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Abstract  

Across vertebrate species, intergroup conflict confronts individuals with a tension between 

group interests best served by participation in conflict and personal interest best served by not 

participating. Here, we identify the neurohormone oxytocin as pivotal to the neurobiological 

regulation of this tension in distinctly different group-living vertebrates, including fish, birds, 

rodents, non-human primates, and humans. In the context of intergroup conflict, a review of 

emerging work on pro-sociality suggests that oxytocin and its fish and birds homologs, isotocin 

and mesotocin, respectively, can elicit participation in group conflict and aggression. This is 

because it amplifies (i) concern for the interests of genetically related or culturally similar ‘in-

group’ others, and (ii) willingness to defend against outside intruders and enemy conspecifics. 

Across a range of social vertebrates, oxytocin can induce aggressive behaviour to ‘tend-and-

defend’ the in-group during intergroup contests.  
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1. Introduction 

Interactions between groups of conspecifics can be cooperative and benign but also hostile, for 

example, when groups compete for (access to) food, mating opportunities and territory [1,2]. 

Moreover, across species and all else equal, groups are more likely to be victorious when their 

members contribute to the collective aggression of rivalling other groups and prevent defeat 

when they contribute to the collective defence against enemy attacks [3,4]. And yet, joining 

conflict requires investing personal resources and increases the risk of injury. Participating in 

out-group aggression and in-group defence thus requires individuals to solve a tension between 

personal interests on the one hand and group interests on the other [4–7].  

The tension between personal interests, served by withholding participating in conflict and 

group interests served by pro-actively contributing, is seen in several species across taxa [1,7]. 

Perhaps there are evolutionary preserved biological mechanisms that regulate individual 

participation in intergroup conflict. Here, we examine this possibility at the neurobiological 

level by focusing on the role of oxytocin (and its homologs isotocin and mesotocin [8,9]) in 

regulating key parameters underlying conflict participation. We uncover a remarkable cross-

species commonality in how isotocin in social fish, mesotocin in gregarious birds, and oxytocin 

in group-living mammals biologically prepares for a ‘tend-and-defend’ response during 

intergroup conflict and not, or less so, for the aggressive subordination and exploitation of 

rivalling groups of conspecifics.  

2. Evolution and Neurobiology of Oxytocin 

Oxytocin is a nine-amino acid peptide (i.e., nonapeptide) synthesised primarily in the brain. It 

can act centrally as a neuromodulator and/or peripherally as a hormone [9]. Across taxa and 

species, the mammalian oxytocin has several homologs, such as ‘isotocin’ in bony fishes [10], 

‘mesotocin’ in nonmammalian tetrapods (lungfish, amphibians, reptiles and birds) [11] and up 

to five structural variants of oxytocin recently sequenced in new world monkeys [12] (Fig. 1).  

Oxytocin can thus be viewed as an ancient peptide widely preserved across taxa. It shares 

common ancestors with another nonapeptide, ‘vasopressin’, that can be traced back all the way 

to snails and insects (Fig. 1). However, not all insects have this nonapeptide gene ancestor, 

such as silkworms, fruit flies, mosquitos, spiders, and honeybees, suggesting a potential loss of 

such genes [13]. The vertebrates witnessed the emergence of oxytocin and its sister nonapeptide 

vasopressin (and their homologs) about 500 million years ago through gene duplication of a 

common ancestral gene, presumably in jawless fish [8]. Since then, the oxytocin structure has 

remained highly preserved, from bony fishes to mammals, where the structural differences 

between oxytocin and its homologs and the recently discovered mammalian variants occur in 

one or two amino acids (Fig. 1). These differences notwithstanding, oxytocin variants and 

homologs thus share important structural and functional elements. For readability, we use here 

the nomenclature ‘oxytocin’ for all mammalian oxytocins, isotocin and mesotocin [14].  
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___________________________________________________________________________ 

Figure 1.  Oxytocin amino acids sequences across taxa/species. A simplified phylogenetic 

tree shows oxytocin sequence in different species and taxa with the common 

ancestors of oxytocin and vasopressin in invertebrates. To differentiate oxytocins 

in mammals, the variant amino acid and its position are indicated as a prefix. The 

Leu8-Oxytocin is taken here as a reference to see which amino acid(s) differ from 

this structure, where non-matching amino acids are colour coded. NWM refers to 

new world monkeys (e.g., marmosets, spider monkeys, capuchin monkeys, etc.). 

