
Digital Communications and Networks(DCN)

journal homepage: www.elsevier.com/locate/dcan

Image analysis and machine learning
based malaria assessment system

Kyle Manninga, Xiaojun Zhai∗a, Wangyang Yu∗b
aSchool of Computer Science and Electronic Engineering, University of Essex, Colchester, UK, CO4 3SQ
bKey Laboratory of Modern Teaching Technology, Ministry of Education, School of Computer Science
Shaanxi Normal University, Xi’an, China

Abstract

Malaria is an important and worldwide fatal disease that has been widely reported by the World Health Organization (WHO),
and it has about 219 million cases worldwide, with 435,000 of those mortal. The common malaria diagnosis approach is
heavily reliant on highly trained experts, who use a microscope to examine the samples. Therefore, there is a need to create an
automated solution for the diagnosis of malaria. One of the main objectives of this work is to create a design tool that could be
used to diagnose malaria from the image of a blood sample. In this paper, we firstly developed a graphical user interface that
could be used to help segment red blood cells and infected cells and allow the users to analyze the blood samples. Secondly,
a Feed-forward Neural Network (FNN) is designed to classify the cells into two classes. The achieved results show that the
proposed techniques has a potential to be used to detect malaria, as it has achieved 92% accuracy with a database that contains
27,560 benchmark images.

c© 2015 Published by Elsevier Ltd.

KEYWORDS:
Malaria assessment system, Image analysis, Image segmentation, Artificial intelligence

1. Introduction

Malaria is one of the most common diseases that
has major side effects on health. Its history can be
tracked back to the 16th century BC [1]. Although
this disease has been well studied and the progress
of the treatment has been investigated significantly, it
still kills many people every year. The main cause
of this problem is that the examination procedure is
very complex, and the cost is not affordable in the

∗Wangyang Yu and Xiaojun Zhai are (Corresponding authors)
(email: ywy191@snnu.edu.cn and xzhai@essex.ac.uk).

1Kyle Manning is a student at the School of Computer Sci-
ence and Electronic Engineering, University of Essex (email:
k manning@live.co.uk).

2Xiaojun Zhai is a lecturer at the School of Computer Sci-
ence and Electronic Engineering, University of Essex (email:
xzhai@essex.ac.uk).

3Wangyang Yu is an associate professor at the School
of Computer Science, Shaanxi Normal University (email:
ywy191@snnu.edu.cn).

developing countries. Due to recent development in
the healthcare industry, if a suspected carrier of the
disease is diagnosed and treated quickly, the disease
can be cured as well as prevented [2]. Microscopic
analysis is one of the current gold processes, but it
is manual, complex and time consuming. Therefore,
in order to improve the efficiency of the process, we
develop an efficient Artificial Neural Network (ANN)
architecture to assist the diagnosis process for reduc-
ing the time and cost of malaria examination. Such
a low-cost automated diagnosis system is one of the
important steps to enable the Internet-of-Things (IoT)
based healthcare systems. The ideal hardware solution
for malaria diagnosis in resource-poor settings would
be a normal portable slide viewer, but we are still far
from those field-usable devices even if modern tech-
nology is heading this way. One of the best alternative
solutions is to use small camera-equipped computing
devices, e.g. a mobile phone, which can be attached
to a magnifying device and then compute the para-

2 Kyle Manning, et al.

sitaemia automatically using image analysis and ma-
chine learning algorithms [3].

The process of manual malaria diagnosis takes a
long time to complete and requires well-trained clini-
cians and expensive equipment to examine accurately.
As a result, the accuracy of diagnosis is closely de-
termined by the state of the person who operates the
equipment. Factors including tiredness, nausea and
headaches as well as other conditions may affect the
ability of the practitioner to correctly diagnose the pa-
tient.

Secondly, the usability is another challenge. It is
very difficult to allow all clinicians to perform this ex-
amination due to the needs of training and practices.
Therefore, supplying a Graphical User Interface (GUI)
would significantly improve the usability to avoid the
need to understand complex coding practices or to be
heavily trained in microscopic analysis. On the other
hand, using an NN would reduce the average time of
diagnosis. Therefore, a simplified NN architecture
would also significantly reduce the run-time for cost
sensitive IoT-based healthcare systems. In this work,
we thus propose a simple Feed-Forward Neural Net-
work (FFNN) called patternnet to overcome the above
challenges.

There are two common ways to perform automatic
malaria diagnosis: 1) Machine Learning (ML) based
approaches e.g. using an ANN. 2) Traditional im-
age processing based feature extraction and segmen-
tation approaches. Typical approaches that have been
adopted by clinicians include Rapid Diagnostic Tests
(RDT), and Serology and Simian Malaria Species
Confirmation Service (SMSCS). An ANN-based ap-
proach would allow more clinicians to diagnose pa-
tients quicker and further enhance the usability of
tools. However, malaria detection is an open-ended
challenge as there are many ways to deal with it. As
a very practical area, there is not a set of algorithms
that could work well to resolve the problem of malaria
detection, as factors such as blood smear viscosity,
image color and quality, the stage of malaria when
the smear was taken, and the stain used on the blood
smear, can affect the results.

This paper focuses on resolving the problem of
malaria detection in challenging environments, e.g.
the quality of diagnosis, and the accuracy of samples
presented by medical clinicians. In addition, the pro-
posed work also includes an improved segmentation
algorithm for Red Blood Cells (RBC) in images of mi-
croscopic slides, and an NN-based classification algo-
rithm to classify the cells as parasitized or uninfected.
The major contributions of this work are highlighted
as follows:

• The results achieved in this work demonstrate
that the proposed NN classification and segmen-
tation algorithms drastically improve the perfor-
mance and success rate of malaria detection, ad-
ditionally proving that human inaccuracies would

be overcome.

• A user-friendly GUI is designed to assist detec-
tion of malaria parasites. The proposed system
has a potential to assist the trained professionals
who conduct a manual examination.

The rest of the paper is organized as follows: The
second section provides a brief discussion on the re-
lated work. This is followed by a discussion on the
system architecture used in this work in Section 3. In
Section 4, we present an analysis of experimental re-
sults in detail. The article finally concludes in Sec-
tion 5.

2. Literature review

2.1. Malaria
To this day malaria remains a common disease in

tropical regions. Although significant efforts have
been made to combat the disease, it continues to take
many lives every year.

