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Abstract
This article presents a hybrid model for predicting the temperature of molten steel in a ladle furnace (LF). Unique to the

proposed hybrid prediction model is that its neural network-based empirical part is trained in an indirect way since the

target outputs of this part are unavailable. A modified cuckoo search (CS) algorithm is used to optimize the parameters in

the empirical part. The search of each individual in the traditional CS is normally performed independently, which may

limit the algorithm’s search capability. To address this, a modified CS, information interaction-enhanced CS (IICS), is

proposed in this article to enhance the interaction of search information between individuals and thereby the search

capability of the algorithm. The performance of the proposed IICS algorithm is first verified by testing on two benchmark

sets (including 16 classical benchmark functions and 29 CEC 2017 benchmark functions) and then used in optimizing the

parameters in the empirical part of the proposed hybrid prediction model. The proposed hybrid model is applied to actual

production data from a 300 t LF at Baoshan Iron & Steel Co. Ltd, one of China’s most famous integrated iron and steel

enterprises, and the results show that the proposed hybrid prediction model is effective with comparatively high accuracy.

Keywords Hybrid modeling � Cuckoo search � Artificial neural networks � Molten steel temperature � Ladle furnace

1 Introduction

Ladle furnace (LF) is a pivotal equipment utilized to fully

refine and alloy during secondary metallurgy processes in

iron and steel industries [1]. Close control of the temper-

ature of molten steel in LF is vital for the improvement of

product quality and productivity [2]. However, the tem-

perature of molten steel cannot be continuously measured

in the actual production, which makes it difficult to achieve

accurate control. Therefore, it has considerable practical

significance to develop a model to predict the temperature

of molten steel in LF.

Models for predicting the temperature of molten steel in

LF are traditionally developed based on thermodynamics

and the energy conservation law [3, 4]. However, due to the

intrinsic complicacy of LF metallurgy processes, the fun-

damental mechanisms of involved physicochemical phe-

nomena are not entirely clear by far, and developing a

mechanistic prediction model is very time-consuming and

costly. As a result, empirical modeling approaches have

been extensively used in developing the temperature pre-

diction models of molten steel in LF. In empirical model-

ing, the model is developed exclusively from the

production data without the need to invoke the phe-

nomenology of the process [5–8]. Thus, the time-con-

suming and expensive nature associated with the

development of a suitable mechanistic prediction model

can be averted.

In recent years, hybrid modeling approaches have been

considered as an appealing alternative for developing

molten steel temperature prediction models. A hybrid

prediction model commonly consists of a mechanistic

thermal model for representing the known priori knowl-

edge of the LF metallurgy process under consideration, and

& Jie Zhang

jie.zhang@newcastle.ac.uk

1 School of Metallurgy, Northeastern University,

Shenyang 110819, China

2 School of Engineering, Merz Court, Newcastle University,

Newcastle upon Tyne NE1 7RU, UK

3 Faculty of Engineering and Environment, Northumbria

University, Newcastle upon Tyne NE1 8ST, UK

123

Neural Computing and Applications (2021) 33:6487–6509
https://doi.org/10.1007/s00521-020-05413-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9745-664X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05413-5&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05413-5


one or more empirical models for approximating unknown

functions in the mechanistic thermal model [9–11].

Moreover, according to existing researches, hybrid pre-

diction models have better properties than pure empirical

prediction models [9, 10]; they typically have better pre-

diction accuracy and generalization performance, and are

easier to interpret and analyze.

Regarding to the training of the empirical part, most of

the reported hybrid modeling approaches use a direct

method as schematically shown in Fig. 1a. The parameters

in the empirical part are determined by minimizing the

errors between outputs of the empirical part, denoted by

ĝ ¼ ½ĝ1 ; � � � ; ĝn�, and the actual values of unknown

functions, denoted by g ¼ ½g1 ; � � � ; gn�. Here, n denotes

the number of unknown functions. Obviously, the pre-

condition for using the direct method to train the empirical

part is that these actual values are available. In other words,

when the actual values of one or more unknown functions

are unavailable just like the hybrid prediction model pro-

posed in this article, the direct method could not be used.

To address the above issue, this article proposes an

alternative method for the determination of the parameters

in the empirical part using the available values of the

molten steel temperature instead of the target outputs of the

empirical part, as is schematically shown in Fig. 1b. This

allows the empirical part being trained indirectly without

having its target outputs. In Fig. 1b, x and x̂ denote the

measured and predicted temperature values of molten steel

respectively.

The determination of the parameters in the empirical

part using the above indirect method is a complex opti-

mization problem. It is difficult to calculate the derivative

information required by traditional optimization algo-

rithms. Intelligent optimization algorithms, such as the

genetic algorithm (GA) [12], particle swarm optimization

(PSO) [13], differential evolution (DE) [14], ant colony

optimization (ACO) [15], salp swarm algorithm (SSA)

[16], artificial bee colony (ABC) [17], and cuckoo search

(CS) [18], do not require any derivative information and

can perform global search [19–21], so using them for

finding the parameters in the empirical part is a viable

alternative. Amongst these algorithms, CS is a compara-

tively new one, initially introduced by Yang and Deb [22].

Due to some attractive features like good balance between

the local search and global search, simplicity, and effi-

ciency [23, 24], the CS algorithm has been successfully

applied to many optimization problems in various fields

with promising results [25–29], including the parameter

optimization problems in modeling manufacturing pro-

cesses such as parameter estimation of a common empirical

model for the temperature of cutting tools [30], estimation

of soft-sensing model parameters for fermentation pro-

cesses [31], and parameter identification of a neural net-

work model for the electron beam welding process [32].

Besides, some researches have revealed that compared with

PSO, GA, and some other intelligent optimization algo-

rithms, CS is potentially far more efficient [30, 33, 34].

However, in the search process of the basic CS (BCS),

there is no interchange of search information between

individuals (i.e., cuckoos). To address this issue, we pro-

pose a modified CS, information interaction-enhanced CS

(IICS), by introducing an information interaction-enhanced

mechanism into BCS. It is based on the common idea that

the information interchange between people would be in

favor of their team accomplishing an assignment with

efficiency. The proposed IICS is employed to optimize the

parameters in the empirical part of the proposed hybrid

prediction model.

The remainder of the article is organized as follows.

Section 2 elucidates the development of the hybrid tem-

perature prediction model with the proposed indirect

Fig. 1 Schematic representation of a hybrid molten steel temperature

prediction model: a its empirical part is trained directly; b its

empirical part is trained indirectly
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training method for its empirical part. Section 3 briefly

discusses BCS and details the IICS algorithm. Section 4

describes using IICS for determining the parameters in the

empirical part of the proposed hybrid prediction model.

Section 5 analyzes the performance of IICS by testing on

two sets of benchmark functions and then presents the

application of the proposed hybrid prediction model on the

actual production data from a 300 t LF at Baoshan Iron &

Steel Co. Ltd. Finally, conclusions of this study are drawn

and considerations for future works are pointed out in the

last section.

2 Development of a hybrid prediction
model

In this section, a mechanistic thermal model (i.e., the

mechanistic part of the proposed hybrid prediction model)

is first derived based on thermodynamics as well as the law

of energy conservation. Next, artificial neural network-

based empirical models (i.e., the empirical part of the

proposed hybrid prediction model) are used to approximate

the unknown functions in the mechanistic part, and the

indirect training method for these empirical models is

elaborated.

2.1 Development of mechanistic part

Taking the molten steel and slag as a unitized system, a

mechanistic thermal model is developed in this subsection

based on the energy conservation law and thermodynamics.

Similar to the existing literature [2], the following three

assumptions are made: (1) no local temperature gradient

exists in the steel bath, i.e., the steel bath is fully mixed; (2)

there is only radial heat flow in the ladle wall; and (3) only

axial heat flow occurs in the ladle bottom.

In the remainder of this subsection, the primary factors

affecting the temperature change of molten steel are

described in detail. Then, a mechanistic thermal model

with two unknown functions is presented.

