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Effect of data leakage in brain 
MRI classification using 2D 
convolutional neural networks
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In recent years, 2D convolutional neural networks (CNNs) have been extensively used to diagnose 
neurological diseases from magnetic resonance imaging (MRI) data due to their potential to 
discern subtle and intricate patterns. Despite the high performances reported in numerous studies, 
developing CNN models with good generalization abilities is still a challenging task due to possible 
data leakage introduced during cross-validation (CV). In this study, we quantitatively assessed the 
effect of a data leakage caused by 3D MRI data splitting based on a 2D slice-level using three 2D 
CNN models to classify patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD). Our 
experiments showed that slice-level CV erroneously boosted the average slice level accuracy on 
the test set by 30% on Open Access Series of Imaging Studies (OASIS), 29% on Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), 48% on Parkinson’s Progression Markers Initiative (PPMI) and 55% 
on a local de-novo PD Versilia dataset. Further tests on a randomly labeled OASIS-derived dataset 
produced about 96% of (erroneous) accuracy (slice-level split) and 50% accuracy (subject-level split), as 
expected from a randomized experiment. Overall, the extent of the effect of an erroneous slice-based 
CV is severe, especially for small datasets.

Deep learning has become a popular class of machine learning algorithms in computer vision and has been suc-
cessfully employed in various tasks, including multimedia analysis (image, video, and audio analysis), natural 
language processing, and  robotics1. In particular, deep convolutional neural networks (CNNs) hierarchically 
learn high-level and complex features from input data, hence eliminating the need for handcrafting features, as 
in the case of conventional machine learning  schemes2.

The application of these methods in neuroimaging is rapidly growing (see Greenspan et al.3 and Zaha-
rchuk et al.4 for reviews). Several studies employed deep learning methods for image improvement and 
 transformation5–10. Other studies performed lesion detection and  segmentation11–13 and image-based diagnosis 
using different CNNs  architectures14,15. Deep learning has also been applied to more complex tasks, including 
identifying patterns of disease subtypes, determining risk factors, and predicting disease progression (see, e.g., 
Zaharchuk et al.4 and  Davatzikos16 for reviews). Early works applied stacked auto  encoders14,17,18 and deep belief 
 networks19 to classify neurological patients from healthy subjects using data collected from different neuroimag-
ing modalities, including magnetic resonance imaging (MRI), positron emission tomography (PET), resting-state 
functional MRI (rsfMRI), and the combination of these  modalities20.

Some authors reported very high accuracies in classifying patients with neurological diseases, such as Alz-
heimer’s disease (AD) and Parkinson’s disease (PD). For a binary classification of AD vs. healthy controls, Hon 
and  Khan21 reported accuracy up to 96.25% using a transfer learning strategy. Sarraf et al.22 classified subjects 
as AD or healthy controls with a subject-level accuracy of 100% by adopting LeNet-5 and GoogleNet network 
architectures. In other studies, CNNs have been used for performing multi-class discrimination of subjects. 
Recently, Wu et al.23 adopted a pre-trained CaffeNet and achieved accuracy of 98.71%, 72.04%, and 92.35% for 
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a three-way classification between healthy controls, stable mild cognitive impairment (MCI), and progressive 
MCI patients, respectively. In another work by Islam and  Zhang24, an ensemble system of three homogeneous 
CNNs has been proposed, and average multi-class classification accuracy of 93.18% was found on the Open 
Access Series of Imaging Studies (OASIS) dataset. For the classification of PD, Esmaeilzadeh et al.25 classified 
PD patients from healthy controls based on MRI and demographic information (i.e., age and gender). With the 
proposed 3D model, they achieved 100% accuracy on the test set. In another study by Sivaranjini and  Sujatha26, 
a pre-trained 2D CNN AlexNet architecture was used to classify PD patients vs. healthy controls, resulting in 
an accuracy of 88.9%.

Although excellent performances have been shown by using deep learning for the classification of neuro-
logical disorders, there are still many challenges that need to be addressed, including complexity and difficulty 
in interpreting the results due to highly nonlinear computations, non-reproducibility of the results, and data/
information and, especially, data overfitting (see Vieira et al.20 and  Davatzikos16 for reviews).

Overly optimistic results may be due to data leakage—a process caused by the use of information in the model 
training that is not expected to be available at prediction time. See Kaufman et al.27 for further details on a formal 
definition of data leakage. Data leakage can be due to a target (class label) leakage or incorrect data split. For 
example, data leakage may occur when feature selection is performed based on the whole dataset before cross-
validation28,29. In this case, the target variable of samples in the test sets may be erroneously used for improving 
the learning process. Several cases may be related to an incorrect data split. For example, when the data aug-
mentation step is performed before dividing the test set from the training data (late split), the augmented data 
generated from the same original image can be seen in both training and test data, leading to incorrect inflated 
 performance30. Another form of train-test contamination that leads to data leakage is when the same test set is 
used to optimize the training hyperparameters and evaluate the model  performance29. A different use of infor-
mation not available at prediction time occurs using longitudinal data, when there is a danger of information 
leaking from the future to the past. A particularly insidious form of data leakage may occur when information 
about the target inadvertently leaks into the input data, for example the presence of a ruler, markings or treat-
ment devices in a medical image may correlate with the class  label31–33.