Malaria cannot survive outside of their host and is
caused by the protozoan pathogen known as Plasmod-
ium. Five species of malaria have been found in hu-
mans, including P. falciparum, P. ovale, P. vivax, P.
malariae and the more recent P. knowlesi, which is
usually found in animals but rare cases have been seen
in humans [4]. According to the NHS [5], P. falci-
parum is mainly found in Africa and is thought to be
the deadliest species of malaria as it is responsible for
the majority of deaths worldwide.

2.2. Computer vision
2.2.1. Image processing

It is common for the first stage to be image pro-
cessing when analysing digital images. This step per-
forms algorithms on pictures to either extract informa-
tion such as features and characteristics, or enhance
the image to then be passed on to another action, such
as image segmentation (see Section 2.2.2). With im-
age processing, it is standard to extract or remove in-
formation that allows the important features of an im-
age to be enhanced and makes them more accessible
[6].

The aim of image processing for malaria detection
is to change the image so that the output does not con-
tain noise and highlights the RBC. However, it is likely
that different computers, software and hardware will
alter images in ways unexpected by the user, which
is an issue not sufficiently discussed. Medical profes-
sionals will rely on the image to produce the same out-
put regardless of computer specification or software
application. When running a diagnosis program, if
the resulting images are sent through an email client
or copy and pasted, the image resolution is likely to
change, consequently reducing the image quality [6].
High quality images are required to extract an ade-
quate amount of information, therefore, whether to use

Image Analysis and Machine Learning based Malaria Assessment System 3

JPEG or PNG file types should be considered when
providing program input because the compression al-
gorithm is used in both.

2.2.2. Image segmentation
The process of segmentation is to divide an image

into smaller subsections (set of pixels) [7], and the
level of depth in which the segmentation continues is
dependent on the application. In this paper, the full im-
age is the blood smear, and the segmentation is to stop
once it reaches the region of interest, thereby making
the smaller subsections individual cells. In turn, the
classification can work on a focused area of the full
image and produce better results.

Attempting to classify cells on a full image could
result in misclassifications because every blood smear
and cell is different. When using the same stain
(Giemsa in this case), it is still possible for the images
processed digitally to output slightly different photos
(see Figure 7). Solely using a full image would ei-
ther require more pre-processing or an entirely differ-
ent approach such as a fine-tuned CNN (Convolutional
Neural Network). This is to ensure that what is inside
the cell determines the classification.

There are multiple ways of segmenting an image.
Because of this, it is the most problematic step in
image processing. Segmentation is applied in many
situations for different purposes, for example, shape
recognition for numbers and letters (identifying num-
ber plates), augmented reality, medical industry (dis-
ease or human anatomy) and content-based visual in-
formation retrieval (objects derived from the image,
e.g. colors, textures and shapes). The different tech-
niques can be grouped as follows:

Thresholding is a type of segmentation which is
done according to the pixels in the image. To parti-
tion the image, this technique works on the intensity
levels of the pixels, whereby the background and fore-
ground are the classes which have different intensities
that the pixels are assigned. To do so, the algorithm
performs a comparison on every pixel to compare the
pixels intensity with the threshold set. If the intensity
of the pixel is less than the threshold, it is placed in
one class; and if it is higher, it is added to the other
class. Because of this, it is commonly used to convert
images in greyscale to binary. The most basic form
can be shown according to [8] as:

Ibw(x, y) =

1 Igray(x, y) ≥ T
0 Igray(x, y) < T

(1)

where Igray is the grayscale image, Ibw is the bi-
narized image, (x, y) represent the coordinates of the
pixel in the image and T is the threshold. Watershed
is a form of region-based segmentation that separates
the image into catchment basins. A catchment basin
is a location in a lower region which collects water as
a single water body from a higher region as it falls.

As mentioned by [9], these are the objects to be iden-
tified by the program. In segmentation, the Water-
shed method is considered a type of topographic tool
because of the way it fills the catchment basins. In
essence, region-based techniques work in a way oppo-
site to edge-based methods because they group pixels
of similar colors, intensity levels, texture or shape. As
a result, the sub-regions are formed with thereby cre-
ating barriers or edges to stop the sub-regions from
merging. Taking the pixel intensity as an example, the
intensity determines the altitude.

The challenge of implementing this technique is
that it usually suffers from oversegmentation because
of the number of sub-regions it creates . Due to noise
and intensity irregularities, it creates another “local
minima” and is unable to make correct distinctions
between regions [7]. It can be improved or entirely
avoided using techniques such as MM (Mathemati-
cal Morphology) or the marker-controlled Watershed
technique which marks each region of interest as a ”lo-
cal minima” to minimize the creation of insignificant
or small areas [10][11].

MM was first introduced by Matheron and ex-
panded by various image processing applications
[12][13]. It is not a segmentation technique in itself
but is a technique that contains a set of operations used
in conjunction with other segmentation methods to ob-
tain a better result based on shapes. The purpose is to
remove irrelevant artifacts in an image using a set of
transformations. The most common methods are dila-
tion and erosion, which are normally used together.

The operators work on binary or grayscale images,
which compare each pixel with its surroundings to
produce the pixel in the output image. During dila-
tion, if any surrounding pixel has the value of 1, then
the output pixel is set to 1. This is used to fill small
areas in objects. Whereas Erosion does the opposite:
if any surrounding pixel has the value of 0, then the
output pixel is set to 0, this is used to remove small
areas which neither aid in object detection nor provide
useful information [12].

