybrid prediction model is that its neural network-based empirical part is trained in an indirect way since the
target outputs of this part are unavailable. A modified cuckoo search (CS) algorithm is used to optimize the parameters in
the empirical part. The search of each individual in the traditional CS is normally performed independently, which may
limit the algorithm’s search capability. To address this, a modified CS, information interaction-enhanced CS (IICS), is
proposed in this article to enhance the interaction of search information between individuals and thereby the search
capability of the algorithm. The performance of the proposed IICS algorithm is first verified by testing on two benchmark
sets (including 16 classical benchmark functions and 29 CEC 2017 benchmark functions) and then used in optimizing the
parameters in the empirical part of the proposed hybrid prediction model. The proposed hybrid model is applied to actual
production data from a 300 t LF at Baoshan Iron & Steel Co. Ltd, one of China’s most famous integrated iron and steel
enterprises, and the results show that the proposed hybrid prediction model is effective with comparatively high accuracy.

Keywords Hybrid modeling - Cuckoo search - Artificial neural networks - Molten steel temperature - Ladle furnace

1 Introduction

Ladle furnace (LF) is a pivotal equipment utilized to fully
refine and alloy during secondary metallurgy processes in
iron and steel industries [1]. Close control of the temper-
ature of molten steel in LF is vital for the improvement of
product quality and productivity [2]. However, the tem-
perature of molten steel cannot be continuously measured
in the actual production, which makes it difficult to achieve
accurate control. Therefore, it has considerable practical
significance to develop a model to predict the temperature
of molten steel in LF.
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Models for predicting the temperature of molten steel in
LF are traditionally developed based on thermodynamics
and the energy conservation law [3, 4]. However, due to the
intrinsic complicacy of LF metallurgy processes, the fun-
damental mechanisms of involved physicochemical phe-
nomena are not entirely clear by far, and developing a
mechanistic prediction model is very time-consuming and
costly. As a result, empirical modeling approaches have
been extensively used in developing the temperature pre-
diction models of molten steel in LF. In empirical model-
ing, the model is developed exclusively from the
production data without the need to invoke the phe-
nomenology of the process [5-8]. Thus, the time-con-
suming and expensive nature associated with the
development of a suitable mechanistic prediction model
can be averted.

In recent years, hybrid modeling approaches have been
considered as an appealing alternative for developing
molten steel temperature prediction models. A hybrid
prediction model commonly consists of a mechanistic
thermal model for representing the known priori knowl-
edge of the LF metallurgy process under consideration, and
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one or more empirical models for approximating unknown
functions in the mechanistic thermal model [9-11].
Moreover, according to existing researches, hybrid pre-
diction models have better properties than pure empirical
prediction models [9, 10]; they typically have better pre-
diction accuracy and generalization performance, and are
easier to interpret and analyze.

Regarding to the training of the empirical part, most of
the reported hybrid modeling approaches use a direct
method as schematically shown in Fig. l1a. The parameters
in the empirical part are determined by minimizing the
errors between outputs of the empirical part, denoted by
=14, -, 7, and the actual values of unknown
functions, denoted by n = [n,, ---, 1,]. Here, n denotes
the number of unknown functions. Obviously, the pre-
condition for using the direct method to train the empirical
part is that these actual values are available. In other words,
when the actual values of one or more unknown functions

Inputs Temperature
— Mechanistic thermal model jp—v

A

Values of unknown
functions

(Zon =) +-+ G, -1,7)

Inputs T t
_p_’[ Mechanistic thermal model ]M

Values of unknown
functions

Fig. 1 Schematic representation of a hybrid molten steel temperature
prediction model: a its empirical part is trained directly; b its
empirical part is trained indirectly
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are unavailable just like the hybrid prediction model pro-
posed in this article, the direct method could not be used.

To address the above issue, this article proposes an
alternative method for the determination of the parameters
in the empirical part using the available values of the
molten steel temperature instead of the target outputs of the
empirical part, as is schematically shown in Fig. 1b. This
allows the empirical part being trained indirectly without
having its target outputs. In Fig. 1b, x and X denote the
measured and predicted temperature values of molten steel
respectively.

The determination of the parameters in the empirical
part using the above indirect method is a complex opti-
mization problem. It is difficult to calculate the derivative
information required by traditional optimization algo-
rithms. Intelligent optimization algorithms, such as the
genetic algorithm (GA) [12], particle swarm optimization
(PSO) [13], differential evolution (DE) [14], ant colony
optimization (ACO) [15], salp swarm algorithm (SSA)
[16], artificial bee colony (ABC) [17], and cuckoo search
(CS) [18], do not require any derivative information and
can perform global search [19-21], so using them for
finding the parameters in the empirical part is a viable
alternative. Amongst these algorithms, CS is a compara-
tively new one, initially introduced by Yang and Deb [22].
Due to some attractive features like good balance between
the local search and global search, simplicity, and effi-
ciency [23, 24], the CS algorithm has been successfully
applied to many optimization problems in various fields
with promising results [25-29], including the parameter
optimization problems in modeling manufacturing pro-
cesses such as parameter estimation of a common empirical
model for the temperature of cutting tools [30], estimation
of soft-sensing model parameters for fermentation pro-
cesses [31], and parameter identification of a neural net-
work model for the electron beam welding process [32].
Besides, some researches have revealed that compared with
PSO, GA, and some other intelligent optimization algo-
rithms, CS is potentially far more efficient [30, 33, 34].
However, in the search process of the basic CS (BCS),
there is no interchange of search information between
individuals (i.e., cuckoos). To address this issue, we pro-
pose a modified CS, information interaction-enhanced CS
(IICS), by introducing an information interaction-enhanced
mechanism into BCS. It is based on the common idea that
the information interchange between people would be in
favor of their team accomplishing an assignment with
efficiency. The proposed IICS is employed to optimize the
parameters in the empirical part of the proposed hybrid
prediction model.

The remainder of the article is organized as follows.
Section 2 elucidates the development of the hybrid tem-
perature prediction model with the proposed indirect
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training method for its empirical part. Section 3 briefly
discusses BCS and details the IICS algorithm. Section 4
describes using IICS for determining the parameters in the
empirical part of the proposed hybrid prediction model.
Section 5 analyzes the performance of IICS by testing on
two sets of benchmark functions and then presents the
application of the proposed hybrid prediction model on the
actual production data from a 300 t LF at Baoshan Iron &
Steel Co. Ltd. Finally, conclusions of this study are drawn
and considerations for future works are pointed out in the
last section.

2 Development of a hybrid prediction
model

In this section, a mechanistic thermal model (i.e., the
mechanistic part of the proposed hybrid prediction model)
is first derived based on thermodynamics as well as the law
of energy conservation. Next, artificial neural network-
based empirical models (i.e., the empirical part of the
proposed hybrid prediction model) are used to approximate
the unknown functions in the mechanistic part, and the
indirect training method for these empirical models is
elaborated.

2.1 Development of mechanistic part

Taking the molten steel and slag as a unitized system, a
mechanistic thermal model is developed in this subsection
based on the energy conservation law and thermodynamics.
Similar to the existing literature [2], the following three
assumptions are made: (1) no local temperature gradient
exists in the steel bath, i.e., the steel bath is fully mixed; (2)
there is only radial heat flow in the ladle wall; and (3) only
axial heat flow occurs in the ladle bottom.

In the remainder of this subsection, the primary factors
affecting the temperature change of molten steel are
described in detail. Then, a mechanistic thermal model
with two unknown functions is presented.

2.1.1 Thermal gain from the arc

The energy required for secondary steel refinement in LF is
mainly from the arc. The thermal gain of the steel bath due
to the energy injection through arc can be calculated as

Oarc = narcParc (l)

where Q... is the power in W injected into the steel bath,
Nare 1 the efficiency coefficient of heat transfer from the arc
to the steel bath, and P, is the total power. For a given LF
system, the value of #,. mainly depends on the slag

thickness H and arc length L, [10]; that is to say, 7, is a
function of Hy and L., shown as

Narc :fa.l‘c (Hsl7 Larc) (2)

Hence, once the function f,,. has been obtained, the
value of n,. can be calculated using the online available
Hg and L,.. However, it is noteworthy that the concrete
expression of this function is hard to derive by mechanistic
approaches.