While concluding that data leakage leads to overly optimistic results will surprise few practitioners, we believe 
that the extent to which this is happening in neuroimaging applications is mostly unknown, especially in small 
datasets. As we completed this study, we became aware of independent research by Wen et al.30 that corrobo-
rates part of our conclusions regarding the problem of data leakage. They successfully suggested a framework 
for the reproducible assessment of AD classification methods. However, the architectures have not been trained 
and tested on smaller datasets typical of clinical practice, and they mainly employed hold-out model validation 
strategies rather than cross-validation (CV)—that gives a better indication of how well a model performs on 
unseen  data34,35. Moreover, the authors focused on illustrating the effect of data leakage on the classification of 
AD patients only.

Unfortunately, the problem of data leakage incurred by incorrect data split is not only limited within the area 
of AD classification but can also be seen in various other neurological disorders. It is more common to observe 
the data leakage in 2D architectures, yet some forms of data leakage, such as late split, could be present in 3D 
CNN studies as well. Moreover, although deep complex classifiers are more prone to overfitting, also conven-
tional machine learning algorithms may be affected by data leakage. A summary of these works with clear and 
potential data leakage is given in Tables 1 and 2, respectively. Other works with insufficient information to assess 
data leakage are reported in Table 3.  

In this study, we addressed the issue of data leakage in one of the most common classes of deep learning mod-
els, i.e., 2D CNNs, caused by incorrect dataset split of 3D MRI data. Specifically, we quantified the effect of data 
leakage on CNN models trained on different datasets of  T1-weighted brain MRI of healthy controls and patients 

Table 1.  Summary of the previous studies performing classification of neurological disorders using MRI and 
with clear data leakage (see also Supplementary Table S1 for a detailed description). AD Alzheimer’s disease, 
HC healthy controls, MCI mild cognitive impairment.

Disorder References Groups (number of subjects) Machine learning model Data split method Type of data leakage Accuracy (%)

AD/MCI

Gunawardena et al.36 AD-MCI-HC (36) 2D CNN 4:1 train/test slice-level split Wrong split 96.00

Hon and  Khan21 AD-HC (200) 2D CNN (VGG16) 4:1 train/test slice-level split Wrong split 96.25

Jain et al.37 AD-MCI-HC (150) 2D CNN (VGG16) 4:1 train/test slice-level split Late and wrong split 95.00

Khagi et al.38 AD-HC (56)
2D CNN (AlexNet, 
GoogLeNet,ResNet50, new 
CNN)

6:2:2 train/validation/test 
slice-level split Wrong split 98.00

Sarraf et al.22 AD-HC (43) 2D CNN (LeNet-5) 3:1:1 train/validation/test 
slice-level split Wrong split 96.85

Wang et al.39 MCI-HC (629) 2D CNN
Data augmentation + 10:3:3 
train/validation/test split by 
MRI slices

Wrong split and augmenta-
tion before split 90.60

Puranik et al.40 AD/EMCI-HC (75) 2D CNN 17:3 train/test split by MRI 
slices Wrong split 98.40

Basheera et al.41 AD-MCI-HC (1820) 2D CNN 4:1 train/test split by MRI 
slices Wrong split 90.47

Nawaz et al.42 AD-MCI-HC (1726) 2D CNN 6:2:2 slice level split Wrong split 99.89
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with neurological disorders using a nested CV scheme with two different data split strategies: (a) subject-level 
split, avoiding any form of data leakage and (b) slice-level split, in which different slices of the same subject are 
contained both in the training and the test folds (thus data leakage will occur). We focused our attention on both 
large (about 200 subjects) and small (about 30 subjects) datasets to evaluate a possible increase of performance 
overestimation when a smaller dataset was used, as is often the case in clinical practice. This paper expands on 
the preliminary results by Yagis et al.52, offering a broader investigation on the issue. In particular, we performed 
the classification of AD patients using the following datasets: (1) OASIS-200, consisting of randomly sampled 
100 AD patients and 100 healthy controls from the OASIS-1  study53, (2) ADNI, including 100 AD patients 
and 100 healthy controls randomly sampled from Alzheimer’s Disease Neuroimaging Initiative (ADNI)54, and 
(3) OASIS-34, composed of 34 subjects (17 AD patients and 17 healthy controls) randomly selected from the 
OASIS-200 dataset. Given that the performance of a model trained on a small sample dataset could depend on the 
selected samples, we created ten instances of the OASIS-34 dataset by randomly sampling from the OASIS-200 
dataset ten times independently. The subject IDs included in each instance are found in Supplementary Table S4. 
Moreover, we generated a different dataset, called OASIS-random, where, for each subject of the OASIS-200 
dataset, a fake random label of either AD patient or healthy control was assigned. In this case, the image data 
had no relationship with the assigned labels. Besides, we included two  T1-weighted images datasets of patients 
with de-novo PD: PPMI, including 100 de-novo PD patients and 100 healthy controls randomly chosen from 
the public Parkinson’s Progression Markers Initiative (PPMI)  dataset55, and Versilia, a small-sized private clinical 
dataset of 17 patients with de-novo PD and 17 healthy controls. A detailed description of each dataset has been 
reported in the “Materials and methods” section.