2.3. Machine learning

ML is a type of AI (Artificial Intelligence) which
aims to learn patterns in data to classify them into dif-
ferent categories [24]. Within ML, there are many al-
gorithms for various purposes. There are two main
classes of ML: UL (Unsupervised Learning) and SL
(Supervised Learning). In UL, an assortment of data
is analyzed to find patterns, there is no prior knowl-
edge of the data and it is up to the algorithm to de-
cide how to sort the data. In contrast, SL requires
two variables in the algorithm: the unique features of
the data as input and the desired targets as the out-
put. The algorithm then attempts to learn the data
from the features and maps them to the outputs. This
is to create a near accurate mapping function so that
when presented with new data, it can classify them

4 Kyle Manning, et al.

Fig. 1. Segmentation techniques

Ref Algorithm Pros Cons

[14], [15],
[16], [17]

Watershed • Fast
• Simple
• Ease of use
• Better handling of gaps
• Better boundary placement with

high contrast

• Suffers from oversegmentation
• Noise sensitivity
• Poor boundary placement of im-

portant regions with low contrast
• Poor detection of thin objects

[18], [19],
[20], [21],
[22], [23]

K-Means • Efficient
• Scalable for larger datasets
• Unsupervised learning
• Low computational costs

• “K” is difficult to estimate
• Accuracy is dependent on the

initial “K” value
• Doesn’t guarantee continuous ar-

eas
[7], [18],
[22], [23]

Thresholding • Improved region detection with
images of high contrast

• Simple calculation

• Sensitive to noise because of
greyscale overlapping

• Intense homogeneity
[7], [20],
[21], [23]

Fuzzy C-Means • Generates good results
• Efficient
• Always converges
• Unsupervised learning

• Takes long to compute
• Sensitive to initial cluster center
• Sensitive to noise

[20], [23] Neural Networks • Automatically learns new pat-
terns and features

• Scalable
• Can be efficient based on imple-

mentation
• Achieves the state-of-the-art re-

sults
• Works well on large datasets
• Robust

• Complex implementations take
longer to run and require large
training data

• Can suffer from overtrain-
ing/overfitting

• Underfitting where it can’t learn
the training data and therefore
can’t adapt to new data

Table 1. Comparison of segmentation techniques

correctly. One type of ML commonly used is ANNs,
which are connected structures made to resemble the
neural structure of the brain in humans. Every ANN
consists of multiple interconnected layers in which the
data is sent through each layer, usually an input layer,
then one or more hidden layers which have multiple

neurons and finally an output layer.

The purest form of NNs is the FFNN because infor-
mation only flows in one direction, in contrast to RNN
(Recurrent Neural Networks) [25] in which informa-
tion is cycled and retains data from previous loops. A
CNN is also a form of FFNN [26]. The most basic

Image Analysis and Machine Learning based Malaria Assessment System 5

FFNN consists of only three: input, hidden (using the
sigmoid transfer function) and output (using the soft-
max transfer function), whereas more complex CNNs
consist of more specific layers to allow for more cus-
tomization. The input layer in a CNN uses raw im-
ages which are fed into the network. The next layer,
namely, the convolutional layer, extracts features from
regions of the image. In a simple CNN, the next layer
is ReLU (Rectified Linear Unit) which uses an activa-
tion or transfer function of which the simplest being
a threshold-based function (see Section 2.2.2). After
ReLU is pooling, this layer reduces the size of the in-
put image (the dimensions, height and width) through
down-sampling using the neurons from the previous
layer. Pooling also reduces the overall network size.
The final layer usually is FC (Fully Connected), which
connects all the neurons in one layer to all the neurons
in another layer and works the same as in MLP (Multi-
Layer Perception).

In general, the larger the dataset used for training,
the better the algorithm should perform, because it is
using more data to construct a better understanding of
how to classify the images. More training data allows
the algorithm to generate a more complex function for
mapping, which should then lead to higher accuracy
when testing.

2.4. Discussion

Image segmentation is not limited to one or two
methods, and all of the methods have their own bene-
fits and drawbacks, so choice comes down to the sit-
uation. Table 1 discusses the most commonly used
techniques in image segmentation.

It’s clear from Table 1 that if the application is based
on a large dataset then an NN might prove to be a vi-
able option as it can produce better results using com-
plex patterns. If the intention is focused on improving
segmentation alone, then adapting the threshold tech-
nique in conjunction with another method such as KM
or Watershed could prove beneficial in smaller appli-
cations. Other changes can accommodate NNs and
segmentation when used together. Therefore, the pro-
posed work focuses on developing a unified solution
to obtain a low-cost segmentation and classification in
resource constraint environments.

3. System architecture

The proposed system architecture consists of two
major parts: 1) segmentation; and 2) classification. In
the segmentation part, the blood smears have firstly
been separated using the segmentation algorithm to fil-
ter out the infected cells. The algorithm used in this
paper is called the Watershed technique. Since the
original Watershed technique is not accurate enough to
segment the infected cells for the reasons we discussed

previously, we propose an improved segmentation al-
gorithm combined with an FFNN to assist the identi-
fication of benign and infected cells. In the classifica-
tion part, we also propose a lightweight feature extrac-
tion algorithm to enhance the classification process to
improve the accuracy of the NN. In the following sub-
sections, we firstly investigate the initial segmentation
and classification algorithms in Section 3.1 and 3.2,
and then we introduce the proposed segmentation and
classification algorithms respectively in Section 3.4
and 3.5. The overall system flowchart is detailed in
Figure 2.

3.1. Initial segmentation

Oversegmentation is one of the main problems
when using the original Watershed technique (i.e. Al-
gorithm 1) if the image is not preprocessed. The image
will be firstly converted into greyscale before Water-
shed is run on it.

Algorithm 1 Original Watershed Segmentation
Input: image
Output: segmentedImage

1: function Segmentation Watershed(im)
2: imageRGB← im . Read image into program
3: convert image from RGB to grayscale
4: segmentedImage← watershed(im)
5: return segmentedImage
6: end function

Fig. 2. Program flowchart

Algorithm 2 was proposed by MathWorks [27] to
improve the original Watershed algorithm, however, it
cannot fully identify lighter cells and highlighted cells
at the edge of the image. The regions of interest are
highlighted across the image in bright RGB colors and
the background is blue. In Algorithm 2, lines 4 - 8
perform several operations on the image to further en-
hance the objects from the background. The gradient
magnitude shows how the grey levels change in the
image. The Sobel algorithm, namely, used for edge
detection. In addition, a set of morphological oper-
ations, namely, imopen, imerode and imreconstructe

6 Kyle Manning, et al.

are used to remove objects smaller than a set number
of pixels and small holes and identify the areas of the
image with high intensity respectively. It also con-
verts the image to binary using a threshold and then
calculates the distance between each “0” and non-zero
pixel on lines 6 and 7. Lines 8 – 16 run the Watershed
method [27], and then displays the results in the GUI.