2.1.1 Thermal gain from the arc

The energy required for secondary steel refinement in LF is

mainly from the arc. The thermal gain of the steel bath due

to the energy injection through arc can be calculated as

Qarc ¼ garcParc ð1Þ

where Qarc is the power in W injected into the steel bath,

garc is the efficiency coefficient of heat transfer from the arc

to the steel bath, and Parc is the total power. For a given LF

system, the value of garc mainly depends on the slag

thickness Hsl and arc length Larc [10]; that is to say, garc is a
function of Hsl and Larc, shown as

garc ¼ farcðHsl; LarcÞ ð2Þ

Hence, once the function farc has been obtained, the

value of garc can be calculated using the online available

Hsl and Larc. However, it is noteworthy that the concrete

expression of this function is hard to derive by mechanistic

approaches.

2.1.2 Thermal loss from the ladle lining

Thermal loss from the ladle lining consists of two com-

ponents, the thermal loss from the ladle wall and the

thermal loss from the ladle bottom. Here, the instantaneous

temperature distribution models of the ladle wall and ladle

bottom are first established; then the thermal loss from the

ladle lining is calculated based on these two models.

2.1.2.1 Instantaneous temperature distribution model of
the ladle wall With the assumptions above, the heat

transfer in the ladle wall can be considered as a one-di-

mensional unsteady heat conduction in cylindrical coordi-

nates [2, 3, 35], formulated as

oTw
os

¼ 1

qwcw

1

r
� 1
or

kw � r oTw
or

� �� �
ð3Þ

when r ¼ r1; Tw ¼ Tst ð4Þ

when r ¼ r2; kw
oTw
or

¼ �aw�en Tw � T1ð Þ ð5Þ

Tw r; 0ð Þ ¼ f rð Þ ð6Þ

Equation (3) is the heat conduction differential equation

of the ladle wall, where Tw, qw, kw, and cw are the tem-

perature in �C, density in kg/m3, heat conductivity in W/

(m �C), and specific heat in J/(kg �C) of the ladle wall

respectively. The boundary conditions for Eq. (3) are given

in Eqs. (4) and (5), where r1 and r2 are respectively the

inner and outer diameters of the ladle wall in m; Tst is the

molten steel temperature in �C; aw-en is the convection heat

transfer coefficient between the steel shell of the ladle wall

and the environment in W/(m2 �C); and T! is the envi-

ronment temperature in �C. Equation (6) is the initial

condition. For more details, please see the existing litera-

ture [2].

2.1.2.2 Instantaneous temperature distribution model of
the ladle bottom Heat transfer in the ladle bottom can be

considered as a one-dimensional unsteady heat conduction

[2, 3, 35], formulated as
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oTb
os

¼ 1

qbcb

1

oz
kb �

oTb
oz

� �� �
ð7Þ

when z ¼ 0; Tb ¼ Tst ð8Þ

when z ¼ hb; kb
oTb
oz

¼ �ab�en Tb � T1ð Þ ð9Þ

Tb z; 0ð Þ ¼ f zð Þ ð10Þ

Equation (7) is the heat conduction differential equation

of the ladle bottom, where Tb, qb, kb, and cb are, respec-

tively, the temperature in �C, density in kg/m3, heat con-

ductivity in W/(m �C), and specific heat in J/(kg �C) of the
ladle bottom. Equations (8) and (9) are the boundary

conditions for Eq. (7), where hb is the thickness of the ladle

bottom in m; and ab-en is the convection heat transfer

coefficient between the steel shell of the ladle bottom and

the environment in W/(m2 �C). Equation (10) is the initial

condition. See the existing literature [2] for more details.

2.1.2.3 Thermal loss from the ladle lining Thermal loss

from the ladle lining is obtained by calculating the heat

flow of the contact surface between the ladle lining and the

molten steel as

Qlin ¼ kw;1
oTw
or

r¼r1j 2pr1hþ kb;1
oTb
oz

z¼0j pr21 ð11Þ

where Qlin is the thermal loss from the ladle lining in W;

h is the height of the steel bath in m; kw,1 is the heat

conductivity of the ladle wall material that is in contact

with the molten steel in W/(m �C); and kz,1 is the heat

conductivity of the ladle bottom material that is in contact

with the molten steel in W/(m �C).

2.1.3 Thermal loss from the top surface

The top surface thermal loss mostly results from the radi-

ation loss through the bare molten steel surface and slag

surface. It is difficult to do an exact calculation for this loss

using traditional mechanistic models. So, here the cooling

water energy change is used to indirectly calculate this part

of thermal loss as

Qsur ¼ gsurccwFcwDTcw ð12Þ

where Qsur is the top surface thermal loss in W; gsur is the
correction coefficient; ccw, Fcw, and DTcw are the specific

heat in J/(kg �C), flow rate in kg/s, and temperature dif-

ference in �C between inlet and outlet of the cooling water.

Through analysis, gsur can be considered as a function of

three online available variables, Farg (the argon flow rate in

Nm3/s), Dsl-co (the distance between the steel bath and the

ladle cover in m), and Tst as

gsur ¼ fsur Farg;Dsl�co; Tst
� �

ð13Þ

Similar with farc, the concrete expression of fsur is also

hard to derive by mechanistic approaches.

2.1.4 Thermal effects resulting from the additions

The additions include the slag and metal alloys. Their

thermal effects are calculated as

Qadd ¼
X
i

1

si
miki

 !
mstcst ð14Þ

where Qadd is the total thermal effect of additions in W;

i denotes a specific addition with mass mi in kg, and ki is its

temperature influence coefficient in �C/kg; si is the time

that addition i takes to reach the steel bath temperature in s;

and mst and cst are the mass in kg and specific heat in J/

(kg K) of molten steel respectively. The value of ki can be

obtained by statistical analysis based on actual production

data. Table 1 shows the temperature influence coefficients

kis of various additions for the LF system considered in this

study.

2.1.5 Thermal loss due to stirring-argon injection

The thermal loss due to stirring-argon injection is calcu-

lated as

Qarg ¼ cargFarg Tst � Targ
� �

ð15Þ

where Qarg is the heat flow carried away by argon in W;

and carg and Targ are the specific heat in J/(Nm3 �C) and
initial temperature in �C of argon respectively.

2.1.6 The overall mechanistic thermal model

According to the energy conservation law, the following

mechanistic thermal model can be obtained by combining

all of the above factors

dTst
ds

¼ Qarc � Qlin � Qsur � Qadd � Qarg

cstmst þ cslmsl

ð16Þ

where msl and csl are the mass in kg and specific heat in J/

(kg K) of the slag respectively.

2.2 Development of empirical part using indirect
training method

Obviously, the above mechanistic thermal model cannot be

immediately used for predicting the temperature of molten

steel, as there are two unknown functions, namely farc and

fsur. In this article, two single-hidden layer feed-forward

neural networks (SLFNs) are utilized to respectively

approximate farc and fsur (see Fig. 2), for such neural net-

works can approximate any nonlinear relationships
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arbitrarily well [36], and they have been successfully

applied in modeling some LF metallurgy processes to

predict the molten steel temperature [5, 6, 9, 10]. However,

for practical LF metallurgy processes, only the values of

the inputs to two empirical models, [Hsl, Larc] and [Farg,

Dsl-co, Tst], are available, whereas no target values of their

outputs garc and gsur are available. Therefore, traditional

neural network training methods, which usually train the

empirical part by directly minimizing the errors between

the outputs of the empirical model(s) and its (their) target

outputs, would be difficult to apply. In this study, the two

SLFN-based empirical models are trained indirectly by

minimizing the errors between the molten steel temperature

predicted by the hybrid model and its measured values. The

basic description of this indirect training method is given

below.

The two SLFN-based empirical models of farc and fsur
can be formulated as

garc ¼ f̂arcðHsl; Larc; harcÞ ð17Þ

gsur ¼ f̂surðFarg;Dsl�co; Tst; hsurÞ ð18Þ

where f̂arc and f̂sur denote the SLFN-based empirical models

used to approximate the unknown functions farc and fsur,

respectively, while harc and hsur are the vectors of weights

and bias of the corresponding SLFNs.