Results
For AD classification, accuracy on the test set, using subject-level CV, was below 71% for large datasets (OASIS-
200 and ADNI), whereas they were below 59% for smaller datasets (OASIS-34). Regarding de novo PD clas-
sification, they were around 50% for both large (PPMI) and small (Versilia) datasets. Conversely, slice-level CV 
erroneously produced very high classification accuracies on the test set in all datasets (higher than 94% and 92% 
on large and small datasets, respectively), leading to deceptive, over-optimistic results (Table 4). 

Table 2.  Summary of the previous studies performing classification of neurological disorders using MRI 
and suspected to have potential data leakage (see also Supplementary Table S2 for a detailed description). 
AD Alzheimer’s disease, ASD Autism spectrum disorder, EMCI early mild cognitive impairment, HC healthy 
controls, LMCI late mild cognitive impairment, MCI Mild cognitive impairment, MGLCM modified gray level 
co-occurrence matrix, PD Parkinson’s disease, SMC subjective memory concerns, TBI traumatic brain injury, 
TD typically developing.

Disorder References Groups (number of subjects) Machine learning model Data split method Type of data leakage Accuracy (%)

AD/MCI

Farooq et al.43 AD-MCI-LMCI-HC (355) 2D CNN (GoogLeNet and 
modified ResNet)

3:1 train/test (potential) slice-
level split Wrong split 98.80

Ramzan et al.44 HC-SMC- EMCI-
MCI-LMCI-AD (138) 2D CNN (ResNet-18) 7:2:1 train/validation/test 

(potential) slice-level split Wrong split 100

Raza et al.45 AD-HC (432) 2D CNN (AlexNet) 4:1 train/test (potential) slice-
level split Wrong split 98.74

Pathak et al.46 AD-HC (266) 2D CNN 3:1 (potential) slice level split Wrong split 91.75

ASD
Libero et al.47 ASD-TD (37) Decision tree unclear Entire data set used for 

feature selection 91.90

Zhou et al.48 ASD-TD/HC (280) Random tree classifier 4:1 train/test split Entire data set used for 
feature selection 100

PD Sivaranjini, et al.26 PD-HC (182) 2D CNN 4:1 train/test split by MRI 
slices Wrong split 88.90

TBI Lui et al.49 TBI-HC (47) Multilayer perceptron tenfold CV Entire data set used for 
feature selection 86.00

Brain tumor Hasan et al.50 Tumor-HC (600) MGLCM + 2D CNN + SVM tenfold CV Wrong split and entire data 
set used for feature selection 99.30

Table 3.  Summary of the previous studies performing classification of neurological disorders using MRI and 
that provide insufficient information to assess data leakage (see also Supplementary Table S3 for a detailed 
description). AD Alzheimer’s disease, HC healthy controls, MCI mild cognitive impairment.

Disorder References
Groups (number of 
subjects) Machine learning model Data split method Accuracy (%)

AD/MCI
Al-Khuzaie et al.51 AD-HC (240) 2D CNN (Potential) slice-level split 99.30

Wu et al.23 AD-HC (457) 2D CNN Data augmentation + 2:1 
train/test split by MRI slices 97.58



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22544  | https://doi.org/10.1038/s41598-021-01681-w

www.nature.com/scientificreports/

The worst-case stemmed from the randomly labeled OASIS dataset, which resulted in a model with unac-
ceptably high performances (accuracy on the test set more than 93%) using slice-level CV, whereas classification 
results obtained using a subject-level CV were about 50%, in accordance with the expected outcomes for a bal-
anced dataset with completely random labels.

Discussion
In this study, we quantitatively assessed the extent of the overestimation of the model’s classification perfor-
mance caused by an incorrect slice-level CV, which is unfortunately adopted in neuroimaging literature (see 
Tables 1, 2, 3). More specifically, we showed the performance of three 2D CNN models (two VGG variants and 
one ResNet-18, see “Materials and methods” section) trained with subject-level and slice-level CV data splits 
to classify AD and PD patients from healthy controls using  T1-weighted brain MRI data. Our results revealed 
that pooling slices of MRI volumes for all subjects and then dividing randomly into training and test set leads 
to significantly inflated accuracies (in some cases from barely above chance level to about 99%). In particular, 
slice-level CV erroneously increased the average slice level accuracy on the test set by 40–55% on smaller datasets 
(OASIS-34 and Versilia) and 25–45% on larger datasets (OASIS-200, ADNI, PPMI). Moreover, we also conducted 
an additional experiment in which all the labels of the subjects were fully randomized (OASIS-random dataset). 
Even under such circumstances, using the slice-level split, we achieved an erroneous 95% classification accuracy 
on the test set with all models, whereas we found 50% accuracy using a subject-level data split, as expected from 
a randomized experiment. This large (and erroneous) increase in performance could be due to the high intra-
subject correlation among  T1-weighted slices, resulting in a similar information content present in slices of the 
same  subject56.