3.2. Initial classification
The Deep Learning Toolbox(DLT) provides a tool

named nprtool for pattern recognition, which creates
a basic FFNN using patternnet which requires an ar-
ray of the image elements. However, to retrieve better
results from the algorithm, the input should be fea-
tures of the image. The nprtool creates a GUI, but at
the end of the program it is possible to automatically
save the default file which is created to run the NN.
This file can then be modified from the default set-
tings. Once the file is saved, the user can then run the
NN through the command line without repeating the
process in nprtool. A basic and advanced script file
is created by the tools named NN Basic Script.m and
NN Advanced Script.m respectively, which have been
altered to update the ratios between the fields: train-
ing, testing and validation with the hidden layer size.

Previously, the NN received a 2D image that was
reshaped to 1D as input and resized to 64× 64 = 4096
due to the large original images. The 1D image input
was replaced in the pre-processing stage with features
of the images, and this leads to a smaller input but
more accurate results. The new process is shown in
Section 3.5.

3.3. Image pre-processing
Images need to be pre-processed in order to allow

the algorithms to produce a successful output when
run against them. Images in a dataset after the pre-
processing need to be uniformed regardless of the
original appearance. Nonetheless, in every case the
images should be converted to grayscale because then
they can be adjusted based on the grey level intensity.

3.4. Improved segmentation
To improve the previous Watershed techniques (see

Algorithm 2 and Algorithm 1), we propose to use a
combination of thresholding and the Watershed tech-
nique. The pseudo code for the improved segmenta-
tion is presented in Algorithm 4. To solve the prob-
lem of not selecting all the cells, thresholding the im-
age creates a better extraction of foreground and back-
ground (see Figure 11) whilst removing noise using
MM.

The improved segmentation (see Table 3.4) oper-
ates by converting the image to greyscale, generating
an adaptive threshold, and then applies the threshold
to convert the image to binary after clearing the bor-
der on lines 3 - 5. A set of operations (MM, distance
transform and Gaussian filter) are then run from lines
6 - 9, which removes noise.

Algorithm 2 Marker based Watershed Segmentation
Input: image
Output: stats . Bounding area of the extracted cells

1: function Segmentation Watershed Marker(im)
2: imageRGB← im . Read image into program
3: convert image from RGB to grayscale
4: invert image
5: gmag← imgradient(invertedImage)
6: mathematical morphological opera-
tions(invertedImage)

7: convert image to binary
8: compute distance transform
9: segmentedImage← watershed

10: convert matrix of labels to RGB image
11: stats← label2rgb(segmentedImage) .

calculate coordinates of cells in image
12: show RGB image with labels layered over
13: for each bounding region stats, kk ∈

{1, . . . , height(stats)} do
14: draw bounding region as rectangle
15: add cell count next to rectangle
16: end for
17: return stats
18: end function

3.5. Improved classification

Cell classification heavily relies on the segmenta-
tion method and the NN (see Algorithm 3), where the
NN is trained to work on a variety of images such
as both smears and single cells. As previously men-
tioned, all images need to be pre-processed, which en-
tails processing the original image and storing them in
a location to be used. A typical FFNN consists of mul-
tiple layers of neurons in the feed forward architecture,
where each perception layer feeds a non-linear map-
ping of its inputs to the next layer. The non-linearity
of this mapping is contributed by an appropriately cho-
sen activation function.

Given that the FFNN is a fully connected network,
all neurons in a layer are weight-combined and con-
nected to neurons in the next layer. During the train-
ing phase of the neural network, the weight function is
defined. Figure 3 is an example of an MLP network,
where a hidden layer consists of S neurons and each
neuron contains R weights corresponding to the num-
ber of inputs.

The input weights W can be written as an S × R
matrix shown in Equation 2.

W =


w1,1 w1,2 . . . w1,R
w2,1 w2,2 . . . w2,R
...

...
. . .

...
wS ,1 wS ,2 . . . wS ,R

 (2)

For an input vector ~p consisting of R elements
(p1, p2, p3, . . . , pR), the response qs of the sth neuron

Image Analysis and Machine Learning based Malaria Assessment System 7

Algorithm 3 Improved NN Classification
Input: imgCount
Output: malariaInputs,malariaOutputs . malariaInputs: n × 5 matrix (5 is the features

of the images and n is the total number of images), malariaOutputs: classification targets represented as n× 2
matrix (2 is the amount of classifications possible and n is the number of images presented)

1: function NN(imgCountInput)
2: create destination location
3: create datastore for healthy/unhealthy cells
4: shuffle both datastores
5: if imgCountInput == null ‖ imgCountInput , digit then
6: imgCount = 1000
7: else
8: imgCount = imgCountInput
9: end if

10: initialMalariaInputs = matrix of all zeros (image count x total features)
11: for i ∈ {1, . . . , imgCount} do
12: generate output filename
13: if i ≤ imgCount ÷ 2 then
14: generate input filename from unhealthy datastore
15: else
16: generate input filename from healthy datastore
17: end if
18: copy input file to destination with output filename
19: read output image file into program
20: resize and save output file to 64 × 64
21: convert output file from RGB to grayscale
22: adaptively threshold image with high sensitivity
23: convert image to binary using threshold
24: mathematical morphological operations(binaryImage)
25: convert image from uint8 to double
26: f eatures = generate array of image features
27: append f eatures to initialMalariaInputs
28: end for
29: randPerm = generate random permutation of image count
30: f Hal f ← generateMalariaTargets(malariaTargets) . generate targets in the form 0 1
31: sHal f ← generateMalariaTargets(malariaTargets) . generate targets in the form 1 0
32: initialMalariaInputs← concat(f Hal f , sHal f) . vertically concatenate the two matrices
33: shuffle initialMalariaInputs and initialMalariaTargets using randPerm
34: save initialMalariaInputs into file
35: save initialMalariaTargets into file
36: end function

can be described by Equation 3.

qs = F((~ws)T · ~p + bs) (3)

where ~ws corresponds to a row in W, bs is the bias
associated with the input, and F is the activation func-
tion. In a feed-forward MLP architecture with more
than one hidden layers, similar operations as Equa-
tion 3 are performed between two consecutive layers.

In the FFNN, three layers are used: an input layer
(1 input with 5 elements), a hidden layer (consisting
of 10 neurons) and an output layer (2 outputs repre-
senting the classes).