In essence, to train f̂arc and f̂sur is to determine the

optimal values of their parameters harc and hsur. The indi-

rect method fulfills the training task as follows. Firstly,

Eqs. (17) and (18) are, respectively, substituted into

Eqs. (1) and (12), so that a hybrid prediction model is

obtained

dTst
ds

¼ f̂arcðHsl; Larc; harcÞParc � Qlin � f̂surðFarg;Dsl�co; Tst; hsurÞccwFcwDTcw � Qadd � Qarg

cstmst þ cslmsl

ð19Þ

Then, harc and hsur are regarded as the vectors of

parameters to be identified in the hybrid prediction model,

and further they are determined by using the proposed IICS

algorithm to minimize an objective function which is

defined with the measurements of the molten steel tem-

perature, as shown below.

Jðharc; hsurÞ ¼
PH

h¼1

PMh

m¼1 xhm � x̂hmj j
PH
h¼1

Mh

ð20Þ

where H is the number of heats of training data; Mh is the

number of temperature samples of molten steel in the hth

heat; x represents the measured value; and x̂ represents the

hybrid model prediction. In such way, the training of f̂arc
and f̂sur can be appropriately fulfilled while avoiding the

requirement of their target outputs.

Table 1 Temperature influence

coefficients of additions
Addition kis (10

–2 �C/kg) Addition kis (10
–2 �C/kg)

High carbon ferrochrome - 0.95 Low carbon ferrochromium - 0.65

High carbon ferromanganese - 0.9 Low carbon ferromanganese - 0.75

Ferromolybdenum - 0.75 Ferrosilicon ? 0.9

Slag - 1.0 Carbon powder - 2.5

Al ? 5.0 Ni - 0.5

FeNb - 0.35 FeTi - 0.4

CaSi - 1.05 FeAl ? 1.0

HCZ1 - 1.0 Al–D - 0.5

CaO - 1.0 LCCR - 0.65

Fig. 2 Schematic representation

of the two SLFN-based

empirical models: a farc; b fsur
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3 Information interaction-enhanced CS

In this section, a brief overview of basic CS (BCS) is first

given for self-completeness. Next, the proposed informa-

tion interaction-enhanced CS (IICS) algorithm is elabo-

rated, followed by the complexity analysis of IICS.

3.1 BCS algorithm

Cuckoo search (CS), introduced by Yang and Deb in 2009

[22], is one of the intelligent optimization algorithms. The

core idea behind this algorithm is some cuckoo species’

brood parasitism. Besides, the CS algorithm also incorpo-

rates into its framework the mathematical model of the

Lévy flight behavior found in some birds and fruit flies.

The following are some idealized rules adopted in CS

development [22]: (1) the number of available host nests is

fixed, and each cuckoo each time lays one egg in a ran-

domly selected nest; (2) the nests containing high-quality

eggs will be chosen to partake in the next generation; and

(3) the egg laid by a cuckoo can be identified by the host

bird with a probability pa. Once it is identified, the host bird

will either push the egg out or just discard the nest, and

then make a new one. In addition, it is worthy to point out

that a nest, an egg or a cuckoo is equivalent to a solution

and only minimization problems are considered in the rest

of the article without loss of generality.

Based on the rules above, Lévy flight is performed first

to generate the new solution znewi for cuckoo i with the

following formula:

zi
new ¼ zi þ a� LevyðkÞ ð21Þ

where a is a vector of step size scaling factors that should

be related to the scales of the problem under consideration,

and it can be in most cases used as [37–39]

a ¼ a0ðzi � zbestÞ ð22Þ

where a0 is a constant usually set as 0.01 [38, 39] and zbest
represents the current best solution. In Eq. (21), Lévy(k) is
a random vector drawn from a Lévy distribution, k is a

Lévy flight parameter, and � represents the entry-wise

multiplication.

In essence, Lévy flights offer a random walk with ran-

dom steps drawn from a Lévy distribution. From the per-

spective of implementation, there are two procedures to

generate random numbers using Lévy flights [38], that is,

the selection of a random direction and the generation of

steps that obey the selected Lévy distribution. The gener-

ation of a direction should be drawn from a uniform dis-

tribution, whereas the generation of steps is quite tricky.

There are several ways of accomplishing this, but one of

the most efficient and yet straightforward ways is to utilize

the Mantegna algorithm [40], in which the step size s is

given by

s ¼ u

vj j1=b
ð23Þ

where u and v are drawn from the following normal

distributions:

u�Nð0; r2uÞ; v�Nð0; r2vÞ ð24Þ

ru ¼
Cð1þ bÞ � sinðpb=2Þ

C½ð1þ bÞ=2� � b � 2ðb�1Þ=2

� 	1=b

rv ¼ 1 ð25Þ

where C represents the Gamma function, and b is a dis-

tribution parameter related with k in Eq. (21) as k ¼ 1þ b
(0\b� 2, and b ¼ 1:5 [38] in CS).

As per the above, Eq. (21) can be rewritten as

znewi ¼ zi þ 0:01 � s � ðzi � zbestÞ � r ð26Þ

where r is a random vector with all its elements generated

from the standard normal distribution N (0, 1), and s is

calculated using Eq. (23).

After comparing the fitness values between each old and

new solution at the same nest and retaining the solutions

with lower fitness values, the new solution znewi for cuckoo i

is generated again by imitating the action of alien egg

discovery, which can be formulated as:

znewi ¼ zi þ rnd1 �Hðpa � rnd2Þ � ðzj � zkÞ ð27Þ

where zj and zk are two randomly selected solutions; pa is a

vector with all its elements being pa; rnd1 is a random

number generated from the standard uniform distribution

Uð0; 1Þ; rnd2 is a random vector with all elements gen-

erated from Uð0; 1Þ; and H(•) is a step function, defined as

HðxÞ ¼ Hðx1; x2; . . .; xd; . . .; xDÞ
¼ ½H1; H2; . . .;Hd; . . .;HD� ð28Þ

where Hd = 1 if xd[ 0, otherwise Hd = 0. More details on

BCS can be found in [38].

3.2 IICS algorithm

As mentioned above, information interaction between

individuals is lacking in the search process of BCS, while it

is well known that the information interaction between

people plays an important role for their team to accomplish

an assignment with high efficiency. Accordingly, it is

expected that a CS with an information interaction-en-

hanced mechanism can realize a better search performance

than BCS. Based on this consideration, a modified CS

called information interaction-enhanced CS (IICS) is pro-

posed in this article. In IICS, cuckoo i is offered an

opportunity to get some potentially useful information

from a selected information provider zpi (here pi defines
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which cuckoo should be selected as the information pro-

vider for cuckoo i). To get the zpi for cuckoo i, three

candidates are chosen from z = [z1, ..., zi-1, zi?1,..., zNp]

randomly, where Np denotes the population size. Among

these three candidates, the one with the best (i.e., smallest)

fitness value is selected as zpi, and meanwhile its index is

assigned to pi.

The main differences between IICS and BCS are the

updating formulas of the Lévy flight and alien egg dis-

covery. To be specific, in IICS, the updating formulas used

in BCS, namely Eqs. (26) and (27), are replaced with

Eqs. (29) and (30), respectively.

znewi ¼ zi þ DzLi � ðI �Hðca � rnd3ÞÞ þ DzI1i �Hðca
� rnd3Þ

ð29Þ

znewi ¼ zi þHðpa � rnd2Þ � ðDzAi � ðI �Hðca � rnd4ÞÞ
þ DzI2i �Hðca � rnd4ÞÞ

ð30Þ

where

DzLi ¼ 0:01 � s � ðzi � zbestÞ � r ð31Þ

DzI1i ¼ rnd5 � ðzpi � ziÞ ð32Þ

DzAi ¼ rnd1 � ðzj � zkÞ ð33Þ

DzI2i ¼ rnd6 � ðzpi � ziÞ ð34Þ

In the above equations, I is a vector with each element

being one; ca is a vector with all elements being ca, which

is a coefficient for adjusting the combination of the pro-

posed information interaction-enhanced mechanism and

Lévy flights (or the alien egg discovery); rnd3, rnd4, rnd5,

and rnd6 are random vectors with all their elements drawn

from U (0, 1); and H(•) is the same step function as defined

in Eq. (28).