Nonapeptides sequences are from [8,12]. Illustrations by Z. Triki. 
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In all vertebrates, oxytocin is synthesised mainly in the magnocellular and parvocellular 

hypothalamic neurons. From here, oxytocin can be released centrally or relayed to the posterior 

pituitary gland, where oxytocin is released into the bloodstream and eventually cleared out in 

other fluids such as saliva and urine (Side Box 1). In teleost and amphibians, the hypothalamic 

parvocellular and magnocellular neurons are located in the preoptic area and anterior 

hypothalamus. In other vertebrates, such as reptiles, birds and mammals, rather two separate 

nuclei, the paraventricular and supraoptic nuclei, harbour the oxytocin neurons (for further 

details, see [15]).  

Upon its release from neuronal soma, axons, and dendrites, oxytocin exerts widespread effects 

in the brain via oxytocin specific G protein-coupled receptor [9]. Oxytocin binding on this 

receptor activates a set of signalling cascades that can quickly modulate the evolutionary 

ancient and structurally and functionally preserved social decision-making network in the 

vertebrate brain [16,17]. This network includes various brain nuclei known for their crucial 

roles in regulating social recognition, affiliation and parental behaviour, responses to social 

stressors, and aggression [2,17–19]. 
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___________________________________________________________________________ 

Side Box 1:  Measuring and Manipulating Oxytocin in Social Vertebrates  

  

The box summarises the most common techniques used in biology to manipulate and 

measure oxytocin levels across taxa. To study causal effects, several methods exist to 

manipulate oxytocin (left panel). Non-invasive intranasal administration of oxytocin or 

an antagonist is commonly used in (non-)human primates. Invasive techniques include 

injections and intracerebroventricular infusions and are more commonly used in small 

mammals, fish, and birds. Finally, causality is studied by comparing models with versus 

without in-tact oxytocin circuitry (i.e., knockdown (out) models). To examine 

correlations between naturally occurring oxytocin release and behaviour, central 

oxytocin is obtained from cerebrospinal fluid or directly from the brain, and peripheral 

oxytocin can be obtained from blood plasma, saliva, or urine (top right panel). Various 

assaying techniques exist to detect the presence of the nonapeptide in the sample (bottom 

right panel). For further details on the different techniques’ accuracy and validity and the 

extent to which endogenous/exogenous oxytocin levels can be an informative tool in 

behavioural studies, please see [20–27]. 
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3. Oxytocin and Participation in Group Conflict 

There is growing evidence that in a range of species, oxytocin plays a significant role in 

forming and solidifying social structures (e.g., [20] [Lemaine et al., this issue]. In particular, 

affiliation among conspecifics is often associated with higher oxytocin levels. For example, 

studies that use oxytocin levels from blood plasma, urine, or saliva as an informative tool on 

central oxytocin release, have recorded elevated oxytocin following affiliative touch [55–57] 

and cooperative exchange [58–60] in mammalian species such as (human) primates and dogs. 

Also, strongly bonded marmoset monkeys showed synchronised fluctuations of oxytocin over 

a six week period [61] (also see [62]). Similar positive effects of affiliation on oxytocin levels 

are found in gregarious birds [63], lizards [64], and fish [36]. Other work observed links 

between oxytocin levels in distinct brain regions on the one hand, and a range of social 

behaviours on the other, including suckling (in rats and sheep [65–67] and mating (e.g., in voles 

[68]).  

At first blush, the mutually reinforcing relationship between affiliation and oxytocin may 

appear antagonistic to the possibility that oxytocin prepares individuals for participation in 

hostile group conflict with conspecifics. However, for group conflict to be won, or not lost, 

individuals within rivalling groups need to contribute to their group’s fighting capacity at some 

personal cost (Fig. 2) (also see [2,5–7,69,70]). Making such costly contributions serves the 

group and can thus be seen as a form of pro-social behaviour towards one’s in-group. Indeed, 

as we [2,71] and others (e.g., [1,5,7]) have argued and shown, in many group-living species an 

individual’s conflict participation pi is a function of a concern for in-group (henceforth αI) and 

out-group interests (henceforth αO), expected out-group threat (henceforth β), and compliance 

with group norms for participation (viz. reputation concerns; henceforth γ (see also [De Dreu 

& Triki, this issue]. If we set each parameter to vary between -1 and 1 inclusive, participation 

likelihood increases when there is a positive concern for in-group interests (αI > 0), negative 

concern for out-group interests (αO < 0), perceived out-group threat (β > 0) or when the animal 

expects participation returns reputation benefits (γ > 0) [1,2,4] [De Dreu and Triki, this issue]. 