For the NN to work fairly and in an unbiased man-
ner, the cells need to be processed and stored so they

are readily available. An initial location and an initial
amount of images (determined from the user input) are
set. After that, it creates datasets using the paths for
the healthy and unhealthy cells and all images in the
path are shuffled to ensure random selection. Line 9
creates an empty matrix where the features are stored.
Lines 10 – 27 form the main pre-processing loop, in
which half of the images are healthy, the other half are
infected and saved to the destination folder. The im-
ages are opened and resized so that they all have equal
dimensions and are converted to binary using a thresh-
old to make them clearer. MM operations are run on
the images and converted to a class of double type to
generate the features. The remaining lines generate

8 Kyle Manning, et al.

p1

p2

.

.

.

pR

q1

q2

qS

.

.

.

.

.

.

Output

w1,1

w1,2

w1,R

Hidden
layer 1

Input layer
Output
layer

Fig. 3. A generic MLP architecture consists of an input layer of size
R and a hidden layer with S neurons.

the targets based on the inputs, shuffle them again and
finally save the inputs and targets to a file.

3.6. Implementation
The software framework is divided into the follow-

ing 6 main blocks:

1. Upload calls uploadbutton Callback, which dis-
plays a file brower to let the user select a blood
smear.

2. Select technique, which lets the user select
the segmentation method. It is called popup-
menu1 Callback, which sets the variable han-
dles.first menu to the value from the drop-down.

3. Run calls techrunbutton Callback, which exe-
cutes the technique, stores the segmented image
and table of regions and then enables the run but-
ton for extension.

4. Select extension which contains the classification
techniques. It is called popupmenu2 Callback,
which sets the variable handles.secon menu to
the value from the drop-down.

5. Run calls extrarunbutton Callback, which runs
the extraction unless an NN is chosen, which
then validates the user input and generates the re-
quired files using the first dataset.

6. Reset calls resetbutton Callback, which then
calls Reset Overlay(handles).

Segmentation Watershed Threshold(handles)
The proposed improved Watershed algorithm adds

a number of MM operations in the process of the orig-
inal algorithm, including imopen, imerode, etc. In ad-
dition, the images are also pre-processed to enhance
the features for NNs. Finally, the SaMLT (Statistics
and Machine Learning Toolbox) is used to analyze the
collected data.

NN Advanced(conf,num,layers,genPlot)
The following parameters have been used in the

proposed NN configuration, which includes the train-
ing method, transfer function, performance function,
etc.

• Training function - trainscg: how the network is
trained.

• Processing function - removeconstantrows: it re-
moves rows if the same value is in every column
as it doesn’t provide any extra information to the
NN. mapminmax maps the matrix values in the
range -1 to 1.

• Dividing function - dividerand: how the input
data is split in the network.

• Performance function - crossentropy: how the
performance of the network is calculated.

• Goal - 0: how well the NN needs to perform.

• Gradient - 1e-6: the minimum performance gra-
dient which shows how well the performance
needs to stop improving before it’s stopped.

• Epochs - 1000: the number of times the data is
shown to the network to be learned.

• Max Fail - 6: how many times the validation
needs to fail before the NN stops training.

Utilizing an FFNN to test the possibility of achiev-
ing a high accuracy using a basic ANN is another rea-
son why it is tested in such a way. Why a flattened
image and the image features are compared is because
a standard CNN uses 2D images and computes the im-
age features whilst training the NN.

Additional functions
Reusable functions are added to prevent code dupli-

cation and aid code generation. The following func-
tions are created for resetting and debugging the pro-
gram.

Reset Overlay(handles)
Targeting the second image panel, the function re-

moves all objects, including the image, without calling
the function. Segmentation and extraction techniques
would continue to overlap on the panel. Image zoom is
reset, the run button is disabled for Select extension be-
cause the image required no longer exists and the com-
mand line is cleared using Reset Command Window().

Reset Command Window()
This function is called at the start of each main

method to remove any generated command line out-
puts.

Image Analysis and Machine Learning based Malaria Assessment System 9

Find Rectangles(im)
For debugging purposes, it provides an easy com-

parison of the infected cells found in the labeled im-
ages from the second dataset (see Section 4.3) and the
extracted image. By taking the unlabeled image, the
function matches it with the labeled counterpart us-
ing the filename and performs operations to obtain the
bounding borders of the infected cells.

Graphical user interface
The Graphical User Interface Development Envi-

ronment (GUIDE) was used to create the GUI as it fea-
tures the ability to drag and drop components. GUIDE
sets the layout for the UI in an .fig file with the buttons
and selections located at the bottom and two image
panels (left and right respectively) located above. The
functionality is coded in the respective automatically
generated .m file with the same filename. The .m file
is populated with a set of callback functions which run
on button clicks and other user input events.

The program needs a set of requisites to follow in
order to be able to aid its users:

• Ability to upload images

• Select a segmentation technique

– Watershed

– Watershed & Thresholding

• Select a classification technique

– Run the area extraction algorithm

– Generate the images for the neural network

• Before and after image panels

• Resetting the program back to initial startup

Upon launching the program, Figure 4 is displayed
to the user without showing any images. When a user
uploads an image, it is placed in the left image panel,
i.e., 030.jpg, running a segmentation technique which
presents the mid-process and final segmented image(s)
in the right panel, i.e., Segmented Image.

Fig. 4. Program GUI on start-up

Located at the bottom of the GUI is the command
panel. It contains the main program functionality with
which the user interacts directly. If the user wants to
extend the program, the code would need to be edited
as this functionality is not in the GUI. Although meth-
ods can be run multiple times (on the image originally
selected and not the images in current state), the pro-
gram flows from left to right when using the command
panel.

A means to prevent run-time errors operates
through logic checking, which prevents the user from
the running methods before completing preceding
steps. An image is required first before any segmen-
tation method can be run, and an image needs to be
segmented before the extraction algorithm can be run.
In both cases, the run button is enabled if the require-
ment is fulfilled. The GUI aids the automated solution
by keeping the interface simple and therefore allows
anyone to run it.