Figure 3 presents the complete implementation of the

proposed IICS. Firstly, various parameters are set and a

group of Np solutions are randomly initialized (lines 1–2).

Next, the fitness function value for each solution is cal-

culated, and the one with the best fitness in the current

population is assigned to zbest(lines 3–4). Thereafter, these

solutions are sequentially evolved with the first (lines 7–9)

and second (line 14) proposed search operators, which

respectively combine the information interaction-enhanced

mechanism with Lévy flights and the alien egg discovery.

Following the generation of each new solution, the optimal

selection between the old and newly-generated solutions at

the same nest will be performed, and the one with the

smaller fitness value is retained (lines 10–13 and 15–18).

Finally, zbest is updated and it is selected as the optimal

solution of the search process (lines 19–21).

3.3 Complexity analysis of IICS

To facilitate the analysis, the computation time complexity

of BCS is given firstly in this section. For each cuckoo,

O (D) number of operations are performed in an iteration in

BCS, resulting in O (Np, D) complexity. However, gener-

ally CS runs for a number of iterations, so the overall

complexity depends on the maximum iteration number

(gmax). This procedure gives the overall time complexity of

BCS as O (Np. D. gmax). Compared with BCS, our IICS

needs to perform additional computations of O (Np.

D. gmax) for the proposed information interaction-enhanced

mechanism. Meanwhile, the selection of information pro-

viders consumes further computational complexity of

O (Np. D. gmax). Accordingly, the computation time com-

plexity of IICS is the same as that of BCS, i.e., O (Np.

D. gmax). However, IICS significantly outperforms BCS

according to the experimental results given in the following

Fig. 3 Complete framework of the proposed IICS algorithm
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sections. These observations suggest that when compared

with BCS, our IICS achieves better tradeoff between per-

formance improvement and computation time complexity.

4 Optimizing parameters of the hybrid
model using IICS

In this section, the IICS algorithm is applied to solve the

parameter optimization problem of empirical models f̂arc
and f̂sur in the hybrid prediction model described by

Eq. (19), hereafter referred as to the PO problem, and thus

accomplish their training with the proposed indirect

method. In the process of search, nest i is encoded as zi-
= [harci, hsuri] to represent a set of candidate values of harc
and hsur, and Eq. (20) is used as the fitness function to

evaluate the quality of each nest. Algorithm 2, as illustrated

in Fig. 4, describes the procedures for the calculation of the

fitness value Ji for nest i.

The implementation of IICS for optimizing the param-

eters in the empirical part with the indirect training method

is given by Algorithm 3, as illustrated in Fig. 5.

5 Experiments

In this section, the IICS algorithm was validated on 16

classical benchmark functions and the 29 CEC 2017

benchmark functions. Then, the actual production data

from a 300 t LF at Baoshan Iron & Steel Co. Ltd were used

to build the proposed hybrid prediction model using IICS.

5.1 Performance validation of IICS
on benchmark functions

5.1.1 Validation on classical benchmark functions

In this subsection, 16 classical benchmark functions

[41–43] are employed for investigating the performance of

IICS. These benchmark functions are listed in Table 2,

which includes the mathematical formula, search range,

and function value at the global minimum (F�) of each

benchmark function. These benchmark functions fall into
Fig. 4 Calculation procedures for the ith nest’s fitness value

Fig. 5 Implementation of the IICS algorithm for solving the PO

problem
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Table 2 Classical benchmark functions used

Function name Mathematical formula Range F*

Sphere function
f1ðxÞ ¼

PD
d¼1

x2d
[- 100,

100]D
0

Schwefel’s

problem 2.22 f2ðxÞ ¼
PD
d¼1

xdj j þ
QD
d¼1

xdj j
[- 10,

10]D
0

High

conditioned

elliptic

function

f3ðxÞ ¼
PD
d¼1

ð106Þ
d�1
D�1x2d

[- 100,

100]D
0

Schwefel’s

problem 1.2 f4ðxÞ ¼
PD
d¼1

ð
Pd
j¼1

xjÞ2
[- 100,

100]D
0

Sum square

function f5ðxÞ ¼
PD
d¼1

dx2d
[- 10,

10]D
0

Griewank’s

function f6ðxÞ ¼
PD
d¼1

x2
d

4000
�
QD
d¼1

cosð xdffiffi
d

p Þ þ 1
[- 600,

600]D
0

Rastrigin’s function
f7ðxÞ ¼

PD
d¼1

ðx2d � 10 cosð2pxdÞ þ 10Þ
[- 5.12,

5.12]D
0

Noncontinuous

Rastrigin’s

function
f8ðxÞ ¼

PD
d¼1

ðy2d � 10 cosð2pydÞ þ 10Þ; yd ¼
xd xdj j\ 1

2
roundð2xdÞ

2
xdj j 	 1

2

8><
>:

[- 5.12,

5.12]D
0

Ackley’s

function f9ðxÞ ¼ �20 expð�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
d¼1

x2d

s
Þ � expð1D

PD
d¼1

cosð2pxdÞÞ þ 20þ e
[- 32.768,

32.768]D
0

Schwefel’s

function f10ðxÞ ¼ 418.9828872724336 � D�
PD
d¼1

xd sinð xdj j
1
2Þ

[- 500,

500]D
0

Weierstrass

function f11ðxÞ ¼
XD
d¼1

ð
Xkmax

k¼0

ak cosð2pbkðxd þ 0:5ÞÞÞ � D
Xkmax

k¼0

ak cosð2pbk � 0:5Þ

where a ¼ 0:5; b ¼ 3; kmax ¼ 20

[- 0.5,

0.5]D
0

Generalized

penalized

function1

f12ðxÞ ¼
p
D

10 sin2ðpy1Þ þ
XD�1

d¼1

ðyd � 1Þ2 � ½1þ 10 sin2ðpydþ1Þ� þ ðyD � 1Þ2
( )

þ
XD

d¼1
uðxd; 10; 100; 4Þ

where yd ¼ 1þ 1

4
ðxd þ 1Þ; uðxd; a; k; mÞ ¼

kðxd � aÞm xd [ a

0 � a� xd � a

kð�xd � aÞm xd\� a

8>><
>>:

[- 50,

50]D
0

Generalized

penalized

function2

f13ðxÞ ¼ 0:1 sin2ð3px1Þ
�

þ
XD�1

d¼1

ðxd � 1Þ2 � ½1þ sin2ðpxdþ1Þ� þ � � �

� � � ðxD � 1Þ2½1þ sin2ð2pxDÞ�
o
þ
XD

d¼1
uðxd; 5; 100; 4Þ

[- 50,

50]D
0

Schaffer

function f14ðxÞ ¼ 0:5þ ðsin2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

d¼1 x
2
d

q
Þ � 0:5Þ

�
ð1þ 0:001ð

PD
d¼1

x2dÞÞ
2 [- 100,

100]D
0

Alpine function f15ðxÞ ¼
PD

d¼1 xd � sinðxdÞ þ 0:1 � xdj j [- 10,

10]D
0

Levy function
f16ðxÞ ¼

XD�1

d¼1

ðxd � 1Þ2 � ½1þ sin2ð3pxdþ1Þ� þ sin2ð3px1Þ

þ xD � 1j j½1þ sin2ð3pxDÞ�

[- 10,

10]D
0
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two categories: unimodal problems and multimodal prob-

lems. Of them, f1, f2, f3, f4, and f5 are unimodal ones con-

taining only one optimum, whereas the rest 11 benchmark

functions, namely f6 to f16, are multimodal ones having

many local optima, but only one global optimum. In

addition, it should be pointed out that the validation is

performed with 50 variables, that is, the dimension (D) of

each benchmark function is 50.

In order to show the competitiveness of the proposed

IICS, the proposed IICS is compared with six recently

developed CS variants, i.e., CCS [43], ACS [44], ICS [45],

NNCS [46], BHCS [47], and HECS [48], as well as BCS in

this subsection. For fair comparison, Np and gmax (the

maximum iteration number used to terminate the iteration)

of the eight CS-based algorithms are set to be same, that is

Np = D and gmax = 5000 as done in the studies [46, 49].