In AD classification, three previous  studies21,22,43, using similar deep networks (VGG16, ResNet-18 and LeNet-
5, respectively), reported higher classification accuracies (92.3%, 98.0% and 96.8%, respectively) than ours. 
However, there is a strong indication that these performances are massively overestimated due to a slice-level 
split. In particular, in one of these  works21, the presence of data leakage was further corroborated by the source 
code accompanying the paper and confirmed by our data. In fact, when we used the same dataset of Hon and 
 Khan21 (OASIS-200 dataset), our VGG16 models achieved only 66% classification accuracy with subject-level 
split, whereas they boosted to about 97% with a slice-level split. Similar findings were presented by Wen et al.30, 
who used an ADNI dataset with 330 healthy controls and 336 AD patients. Indeed, using baseline data, they 
reported a 79% of balanced accuracy in the validation set with a subject-level split which increased up to 100% 
with a slice-level split.

One of the main issues in the classification of neurological disorders using deep learning is data  scarcity57. Not 
only because labeling is expensive but also because privacy reasons and institutional policies make acquiring and 
sharing large sets of labeled imaging data even more  challenging58. To show the impact of data size on model 
performance, we created 10 small subsets from the OASIS dataset (OASIS-34 datasets). As expected, when we 
reduced the data, we obtained lower classification accuracies with all the networks using the subject-level data 
split method. However, when the slice-level method was used, the models erroneous achieved better results on 

Table 4.  Mean slice-level accuracy on the training and test set of the outer CV over fivefold nested CV has 
been reported for three 2D CNN models (see “Materials and methods” section), all datasets, and two data split 
methods (slice-level and subject-level). The difference between accuracy using slice-level and subject-level split 
in the test set has also been reported.

Dataset Network architecture

Training set accuracy (%) Test set accuracy (%)

Subject-level split Slice-level split Subject-level split Slice-level split Difference

OASIS-200

VGG16-v1 95.93 99.85 66.0 94.18 28.18

VGG16-v2 95.13 100 66.13 96.99 30.86

ResNet-18 100 100 68.87 98.96 30.1

OASIS-34

VGG16-v1 88.94 100 54.35 99.19 44.84

VGG16-v2 96.94 100 54.34 99.33 44.99

ResNet-18 100 100 57.49 98.96 41.47

OASIS-random

VGG16-v1 63.38 100 53.37 95.93 42.56

VGG16-v2 69.17 100 49.25 94.81 45.56

ResNet-18 84.49 99.09 50.8 93.74 42.94

ADNI

VGG16-v1 91.09 100 70.12 95.31 25.19

VGG16-v2 80.49 100 66.49 95.24 28.75

ResNet-18 100 100 68.68 96.87 30.19

PPMI

VGG16-v1 76.8 100 48.24 93.99 45.75

VGG16-v2 73.19 100 46.93 94.37 47.44

ResNet-18 100 100 48.06 96.12 44.06

Versilia

VGG16-v1 99.72 100 53.86 95.97 42.11

VGG16-v2 76.89 100 42.97 97.8 54.83

ResNet-18 99.90 95.13 51.36 92.63 41.27
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OASIS-34 than on the OASIS-200 dataset. Similarly, models trained on the Versilia dataset (34 subjects) pro-
duced inflated results with the slice-level split. Overall, these results indicate that data leakage is highly relevant, 
especially when small datasets are used, which may, unfortunately, be common in clinical practice.

It is well-known that data leakage leads to inflating performance—and this phenomenon is not specific 
to brain MRI or deep learning, but it can occur in any machine learning system. Nevertheless, the degree of 
overestimation quantified through our experiments was surprising. Unfortunately, in the literature, the precise 
application of CV is frequently not well-documented, and the source code is not available, although we have 
observed these issues mostly in manuscripts that were either not peer-reviewed or not rigorously peer-reviewed 
(see Tables 1, 2, 3). Overall, this situation leaves the neuroimaging community unable to trust the (sometimes) 
promising results published. Regardless of the network architecture, the number of subjects, and the level of 
complexity of the classification problem, all experiments that applied slice-level CV yielded very high classifica-
tion accuracies on the test set as a result of incorporating different slices of the same subject in both the training 
and test sets. Considering classifications on 2D MRI images, we showed that it is crucial that the CV split be 
done based on the subject-level to prevent data leakage and get trustable results. This assures that the training 
and validation sets to be completely independent and confirms that no information is leaking from the test set 
into the training set during the development of the model. Additionally, employing 3D models for 3D data with 
subject-level train-test split should be encouraged as 2D models do not effectively capture 3D features. The 
high computational complexity of 3D models may be tackled using image patches or sub-images, and parallel 
processing on multiple GPUs, or, in some cases, by image downsampling.

With recent advances in machine learning, more and more people are becoming interested in applying 
these techniques to biomedical imaging, and there is a real and growing risk that not all researchers pay suf-
ficient attention to this serious issue. We also emphasize the need to document how the CV is implemented, the 
architecture used, how the different hyperparameter choices/tunings are made and include their values where 
possible. Besides, we advocate reproducibility and encourage the community to take a step towards transparency 
in deep/machine learning in medical image analysis by publicly releasing code, including containers and a link 
to open  datasets59. Moreover, a blind evaluation on external test sets—i.e., within open challenges—is highly 
recommended.