4. Experimental results

4.1. Database
Two datasets of images are used to evaluate the pro-

gram. A reliable database is key to testing the pro-
grams performance, as it accounts for the different
types of images that potentially could be presented.
In general, at the top level there are two main im-
age types: A) individual cells; and B) blood smears (a
cluster of RBCs, infected and non-infected). The im-
ages are stored in separate folders instead of sharing
the same folder to make them more identifiable when
selecting the blood smears to be segmented. The fold-
ers are arranged as follows in Table 2:

Category Sample Size

Cells (Parasitized) 13,780
Cells (Uninfected) 13,780

Blood Smears (Unlabeled) 30
Blood Smears (Labeled) 30

Table 2. Dataset sample sizes

Single RBC images located in the first dataset were
provided by the National Institute of Health (NIH)
[28], and blood smears in the second dataset were
provided by University College London (UCL) [29].
Similar characteristics such as color can be found in
both sets, but not all cells have the same shape though
the majority are circular in appearance as shown in
Figure 5 and Figure 6. Common features include:

• Color - cells vary slightly between bright pink
and pastel purple due to the staining, the upload-
ing method, the camera used to take the image
and cell shading.

• Texture - some appear rougher around the edges
and in the center.

10 Kyle Manning, et al.

• Luminosity - the cells vary in brightness as some
are darker than others.

• The database contains only ground-truthed im-
ages to focus on regions of interest.

4.2. Cells

There are 27,560 images in the first dataset in which
there are only single RBCs. They are kept consis-
tent with a resolution of 72 Pixels Per Inch (PPI),
and a width-and-height of 121 by 133 pixels, where
121×133 = 16, 093 pixels. Ground truth involves sep-
arating the background and the foreground for clearer
distinctions. In our case the background is black and
foreground is colored to showcase the cell, but this
may not always be the case and images would need
further processing.

Figure 5 and Figure 6 show uninfected and infected
cells respectively. In general, the uninfected cells nor-
mally have a clear background, and the infected cells
have various shadowed backgrounds, which are re-
lated to the Plasmodium species of malaria [3]. One
location for the NN images allows for an easier setup
and adaptability if the dataset needs to be changed.
The sub-folders are set up equally as:

• 13,780 are parasitized cells

• 13,780 are uninfected cells

Fig. 5. Uninfected cells

Fig. 6. Infected cells

4.3. Blood smears

The second dataset contains 60 images of blood
smears and as before they have been ground-truthed.

Each image has a resolution of 150 PPI and a width-
and-height of 1300 by 1030 pixels, where 1300 ×
1030 = 1, 339, 000 pixels or 1.3 megapixels.

The images cover both classes of cells without
overly populating the image but enough for the seg-
mentation to be handled. The folders are organized
as:

• 30 are unlabeled (see Figure 7)

• 30 are labeled (see Figure 8)

Fig. 7. Unlabeled blood smears

Fig. 8. Labeled blood smears

Figure 7 shows examples of unlabeled blood smears
which have been stained to show all the RBCs. Fig-
ure 8 shows the same blood smears as in Figure 7,
but highlights the infected cells with a black outlined
square around them.

4.4. Performance evaluation

4.4.1. Segmentation

Fig. 9. Result of the Watershed segmentation

Image Analysis and Machine Learning based Malaria Assessment System 11

Figure 9 shows the output of the original Watershed
technique (see Algorithm 1) when it is used without
any additional preprocessing of the image. The Wa-
tershed technique alone does not perform well as it
results in oversegmentation with thousands of tiny re-
gions. Attempting to run the extraction algorithm on
this image would prove useless because it would be
slow and inaccurate as the algorithm would check each
region.

The segmented image is so granular that no new in-
formation can be gained. And this is the biggest prob-
lem because too many regions are found. In this case,
the image cannot be used for further analysis with-
out merging the white separated regions which are the
cells. Although the cells can clearly be seen in white,
they do not correspond to what has been segmented by
the algorithm.

Fig. 10. Result of the Marker-based Watershed segmentation

Figure 10 shows the result of the second algorithm
(see Algorithm 2), although it is better when not all
cells were detected separately. Most cells were found
but the segmentation didn’t correctly segment cells
close together. Instead, they are treated as a single
cell. This was solved by the improved segmentation
(see Algorithm 4).

Important cells can be grouped together with non
important one. And this can be seen by taking a closer
look at the bounding boxes in Figure 10. What’s worse
with this algorithm is that some cells are completely
missed, which could also lead to missing important
cells. The extraction works cell-by-cell, so clear dis-
tinctions are needed as grouped cells lead to mislead-
ing results.

After testing the previous versions of the Watershed
technique by comparing Figure 10 and Figure 11 the
improved method is tested and displays a more accu-
rate result at the expense of removing cells around the
border. The solution combats the problems of overseg-
mentation and cell grouping by using a combination
of thresholding with the Watershed technique. Images
used in all three algorithms are Giemsa stained. It is

Algorithm 4 Improved Watershed Segmentation
Input: image
Output: stats . Bounding area of the extracted cells

1: function Segmentation Watershed Modified(im)
2: imageRGB← im . Read image into program
3: convert image from RGB to grayscale
4: compute adaptive threshold
5: convert image to binary using threshold
6: clear all cells around border
7: mathematical morphological opera-
tions(binaryImage)

8: remove additional noise
9: compute distance transform

10: compute gaussian filter
11: segmentedImage← watershed
12: convert matrix of labels to RGB image
13: stats← label2rgb(segmentedImage) .

Calculate coordinates of cells in image
14: show RGB image with labels layered over
15: for each bounding region stats, kk ∈

{1, . . . , height(stats)} do
16: draw bounding region as rectangle
17: add cell count next to rectangle
18: end for
19: return stats
20: end function

likely that using a different stain would result in differ-
ent outputs. The output of this algorithm means that
cells are ready to be analyzed further without the risks.

The improved segmentation performs significantly
better by capturing all the cells. Cells around the edge
have been removed to prevent and reduce the likeli-
hood of errors due to incomplete cells. Multiple cells
in Figure 11 that were removed from the border are
cut off. It is possible to capture these, but this could
result in incorrect detections as the parasite could be
off-screen.

4.4.2. Neural network
Using the correct inputs and methods leads to a bet-

ter NN performance. The NN was run 5 times. For
each run, the parameters were changed to test whether
the parameters affected performance. Initially the NN
used default parameters with different layer sizes and
inputs (see Table 3) and the second set of configura-
tions (config) use the best config from Table 3 with
modified parameters (see Table 4).