This means that participation can be expected when and because oxytocin increases (i) in-group 

concern αI, and/or (ii) creates negative out-group concern (αO < 0), and/or (iii) increases 

perceived out-group threat β, and/or (iv) increases expectation of reciprocity and reputation 

benefits from participating (γ). In the remainder of this section, we examine the evidence for 

the role of oxytocin on each of these parameters underlying participation in conflict (also see 

[67,72–75]) (Side Box 2). 

___________________________________________________________________________ 

Figure 2 Intergroup Conflict as a Multilevel Contest Game of Strategy  

 

(A) Individuals nested in two groups (Circle: ai…an and Square: bi…bn) can 

contribute personal resources (e.g., skills, time and energy) to their group’s 

capacity for out-group attack A; red) and/or to protect against enemy attacks (in-

group defence D; blue). Conflict participation is risky – the individual may get 
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injured – and resources contributed are ‘wasted.’ (B) Conflict participation 

increases the likelihood of victory with concomitant ‘spoils of war’ (a win/lose 

outcome; top panel), and of surviving out-group attacks (a stalemate outcome; 

bottom panel). Because (participating in) conflict is wasteful, even winning groups 

typically are less wealthy post-conflict. 

 

 
___________________________________________________________________________ 

3.1 Parochial Preferences (in-group interest αI > out-group interest αO) 

Studies with human participants revealed that concerns for genetically related or culturally 

similar conspecifics (in-group) are typically stronger than for unrelated and unfamiliar (out-

group) conspecifics [76] (Side Box 2). Oxytocin has a mechanistic role to play in such in-group 

biased preferences (i.e., αI > αO) [77,78]. For instance, in-group participants in a foraging game 

helped each other more often compared to out-group participants, a behaviour that was 

mediated by endogenous oxytocin (i.e., measured in saliva) [58]. Similarly, Chinese males had 

a frontocentral positive activity of larger amplitude in response to the pain expressions of in-

group (Asian targets) but not out-group members (Caucasian targets), especially following 

intranasal administration of oxytocin rather than placebo [79] (also [80]).  

 

___________________________________________________________________________ 

Side Box 2:  Inferring Conflict Participation Parameters from Vertebrate Decision-

Making 

 

Concern for in-group (αI) and out-group (αO) can be inferred from behavioural 

choices, neural activation in, e.g., mesolimbic reward circuitry and, in humans, 

self-reports. In humans, social concerns can be inferred from economic decision-

making games such as the Dictator Game (DG), wherein participants donate x out 

of an endowment e to an anonymous recipient (with 0 ≤ x ≤ e). Higher donations 

to in-group rather than out-group members reflect stronger concern for in-group 

(αI) than out-group interests (αO) [76,81]. Variants of such games have been used 

to infer social preferences in non-human primates [82]. In nonmammalian 
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vertebrates, such as social fish, social preferences are inferred from time spent in 

proximity of a conspecific [38] or from costly helping of a conspecific [83]. To 

infer expectations of reciprocity (viz. βT), studies with humans used Trust Games. 

Participants can transfer x out of an endowment e to a recipient (with 0 ≤ x ≤ e). 

The recipient then receives 3x and can return y to the participant (with 0 ≤ y ≤ 3x). 

Greater transfers reflect expectations of reciprocity (or ‘trust’), and greater back-

transfers reflect a willingness to reciprocate (or ‘trustworthiness’) [81]. Vice versa, 

expectations of competition can be inferred from partner choice, with rejecting 

partners who did not cooperate on earlier occasions as a measure of negative 

expectations (in humans[81]; in birds [84]; in fish [85]). Finally, reputation 

concerns have been inferred from third-party punishment games [82], where 

participants, after decision-making, express through punishment social disapproval 

of the others’ (non-cooperative) behaviour and/or induce a norm for cooperation 

on future trials [86]. Punishment and behavioural adjustments to (threat of) 

punishment are seen across social vertebrates, including chimpanzees [87] and 

social fish [88].  