We follow the parameter settings of CCS, ACS, ICS,

NNCS, BHCS, and HECS used or recommended in the

studies conducted on them. For BCS and IICS, the con-

figuration of the common parameter pa is taken from that

originally utilized by Yang and Deb [22, 38]. From these

studies, pa = 0.25 is a better choice for most optimization

problems. The specific parameter of IICS, i.e., ca, is

adjusted via experiment analysis. According to the exper-

iments, it was found that when ca = 0.08 the search per-

formance of IICS can be well balanced on different kinds

of optimization problems. The parameter settings of the

eight CS-based algorithms are summarized in Table 3.

To reduce random discrepancy, each algorithm is per-

formed independently for 30 runs on each benchmark

function, and the mean, best, worst, and standard deviation

(SD) of the function error (f(xbest) - F*), where xbest
represents the best solution achieved by the algorithm in a

run, are calculated and recorded. The test results of the

eight CS-based algorithms on the 16 classical benchmark

functions are shown in Table 4. The best mean error values

among the eight algorithms are highlighted in boldface. On

these 16 classical benchmark functions, IICS produced the

lowest mean error values for eight of these, while BHCS

produces the lowest mean error values in five cases. For

two of the benchmark functions, IICS and some of its

competitors are seen to produce equal results. For f14, it is

observed that CCS produces the better solution. Although

BHCS attains the best mean results on 4 out of the 5 uni-

modal benchmark functions, it sacrifices performance on

multimodal ones. On the contrary, IICS is not only very

efficient in solving the unimodal problems but also attain

very competitive performance on the multimodal ones. To

statistically compare IICS with each competitor, the mul-

tiple-problem Wilcoxon rank test is conducted at a signif-

icance level of 5% based on the mean error value. In

Tables 4 and 5, the statistical significance state is indicated

with the symbols ? , &, and –, denoting that the

competitor performs significantly worse than, insignifi-

cantly different from, and significantly better than the IICS

algorithm respectively. Moreover, the Friedman test is also

applied to determine the differences between these algo-

rithms and rank them with a significance level of 0.05.

Table 4 indicates that IICS provides significantly better

results than all of the other seven algorithms. The row

headed ‘‘Mean Rank’’ provides the final ranking of dif-

ferent algorithms for all 16 classical benchmark functions.

The results show that IICS, NNCS and BHCS are in the

first, second and third orders with 1.56, 3.84, and 3.91

mean rank values respectively. In addition, the p value

(7.4999e-09) is smaller than the chosen significance level

(0.05). This indicates that there is at least one significant

difference among the algorithms’ results.

To show the convergence process visually, the conver-

gence curves of each algorithm in term of the mean error

values on the classical benchmark functions are presented

in Fig. 6. For the ease of comparison, semilogarithmic

coordinate is used to plot the convergence curves of each

benchmark function, except that of f14. When the conver-

gence curves in Fig. 6 are analyzed, it can be observed that

IICS performs well in 14 out of the 16 classical benchmark

functions. IICS has significantly higher convergence

speeds in f6, f7, f9 to f13, and f16 compared with the other

seven CS-based algorithms. Therefore, IICS can be regar-

ded efficient. However, the result patterns slightly differ in

some of the 14 functions: for f14, it can be seen that the

rapid convergence of IICS is at the expense of being

trapped in the local minima, while the results of f1 to f3, f5,

and f8 show that IICS and BHCS perform similarly in terms

of convergence speed and accuracy. In addition, it can also

be observed that IICS is weak in f4 and f15. For these two

functions, BHCS has the highest convergence speeds and

best search results.

5.1.2 Validation on CEC 2017 benchmark functions

In this subsection, benchmark functions from CEC 2017

are used as the benchmark test set. This test set consists of

29 benchmark functions: two unimodal functions, F1 and

F3; seven simple multimodal functions, F4 - F10; ten

hybrid functions, F11 - F20; and ten composition func-

tions, F21 - F30. The order of these functions is the same

as the original article [50]. The detailed functions are not

presented here to save space. These benchmark functions

are considered difficult to optimize, as all of them are

shifted and rotated, and some of them are hybrid or com-

position functions. It should be noted that the function F2

named ‘‘Shifted and Rotated Sum of Different Power’’ is

not used here due to unstable behavior especially for higher

dimensions, as described in [50]. The detailed definitions

can be found in the original article.
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In addition to BCS, CCS, ACS, ICS, NNCS, BHCS, and

HECS, this subsection compares IICS with four other

intelligent algorithms, i.e., hybrid firefly and particle

swarm optimization (HFPSO) [51], enhanced LSHADE-

SPACMA (ELSHADE-SPACMA) [52], hybrid sampling

evolution strategy (HSES) [53], and improved sine cosine

algorithm with crossover scheme (ISCA) [54], which

belong to PSO, DE, covariance matrix adaptation evolution

strategy (CMA-ES), and sine cosine algorithm (SCA)

communities, respectively. These four algorithms have all

proved their good performance on CEC 2017 benchmark

functions, and HSES and ELSHADE-SPACMA have won

the first and third places in the CEC 2018 competition

respectively. Parameter configurations of the new selected

algorithms are the same as in the corresponding references,

as listed in Table 3. Size of the population (Np) is set equal

to the benchmark function dimension (D) in IICS, BCS,

CCS, ACS, ICS, NNCS, BHCS, HECS, HFPSO, and

ISCA, while the settings of Np in ELSHADE-SPACMA

and HSES are consistent with those in the original studies.

In accordance with the original article of the competition of

CEC 2017 problems [50], each algorithm is repeated 51

runs with the maximum number of function evaluations set

to 10,000 9 D.

Table 5 lists the obtained results from all involved

algorithms on CEC 2017 benchmark functions with

D = 50, including the mean, best, worst and standard

deviation (SD) values of the function error of every

benchmark function obtained by each algorithm, as well as

the findings from the multiple-problem Wilcoxon rank test

and Friedman test both at a significance level of 0.05. In

Table 5, the mean, best, worst and SD values for

ELSHADE-SPACMA and HSES are collected from the

original articles [52, 53], and values smaller than 10-8 are

indicated as 0.00e?00. When the results from IICS com-

pared with those from the other seven CS-based algo-

rithms, it can be seen IICS produces the best mean error

values for 17 of the 29 benchmark functions, while all the

other seven CS-based competitors do so for just 13

benchmark functions. Examination of Symbol row in

Table 5 further indicates that IICS achieves significantly

better results than the other seven CS-based competitors, as

well as HFPSO and ISCA. However, the ELSHADE-

SPACMA and HSES algorithms are seen to return superior

results to IICS. The findings from the Friedman test show

that ELSHADE-SPACMA, HSES and IICS have the first,

second, and third mean rank values of 1.69, 1.95, and 4.02,

respectively.

5.2 Experimental verification based on actual
production data

In this section, 537 heats of actual production data from a

300 t LF built in Baoshan Iron & Steel Co., Ltd., are

employed to verify the ability of the proposed hybrid

prediction model, as well as the performance of the IICS

algorithm. Among these data, 437 heats are randomly

selected for the development of the proposed prediction

model, and the remainders are utilized for testing its

performance.