There are 9 configs in total, where the first 3 use an
1D image reshaped from 2D, 4 - 6 use 4 features, and
7 - 9 use 5 features of the cells. The calculated features
are:

• White count - In a binary image, the white area is
the region of interest, which makes sense to use
because non-infected cells should have a white
count of 0.

12 Kyle Manning, et al.

Fig. 11. Result of the improved Watershed segmentation

Configs Input layers Hidden layers Output layer

1 4096 10 2
2 4096 50 20 2
3 4096 5 20 10 2
4 4 10 2
5 4 50 20 2
6 4 5 20 10 2
7 5 10 2
8 5 50 20 2
9 5 5 20 10 2

Table 3. NN configuration with default parameters

• Skewness - It determines the surface of a cell, be-
cause it can detect darker areas in images. In this
case, it would be the parasites in grey. The image
histogram tells how balanced as well as symmet-
rical the grey levels are.

• Entropy - It determines how much information
is in the image so that an image filled with many
black areas will have a higher entropy than an im-
age with one color.

• Area - It calculates the area of objects in the im-
age. An infected cell will have an area because
the parasite is of a different color. In non-infected
cells, the value is next to none because no objects
will appear.

• Variance - It shows how each pixel differs from
the next. In a cell the parasite is of a darker pur-
ple and therefore will show an increased variance
around the cell because neighboring pixels will
be lighter.

From Table 5 and Figure 12, it can be seen that con-
figs 4-6 performed marginally better than 1 - 3 (a high
of 69.9% accuracy) and slightly better than 7 - 9 (high
of 91.4% accuracy). Changing the input type from an
1D image to features showed most promising results .
Patterns were identified easier when using features as

the NN struggled to find a common ground with the
1D image. The FFNN could not handle an input of
that size, whereas a complex CNN would be able to
form a better understanding. The convolutional layer
in a CNN detects the image features rather than having
them passed.

1 2 3 4 5 6 7 8 9
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94

Configuration
A

cc
ur

ac
y

[%
]

Fig. 12. Default configuration performance visualization

Information is lost when the image is reshaped,
which is why configs 1 - 3 didn’t perform well because
features are harder to define. A filter, also known as
kernel, is used in the convolutional layer to prevent
it from losing important information when capturing
features. This is why this layer is used multiple times
when a CNN is used at different stages. The more
times the layer is used, the more complex features
found.

The following parameters were changed to further
verify the system:

• Max Fail - To see whether increasing this value
would allow the NN to perform better. It would
give the NN more of a chance to improve its per-
formance before failing completely.

• Training function - Whether the program being
trained differently would affect the performance
to determine the best way to train the NN based
on the features.

• Performance function - As the training function
changes, the required performance function also
needs to change with it.

Comparing the results from Table 5 and Table 6, it
can be known that the parameter changes are negligi-
ble. Allowing the network to fail later and changing
the training functions make little difference between
0.1% and 0.3%, which in most cases is not an enough
significant increase in performance to warrant the in-
crease in time taken to perform. It might be beneficial
to test the NN with more than 4 features if that has an
impact on performance, although the additional fea-
ture in Configs 7 - 9 does not change the output.

Image Analysis and Machine Learning based Malaria Assessment System 13

Configs Input layers Hidden layers Output layers Additional parameters

4(a) 4 10 2 Max fail = 100;
Training = trainbr;
Performance = mse;

4(b) 4 10 2 Max fail = 50;
Training = trainlm;
Performance = sse;

4(c) 4 10 2 Max fail = 30;
Training = traingd;
Performance = mse;

Table 4. NN configuration with modified parameters

Configuration Overall Avg Accuracy

1 69.1%
2 69.9%
3 67.9%
4 91.9%
5 92.0%
6 91.9%
7 91.4%
8 91.3%
9 91.4%

Table 5. NN performance with default parameters

Config 4(c) from Table 6 does not perform well
compared with the other tests, including the origi-
nal tests without the updated parameters. By de-
fault the training function is trainscg, which is an
improvement from traingd. Both functions are gra-
dient descents where the weights (connections be-
tween neurons) are updated. trainlm works based on
the Levenberg-Marquardt algorithm, which is fast on
small datasets but requires a lot of memory for larger
datasets. trainbr works similarly to trainlm, but com-
bines errors with weights. trainscg is able to converge
quicker, which results in a faster run time.

Configuration Overall Avg Accuracy

4(a) 92.1%
4(b) 92.2%
4(c) 87.5%

Table 6. NN performance with modified parameters

Comparing the performance of the stat-of-the-art
malaria classification systems is very hard, because
the systems are evaluated on blood samples from en-
tirely different origins. This means that parameters for
image acquisition or slide preparation are completely
different. In addition, the sample sizes and conditions
of samples are varied from case to case. Currently, no
publicly available image benchmark set could be used
for fair comparisons of systems [3]. Therefore, we
report our performance matrix in terms of accuracy,

sensitivity, specificity, precision and F1 score in Table
7.

Measure Training Testing

Accuracy 92.5% 91.0%
Sensitivity 98.0% 98.5%
Specificity 87.1% 83.9%
Precision 88.3% 85.4%
F1 Score 92.3% 91.4%

Table 7. NN performance matrix

5. Conclusion

The proposed malaria segmentation and classifi-
cation system achieves an overall 92% accuracy by
updating the parameters in the NN and shows great
promise by using an FFNN. The intention of this work
is to create a single process from start to finish to al-
low a user to diagnose a patient from a blood smear.
Such a light-weight and cost-effective automated di-
agnosis system is one of the important steps to en-
able the IoT/mobile phone based connected healthcare
solutions. It is clear from the work undertaken that
NNs and segmentation techniques have come a long
way, but there are still many more improvements to be
made. The limitations of these techniques are that they
do not work in all cases and require additional tuning
to work as expected. Although this is a problem, it has
highlighted the potential for the future. Segmentation
and classification could in the future be combined to
form a single supervised process to aid malaria diag-
nosis, take the segmented cells, generate the targets
from the labeled images and then pass those to the
NN. Moreover, the segmentation does not work well
on cells which are not clearly defined, such as faint
cells which blend with the background. Additional
thresholding and morphological operations could help
to separate the foreground from the background at the
risk of including irrelevant artifacts. Overall, due to
the increase in popularity of NNs and image process-
ing techniques, we move closer to creating a fully au-
tomated process which will aid the malaria diagnosis.