___________________________________________________________________________ 

In humans, oxytocin seems to amplify αI and neither increases nor decreases αO – oxytocin 

makes humans like their in-group more and does not condition (dis)liking out-groups. This was 

shown, for example, when human participants indicated their liking for individuals from their 

own nationality (i.e., Dutch citizens) and individuals from a more or less rivalling nationality 

(e.g., Germans). Compared to placebo-treated individuals, those given intranasal oxytocin 

expressed a greater liking for in-group members (an increase in αI) but did not increase or 

decrease their liking for out-group members (i.e., αO was similar in oxytocin and placebo 

conditions) [77]. Recent work on wild chimpanzees suggests that these effects may generalize 

to other species, including voles [89,90], sheep [91] and chimpanzees [92]). In another series 

of experiments with human participants, individuals were organised in two groups of three and 

could contribute to club goods A and B out of a personal endowment. Whereas contributions 

to A and B equally benefitted the members of one’s own group, contributions to B (but not A) 

also imposed a cost on the out-group members. Intranasal oxytocin (versus placebo) increased 

contributions to club good A, reflecting an increase in αI. However, oxytocin neither increased 

nor decreased contributions to club good B, suggesting oxytocin did not affect αO [93,94] (also 

see [95,96]).  

Although follow-up experiments in humans sometimes show that oxytocin can increase αO 

(e.g., [97,98]), this effect is rarely as strong as the oxytocin-induced increase on αI. This mirrors 

findings with non-human vertebrates. For example, marmosets treated with marmoset-specific 

Pro8-Oxytocin reduced pro-sociality toward strangers compared to those treated with saline or 

consensus-mammalian Leu8-Oxytocin [99] (also [100]). Chimpanzees had higher urinary 

oxytocin concentrations before and after hostile intergroup encounters, which predicted within-

group affiliative behaviours [47]. Resident male mice exhibit higher attack bites against 

intruders of different strains (viz. out-group) than against intruders of their own strain. Yet 

compared to oxytocin receptor wild-type mice, oxytocin receptor-null residents exhibited 
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greater aggression toward intruders of their own strain, suggesting that oxytocin modulates αI 

more than αO [49]. In a monogamous zebra finch, affiliation towards one’s partner requires the 

activation of oxytocin receptor [41], while oxytocin knockdown birds and those treated with 

an oxytocin antagonist experienced affiliation behaviour deficit [50,63] (for similar findings in 

pinyon jays, see [30]). Finally, work on the mutualistic cleaner fish and its various coral reef 

fish clients showed that cleaners injected with oxytocin break less often the already engaged 

cleaner-client social interaction to initiate a new interaction with a newly arrived client [101].  

Together, there is growing evidence for the possibility that across social vertebrates, oxytocin 

appears to increase a positive concern for the interests of familiar conspecifics more than for 

the interests of genetically or culturally unfamiliar, out-group conspecifics: αI > αO. At least in 

humans, this parochial preference is also reflected in in-group-biased expectations of 

reciprocity derived from trust games (Side Box 1; [72,93]. In short, when individuals with 

elevated levels of oxytocin participate in conflict this is more likely due to an increase in αI 

than because of a decrease in αO.  

3.2 Responding to Out-group Threat (β) 

Nursing rats protect their offspring against intruders by aggressing them with fast attacks 

directed toward the intruder’s neck or back region, lateral threats to force the intruder aside, 

and standing in an upright posture in front of the intruder, sometimes using the front legs to 

hold the intruder down [102]. Such ‘maternal defence’ rests on oxytocin, where oxytocin 

knockout rats and those treated with oxytocin antagonists abstain from aggressing intruders 

[19,102,103]. 

A suite of follow-up studies shows oxytocin-mediated aggression towards threatening outsiders 

is not confined to (female) rodents. For example, when groups of wild meerkats were given 

intravenous oxytocin (or placebo), individuals spent over twice as much time ‘on guard’; a 

personally costly behaviour that helps to protect the group against an outside threat from 

predators and hostile conspecifics [104] (see [100] for similar results in marmoset monkeys). 

Likewise, estrildid finches that form year-round male-female pairs aggressively defend their 

territories from intruders. Yet, such aggressive defence is significantly reduced following the 

blockade of oxytocin receptors in the avian brain [35]). And in social fish such as cichlids and 

sticklebacks, the presence of an intruder incites higher oxytocin neuronal activity [53] (also see 

[105]), and higher brain oxytocin levels associate with an aggressive defence of nest and 

territory [36].  