2.1.2 Thermal loss from the ladle lining

Thermal loss from the ladle lining consists of two com-
ponents, the thermal loss from the ladle wall and the
thermal loss from the ladle bottom. Here, the instantaneous
temperature distribution models of the ladle wall and ladle
bottom are first established; then the thermal loss from the
ladle lining is calculated based on these two models.

2.1.2.1 Instantaneous temperature distribution model of
the ladle wall With the assumptions above, the heat
transfer in the ladle wall can be considered as a one-di-
mensional unsteady heat conduction in cylindrical coordi-
nates [2, 3, 35], formulated as

or, 1 [1 1 oT,

N A ] ©

whenr=r;, Ty=Ty 4)

when r = ry, /lw% = —Ow_en(Tw — Too) (5)
or

Ty (r,0) = f(r) (6)

Equation (3) is the heat conduction differential equation
of the ladle wall, where T, py, 4w, and c,, are the tem-
perature in °C, density in kg/m’, heat conductivity in W/
(m °C), and specific heat in J/(kg °C) of the ladle wall
respectively. The boundary conditions for Eq. (3) are given
in Egs. (4) and (5), where r; and r, are respectively the
inner and outer diameters of the ladle wall in m; T, is the
molten steel temperature in °C; o,.., i the convection heat
transfer coefficient between the steel shell of the ladle wall
and the environment in W/(m2 °C); and T, is the envi-
ronment temperature in °C. Equation (6) is the initial
condition. For more details, please see the existing litera-
ture [2].

2.1.2.2 Instantaneous temperature distribution model of
the ladle bottom Heat transfer in the ladle bottom can be
considered as a one-dimensional unsteady heat conduction
[2, 3, 35], formulated as

@ Springer
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o, 1 [1(, 0%

& =l () 7

whenz =0, T,=Tg (8)
oT;

when z = hy, )»ba—b = —tp—en(To — Too) 9)

Z
Tv(z,0) = f(2) (10)

Equation (7) is the heat conduction differential equation
of the ladle bottom, where Ty, pv, 4, and ¢, are, respec-
tively, the temperature in °C, density in kg/m>, heat con-
ductivity in W/(m °C), and specific heat in J/(kg °C) of the
ladle bottom. Equations (8) and (9) are the boundary
conditions for Eq. (7), where hj, is the thickness of the ladle
bottom in m; and oy, is the convection heat transfer
coefficient between the steel shell of the ladle bottom and
the environment in W/(m? °C). Equation (10) is the initial
condition. See the existing literature [2] for more details.

2.1.2.3 Thermal loss from the ladle lining Thermal loss
from the ladle lining is obtained by calculating the heat
flow of the contact surface between the ladle lining and the
molten steel as

Qlin = w1 % r=r 27 h 4 Jp 1 aa—TZb | o—omr} (11)
where Qy;, is the thermal loss from the ladle lining in W;
h is the height of the steel bath in m; A, is the heat
conductivity of the ladle wall material that is in contact
with the molten steel in W/(m °C); and 4, is the heat
conductivity of the ladle bottom material that is in contact
with the molten steel in W/(m °C).

2.1.3 Thermal loss from the top surface

The top surface thermal loss mostly results from the radi-
ation loss through the bare molten steel surface and slag
surface. It is difficult to do an exact calculation for this loss
using traditional mechanistic models. So, here the cooling
water energy change is used to indirectly calculate this part
of thermal loss as

Osur = NsurCewl cw ATy, (12)

where Qy,, is the top surface thermal loss in W; 5, is the
correction coefficient; c.y, Few, and AT, are the specific
heat in J/(kg °C), flow rate in kg/s, and temperature dif-
ference in °C between inlet and outlet of the cooling water.
Through analysis, 7, can be considered as a function of
three online available variables, F, (the argon flow rate in
Nm?/s), Dy ., (the distance between the steel bath and the
ladle cover in m), and T as

Nsur = four (Farga Dy o, Tst) (13)

@ Springer

Similar with f,., the concrete expression of fy,, is also
hard to derive by mechanistic approaches.

2.1.4 Thermal effects resulting from the additions

The additions include the slag and metal alloys. Their
thermal effects are calculated as

1
Qada = (Z = miki> My Cst

i l

(14)

where Q,q4q is the total thermal effect of additions in W;
i denotes a specific addition with mass m; in kg, and k; is its
temperature influence coefficient in °C/kg; t; is the time
that addition i takes to reach the steel bath temperature in s;
and mg and cg are the mass in kg and specific heat in J/
(kg K) of molten steel respectively. The value of k; can be
obtained by statistical analysis based on actual production
data. Table 1 shows the temperature influence coefficients
k;s of various additions for the LF system considered in this
study.

2.1.5 Thermal loss due to stirring-argon injection

The thermal loss due to stirring-argon injection is calcu-
lated as

Qarg = CargFarg (Tst - Targ) (15)

where Q, is the heat flow carried away by argon in W;
and ¢, and T, are the specific heat in J/(Nm? °C) and
initial temperature in °C of argon respectively.

2.1.6 The overall mechanistic thermal model

According to the energy conservation law, the following
mechanistic thermal model can be obtained by combining
all of the above factors

% _ Qarc - Qlin - qur - Qadd - Qarg

dr CstMg + CoiMgl

(16)

where mg and cg are the mass in kg and specific heat in J/
(kg K) of the slag respectively.

2.2 Development of empirical part using indirect
training method

Obviously, the above mechanistic thermal model cannot be
immediately used for predicting the temperature of molten
steel, as there are two unknown functions, namely f,.. and
Sfsur- In this article, two single-hidden layer feed-forward
neural networks (SLFNs) are utilized to respectively
approximate f,.. and f;, (see Fig. 2), for such neural net-
works can approximate any nonlinear relationships
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Table 1 Temperature influence

coefficients of additions Addition ks (1072 °C/kg) Addition ks (1072 °C/kg)
High carbon ferrochrome — 0.95 Low carbon ferrochromium — 0.65
High carbon ferromanganese - 09 Low carbon ferromanganese - 0.75
Ferromolybdenum —0.75 Ferrosilicon + 0.9
Slag - 1.0 Carbon powder - 25
Al + 5.0 Ni - 05
FeNb —0.35 FeTi - 04
CaSi — 1.05 FeAl + 1.0
HCZ1 - 1.0 Al-D - 05
CaO - 1.0 LCCR — 0.65
Fig. 2 Schematic representation (a) b -1
of the two SLFN-based ] % -1
empirical models: a fc; b four F
arg o
: \ ﬂ, Dsl—co : : h
Larc i 5 i
' \ | Iu |
= I
I

arbitrarily well [36], and they have been successfully
applied in modeling some LF metallurgy processes to
predict the molten steel temperature [5, 6, 9, 10]. However,
for practical LF metallurgy processes, only the values of
the inputs to two empirical models, [Hy, Lac] and [Fy,
Do, Ty, are available, whereas no target values of their
outputs 1, and g, are available. Therefore, traditional
neural network training methods, which usually train the
empirical part by directly minimizing the errors between
the outputs of the empirical model(s) and its (their) target
outputs, would be difficult to apply. In this study, the two
SLEN-based empirical models are trained indirectly by
minimizing the errors between the molten steel temperature
predicted by the hybrid model and its measured values. The
basic description of this indirect training method is given
below.

The two SLFN-based empirical models of f,.. and fi,,
can be formulated as

Narc :farc (Hsb Larm Oarc) (17)
nsur :f‘sur(FaIgaDslch; Tst7 051.11‘) (18)

where f;rc and f;ur denote the SLFN-based empirical models
used to approximate the unknown functions f,.. and fi,,
respectively, while 0. and 6, are the vectors of weights
and bias of the corresponding SLFNs.

In essence, to train f;rc and f;ur is to determine the
optimal values of their parameters 0,,. and 0, The indi-
rect method fulfills the training task as follows. Firstly,
Egs. (17) and (18) are, respectively, substituted into
Egs. (1) and (12), so that a hybrid prediction model is
obtained

ATy fure (Hot: Lures Oure) Pare = Qiin — faue (Frgs Dot—cor Tty Osur)CewFewATew — Quaa — Qurg
dr Case + Coiyt

(19)

Then, 0,. and O, are regarded as the vectors of
parameters to be identified in the hybrid prediction model,
and further they are determined by using the proposed IICS
algorithm to minimize an objective function which is
defined with the measurements of the molten steel tem-
perature, as shown below.