One limitation of this study is due to the substantial overfitting we observed while applying a subject-level 
split for training our models. This overfitting is manifested by the very high accuracy in training sets compared 
to that observed in test sets (Table 4). Focussing our efforts on alleviating overfitting may have improved per-
formance in the test set, thus reducing the extent of the faulty boost due to the slice-level split. Moreover, in this 
study, we have not assessed all data leakage types, including late split and hyperparameters optimization in the 
test set—that may also be present in 3D CNN studies. We have found evidence of all these data leakage issues 
in the recent literature (see Tables 1, 2, 3), and we plan to quantify their effect in our future work systematically.

In conclusion, training a 2D CNN model for analyzing 3D brain image data must be performed using a 
subject-level CV to prevent data leakage. The adoption of slice-based CV results in very optimistic model per-
formances, especially for small datasets, as the extent of the overestimation due to data leakage is severe.

Materials and methods
Datasets. In this study, we adopted the scans collected by three public and international datasets of 
 T1-weighted images of patients with AD (the OASIS  dataset53 and the ADNI  dataset54) and de-novo PD (the 
PPMI  dataset55). An additional private de-novo PD dataset, namely the Versilia dataset, has also been used. A 
summary of the demographics of the datasets used in this study is shown in Table 5. In the following sections, a 
detailed description of all datasets will be reported.

OASIS‑200, OASIS‑34, and OASIS‑random datasets. We have used the  T1-weighted images of 100 AD patients 
[(59 women and 41 men, age 76.70 ± 7.10 years, mean ± standard deviation (SD)] and 100 healthy controls (73 
women and 27 men, age 75.50 ± 9.10 years, mean ± SD) from the OASIS-1 study—a cross-sectional cohort of the 
OASIS brain MRI  dataset53, freely available at https:// www. oasis- brains. org/. In particular, we have employed 
the same scans that were previously selected by other  authors21. We called this dataset OASIS-200. The subject 
identification numbers (IDs) and demographics of these subjects were specified in Supplementary Table S6. No 
significant difference in age (p = 0.15 at t-test) was found between the two groups, while a significant (borderline) 
difference in gender was observed (p = 0.04 at χ2-test).

In OASIS-1, AD diagnosis, as well as the severity of the disease, were evaluated based on the global Clinical 
Dementia Rating (CDR) score derived from individual CDR scores for the domains memory, orientation, judg-
ment and problem solving, function in community affairs, home and hobbies, and personal  case60,61. Subjects 
with a global CDR score of 0 have been labeled as healthy controls, while scores 0.5 (very mild), 1 (mild), 2 
(moderate), and 3 (severe) have been all labeled as AD.

All  T1-weighted images have been acquired on a 1.5 T MR scanner (Vision, Siemens, Erlangen, Germany), 
using a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence in a sagittal plane [repetition time 
(TR) = 9.7 ms, echo time (TE) = 4.0 ms, flip angle = 10°, inversion time (TI) = 20 ms, delay time (TD) = 200 ms, 
voxel size = 1 mm × 1 mm × 1.25 mm, matrix size = 256 × 256, number of slices =  128]53.

ADNI dataset. We considered the  T1-weighted MRI data of 100 AD patients (44 women and 56 men, age 
74.28 ± 7.96  years, mean ± SD) and 100 healthy controls (52 women and 48 men, age 75.04 ± 7.11  years, 
mean ± SD). No significant difference in age (p = 0.24 at t-test) and gender (p = 0.26 at χ2-test) was found between 
the two groups. Alzheimer’s disease patients have been randomly chosen from the ADNI 2 dataset (available at 
http:// adni. loni. usc. edu/)—acohort of ADNI that extends the work of ADNI 1 and ADNI-GO  studies54. Led by 

https://www.oasis-brains.org/
http://adni.loni.usc.edu/
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Principal Investigator Michael W. Weiner, MD, ADNI was launched in 2003 to investigate if biological mark-
ers (such as MRI and PET) can be combined to define the progression of MCI and early AD. We have used 
MPRAGE  T1-weighted MRI scans acquired by 3 T scanners [6 Siemens (Erlangen, Germany) MRI scanners 
and 6 Philips (Amsterdam, Netherlands) scanners] in a sagittal plane (voxel size = 1 mm × 1 mm × 1.2 mm). The 
image size of the  T1-weighted data acquired from the Siemens and Philips scanners were 176 × 240 × 256 and 
170 × 256 × 256, respectively. Since ADNI 2 is a longitudinal dataset, more than one scan was available for each 
subject. The first scan of each participant has been chosen to produce a cross-sectional dataset. Supplementary 
Table S7 provides subject IDs and the acquisition date of the specific scan used in our study. The MRI acquisition 
protocol for each MRI scanner can be found at http:// adni. loni. usc. edu/ metho ds/ docum ents/ mri- proto cols/. In 
ADNI 2 dataset, subjects have been categorized as AD patients or healthy controls based on whether subjects 
have complaints about their memory and by considering a combination of neuropsychological clinical  scores54.