The parameter setting for IICS to solve the PO problem

is as follows: pa ¼ 0:25, ca ¼ 0:08, Np ¼ D (where

D = [(2 ? 1) 9 hd1 ? (hd1 ? 1) 9 1] ? [(3 ? 1) 9 hd2
? (hd2 ? 1) 9 1], and hd1 and hd2 denote the hidden

neuron numbers of the empirical models f̂arc and f̂sur
respectively), and gmax = 5000. Moreover, it should be

Table 3 Parameter settings of involved algorithms

Algorithm Parameter settings

IICS Np = D, pa = 0.25, a = 0.01, ca = 0.08

BCS Np = D, pa = 0.25, a = 0.01

CCS Np = D, pa = 0.25, generation of chaotic sequences: Gauss map

ACS Np = D, pa = 0.25

ICS Np = D, pamax = 0.5, pamin = 0.005, amax = 0.5, amin = 0.01

NNCS Np = D, pa = 0.25, p = 0.25, selection of nearest neighbour solutions: fitness-based similar metrics

BHCS Np = D, pa = 0.3, a = 1.1, b = 1.7, d = 1.6, E = 1

HECS Np = D, p0 = 0.6, a = 0.4, b = 1.5, proportion of exploitation group: 70%, proportion of exploration group: 30%

HFPSO Np = D, c1 = c2 = 1.49445,xmax = 0.9,xmin = 0.5, Vmax = 0.1*(Xmax - Xmin), Vmin = - Vmax

ELSHADE-SPACMA Npinit = 18*D, H = 5, Arc_rate = 1.4, FCP = 0.5, c = 0.8, p = 0.1, pinit = 0.3, pmin = 0.15

HSES CMA-ES: Np = 3 lnDb c ? 80, N = Np/2, cm = 1, acov = 2

univariate sampling: Np = 200, N = 100, cc = 0.96, I = 20 for the first step, and Np = 450, N = 360 for the fourth step

ISCA Np = D, A = 2 - 2*(t/gmax), r1 [ [0, 2p], C [ [0, 2], CR = 0.3
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Table 4 Comparison among eight CS-based algorithms on 16 classical benchmark functions

IICS BCS CCS ACS ICS NNCS BHCS HECS

f1 Mean 9.1045e-80 1.2103e-16 5.2092e-27 3.4943e-15 1.1492e-26 5.7032e-26 7.6718e-87 9.0816e-13

Best 6.4047e-82 7.9400e-17 1.4799e-27 1.5652e-19 4.5444e-27 2.5441e-26 8.3763e-99 4.0290e-15

Worst 1.0474e-78 1.8044e-16 1.2553e-26 6.6248e-14 2.4916e-26 1.3247e-25 2.2727e-85 7.2246e-12

SD 1.9806e-79 2.7493e-17 2.3640e-27 1.2026e-14 5.0936e-27 2.4366e-26 4.0779e-86 1.6631e-12

f2 Mean 1.0197e-48 1.0391e-07 3.9451e-17 1.9589e-07 4.6875e-15 2.2108e-15 7.7583e-42 9.6716e-12

Best 2.3713e-49 7.0947e-08 1.9001e-17 1.1735e-09 1.9344e-15 1.2576e-15 5.9656e-51 3.4226e-15

Worst 3.3463e-48 1.4856e-07 7.0677e-17 8.5147e-07 7.3031e-15 3.1005e-15 2.1029e-40 1.3383e-10

SD 7.2959e-49 1.9099e-08 1.3230e-17 2.0975e-07 1.2799e-15 5.3815e-16 3.7680e-41 2.8826e-11

f3 Mean 5.2762e-76 2.1603e-13 2.4923e-24 2.2299e-09 3.4298e-24 5.0435e-23 1.3185e-81 7.5079e-09

Best 3.0703e-78 1.2269e-13 7.3070e-25 4.8189e-15 9.9390e-25 1.9611e-23 4.1591e-96 6.4759e-12

Worst 8.6207e-75 3.7299e-13 5.4977e-24 5.5524e-08 1.0259e-23 1.1006e-22 3.9357e-80 1.4279e-07

SD 1.5497e-75 5.7190e-14 1.2663e-24 9.9728e-09 1.6792e-24 2.2959e-23 7.0636e-81 2.5881e-08

f4 Mean 5.5204e?02 1.5243e?03 7.6669e?03 5.6889e?03 2.9010e?03 5.5265e?03 1.7722e-03 5.4455e?00

Best 2.8713e?02 1.2438e?03 5.2771e?03 4.0088e?03 2.3548e?03 3.8692e?03 5.4896e-10 1.2992e?00

Worst 8.9263e?02 1.7735e?03 1.0320e?04 7.8461e?03 3.4970e?03 7.3163e?03 4.5628e-02 3.8112e?01

SD 1.2193e?02 1.3384e?02 1.2547e?03 1.0425e?03 3.2392e?02 7.3979e?02 8.2510e-03 6.8928e?00

f5 Mean 1.7782e-80 2.2331e-17 9.2233e-28 1.7569e-15 1.8771e-27 1.0736e-26 4.7950e-87 2.7826e-13

Best 4.4669e-82 1.2664e-17 3.1723e-28 2.6128e-20 9.3270e-28 3.5558e-27 1.8587e-98 7.4386e-16

Worst 2.1195e-79 3.3418e-17 1.4909e-27 1.5123e-14 3.4685e-27 3.3911e-26 1.1433e-85 2.5486e-12

SD 4.0074e-80 5.4560e-18 3.3132e-28 3.8722e-15 7.1922e-28 5.5310e-27 2.0657e-86 5.5680e-13

f6 Mean 0 2.3054e-11 0 8.4484e-09 0 0 4.6835e-02 9.5708e-02

Best 0 1.4333e-13 0 3.8200e-11 0 0 0 2.1316e-14

Worst 0 2.4082e-10 0 1.0363e-07 0 0 1.7450e-01 7.0113e-01

SD 0 4.7534e-11 0 2.2249e-08 0 0 5.0735e-02 1.4001e-01

f7 Mean 0 9.2136e?01 1.0841e?02 1.3883e?02 4.2197e?01 6.0092e?01 1.6152e?01 2.4846e?01

Best 0 7.1040e?01 9.1742e?01 1.1633e?02 3.5633e?01 4.3982e?01 8.9546e?00 1.6914e?01

Worst 0 1.1068e?02 1.2691e?02 1.5305e?02 4.9667e?01 7.2254e?01 2.3879e?01 3.8803e?01

SD 0 9.7487e?00 1.0097e?01 9.7594e?00 3.4288e?00 7.4029e?00 4.0593e?00 5.8489e?00

f8 Mean 0 7.8532e?01 9.2884e?01 1.2276e?02 4.2404e?01 5.0187e?01 0 3.1447e?01

Best 0 6.2334e?01 7.5442e?01 1.0393e?02 3.6342e?01 3.4660e?01 0 2.0000e?01

Worst 0 8.9813e?01 1.1103e?02 1.3969e?02 4.7325e?01 6.0928e?01 0 6.0270e?01

SD 0 6.3229e?00 1.0027e?01 1.0535e?01 2.6840e?00 6.5996e?00 0 8.1190e?00

f9 Mean 5.4475e-15 3.1977e-03 4.7133e-14 5.7452e-06 1.1227e-13 1.9765e-13 3.7426e?00 5.0417e?00

Best 3.5527e-15 3.6544e-04 3.1974e-14 1.9448e-06 7.8160e-14 1.2079e-13 2.7231e?00 3.0665e?00

Worst 7.1054e-15 1.9237e-02 6.7502e-14 1.1932e-05 1.5632e-13 3.6948e-13 5.5088e?00 7.6055e?00

SD 1.7724e-15 3.4682e-03 7.2190e-15 2.3901e-06 1.9079e-14 5.3200e-14 7.4785e-01 1.0869e?00

f10 Mean 4.0651e-09 4.8286e?03 5.4499e?03 5.7974e?03 3.5282e?03 1.4048e?03 4.5595e?03 2.0753e?03

Best 7.2760e-12 3.6889e?03 4.8528e?03 5.1737e?03 3.1088e?03 1.2967e?02 3.2176e?03 1.1844e?03

Worst 7.0719e-08 5.3482e?03 6.2488e?03 6.5433e?03 3.8670e?03 2.7235e?03 7.4403e?03 3.0824e?03

SD 1.5320e-08 3.1425e?02 3.3846e?02 3.1304e?02 2.1750e?02 6.1043e?02 7.4167e?02 4.9162e?02

f11 Mean 0 7.4298e-01 7.4711e-12 7.1490e-03 6.2282e-05 4.5858e-12 6.1840e?00 4.3903e?00

Best 0 4.7476e-01 8.1002e-13 2.1657e-03 2.8448e-05 6.6791e-13 2.7885e?00 2.2968e?00

Worst 0 1.0156e?00 5.9885e-11 1.5243e-02 1.2768e-04 2.1075e-11 1.0476e?01 7.0250e?00

SD 0 1.3643e-01 1.1266e-11 2.5551e-03 2.1668e-05 5.1091e-12 1.5537e?00 1.2290e?00

f12 Mean 0 3.0325e?01 8.8873e-02 2.5756e?01 9.5626e-01 1.3380e-13 1.6400e-01 3.3385e-01

Best 0 1.5435e?01 1.0239e-09 1.6084e?01 2.5272e-01 1.6678e-18 0 3.9151e-16

Worst 0 4.4944e?01 8.0876e-01 4.0014e?01 2.3725e?00 1.5965e-12 1.4974e?00 2.3018e?00

SD 0 7.5398e?00 2.1442e-01 5.7070e?00 4.7168e-01 3.6500e-13 3.0439e-01 5.4411e-01
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pointed out that when IICS is employed to solve the fol-

lowing model parameter optimization problems, 20 inde-

pendent calculation runs are conducted to reduce random

discrepancy. Correspondingly, the mean predicted values

are utilized for the following hidden neuron number

selection, as well as the model prediction performance

exhibition and comparison.