H M, .
J(Oarc; osur) = Zh:l ZmH:l |th XhM|
> My,
h=1

(20)

where H is the number of heats of training data; M, is the
number of temperature samples of molten steel in the Ath
heat; x represents the measured value; and X represents the

hybrid model prediction. In such way, the training of f;rc

and f;ur can be appropriately fulfilled while avoiding the
requirement of their target outputs.

@ Springer
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3 Information interaction-enhanced CS

In this section, a brief overview of basic CS (BCS) is first
given for self-completeness. Next, the proposed informa-
tion interaction-enhanced CS (IICS) algorithm is elabo-
rated, followed by the complexity analysis of IICS.

3.1 BCS algorithm

Cuckoo search (CS), introduced by Yang and Deb in 2009
[22], is one of the intelligent optimization algorithms. The
core idea behind this algorithm is some cuckoo species’
brood parasitism. Besides, the CS algorithm also incorpo-
rates into its framework the mathematical model of the
Lévy flight behavior found in some birds and fruit flies.
The following are some idealized rules adopted in CS
development [22]: (1) the number of available host nests is
fixed, and each cuckoo each time lays one egg in a ran-
domly selected nest; (2) the nests containing high-quality
eggs will be chosen to partake in the next generation; and
(3) the egg laid by a cuckoo can be identified by the host
bird with a probability p,. Once it is identified, the host bird
will either push the egg out or just discard the nest, and
then make a new one. In addition, it is worthy to point out
that a nest, an egg or a cuckoo is equivalent to a solution
and only minimization problems are considered in the rest
of the article without loss of generality.

Based on the rules above, Lévy flight is performed first
to generate the new solution z}*" for cuckoo i with the
following formula:

7"V =z; +a @ Levy(4) (21)

where a is a vector of step size scaling factors that should
be related to the scales of the problem under consideration,
and it can be in most cases used as [37-39]

o= O‘O(Zi — Zbest) (22)

where o is a constant usually set as 0.01 [38, 39] and Zpey
represents the current best solution. In Eq. (21), Levy(2) is
a random vector drawn from a Lévy distribution, 1 is a
Lévy flight parameter, and ® represents the entry-wise
multiplication.

In essence, Lévy flights offer a random walk with ran-
dom steps drawn from a Lévy distribution. From the per-
spective of implementation, there are two procedures to
generate random numbers using Lévy flights [38], that is,
the selection of a random direction and the generation of
steps that obey the selected Lévy distribution. The gener-
ation of a direction should be drawn from a uniform dis-
tribution, whereas the generation of steps is quite tricky.
There are several ways of accomplishing this, but one of
the most efficient and yet straightforward ways is to utilize

@ Springer

the Mantegna algorithm [40], in which the step size s is

given by
u
=i (23)

where u and v are drawn from the following normal
distributions:

uNN(()? 65)3 VNN(O, 0"2/) (24)
[ T(1+p)-sin(np/2) 1/B B
o {F[(l +p)/2]- B 2(/f—1)/2} oy =1 (25)

where I' represents the Gamma function, and f is a dis-
tribution parameter related with 1 in Eq. Q1) as A =1+ f
(0<f<2,and = 1.5[38] in CS).

As per the above, Eq. (21) can be rewritten as

z?ew =z;+ 0.01-s- (Zl- — Zbest) Qr (26)

where r is a random vector with all its elements generated
from the standard normal distribution N (0, 1), and s is
calculated using Eq. (23).

After comparing the fitness values between each old and
new solution at the same nest and retaining the solutions
with lower fitness values, the new solution z7°¥ for cuckoo i
is generated again by imitating the action of alien egg
discovery, which can be formulated as:

5" =z, +md, - Hp, —rnd) © (z; - z;) @7)

where z; and z; are two randomly selected solutions; p, is a
vector with all its elements being p,; rnd, is a random
number generated from the standard uniform distribution
U(0, 1); rnd, is a random vector with all elements gen-
erated from U(0, 1); and H(e) is a step function, defined as

H(x) = H(xy, x2, ..
= [Hy, Ha, ..

5 Xdy .- .,XD)

Hy, ..., Hp] (28)

where H; = 1 if x; > 0, otherwise H; = 0. More details on
BCS can be found in [38].

3.2 IICS algorithm

As mentioned above, information interaction between
individuals is lacking in the search process of BCS, while it
is well known that the information interaction between
people plays an important role for their team to accomplish
an assignment with high efficiency. Accordingly, it is
expected that a CS with an information interaction-en-
hanced mechanism can realize a better search performance
than BCS. Based on this consideration, a modified CS
called information interaction-enhanced CS (IICS) is pro-
posed in this article. In IICS, cuckoo i is offered an
opportunity to get some potentially useful information
from a selected information provider z,; (here p; defines
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which cuckoo should be selected as the information pro-
vider for cuckoo i). To get the z,; for cuckoo i, three
candidates are chosen from z = [z, ..., Zi-1, Zit1reer ZNp]
randomly, where N, denotes the population size. Among
these three candidates, the one with the best (i.e., smallest)
fitness value is selected as z,;, and meanwhile its index is
assigned to p;.

The main differences between IICS and BCS are the
updating formulas of the Lévy flight and alien egg dis-
covery. To be specific, in IICS, the updating formulas used
in BCS, namely Egs. (26) and (27), are replaced with
Egs. (29) and (30), respectively.

Y =z + Ak @ (I — H(cy — rnd3)) + Azl @ H(c,
—rnd3)

(29)

2 =z, +H(p, —rndy) @ (Az* @ (I — H(c, —rndy))
+ Az? ® H(c, — rnd,))

where

Az =0.01 -5 (2, — Zbest) @
Az} = rnds ® (z, —2)

Az} = rmdy - (z; — z,)

Azf =rnds ® (z, —7;)

In the above equations, I is a vector with each element
being one; ¢, is a vector with all elements being c,, which
is a coefficient for adjusting the combination of the pro-
posed information interaction-enhanced mechanism and
Lévy flights (or the alien egg discovery); rnds, rnd,, rnds,
and rndg are random vectors with all their elements drawn
from U (0, 1); and H(e) is the same step function as defined
in Eq. (28).

Figure 3 presents the complete implementation of the
proposed IICS. Firstly, various parameters are set and a
group of N, solutions are randomly initialized (lines 1-2).
Next, the fitness function value for each solution is cal-
culated, and the one with the best fitness in the current
population is assigned to Zpes(lines 3—4). Thereafter, these
solutions are sequentially evolved with the first (lines 7-9)
and second (line 14) proposed search operators, which
respectively combine the information interaction-enhanced
mechanism with Lévy flights and the alien egg discovery.
Following the generation of each new solution, the optimal
selection between the old and newly-generated solutions at
the same nest will be performed, and the one with the
smaller fitness value is retained (lines 10-13 and 15-18).
Finally, zpest is updated and it is selected as the optimal
solution of the search process (lines 19-21).

(Algorithm 1. Implementation of IICS.