PPMI dataset. We randomly selected 100 de-novo PD subjects (40 women and 60 men, age 61.71 ± 9.99, 
mean ± SD) and 100 healthy controls (36 women and 64 men, age 61.91 ± 11.52, mean ± SD) from the pub-
licly available PPMI dataset (https:// ida. loni. usc. edu/ login. jsp? proje ct= PPMI). No significant difference in 
age (p = 0.44 at t-test) and gender (p = 0.56 at χ2-test) was found between the two groups. The criterion used 
to recruit de-novo PD patients, and healthy controls were defined by Marek et al.55. Briefly, PD patients were 
selected within two years of diagnosis with a Hoehn and Yahr score <  362, at least two of resting tremor, either 
bradykinesia or rigidity (must have either resting tremor or asymmetric bradykinesia) or a single asymmetric 
resting tremor or asymmetric bradykinesia and dopamine transporter (DAT) or vesicular monoamine trans-
porter type 2 (VMAT-2) imaging showing a dopaminergic deficit. Healthy controls were free from any clinically 
significant neurological  disorder55.

The  T1-weighted scans were collected at baseline using MR scanners manufactured by Siemens (11 scanners 
at 3 T and five scanners at 1.5 T), Philips Medical Systems (10 scanners at 3 T and 11 scanners at 1.5 T), GE 
Medical Systems (11 scanners at 3 T and 24 scanners at 1.5 T) and another anonymous one (5 scanners at 1.5 T). 
We also found three subjects whose MRI protocol was missing. The details of the MRI protocols of all scanners 
can be found in Supplementary Table S8.

Versilia dataset. Seventeen (4 women and 13 men, age 64 ± 7.21 years, mean ± SD) patients with de-novo par-
kinsonian syndrome consecutively referred to a Neurology Unit to evaluate PD over a 24-month interval (from 
June 2012 to June 2014) were recruited in this dataset. More details about clinical evaluation can be found in 
Ref.63. Seventeen healthy controls (5 women and 12 men, age 64 ± 7 years, mean ± SD) with no history of neuro-
logical diseases and normal neurological examination were recruited as controls. No significant difference in age 
(p = 0.95 at t-test) and gender (p = 0.70 at χ2-test) was found between the two groups.

All subjects underwent high-resolution 3D  T1-weighted imaging on a 1.5 T MR scanner system (Magnetom 
Avanto, software version Syngo MR B17, Siemens, Erlangen-Germany) equipped with a 12-element matrix 

Table 5.  Demographic features of subjects belonging to OASIS-200, ADNI, PPMI, and Versilia datasets. The 
same information for the OASIS-34 datasets has been reported in Supplementary Table S5. AD Alzheimer’s 
disease, ADNI Alzheimer’s Disease Neuroimaging Initiative, OASIS open access series of imaging studies, PD 
Parkinson’s disease, PPMI Parkinson’s Progression Markers Initiative, SD standard deviation.

Dataset Patients Healthy controls

OASIS-200

Number of subjects 100 100

Age (range, years) 62–96 59–94

Age (mean ± SD, years) 76.70 ± 7.10 75.50 ± 9.10

Gender (women/men) 59/41 73/27

ADNI

Number of subjects 100 100

Age (range, years) 56–89 58–95

Age (mean ± SD, years) 74.28 ± 7.96 75.04 ± 7.11

Gender (women/men) 44/56 52/48

PPMI

Number of subjects 100 100

Age (range, years) 34–82 31–83

Age (mean ± SD, years) 61.71 ± 9.99 61.91 ± 11.52

Gender (women/men) 40/60 36/64

Versilia

Number of subjects 17 17

Age (range, years) 48–78 54–77

Age (mean ± SD, years) 64 ± 7.21 64.00 ± 7.00

Gender (women/men) 4/13 5/12

http://adni.loni.usc.edu/methods/documents/mri-protocols/
https://ida.loni.usc.edu/login.jsp?project=PPMI
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radiofrequency head coil and SQ-engine gradients. The SQ-engine gradients had a maximum strength of 45 
mT/m and a slew rate of 200 T/m/s.  T1-weighted MR images were acquired with an axial high resolution 3D 
MPRAGE sequence with TR = 1900 ms, TE = 3.44 ms, TI = 1100 ms, flip angle = 15°, slice thickness = 0.86 mm, 
field of view (FOV) = 220 mm × 220 mm, matrix size = 256 × 256, number of excitations (NEX) = 2, number of 
slices = 176.

T1-weighted MRI data preprocessing. All  T1-weighted MRI data went through two preprocessing steps 
(see Fig. 1). In the first stage, co-registration to a standard template space and skull stripping were applied to 
re-align all the images and remove non-brain regions. In the second stage, a subset of axial images has been col-
lected using an entropy-based slice selection approach.

Co‑registration to a standard template space and skull stripping. For the OASIS datasets, we used publicly avail-
able preprocessed data (gain-field corrected, brain masked, and co-registration)64. Briefly, the brain masks from 
OASIS were obtained using an atlas-registration-based method, and their quality was controlled by human 
 experts53, and each volume has been co-registered to the Talairach and Tournoux atlas. Each preprocessed 
 T1-weighted volume had a data matrix size of 176 × 208 × 176 and a voxel size of 1 mm × 1 mm × 1  mm64.