For each of the above two empirical models, the acti-

vation functions for the hidden layer and the output layer

are the sigmoid function and the linear function, respec-

tively. The optimal numbers of hidden neurons for f̂arc and

f̂sur are 3 and 5, respectively, determined by trial and error;

that is to say, the selected topologies of these two empirical

models are 2–3–1 and 3–5–1, respectively. After the

topologies of f̂arc and f̂sur are selected, all the 437 heats of

modeling data are utilized for determining the model

parameters with the methodology depicted in Sect. 4, to

obtain the overall hybrid temperature prediction model of

molten steel.

Then, the 100 heats of testing data are utilized to eval-

uate the performance of the proposed hybrid prediction

model. Figure 7 shows the final molten steel temperature

predicted by the developed hybrid model. Figure 7 shows

that this model can predict the temperature with high

accuracy. Out of these prediction results, the absolute error

in 91% of the cases is lower than 5 �C (desirable value),

and in 95% of the cases, it is lower than 7 �C (tolerable

value), and only in 2% of the cases is absolute error higher

than 10 �C. This demonstrates the effectiveness of the

hybrid prediction model, with the proposed indirect train-

ing method for its empirical part.

To demonstrate the excellent prediction ability of the

proposed hybrid model, this article also develops an

empirical prediction model based on the above selected

437 heats of production data. To be fair to the comparison,

this empirical model is also established utilizing a SLFN

and its parameters (namely the network’s weights and

thresholds) are determined by IICS. The input layer of this

SLFN-based empirical prediction model has eight neurons.

They are the initial molten steel temperature, total power

consumption, ladle state, heat effect of additions, total

argon consumption, weight of molten steel, refining time,

and energy change of cooling water in the water-cooled

cover. The hidden layer has 13 neurons (determined by

trial and error), and the output layer has one neuron (the

final molten steel temperature). Figure 8 shows the results

predicted by the empirical model. For ease of comparison,

the prediction errors (PE) of the proposed hybrid model

and empirical model, as well as the differences between the

prediction errors (D_PE) of these models are presented in

Fig. 9a, b respectively. Herein, the differences in more

details are the results obtained by subtracting the absolute

Table 4 (continued)

IICS BCS CCS ACS ICS NNCS BHCS HECS

f13 Mean 0 6.1622e-11 3.1990e-24 1.7899e-09 2.7767e-22 2.3176e-24 2.7541e-01 3.4123e?00

Best 0 1.6431e-11 3.7011e-25 8.2708e-14 3.9638e-23 7.5682e-25 0 2.6992e-12

Worst 0 1.2503e-10 8.9568e-24 8.0605e-09 1.0681e-21 5.8368e-24 3.0335e?00 3.7010e?01

SD 0 3.0103e-11 2.0646e-24 2.5233e-09 2.8035e-22 1.1979e-24 6.0988e-01 7.3494e?00

f14 Mean 1.7127e-01 3.3363e-01 1.5091e-01 3.1583e-01 2.3970e-01 1.9802e-01 3.2575e-01 4.0319e-01

Best 1.2699e-01 2.7274e-01 1.2699e-01 2.7275e-01 2.2769e-01 1.7822e-01 2.2769e-01 2.7274e-01

Worst 2.2769e-01 3.7329e-01 1.7822e-01 3.5186e-01 2.7274e-01 2.2769e-01 3.9610e-01 4.7161e-01

SD 2.5294e-02 2.2402e-02 2.5551e-02 2.2058e-02 1.9922e-02 2.4228e-02 3.9841e-02 4.7444e-02

f15 Mean 1.0319e-03 1.1174e?01 5.8457e?00 1.3973e?01 1.7402e?00 2.7511e?00 2.5535e-16 4.5246e-02

Best 4.1769e-04 7.7085e?00 3.5273e?00 1.1464e?01 5.1660e-01 1.1364e?00 6.5497e-45 4.6885e-14

Worst 3.8437e-03 1.3047e?01 7.7856e?00 1.5843e?01 2.9713e?00 5.1818e?00 1.4433e-15 3.4840e-01

SD 7.8925e-04 1.2460e?00 9.7611e-01 1.1404e?00 5.2155e-01 8.7224e-01 3.3754e-16 7.2348e-02

f16 Mean 0 8.0057e-15 1.0583e-27 7.1787e-12 5.1830e-27 1.1272e-26 6.0530e-01 5.2595e-01

Best 0 2.3315e-15 0 1.6839e-14 0 2.0503e-27 0 2.1266e-16

Worst 0 2.6559e-14 3.1467e-27 3.9946e-11 1.5264e-26 2.5805e-26 3.2991e?00 2.6656e?00

SD 0 4.7070e-15 6.7404e-28 9.3992e-12 3.7550e-27 5.5642e-27 8.0578e-01 7.7296e-01

Symbol ? ? ? ? ? ? ?

Mean Rank 1.56 6.00 3.97 6.75 4.03 3.84 3.91 5.94
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prediction errors of the empirical model from that of the

hybrid model. Thus, obviously the D_PE value can indi-

cate whether the prediction performance of the hybrid

model is better than (i.e., D_PE\ 0), ties (i.e., D_PE = 0),

or worse than (i.e., D_PE[ 0) that of the empirical model

on the corresponding heat. In addition, four performance

evaluation indices are used for quantitative comparison.

They are the root mean square error (RMSE), mean

absolute error (MAE), mean relative error (MRE), and

accuracy rate (AR) which is defined as

AR ¼ Na

Nt

� 100% ð35Þ

where Na is the number of heats with absolute prediction

errors not higher than 5 �C, and Nt is the number of total

testing heats. The calculation results with respect to these

four indices for the above two models are listed in Table 6.

From Figs. 7–9, it can be observed that both the hybrid

model and the empirical one could predict the molten steel

temperature with certain accuracy, while the prediction

values given by the former are much closer to the measured

values than those given by the latter. Furthermore, as can

be observed from the data in Table 6, the proposed hybrid

model predicts significantly better than the empirical one.

Compared with the empirical model, the RMSE, MAE, and

MRE of the proposed hybrid model are respectively lower

by 33.11%, 30.81%, and 30.77%; while the AR of the

proposed hybrid model exceeds 90%, an 18.18%

improvement over the empirical one. These demonstrate

the excellent prediction performance of the proposed

hybrid model in a practical application. From these

observations and comparisons above, it can be concluded

that the proposed hybrid model is a promising predictor for

the molten steel temperature.