1: Set the population size N,, maximum iteration number gpax,
discovering probability p,, adjustment coefficient ¢,, search

space dimension D;
2: Initialize a population of N, solutions z; (i = 1, 2, -, N,));
3: Calculate the fitness value of each solution f; (i =1, 2, -+, N,);

4: Find out the current best solution, and let zZy.s and fiin be
equal to this solution and its fitness value, respectively;

5: g=0;

6: while g <g,.x do

7 fori=1toN,do

8: Select an information provider z,; ;

9 Generate a new solution z;"" using Eq. (29);
10: Calculate its fitness value f;"";

11: ™ </ then

12: zi=z " and fi=f"",

13: end if

14: Generate a new solution z;"*" using Eq. (30);
15: Calculate its fitness value £;"";

16:  iff™V </ then

7 n= g™ and =

18: end if

19: i f;<foin then

20: Zbest = i ANd finin = fi;

21: end if

22:  end for

23: g=g+t+l;

24: end while

& _4

Fig. 3 Complete framework of the proposed IICS algorithm

3.3 Complexity analysis of 1ICS

To facilitate the analysis, the computation time complexity
of BCS is given firstly in this section. For each cuckoo,
O (D) number of operations are performed in an iteration in
BCS, resulting in O (N,, D) complexity. However, gener-
ally CS runs for a number of iterations, so the overall
complexity depends on the maximum iteration number
(gmax)- This procedure gives the overall time complexity of
BCS as O (N,. D. gmax). Compared with BCS, our IICS
needs to perform additional computations of O (N,,.
D. gnax) for the proposed information interaction-enhanced
mechanism. Meanwhile, the selection of information pro-
viders consumes further computational complexity of
O (Np. D. gmax). Accordingly, the computation time com-
plexity of IICS is the same as that of BCS, i.e., O (N,.
D. gmnax). However, IICS significantly outperforms BCS
according to the experimental results given in the following
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sections. These observations suggest that when compared
with BCS, our IICS achieves better tradeoff between per-
formance improvement and computation time complexity.

4 Optimizing parameters of the hybrid
model using IICS

In this section, the IICS algorithm is applied to solve the
parameter optimization problem of empirical models f;rc
and f,, in the hybrid prediction model described by
Eq. (19), hereafter referred as to the PO problem, and thus
accomplish their training with the proposed indirect
method. In the process of search, nest i is encoded as z;.
= [0arcir Osuri] to represent a set of candidate values of 0,
and O, and Eq. (20) is used as the fitness function to
evaluate the quality of each nest. Algorithm 2, as illustrated
in Fig. 4, describes the procedures for the calculation of the
fitness value J; for nest i.

The implementation of IICS for optimizing the param-
eters in the empirical part with the indirect training method
is given by Algorithm 3, as illustrated in Fig. 5.

5 Experiments
In this section, the IICS algorithm was validated on 16

classical benchmark functions and the 29 CEC 2017
benchmark functions. Then, the actual production data

(Algorithm 2. Calculation for J..

Inp““ L= [Barcis 0sun']~

Output: J,.

1: Substitute the values of the parameter vectors 8, and by,
corresponding to nest 7 (i.e., Oy and by,y;) into the hybrid
prediction model described by Eq. (19);

2: forh=1to Hdo

3:  Based on the initial offline measurement of the molten
steel temperature as well as the online measurements of other
required process variables, alternately solve the hybrid
prediction model using the Euler method and the unsteady heat
conduction equations of the ladle wall and bottom using the
finite difference method explicit scheme, so as to obtain the
predicted values of the Ath heat of molten steel temperature at

each offline sampling point, i.e., X, X;5,", X, 3

4: end for
H M, "
50 J, = 22|th = X ZM/,-
=t m=l o
A _4

Fig. 4 Calculation procedures for the ith nest’s fitness value
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(Algorithm 3. Implementation of IICS for PO.

1: Set the population size Np, maximum iteration number gmax,
discovering probability p,, adjustment coefficient c,, and
number of model parameters that need to be estimated D;

2: Initialize a population of Np host nests z; = [@arci, Osuri]
=12, Np)

3: fori=1toNpdo

4:  Calculate J; using Algorithm 2;

5: end for

6: Find out the current best solution, and let zye and Jyi, be
equal to this solution and its fitness value, respectively;

7. g=0;

8: while 8 < &Emax do

9: fori=1to Np do

10: Select an information provider z,, ;

11: Generate a new solution z;"" using Eq. (29);

12: Calculate its fitness value J;"" using Algorithm 2;
13: if J"Y <J; then

14: z=z" and J;=J"";

15: end if

16: Generate a new solution z;""" using Eq. (30);

17: Calculate its fitness value J;"" using Algorithm 2;
18: if J"V <J; then

19: z=2"" and J;= J"%

20: end if

21 if J; < Jin then

22: Zbest = & and Juin = Ji;

23; end if

24:  end for

25:. g=g+1;

26: end while

27: [aarc; gsur] = Zbest-

4

Fig. 5 Implementation of the IICS algorithm for solving the PO
problem

from a 300 t LF at Baoshan Iron & Steel Co. Ltd were used
to build the proposed hybrid prediction model using IICS.

5.1 Performance validation of IICS
on benchmark functions

5.1.1 Validation on classical benchmark functions

In this subsection, 16 classical benchmark functions
[41-43] are employed for investigating the performance of
IICS. These benchmark functions are listed in Table 2,
which includes the mathematical formula, search range,
and function value at the global minimum (F*) of each
benchmark function. These benchmark functions fall into
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Table 2 Classical benchmark functions used
Function name  Mathematical formula Range F*
Sphere function D [— 100, 0
1(x) = daxﬁ 1001?
Schwefel’s D D [— 10, 0
Hx) = Xq| + X D
problem 2.2 2(¥) = 2 bxal };[]\ l 10]
High D 6rdL [— 100, 0
conditioned ~ 3(¥) = dz::l (10%)7"7x 1001
elliptic
function
Schwefel’s D d [— 100, 0
problem 1.2 falx) = 112::1 (/; xj) 1001°
Sum square D [— 10, 0
function f5x) = dz::I dxj 101°
Griewank’s D [— 600, 0
function folx) = (12—:1 000 11_[1 cos(—ﬁ) +1 6001”
strigin’s function D - 512, 0
Rasuigh's function ¢ () = 3 (2 — 10 cos(2mxy) + 10) [ 51219
d=1 .
Noncontinuous X g < 1 [— 5.12, 0
Rastrigin’s o D o d d 2 5.12]D
function fsx) = (12::1 (y7 — 10cos(2my,) + 10), ys = round(2xy) .
2 )
Ackley’s D D [— 32768, O
function fo(x) = —20exp(—0.24 /5 Z 2) —exp(§ > cos(2mxy)) +20 + € 32.7681°
d=1 d=1
Schwefel’s . D . 1 [— 500, 0
function fio(x) = 418.9828872724336 - D — > xy sin(|xy[?) 5001
d=1
Weierstrass D K . . Kimax . . [— 0.5, 0
function Sulx) = Z (Za cos(2mb* (x4 +0.5))) — DZa cos(2nb" - 0.5) 0.51°
d=1 k=0 =
where a =0.5, b =3, kypax = 20
Generalized - D-1 ) ) [— 50, 0
penalized frolx) = 5410 sin(my1) + ) (va = 1) [1 + 10in* (myge1)] + (o0 — 1) 501°
functionl d=1
+3°7 uxa, 10, 100, 4)
k(xg —a)" x4>a
1
where yd=1+1(xd+1), u(xq, a, k, m) = 0 —a<x;<a
k(x4 —a)" x4< —a
Generalized ., D—1 ., [— 50, 0
penalized fiz(x) = 0.1{sin*3mx;) + Z xq — 1) [1 4 sin® (mxgq )] + - - 501P
function2 a=1
- (xp — D2[1 + sin?(2mxp)] } >0 ulx, 5. 100, 4)
Schaffer . D [— 100, 0
function fia(x) = 0.5 4 (sin?(y/ 30, x2) — 05)/(1 +o.001(d§x5))2 100]°
Alpine function f5(x) = zfl’:l xg - sin(xg) 4 0.1 - x4 [—101]%, 0
Levy function D—1 [— 10, 0
Z xq — 1) - [1 4 sin® (3mxg41 )] + sin® (37x;) 101°
d=1

+xp — 1|[1 + sin®(3mxp)]
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two categories: unimodal problems and multimodal prob-
lems. Of them, fi, f5, f3, f4, and f5 are unimodal ones con-
taining only one optimum, whereas the rest 11 benchmark
functions, namely fs to fie, are multimodal ones having
many local optima, but only one global optimum. In
addition, it should be pointed out that the validation is
performed with 50 variables, that is, the dimension (D) of
each benchmark function is 50.