For all other datasets, we have co-registered each individual  T1-weighted volume to the MNI152 standard 
template space (at 1 mm voxel size—available in the FSL version 6.0.3 package) by using the SyN algorithm 
included in ANTs package (version 2.1.0) with default  parameters65. Then, the brain mask of the standard tem-
plate space has been applied to each co-registered volume. Each preprocessed  T1-weighted volume had a data 
matrix size of 182 × 218 × 182 and a voxel size of 1 mm × 1 mm × 1 mm.

Supplementary Figure S1 online illustrates sample preprocessed  T1-weighted slices from OASIS-200, ADNI, 
PPMI, and Versilia datasets.

Entropy‑based slice selection. Each  T1-weighted slice generally conveys a different amount of information. 
Given that we are interested in developing a 2D CNN model, we have performed a preliminary slice selection 
based on the amount of information. More specifically, for each  T1-weighted volume, the Shannon entropy ES, 
representing the information content, was computed for each axial slice, as follows:

Figure 1.  Schematic diagram of the overall  T1-weighted MRI data processing and validation scheme. First, a 
preprocessing stage included co-registration to a standard space, skull-stripping and slices selection based on 
entropy calculation. Then, CNNs model’s training and validation have been performed on each dataset in a 
nested CV loop using two different data split strategies: (a) subject-level split, in which all the slices of a subject 
have been placed either in the training or in the test set, avoiding any form of data leakage; (b) slice-level split, in 
which all the slices have been pooled together before CV, then split randomly into training and test set.
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where k is the number of grayscale levels in the slice and pk is the probability of occurrence, estimated as the 
relative frequency in the image, for the gray level k. Then, for each  T1-weighted volume, the slices were ordered 
in descending order based on their entropy scores, and, finally, we selected only the eight axial slices that showed 
the highest  entropy21.

To be consistent with the input sizes of the proposed 2D CNN models, all slices were resized to 224 × 224 
pixels by fitting a cubic spline between the 4-by-4 neighborhood  pixels66. Voxel-wise feature standardization has 
also been applied to make training the CNNs easier and achieve faster convergence, i.e., for each voxel, an aver-
age value of all grayscale values within the brain mask has been subtracted and scaled by the standard deviation 
(within the brain mask).

Model architectures. Since the number of subjects of each dataset may not be sufficient to train with high 
accuracy a 2D CNN model from scratch, we have used a machine learning technique called transfer learning 
that allows employing pre-trained models, i.e., model parameters previously developed for one task (source 
domain) to be transferred to target domain for weight initialization and feature extraction. In particular, CNN 
layers hierarchically extract features starting from the general low-level features to those specific to the target 
class, and, using transfer learning, the general low-level features can be shared across tasks. Notably, we used 
pre-trained  VGG1667 and ResNet-1868 models in this study, as detailed in the following sections. The transfer 
learning approach and VGG16 architectures used in this study are similar to those employed in Ref.21 as their 
results triggered our investigation of data leakage.

VGG16‑based models. VGG16 is one of the most influential architectures which explores network depth with 
very small (3 × 3) convolution filters stacked on top of each other. VGG16 consists of five convolutional blocks, 
with alternating convolutional and pooling layers and three fully-connected layers.

In transfer learning, the most common approach is copying the first n layers of the pre-trained network to the 
first n layers of a target network and then randomly initializing the remaining layers to be trained on the target 
task. Depending on the size of the target dataset and the number of parameters in the first n layers, these copied 
features can be left unchanged (i.e., frozen) or fine-tuned during the training of the network on a new dataset. It 
is well accepted that if the target dataset is relatively small, fine-tuning may cause overfitting, whereas if the target 
dataset is large, then the base features can be fine-tuned to improve the model’s performance without overfitting.

To investigate the effect of fine-tuning, we have tested two different variants of VGG16 architecture, namely 
VGG16-v1 and VGG16-v2 (Fig. 2). The former model has been used as a feature extractor where the weights for 
all network layers are frozen except that of the final fully connected layer. Randomly initialized fully connected 
layers have replaced the three topmost layers with rectified linear unit (ReLU) activation. The weights are ini-
tialized according to the Xavier initialization  heuristic69 to prevent the gradients from vanishing or exploding.

The VGG16-v2 model has been utilized as a weight initializer where the weights are derived from the pre-
trained network and fine-tuned during training. We have replaced the fully connected layers with a randomly 

(1)ES =
∑

k

pklog2(pk),

Figure 2.  The two different networks based on the VGG16 architecture are shown. Each colored block of layers 
illustrates a series of convolutions. (a) The first model, named as VGG16-v1 consists of five convolutional blocks 
followed by three fully connected layers. Only the last three fully connected layers are fine-tuned. (b) On the 
other hand, the second model, VGG16-v2, has five convolutional blocks followed by a global average pooling 
layer, and all the layers are fine-tuned.
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initialized global average pooling (GAP) layer suggested by Lin et al.70 to reduce the number of parameters and, 
rather than freezing the CNN layers, we have fine-tuned all layers.