Moreover, to confront the search capability of IICS with

some other widely used intelligent algorithms in model

parameter optimization, GA [12], PSO [13], DE [14], ACO

[15], and BCS are employed to solve the same PO problem

with the topologies of f̂arc and f̂sur being 2–3–1 and 3–5–1

respectively, and the 437 heats of modeling data. In addi-

tion, it is interesting to investigate the performance of the

two winners of the CEC 2018 competition, i.e., HSES and

ELSHADE-SPACMA, on this PO problem. The parame-

ters of these four new selected algorithms are set according

to the respective studies. Specifically, in GA the BLX-a
Crossover is used, and the crossover probability pc, muta-

tion probability pm, and parameter a for BLX are set to

0.85, 0.02, and 2.0 respectively. In PSO the inertia weight

x, cognitive acceleration coefficient c1, and social accel-

eration coefficient c2 are taken as 0.5, 2.0, and 1.0,

respectively. In DE the scale factor F and crossover

probability Pxover are both set to 0.5, and the mutation

operator is DE/best/1. In ACO the selection parameter q0,Ta
bl
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two weighting parameters a and b, and two updating

parameters Q and c are respectively set to 0.85, 1, 4, 0.1,

and 0.7. The parameters of IICS, BCS, ELSHADE-

SPACMA, and HSES are in common with those used in

Sect. 5.1. The size of population Np is set to be the number

of model parameters to be estimated (i.e., D = 39) for IICS,

GA, PSO, DE, ACO, and BCS, while the settings of Np for

ELSHADE-SPACMA and HSES are consistent with the

original studies. To be fair, the maximum number of fitness

function evaluations in all 20 runs is equal to 10,000 9 D.

Table 7 gives the results of the eight algorithms on the

PO problem in 20 independent runs, and the best results are

Fig. 6 Mean convergence

characteristics of eight CS-

based algorithms on 16 classical

benchmark functions. a f1, b f2,
c f3, d f4, e f5, f f6, g f7, h f8, i f9,
j f10, k f11, l f12, m f13, n f14,
o f15, and p f16
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shown in boldface for clarity. The columns headed ‘Mean’,

‘Min’, ‘Max’, and ‘SD’ show the mean, minimum, maxi-

mum, and standard deviation values of the fitness function

defined by Eq. (20) for each algorithm. As can be seen

from Table 7, in terms of the mean fitness function value

both BCS and IICS give better results than the other four

widely-used model parameter optimization algorithms,

revealing that CS is relatively more suitable for solving the

PO problem involved in this study. It can also be seen that

IICS performs better than ELSHADE-SPACMA and

HSES, which indicates that IICS is an efficient algorithm

for solving the PO problem. Furthermore, it can be

Fig. 6 continued
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observed that IICS produces much better optimization

results than BCS. Figure 10 illustrates the convergence

progress of IICS and BCS on the PO problem. It can be

found from Fig. 10 that IICS has a better search accuracy

and a higher convergence speed, which demonstrates again

that the proposed IICS algorithm has greatly enhanced the

performance of BCS.

6 Conclusions

A hybrid model for the prediction of molten steel tem-

perature in LF is proposed. In the proposed hybrid pre-

diction model, two SLFN-based empirical models are

incorporated within the structure of a mechanistic thermal

model, to represent the unknown functions in the mecha-

nistic thermal model. The primary difference between the

proposed hybrid prediction model and existing ones is that

its empirical part is not trained in the traditional direct way

since the target outputs of the two empirical models are

unavailable in advance. In the proposed approach, the

empirical part is trained indirectly with the readily avail-

able temperature measurements of molten steel but not the

barely accessible target outputs of this part, which means

the hybrid prediction model with its empirical part trained

by the proposed indirect method has more extensive

application range when compared to existing ones. Appli-

cation results on the production data from a 300 t LF at

Baoshan Iron & Steel Co., Ltd, show the effectiveness and

superiority of the proposed hybrid prediction model.

Another main innovation of this article is the develop-

ment of the information interaction-enhanced CS (IICS),

which is used to optimize the parameters in the empirical

part so as to complete the development of the proposed

hybrid prediction model. One of the problems with BCS

and many of its variants is that the information interaction

among cuckoos is lacking in the search process, which

Fig. 7 Predicted results of the molten steel temperature by the

proposed hybrid model

Fig. 8 Prediction results of the molten steel temperature by the

empirical model

Fig. 9 Comparison of prediction

errors between the proposed

hybrid model and empirical

model
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would decrease their search performance considerably. In

order to overcome this problem, an information interaction-

enhanced mechanism is proposed and employed in IICS.

The optimization results on the model parameter estimation

problem and two benchmark sets (16 classical benchmark

functions and 29 CEC 2017 benchmark functions) indicate

that IICS has distinct advantages over its competitive

algorithms (expect ELSHADE-SPACMA and HSES) on

these optimization problems. When compared with the

winners of the CEC 2018 competition, i.e., ELSHADE-

SPACMA and HSES, the performance of IICS is found to

be inferior to the two top algorithms on the CEC 2017

benchmark set, but it produces better results on the

parameter optimization problem involved in this study.

Despite its promising performance, the proposed IICS still

has limitations. First of all, compared with BCS, one more

parameter (i.e., ca) is used by the algorithm to perform the

proposed information interaction-enhanced mechanism.

Consequently, the parameter tuning process used to

achieve a reasonably good performance of IICS can be

time consuming. As for the two common parameters of

IICS and BCS (i.e., a and pa), our current study sets them

directly according to the recommendation of Yang and Deb

[22, 38]. There may be better value combinations of the

three parameters. But their tuning process will no doubt

become much more time consuming, and it might also

require retuning when the algorithm is applied to solve

different optimization problems.

Based on the current study, several future work direc-

tions can be pursued. Firstly, a parameter self-learning

strategy could be constructed for the proposed IICS algo-

rithm so as to tune the three involved parameters (i.e., a, pa,
and ca) adaptively. Secondly, there is still room for

improvement in the selection strategy of information pro-

viders in IICS. The selection of information providers in

this article is a kind of blindness; therefore, a more effec-

tive selection strategy is worthy to research. Finally, the

proposed indirect hybrid modeling method could be also

applied to other LF refining processes or other similar

complex industrial processes.
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Table 6 Comparison of test performance between the proposed

hybrid model and empirical model

Model RMSE (�C) MAE (�C) MRE (%) AR (%)

Hybrid model 3.6205 2.8348 0.1802 91

Empirical model 5.4123 4.0970 0.2603 77

Table 7 Results of IICS, GA, PSO, DE, ACO, BCS, ELSHADE-

SPACMA, and HSES on the PO problem

Algorithm Fitness value

Mean Min Max SD

IICS 2.0114 1.7906 2.9127 0.2713

GA 5.2436 3.5509 10.2785 1.5469

PSO 5.1957 3.4996 10.5761 1.7069

DE 4.7259 3.2485 8.8003 1.1419

ACO 5.8124 4.1577 8.9595 0.6557

BCS 4.1357 3.0184 5.4039 0.4922

ELSHADE-SPACMA 3.9632 2.8097 6.1785 0.5469

HSES 3.6147 3.0589 5.3270 0.4734

Fig. 10 Convergence curves of IICS and BCS on the PO problem
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51. Aydilek İB (2018) A hybrid firefly and particle swarm opti-

mization algorithm for computationally expensive numerical

problems. Appl Soft Comput 66:232–249

52. Hadi AA, Wagdy A, Jambi K (2018) Single-objective real-pa-

rameter optimization: enhanced LSHADE-SPACMA algorithm

53. Zhang G, Shi YH (2018) Hybrid sampling evolution strategy for

solving single objective bound constrained problems. IEEE C

Evol Comput 1–7

54. Gupta S, Deep K (2019) Improved sine cosine algorithm with

crossover scheme for global optimization. Knowl Based Syst

165:374–406

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:6487–6509 6509

123


	Molten steel temperature prediction using a hybrid model based on information interaction-enhanced cuckoo search
	Abstract
	Introduction
	Development of a hybrid prediction model
	Development of mechanistic part
	Thermal gain from the arc
	Thermal loss from the ladle lining
	Instantaneous temperature distribution model of the ladle wall
	Instantaneous temperature distribution model of the ladle bottom
	Thermal loss from the ladle lining

	Thermal loss from the top surface
	Thermal effects resulting from the additions
	Thermal loss due to stirring-argon injection
	The overall mechanistic thermal model

	Development of empirical part using indirect training method

	Information interaction-enhanced CS
	BCS algorithm
	IICS algorithm
	Complexity analysis of IICS

	Optimizing parameters of the hybrid model using IICS
	Experiments
	Performance validation of IICS on benchmark functions
	Validation on classical benchmark functions
	Validation on CEC 2017 benchmark functions

	Experimental verification based on actual production data

	Conclusions
	Acknowledgements
	References