In order to show the competitiveness of the proposed
IICS, the proposed IICS is compared with six recently
developed CS variants, i.e., CCS [43], ACS [44], ICS [45],
NNCS [46], BHCS [47], and HECS [48], as well as BCS in
this subsection. For fair comparison, Np and gy.x (the
maximum iteration number used to terminate the iteration)
of the eight CS-based algorithms are set to be same, that is
Np = D and gnax = 5000 as done in the studies [46, 49].
We follow the parameter settings of CCS, ACS, ICS,
NNCS, BHCS, and HECS used or recommended in the
studies conducted on them. For BCS and IICS, the con-
figuration of the common parameter p,, is taken from that
originally utilized by Yang and Deb [22, 38]. From these
studies, p, = 0.25 is a better choice for most optimization
problems. The specific parameter of IICS, i.e., ¢, is
adjusted via experiment analysis. According to the exper-
iments, it was found that when ¢, = 0.08 the search per-
formance of IICS can be well balanced on different kinds
of optimization problems. The parameter settings of the
eight CS-based algorithms are summarized in Table 3.

To reduce random discrepancy, each algorithm is per-
formed independently for 30 runs on each benchmark
function, and the mean, best, worst, and standard deviation
(SD) of the function error (f(xpes) — F*), where Xpeq
represents the best solution achieved by the algorithm in a
run, are calculated and recorded. The test results of the
eight CS-based algorithms on the 16 classical benchmark
functions are shown in Table 4. The best mean error values
among the eight algorithms are highlighted in boldface. On
these 16 classical benchmark functions, IICS produced the
lowest mean error values for eight of these, while BHCS
produces the lowest mean error values in five cases. For
two of the benchmark functions, IICS and some of its
competitors are seen to produce equal results. For fi4, it is
observed that CCS produces the better solution. Although
BHCS attains the best mean results on 4 out of the 5 uni-
modal benchmark functions, it sacrifices performance on
multimodal ones. On the contrary, IICS is not only very
efficient in solving the unimodal problems but also attain
very competitive performance on the multimodal ones. To
statistically compare IICS with each competitor, the mul-
tiple-problem Wilcoxon rank test is conducted at a signif-
icance level of 5% based on the mean error value. In
Tables 4 and 5, the statistical significance state is indicated
with the symbols +, =, and —, denoting that the
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competitor performs significantly worse than, insignifi-
cantly different from, and significantly better than the IICS
algorithm respectively. Moreover, the Friedman test is also
applied to determine the differences between these algo-
rithms and rank them with a significance level of 0.05.
Table 4 indicates that IICS provides significantly better
results than all of the other seven algorithms. The row
headed “Mean Rank” provides the final ranking of dif-
ferent algorithms for all 16 classical benchmark functions.
The results show that IICS, NNCS and BHCS are in the
first, second and third orders with 1.56, 3.84, and 3.91
mean rank values respectively. In addition, the p value
(7.4999¢—009) is smaller than the chosen significance level
(0.05). This indicates that there is at least one significant
difference among the algorithms’ results.

To show the convergence process visually, the conver-
gence curves of each algorithm in term of the mean error
values on the classical benchmark functions are presented
in Fig. 6. For the ease of comparison, semilogarithmic
coordinate is used to plot the convergence curves of each
benchmark function, except that of fj4,. When the conver-
gence curves in Fig. 6 are analyzed, it can be observed that
IICS performs well in 14 out of the 16 classical benchmark
functions. IICS has significantly higher convergence
speeds in fq, f7, fo to fi3, and fi¢ compared with the other
seven CS-based algorithms. Therefore, IICS can be regar-
ded efficient. However, the result patterns slightly differ in
some of the 14 functions: for f4, it can be seen that the
rapid convergence of IICS is at the expense of being
trapped in the local minima, while the results of f; to f3, fs,
and fg show that IICS and BHCS perform similarly in terms
of convergence speed and accuracy. In addition, it can also
be observed that IICS is weak in f; and f;s. For these two
functions, BHCS has the highest convergence speeds and
best search results.

5.1.2 Validation on CEC 2017 benchmark functions

In this subsection, benchmark functions from CEC 2017
are used as the benchmark test set. This test set consists of
29 benchmark functions: two unimodal functions, F; and
F3; seven simple multimodal functions, F, — Fyp; ten
hybrid functions, Fj; — Fp; and ten composition func-
tions, F»; — F3p. The order of these functions is the same
as the original article [50]. The detailed functions are not
presented here to save space. These benchmark functions
are considered difficult to optimize, as all of them are
shifted and rotated, and some of them are hybrid or com-
position functions. It should be noted that the function F,
named “Shifted and Rotated Sum of Different Power” is
not used here due to unstable behavior especially for higher
dimensions, as described in [50]. The detailed definitions
can be found in the original article.
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Table 3 Parameter settings of involved algorithms

Algorithm Parameter settings

1Ccs Np =D, p,=0.25, « =0.01, ¢, = 0.08

BCS Np =D, p,=0.25,0=0.01

CCS Np = D, p, = 0.25, generation of chaotic sequences: Gauss map

ACS Np =D, p,=0.25

ICS Np =D, pumax = 0.5, Pamin = 0.005, otpax = 0.5, oy = 0.01

NNCS Np =D, p, = 0.25, p = 0.25, selection of nearest neighbour solutions: fitness-based similar metrics

BHCS Np=D,p,=03,0a=1.1,=17,0=16,E =1

HECS Np =D, py=0.6, 2 =04, = 1.5, proportion of exploitation group: 70%, proportion of exploration group: 30%
HFPSO Np =D, c; = ¢; = 1.49445,010x = 0.9,01min = 0.5, Vinax = 0.1*(Xinax — Xmin)s Vimin = — Vinax

ELSHADE-SPACMA

Np™* =18*D, H = 5, Arc_rate = 1.4, Fcp = 0.5, ¢ = 0.8, p = 0.1, p™ = 0.3, p™" = 0.15

HSES CMA-ES: Np = [3InD| + 80, N = Np/2, ¢ = 1, oy =2
univariate sampling: Np = 200, N = 100, cc = 0.96, I = 20 for the first step, and Np = 450, N = 360 for the fourth step

ISCA

Np=D,A=2— 2%tlgma), 11 € [0, 2n], C € [0, 2], CR = 0.3

In addition to BCS, CCS, ACS, ICS, NNCS, BHCS, and
HECS, this subsection compares IICS with four other
intelligent algorithms, i.e., hybrid firefly and particle
swarm optimization (HFPSO) [51], enhanced LSHADE-
SPACMA (ELSHADE-SPACMA) [52], hybrid sampling
evolution strategy (HSES) [53], and improved sine cosine
algorithm with crossover scheme (ISCA) [54], which
belong to PSO, DE, covariance matrix adaptation evolution
strategy (CMA-ES), and sine cosine algorithm (SCA)
communities, respectively. These four algorithms have all
proved their good performance on CEC 2017 benchmark
functions, and HSES and ELSHADE-SPACMA have won
the first and third places in the CEC 2018 competition
respectively. Parameter configurations of the new selected
algorithms are the same as in the corresponding references,
as listed in Table 3. Size of the population (Np) is set equal
to the benchmark function dimension (D) in IICS, BCS,
CCS, ACS, ICS, NNCS, BHCS, HECS, HFPSO, and
ISCA, while the settings of Np in ELSHADE-SPACMA
and HSES are consistent with those in the original studies.
In accordance with the original article of the competition of
CEC 2017 problems [50], each algorithm is repeated 51
runs with the maximum number of function evaluations set
to 10,000 x D.

Table 5 lists the obtained results from all involved
algorithms on CEC 2017 benchmark functions with
D = 50, including the mean, best, worst and standard
deviation (SD) values of the function error of every
benchmark function obtained by each algorithm, as well as
the findings from the multiple-problem Wilcoxon rank test
and Friedman test both at a significance level of 0.05. In
Table 5, the mean, best, worst and SD values for
ELSHADE-SPACMA and HSES are collected from the

original articles [52, 53], and values smaller than 1078 are
indicated as 0.00e+00. When the results from IICS com-
pared with those from the other seven CS-based algo-
rithms, it can be seen IICS produces the best mean error
values for 17 of the 29 benchmark functions, while all the
other seven CS-based competitors do so for just 13
benchmark functions. Examination of Symbol row in
Table 5 further indicates that IICS achieves significantly
better results than the other seven CS-based competitors, as
well as HFPSO and ISCA. However, the ELSHADE-
SPACMA and HSES algorithms are seen to return superior
results to IICS. The findings from the Friedman test show
that ELSHADE-SPACMA, HSES and IICS have the first,
second, and third mean rank values of 1.69, 1.95, and 4.02,
respectively.