ResNet‑18 based model. It has been long believed that deeper networks can learn more complex nonlinear rela-
tionships than shallower networks with the same number of neurons, and thus network depth is of great impor-
tance on model  performance71. However, many studies revealed that deeper networks often converge at a higher 
training and test error rate when compared to their shallower  counterparts68. Therefore, stacking more layers to 
the plain networks may eventually degrade the model’s performance while complicating the optimization pro-
cess. To overcome this issue, He and colleagues introduced deep residual neural networks and achieved top-5 
test accuracies with their models on the popular ImageNet test  set68. The model was proposed as an attempt to 
solve the vanishing gradients and the degradation problems using residual blocks. With these residual blocks, 
the feature of any deeper unit can be computed as the sum of the activation of a shallower unit and the residual 
function. This architecture causes the gradient to be directly propagated to shallower units making ResNets 
easier to train.

There are different versions of ResNet architecture with various numbers of layers. In this work, we used 
ResNet-18 architecture, an 18-layer residual deep learning network consisting of five stages, each with a con-
volution and identity  block68. In our model, one fully connected layer with sigmoid activation has been added 
at the end of the network—a common practice in binary classification tasks as it takes a real-valued input and 
squashes the output to a range between 0 and 1. Since the network is relatively smaller and has a lower number 
of parameters than VGG16, the weights and biases of all the transferred layers are fine-tuned while the newly 
added fully connected layer has been trained to start from randomly initialized weights. The architecture of our 
ResNet-18 model can be seen in Fig. 3.

Model training and validation. Each 2D CNN model  has been trained and validated using  a nested 
CV strategy—a validation scheme that allows examining the unbiased generalization performance of the trained 
models along with performing, at the same time, hyperparameters  optimization29. It involves nesting two k-fold 
CV loops where the inner loop is used for optimizing model hyperparameters, and the outer loop gives an unbi-
ased estimate of the performance of the best model. It is especially suitable when the amount of data available 
is insufficient to allow separate validation and test  sets29. A schematic diagram of the procedure is illustrated in 
Supplementary Fig. S2. It starts by dividing the dataset into k folds, and onefold is kept as a test set (outer CV), 
while the other k-1 folds are split into inner folds (inner CV). The model hyperparameters are chosen from the 
hyperparameter space through a grid search based on the average performance of the model over the inner folds. 
In particular, we varied the learning rate in the set {10–5, 3 ×  10–5,  10–4, 3 ×  10–4,  10–3} and the learning rate decay 
in {0, 0.1, 0.3, 0.5}. The chosen model is then fitted with all the outer fold training data and tested on the unseen 
test fold, resulting in an unbiased estimation of the model’s prediction error. Specifically, we choose a tenfold CV 
because it offers a favorable bias-variance  tradeoff72,73.

Figure 3.  A modified ResNet-18 architecture with an average pooling layer at the end is shown. The upper box 
represents a residual learning block with an identity shortcut. Each layer is denoted as (filter size, # channels); 
layers labeled as “freezed” indicates that the weights are not updated during backpropagation, whereas when 
they are labeled as “fine-tuned” they are updated. The identity shortcuts can be directly used when the input 
and output are of the same dimensions (solid line shortcuts) and when the dimensions increase (dotted line 
shortcuts). ReLU rectified linear unit.
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In all experiments, we used batch size = 128 and epoch number = 50. Due to its ability to adaptively updat-
ing individual learning rates for each parameter, an Adam optimizer was  used74. Each selected slice of the 3D 
 T1-weighted volume has been classified independently and the final model’s performance was stated using the 
mean slice-level accuracy, separately, on the training set and test set folds of the outer CV.

We thus conducted CNNs model’s training and validation on each dataset in a nested CV loop using two 
different data split strategies: (a) subject-level split, in which all the slices of a subject have been placed either 
in the training set or in the test set, avoiding any form of data leakage; (b) slice-level split, in which all the slices 
have been pooled together before CV, then split randomly into training and test set. In this case, for each slice 
of the test set, a set of highly correlated slices coming from the MR volume of the same subject ended up in the 
training set, giving rise to data leakage, as shown pictographically in Fig. 1.

CNN models were carried out using a custom-made software in Python language (version 3.6.8) using the 
following modules: CUDA v.9.0.17675, TensorFlow-gpu v.1.12.076, Keras v.2.2.477, Scikit-learn v.0.20.278, Nibabel 
v.2.3.379, and OpenCV v.3.3.066. All the source code can be found in a Github repository at https:// github. com/ 
Imagi ng- AI- for- Health- virtu al- lab/ Slice- Level- Data- Leaka ge, and a Docker image can be downloaded at https:// 
hub. docker. com/ repos itory/ docker/ ai4he althv lab/ slice- level- data- leaka ge. The training and validation of CNN 
models were performed on a workstation equipped with a 12 GB G5X frame buffer NVIDIA TITAN X (Pascal) 
GPU with 64 GB RAM, 8 CPUs, 3584 CUDA cores and 11.4 Gbps processing speed. The average computational 
time for CNN training on a dataset of 34 and 200 subjects were 5.68 h (VGG16-v1), 5.63 h (VGG16-v2), 2.94 h 
(ResNet-18) and 33.93 h (VGG16-v1), 33.82 h (VGG16-v2), 14.12 h (ResNet-18), respectively. The total com-
putational time for this study was thus about 17 days.
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