14 Kyle Manning, et al.

From a supplementary aid to the state-of-the-art tool,
it will become a gold standard.

Acknowledgments

This work is partly supported by the Fundamen-
tal Research Funds for the Central Universities of
China under grants GK202003080, by the Natu-
ral Science Foundation of Shaanxi Province under
Grants 2021JM-205, and the UK Engineering and
Physical Sciences Research Council through grants
EP/V034111/1.

References

[1] F. E. Cox, History of the discovery of the malaria parasites and
their vectors (2010). doi:10.1186/1756-3305-3-5.

[2] Centers for Disease Control, CDC - Malaria (2019).
[3] M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger,

G. Thoma, Image analysis and machine learning for de-
tecting malaria, Translational Research 194 (2018) 36
– 55, in-Depth Review: Diagnostic Medical Imaging.
doi:https://doi.org/10.1016/j.trsl.2017.12.004.

[4] Organization, World Health, WHO — Malaria (2011).
URL https://www.who.int/ith/diseases/malaria/

[5] NHS, Malaria - Causes - NHS (2018).
URL https://www.nhs.uk/

[6] J. Russ, The Image Processing Handbook, Sixth Edition, Tay-
lor & Francis Group, LLC, 2011. doi:10.1201/b10720.

[7] N. M. Zaitoun, M. J. Aqel, Survey on Image Segmentation
Techniques, in: Procedia Computer Science, Vol. 65, 2015,
pp. 797–806. doi:10.1016/j.procs.2015.09.027.
URL https://linkinghub.elsevier.com/retrieve/

pii/S1877050915028574

[8] J. Chen, H. Shao, C. Hu, Image Segmentation Based on
Mathematical Morphological Operator, in: Colorimetry and
Image Processing, IntechOpen, 2018, Ch. Image Segm.
doi:10.5772/intechopen.72603.

[9] J. Kiprop, What Is a Catchment Area of a River or Lake? -
WorldAtlas.com (2018).
URL https://www.worldatlas.com

[10] H. Huang, X. Li, C. Chen, Individual tree crown detection
and delineation from very-high-resolution uav images based
on bias field and marker-controlled watershed segmentation
algorithms, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 11 (7) (2018) 2253–2262.

[11] X. Zhai, F. Bensaali, Improved number plate character seg-
mentation algorithm and its efficient fpga implementation,
Journal of Real-Time Image Processing 10 (1) (2015) 91–103.

[12] X. Zhai, F. Bensaali, R. Sotudeh, Real-time optical character
recognition on field programmable gate array for automatic
number plate recognition system, IET Circuits, Devices &
Systems 7 (6) (2013) 337–344.

[13] E. Dougherty, Mathematical morphology in image processing,
CRC press, 2018.

[14] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, W. L.
Nowinski, Medical Image Segmentation Using K-Means
Clustering and Improved Watershed Algorithm, IEEE, 2006.
doi:10.1109/SSIAI.2006.1633722.

[15] H. T. Nguyen, M. Worring, R. Van Den Boomgaard,
Watersnakes: Energy-Driven Watershed Segmenta-
tion, IEEE TRANSACTIONS ON PATTERN ANAL-
YSIS AND MACHINE INTELLIGENCE 25 (3).
doi:10.1109/TPAMI.2003.1182096.

[16] V. Grau, A. U. J. Mewes, M. Alcañiz, R. Kikinis, S. K.
Warfield, Improved Watershed Transform for Medical Im-
age Segmentation Using Prior Information, IEEE TRANS-
ACTIONS ON MEDICAL IMAGING 23 (4) (2004) 447.
doi:10.1109/TMI.2004.824224.

[17] A. S. Areeckal, M. Sam, S. S. David, Computerized radio-
grammetry of third metacarpal using watershed and active ap-
pearance model, in: Proceedings of the IEEE International
Conference on Industrial Technology, Vol. 2018-Febru, IEEE,
2018, pp. 1490–1495. doi:10.1109/ICIT.2018.8352401.

[18] S. Yuheng, Y. Hao, Image Segmentation Algorithms
Overview (2017).

[19] N. Dhanachandra, Y. J. Chanu, Image Segmentation Method
using K-means Clustering Algorithm for Color Image, Vol. 2,
EDCAECT, 2015.

[20] N. Kumari, S. Saxena, Review of Brain Tumor Seg-
mentation and Classification, in: Proceedings of the
2018 International Conference on Current Trends towards
Converging Technologies, ICCTCT 2018, IEEE, 2018.
doi:10.1109/ICCTCT.2018.8551004.

[21] A. Salihah, A. Nasir, H. Jaafar, W. Azani, W. Mustafa,
Z. Mohamed, The Cascaded Enhanced k-Means and Fuzzy
c-Means Clustering Algorithms for Automated Segmenta-
tion of Malaria Parasites, Malaysia Technical Universi-
ties Conference on Engineering and Technology (MUCET
2017) 150 (MATEC Web Conf., 150 (2018) 06037).
doi:10.1051/matecconf/201815006037.

[22] N. Sharma, M. Mishra, M. Shrivastava, COLOUR IMAGE
SEGMENTATION TECHNIQUES AND ISSUES: AN AP-
PROACH, International Journal of Scientific & Technology
Research 1 (4).
URL www.ijstr.org

[23] S. D. Rajeshwar Dass, Priyanka, Image Segmentation Tech-
niques, IJECT 3 (1). doi:10.1.1.227.6638.

[24] N. Castle, An Introduction to Machine Learning Algorithms
(2017).

[25] S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui,
M. Witbrock, M. A. Hasegawa-Johnson, T. S. Huang, Dilated
recurrent neural networks, in: Advances in Neural Informa-
tion Processing Systems, 2017, pp. 77–87.

[26] M. Tan, Q. V. Le, Efficientnet: Rethinking model scal-
ing for convolutional neural networks, arXiv preprint
arXiv:1905.11946.

[27] C. Moler, MathWorks - Makers of MATLAB and Simulink -
MATLAB & Simulink (2020).
URL https://uk.mathworks.com/

[28] NIAID, Malaria — NIH: National Institute of Allergy and In-
fectious Diseases (2016).
URL https://www.niaid.nih.gov

[29] UCL, UCL - London’s Global University.
URL https://www.ucl.ac.uk/