5.2 Experimental verification based on actual
production data

In this section, 537 heats of actual production data from a
300 t LF built in Baoshan Iron & Steel Co., Ltd., are
employed to verify the ability of the proposed hybrid
prediction model, as well as the performance of the IICS
algorithm. Among these data, 437 heats are randomly
selected for the development of the proposed prediction
model, and the remainders are utilized for testing its
performance.

The parameter setting for IICS to solve the PO problem
is as follows: p, =025, ¢,=0.08, N, =D (where
D=[2+1) xhdy + (hd; + 1) x 1] + [B + 1) X hd,
+ (hd, + 1) x 1], and hd, and hd, denote the hidden
neuron numbers of the empirical models f;Ic and f;ur
respectively), and gn.x = 5000. Moreover, it should be
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Table 4 Comparison among eight CS-based algorithms on 16 classical benchmark functions

IICS BCS CCS ACS ICS NNCS BHCS HECS
fi Mean  9.1045¢—80 1.2103e—16 5.2092e—27 3.4943e—15 1.1492e—26 5.7032e—26 7.6718¢e—87 9.0816e—13
Best 6.4047e—82  7.9400e—17 1.4799e—27 1.5652¢—19 4.5444e—27 2.5441e—26 8.3763e—99 4.0290e—15
Worst  1.0474e—78 1.8044e—16 1.2553e—26 6.6248e—14 2.4916e—26 1.3247e—25 2.2727e—85 7.2246e—12
SD 1.9806e—79 2.7493e—17 2.3640e—27 1.2026e—14 5.0936e—27 2.4366e—26 4.0779¢e—86 1.6631e—12
e Mean  1.0197e—48 1.0391e—07 3.945le—17 1.9589e—07 4.6875e—15 2.2108e—15 7.7583e—42 9.6716e—12
Best 2.3713e—49 7.0947e—08 1.900le—17 1.1735e—09 1.9344e—15 1.2576e—15 5.9656e—51 3.4226e—15
Worst  3.3463e—48 1.4856e—07 7.0677e—17 8.5147e—07 7.3031e—15 3.1005e—15 2.1029e—40 1.3383e—10
SD 7.2959¢e—49  1.9099¢—-08 1.3230e—17 2.0975¢e—07 1.2799e—15 5.3815e—16 3.7680e—41 2.8826e—11
f3 Mean 5.2762e—76 2.1603e—13 2.4923e—24 2.2299¢e—09 3.4298e—24 5.0435e—23 1.3185e—81 7.5079¢e—09
Best 3.0703e—78 1.2269e—13 7.3070e—25 4.8189e—15 9.9390e—25 1.9611e—23 4.1591e—96 6.4759¢—12
Worst  8.6207e—75 3.7299e—13  5.4977e—24 5.5524e—08 1.025%9e—23 1.1006e—22 3.9357e—80 1.4279e—07
SD 1.5497e—75 5.7190e—14 1.2663e—24 9.9728e—09 1.6792e—24 2.2959¢—23 7.0636e—81 2.5881e—08
fa Mean  5.5204e+02  1.5243e+03  7.6669e+03  5.6889e+03 2.9010e+03 5.5265e+03 1.7722e¢—03  5.4455e+00
Best 2.8713e4+02  1.2438e+03 5.2771e+03 4.0088e+03 2.3548e+03 3.8692e+03 5.4896e—10 1.2992e+00
Worst  8.9263e+02  1.7735e+03  1.0320e+04 7.8461e4+03 3.4970e+03 7.3163e4+03 4.5628e—02 3.8112e+01
SD 1.2193e4+02  1.3384e+02 1.2547e4+03  1.0425¢+03 3.2392e+02 7.3979e+02 8.2510e—03  6.8928e+400
fs Mean 1.7782e—80 2.2331e—17 9.2233e—28 1.7569e—15 1.8771e—27 1.0736e—26 4.7950e—87 2.7826e—13
Best 4.4669e—82 1.2664e—17 3.1723e—28 2.6128e—20 9.3270e—28 3.5558e—27 1.8587¢—98 7.4386e—16
Worst  2.1195e—79  3.3418e—17 1.4909e—27 1.5123e—14 3.4685e—27 3.3911e—26 1.1433e—85 2.5486e—12
SD 4.0074e—80 5.4560e—18 3.3132e—28 3.8722e—15 7.1922e—28 5.5310e—27 2.0657e—86 5.5680e—13
Je Mean 0 2.3054e—11 0 8.4484e—09 0 0 4.6835e—02  9.5708e—02
Best 0 1.4333e—13 0 3.8200e—11 O 0 0 2.1316e—14
Worst 0 2.4082e—10 O 1.0363e—07 0 0 1.7450e—01 7.0113e—01
SD 0 4.7534e—11 O 2.2249¢e—08 0 0 5.0735e—02  1.4001e—01
fa Mean 0 9.2136e4+01 1.0841e+02 1.3883e4+02 4.2197e+01 6.0092e4+01 1.6152e4+01 2.4846e+01
Best 0 7.1040e4+-01  9.1742e+01 1.1633e4+02 3.5633e+01 4.3982e+01 8.9546e+00 1.6914e+01
Worst 0 1.1068e+02 1.2691e+02 1.5305e4+02 4.9667e+01 7.2254e4+01 2.3879e+01  3.8803e+01
SD 0 9.7487e4+00 1.0097e+01 9.7594e4+00 3.4288e+00 7.4029e4+00 4.0593e4+00 5.8489e+00
I3 Mean 0 7.8532e+01  9.2884e+01 1.2276e4+02 4.2404e+01 5.0187e+01 0 3.1447e+-01
Best 0 6.2334e+01  7.5442e4+01 1.0393e402 3.6342e+01 3.4660e+01 O 2.0000e+01
Worst 0 8.9813e+01 1.1103e+02 1.3969e4+02 4.7325¢e+01  6.0928e+01 0O 6.0270e+-01
SD 0 6.3229e+00 1.0027¢+01  1.0535e+01  2.6840e+00 6.5996e+00 0O 8.1190e+-00
fo Mean 5.4475e—15 3.1977e—03 4.7133e—14 5.7452e—06 1.1227e—13 1.9765e—13 3.7426e+00 5.0417e400
Best 3.5527e—15 3.6544e—04 3.1974e—14 1.9448e—06 7.8160e—14 1.2079e—13 2.7231e4+-00 3.0665¢+00
Worst  7.1054e—15 1.9237e—02 6.7502e—14 1.1932e—05 1.5632e—13 3.6948e—13 5.5088e+00 7.6055e+-00
SD 1.7724e—15 3.4682e—03 7.2190e—15 2.3901e—06 1.9079e—14 5.3200e—14 7.4785e—01 1.0869e+00
fio Mean  4.0651e—09 4.8286e+03  5.4499e4-03 5.7974e+03 3.5282e+03 1.4048e+03 4.5595e+03  2.0753e+403
Best 7.2760e—12  3.6889¢+03 4.8528e4+03 5.1737e4+03 3.1088e+03 1.2967e+02 3.2176e+03  1.1844e+403
Worst  7.0719e—08  5.3482¢+03  6.2488¢+03  6.5433e+03  3.8670e+03  2.7235e+03  7.4403e+03  3.0824e+03
SD 1.5320e—08 3.1425e+02 3.3846e+02 3.1304e4+02 2.1750e+02 6.1043e4+-02 7.4167e4+02 4.9162e+02
i Mean 0 7.4298e—01 7.4711e—12 7.1490e—03 6.2282e—05 4.5858e—12 6.1840e4+00 4.3903e+00
Best 0 4.7476e—01 8.1002e—13 2.1657e—03 2.8448e—05 6.6791e—13 2.7885e+00 2.2968e+00
Worst 0 1.0156e4+00 5.9885e—11 1.5243e—02 1.2768e—04 2.1075e—11 1.0476e401  7.0250e+4-00
SD 0 1.3643e—01 1.1266e—11 2.5551e—03 2.1668¢e—05 5.1091e—12 1.5537e4+00 1.2290e+00
fi2 Mean 0 3.0325e+01 8.8873e—02 2.5756e+01 9.5626e—01 1.3380e—13 1.6400e—01 3.3385e—01
Best 0 1.5435e4+01  1.0239e—09 1.6084e4+01 2.5272e—01 1.6678e—18 0 3.9151e—16
Worst 0 4.4944e4-01 8.0876e—01 4.0014e4+01 2.3725e+00 1.5965e—12 1.4974e4+-00 2.3018e+00
SD 0 7.5398e4+-00 2.1442e—01 5.7070e4+-00 4.7168e—01 3.6500e—13 3.0439e—01 5.4411e—01
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Table 4 (continued)
IIcs BCS CCS ACS ICS NNCS BHCS HECS

fis Mean 0 6.1622e—11  3.1990e—24 1.7899e—09 2.7767e—22 2.3176e—24 2.7541e—01 3.4123e+00
Best 0 1.6431e—11 3.7011e—25 8.2708e—14 3.9638e—23 7.5682e—25 O 2.6992e—12
Worst 0 1.2503e—10 8.9568e—24 8.0605¢e—09 1.0681e—21 5.8368e—24 3.0335e+00 3.7010e+01
SD 0 3.0103e—11 2.0646e—24 2.5233e—09 2.8035e—22 1.1979¢e—24 6.0988e—01 7.3494e+-00

fia Mean 1.7127e—01 3.3363e—01 1.5091e—01 3.1583e—01 2.3970e—01 1.9802e—01 3.2575¢e—01 4.0319e—01
Best 1.2699e—01 2.7274e—01 1.2699e—01 2.7275e—01 2.2769e—01 1.7822e—01 2.2769¢e—01 2.7274e—01
Worst  2.2769e—01  3.7329¢e—01 1.7822e—01 3.5186e—01 2.7274e—01 2.2769¢—01 3.9610e—01 4.7161e—01
SD 2.5294e—02 2.2402¢e—02 2.5551e—02 2.2058e—02 1.9922e—02 2.4228e—02 3.9841e—02 4.7444e—02

fis Mean  1.0319e—03  1.1174e4+01 5.8457e+00 1.3973e4+01 1.7402e+00 2.7511e4+00 2.5535e—16 4.5246e—02
Best 4.1769e—04  7.7085e+00 3.5273e4+00 1.1464e+01 5.1660e—01 1.1364e+00 6.5497e—45 4.6885e—14
Worst  3.8437e—03  1.3047e+01 7.7856e+00 1.5843e+01 2.9713e+00 5.1818e+00 1.4433e—15 3.4840e—01
SD 7.8925e—04 1.2460e+00 9.7611e—01 1.1404e4+00 5.2155e—01 8.7224e—01 3.3754e—16 7.2348e—02

fie Mean 0 8.0057e—15 1.0583e—27 7.1787e—12 5.1830e—27 1.1272e—26 6.0530e—01 5.2595¢—01
Best 0 2.3315e—15 0 1.6839¢—14 0 2.0503e—-27 0 2.1266e—16
Worst 0 2.6559¢—14  3.1467e—27 3.9946e—11 1.5264e—26 2.5805¢—26 3.2991e+00 2.6656e+00
SD 0 4.7070e—15 6.7404e—28 9.3992e—12  3.7550e—27 5.5642e—27 8.0578e—01 7.7296e—01

Symbol + + + + + + +

Mean Rank  1.56 6.00 3.97 6.75 4.03 3.84 391 5.94

pointed out that when IICS is employed to solve the fol-
lowing model parameter optimization problems, 20 inde-
pendent calculation runs are conducted to reduce random
discrepancy. Correspondingly, the mean predicted values
are utilized for the following hidden neuron number
selection, as well as the model prediction performance
exhibition and comparison.

For each of the above two empirical models, the acti-
vation functions for the hidden layer and the output layer
are the sigmoid function and the linear function, respec-
tively. The optimal numbers of hidden neurons for f;rc and
f;ur are 3 and 5, respectively, determined by trial and error;
that is to say, the selected topologies of these two empirical
models are 2-3-1 and 3-5-1, respectively. After the
topologies of f;rc and f;ur are selected, all the 437 heats of
modeling data are utilized for determining the model
parameters with the methodology depicted in Sect. 4, to
obtain the overall hybrid temperature prediction model of
molten steel.

Then, the 100 heats of testing data are utilized to eval-
uate the performance of the proposed hybrid prediction
model. Figure 7 shows the final molten steel temperature
predicted by the developed hybrid model. Figure 7 shows
that this model can predict the temperature with high
accuracy. Out of these prediction results, the absolute error
in 91% of the cases is lower than 5 °C (desirable value),

and in 95% of the cases, it is lower than 7 °C (tolerable
value), and only in 2% of the cases is absolute error higher
than 10 °C. This demonstrates the effectiveness of the
hybrid prediction model, with the proposed indirect train-
ing method for its empirical part.

To demonstrate the excellent prediction ability of the
proposed hybrid model, this article also develops an
empirical prediction model based on the above selected
437 heats of production data. To be fair to the comparison,
this empirical model is also established utilizing a SLFN
and its parameters (namely the network’s weights and
thresholds) are determined by IICS. The input layer of this
SLFN-based empirical prediction model has eight neurons.
They are the initial molten steel temperature, total power
consumption, ladle state, heat effect of additions, total
argon consumption, weight of molten steel, refining time,
and energy change of cooling water in the water-cooled
cover. The hidden layer has 13 neurons (determined by
trial and error), and the output layer has one neuron (the
final molten steel temperature). Figure 8 shows the results
predicted by the empirical model. For ease of comparison,
the prediction errors (PE) of the proposed hybrid model
and empirical model, as well as the differences between the
prediction errors (D_PE) of these models are presented in
Fig. 9a, b respectively. Herein, the differences in more
details are the results obtained by subtracting the absolute

@ Springer
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prediction errors of the empirical model from that of the
hybrid model. Thus, obviously the D_PE value can indi-
cate whether the prediction performance of the hybrid
model is better than (i.e., D_PE < 0), ties (i.e., D_PE = 0),
or worse than (i.e., D_PE > 0) that of the empirical model
on the corresponding heat. In addition, four performance
evaluation indices are used for quantitative comparison.
They are the root mean square error (RMSE), mean
absolute error (MAE), mean relative error (MRE), and
accuracy rate (AR) which is defined as

N,
AR = ﬁ“ 100% (35)

t

8.32e+02
5.92e+4-02
1.13e4-03
1.33e4-02
3.76e4-06
2.12e+06
1.00e+-07
1.33e+06

ISCA

4.77e+02
3.05e+02
8.43e+02
1.61e402
6.03e4-05
5.81e+05
6.95e+05
2.46e+04

7.19

ELSHADE-SPACMA  HS-ES

3.58e+02
3.27e+02
4.10e+02
1.78e+01
5.97e+05
5.79e+05

6.63e+05
2.38e+04

1.95

where N, is the number of heats with absolute prediction
errors not higher than 5 °C, and N, is the number of total
testing heats. The calculation results with respect to these
four indices for the above two models are listed in Table 6.

From Figs. 7-9, it can be observed that both the hybrid
model and the empirical one could predict the molten steel
temperature with certain accuracy, while the prediction
values given by the former are much closer to the measured
values than those given by the latter. Furthermore, as can
be observed from the data in Table 6, the proposed hybrid
model predicts significantly better than the empirical one.
Compared with the empirical model, the RMSE, MAE, and
MRE of the proposed hybrid model are respectively lower
by 33.11%, 30.81%, and 30.77%; while the AR of the
proposed hybrid model exceeds 90%, an 18.18%
improvement over the empirical one. These demonstrate
the excellent prediction performance of the proposed
hybrid model in a practical application. From these
observations and comparisons above, it can be concluded
that the proposed hybrid model is a promising predictor for
the molten steel temperature.

Moreover, to confront the search capability of IICS with
some other widely used intelligent algorithms in model
parameter optimization, GA [12], PSO [13], DE [14], ACO
[15], and BCS are employed to solve the same PO problem
with the topologies of f;rc and f;ur being 2-3-1 and 3-5-1
respectively, and the 437 heats of modeling data. In addi-
tion, it is interesting to investigate the performance of the
two winners of the CEC 2018 competition, i.e., HSES and
ELSHADE-SPACMA, on this PO problem. The parame-
ters of these four new selected algorithms are set according
to the respective studies. Specifically, in GA the BLX-«
Crossover is used, and the crossover probability p., muta-
tion probability p,,, and parameter o for BLX are set to
0.85, 0.02, and 2.0 respectively. In PSO the inertia weight
o, cognitive acceleration coefficient ¢, and social accel-
eration coefficient ¢, are taken as 0.5, 2.0, and 1.0,
respectively. In DE the scale factor F and crossover
probability Py, are both set to 0.5, and the mutation
operator is DE/best/1. In ACO the selection parameter g,

HFPSO
1.49¢+03
7.78e+02
2.14e+03
3.63e+-02
1.11e+06
6.31e+05
5.07e+06
6.15e+05
1.69

1.07e+03
8.76e+4-02
1.43e+03
1.39e+02
7.51e+405
6.49¢+05
9.33e+05
9.51e+04

HECS
9.21

BHCS
1.57e+403
1.39e+03
1.95e+03
1.57e+02
6.51e+05
5.99e+05
8.88e+05
6.40e+04
7.17

9.16e+02
5.95e+4-02
1.27e+03
1.40e4-02
8.61e+05
7.02e+05
1.08e+06
9.19e+4-04

NNCS
8.67

S
1.13e+02

8.37e+02
8.33e+05
6.72e+05
1.07e+06
9.59e+04

5.64e+02
1.03e+03

IC
6.45

1.28e+03
8.63e+02
1.65e+03
1.73e+02
1.34e+06
6.82e+05
2.59e+06
4.59e+05

ACS
5.64

1.24e+03
8.63e+02
1.59¢+4-03
1.41e402
3.49¢+-06
9.51e+05

6.04e+-06
1.10e+06

CCS
9.05

1.36e+03
1.09¢+4-03
1.76e+03
1.38e4-02
1.29e+06
7.67e405
1.72e+06
2.20e+05

BCS
7.74

6.10e+02
4.42e+402
6.81e+02
6.51e+01
6.50e+05
6.18e+05
6.73e+05
1.56e+04

IICS
9.22

Worst

Mean
SD

Mean
Best
Worst
Best

Table 5 (continued)
Symbol
Mean Rank  4.02

fao
f30
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two weighting parameters o and f, and two updating  GA, PSO, DE, ACO, and BCS, while the settings of Np for
parameters Q and y are respectively set to 0.85, 1, 4, 0.1, ELSHADE-SPACMA and HSES are consistent with the
and 0.7. The parameters of IICS, BCS, ELSHADE- original studies. To be fair, the maximum number of fitness
SPACMA, and HSES are in common with those used in  function evaluations in all 20 runs is equal to 10,000 x D.
Sect. 5.1. The size of population Np is set to be the number Table 7 gives the results of the eight algorithms on the
of model parameters to be estimated (i.e., D = 39) for IICS, = PO problem in 20 independent runs, and the best results are
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Fig. 6 continued

shown in boldface for clarity. The columns headed ‘Mean’,
‘Min’, ‘Max’, and ‘SD’ show the mean, minimum, maxi-
mum, and standard deviation values of the fitness function
defined by Eq. (20) for each algorithm. As can be seen
from Table 7, in terms of the mean fitness function value
both BCS and IICS give better results than the other four
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widely-used model parameter optimization algorithms,
revealing that CS is relatively more suitable for solving the
PO problem involved in this study. It can also be seen that
IICS performs better than ELSHADE-SPACMA and
HSES, which indicates that IICS is an efficient algorithm
for solving the PO problem. Furthermore, it can be
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Fig. 7 Predicted results of the molten steel temperature by the
proposed hybrid model
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Fig. 8 Prediction results of the molten steel temperature by the
empirical model

Fig. 9 Comparison of prediction

observed that IICS produces much better optimization
results than BCS. Figure 10 illustrates the convergence
progress of IICS and BCS on the PO problem. It can be
found from Fig. 10 that IICS has a better search accuracy
and a higher convergence speed, which demonstrates again
that the proposed IICS algorithm has greatly enhanced the
performance of BCS.

6 Conclusions

A hybrid model for the prediction of molten steel tem-
perature in LF is proposed. In the proposed hybrid pre-
diction model, two SLFN-based empirical models are
incorporated within the structure of a mechanistic thermal
model, to represent the unknown functions in the mecha-
nistic thermal model. The primary difference between the
proposed hybrid prediction model and existing ones is that
its empirical part is not trained in the traditional direct way
since the target outputs of the two empirical models are
unavailable in advance. In the proposed approach, the
empirical part is trained indirectly with the readily avail-
able temperature measurements of molten steel but not the
barely accessible target outputs of this part, which means
the hybrid prediction model with its empirical part trained
by the proposed indirect method has more extensive
application range when compared to existing ones. Appli-
cation results on the production data from a 300 t LF at
Baoshan Iron & Steel Co., Ltd, show the effectiveness and
superiority of the proposed hybrid prediction model.
Another main innovation of this article is the develop-
ment of the information interaction-enhanced CS (IICS),
which is used to optimize the parameters in the empirical
part so as to complete the development of the proposed
hybrid prediction model. One of the problems with BCS
and many of its variants is that the information interaction
among cuckoos is lacking in the search process, which
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Table 6 Comparison of test performance between the proposed
hybrid model and empirical model

Model RMSE (°C) MAE (°C) MRE (%) AR (%)
Hybrid model 3.6205 2.8348 0.1802 91
Empirical model = 5.4123 4.0970 0.2603 77

Table 7 Results of IICS, GA, PSO, DE, ACO, BCS, ELSHADE-
SPACMA, and HSES on the PO problem

Algorithm Fitness value
Mean Min Max SD
IICS 2.0114 1.7906 2.9127 0.2713
GA 5.2436 3.5509 10.2785 1.5469
PSO 5.1957 3.4996 10.5761 1.7069
DE 4.7259 3.2485 8.8003 1.1419
ACO 5.8124 4.1577 8.9595 0.6557
BCS 4.1357 3.0184 5.4039 0.4922
ELSHADE-SPACMA 3.9632 2.8097 6.1785 0.5469
HSES 3.6147 3.0589 5.3270 0.4734
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Fig. 10 Convergence curves of IICS and BCS on the PO problem

would decrease their search performance considerably. In
order to overcome this problem, an information interaction-
enhanced mechanism is proposed and employed in IICS.
The optimization results on the model parameter estimation
problem and two benchmark sets (16 classical benchmark
functions and 29 CEC 2017 benchmark functions) indicate
that IICS has distinct advantages over its competitive
algorithms (expect ELSHADE-SPACMA and HSES) on
these optimization problems. When compared with the
winners of the CEC 2018 competition, i.e., ELSHADE-

SPACMA and HSES, the performance of IICS is found to
be inferior to the two top algorithms on the CEC 2017
benchmark set, but it produces better results on the
parameter optimization problem involved in this study.
Despite its promising performance, the proposed IICS still
has limitations. First of all, compared with BCS, one more
parameter (i.e., ¢,) is used by the algorithm to perform the
proposed information interaction-enhanced mechanism.
Consequently, the parameter tuning process used to
achieve a reasonably good performance of IICS can be
time consuming. As for the two common parameters of
IICS and BCS (i.e., o and p,), our current study sets them
directly according to the recommendation of Yang and Deb
[22, 38]. There may be better value combinations of the
three parameters. But their tuning process will no doubt
become much more time consuming, and it might also
require retuning when the algorithm is applied to solve
different optimization problems.

Based on the current study, several future work direc-
tions can be pursued. Firstly, a parameter self-learning
strategy could be constructed for the proposed IICS algo-
rithm so as to tune the three involved parameters (i.e., &, p,
and c,) adaptively. Secondly, there is still room for
improvement in the selection strategy of information pro-
viders in IICS. The selection of information providers in
this article is a kind of blindness; therefore, a more effec-
tive selection strategy is worthy to research. Finally, the
proposed indirect hybrid modeling method could be also
applied to other LF refining processes or other similar
complex industrial processes.
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