Experiments with human participants confirmed that oxytocin could elicit defensive aggression 

and suggest that such aggression is closely tied to rivalling out-group threats. For example, 

several studies showed that oxytocin increases competition against out-group members if, and 

only if, out-group hostility would hurt the individual and/or its in-group members [93,106] 

(also see [74]). Other studies using different experimental tasks produced similar results. For 

example, individuals given oxytocin more quickly (and less accurately) aggressed ethnically 

different rather than ethnically similar intruders [107]. 

Taken together, there is converging evidence across social vertebrates that oxytocin up-
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regulates attention and aggressive responses toward predators and rivalling conspecifics. In 

addition to parochial preferences (Section 3.1), individuals with elevated levels of oxytocin 

may increase their conflict participation because of enhanced perception of out-group threat 

and increased readiness to protect and defend genetically related and culturally familiar 

conspecifics [108].  

3.3 Reputation and Group Norms for Participation (γ) 

Individuals within groups adapt behaviour to other group members’ choices, including those 

of ‘first-movers’ and group leaders [Glowacki and McDermott, this issue; Smith, Kappeler et 

al., this issue]. Such behavioural alignment or ‘compliance’ enables the individual to benefit 

from the protection offered by the group and, in addition, facilitates the coordination of 

collective action towards some group goal [81,109]]. Behavioural alignment thus is functional 

toward both individual and group survival and prosperity both in general and in the context of 

intergroup conflict. Furthermore, groups are more likely to win intergroup contests when 

individual contributions are well-coordinated and aligned with leader initiatives [78,96,110] 

(also see [De Dreu & Triki, this issue]).  

There is some evidence that oxytocin facilitates behavioural alignment and compliance with 

group norms. Humans, for instance, change their private views in the direction of their group 

members’ opinions more when given oxytocin rather than placebo [111–114]. Likewise, 

oxytocin mediates interpersonal synchronisation at both the neural and behavioural levels in 

humans [115–119], marmoset monkeys [61], dogs [120], and social fish [121]. In one study 

with humans, individuals within groups aligned their contributions to group conflict better 

when given oxytocin than placebo. As a result, their groups won greater ‘spoils of war’ [96]. 

Oxytocin may, therefore, prepare the individual for conflict participation because it increases 

sensitivity to and compliance with leader initiatives and group norms for participation.  

Because compliance can have adaptive functionality to the group, individuals are willing to 

enforce compliance in other group members [81,86]. For example, humans punish those who 

fail to contribute to group conflict, and such (threat of) punishment increases subsequent 

conflict participation [110]. At least in humans, there is some evidence that oxytocin prepares 

the individual for such norm enforcement. For instance, in one study, participants as neutral 

third parties punished group members who had exploited another person’s trust more when 

given oxytocin rather than placebo [122] (also see [123–126]). In short, oxytocin facilitates 

interpersonal synchronisation and alignment across various social vertebrates at the neural, 

physiological, and behavioural levels. Possibly, and especially when collaborations require 

strong synchrony in space and time [127], individuals with elevated oxytocin may participate 

in group conflict because of amplified γ – the readiness to align with and follow other group 

members’ initiatives. 

4. Conclusions  

Our review reveals converging evidence for the possibility that oxytocin has a ‘tend-and-

defend’ functionality that prepares for active conflict participation through an increase in 

parochial in-group preferences (αI) and perceived threat from out-groups (β). We observed little 
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to no evidence that oxytocin modulates (negative) concern for out-groups (αO) and concomitant 

aggression aimed at exploiting and sub-ordinating outsiders (Fig. 3).  

Figure 3 Oxytocin and conflict participation parameters across social vertebrates  

 

Oxytocin creates parochial preferences (αI > αO) because it up-regulates αI (concern 

for genetically and culturally related conspecifics) and less αO (concern for 

genetically and culturally unrelated conspecifics). Oxytocin also up-regulates β 

(the willingness to defend aggressively against intruders and groups of rivalling 

conspecifics). At least in primates, oxytocin increases γ (behavioural alignment 

with group norms for participation). Arrows indicate the direction of an effect of, 

or association with oxytocin. Empty cells indicate no or too little evidence is 

available. Illustrations by C. De Dreu 

 

 

 
 

Our conclusion comes with some limitations. First, we allowed for some degrees of freedom 

in interpreting animal behaviour as reflective of social preferences (α), threat-responding (β), 

and norm compliance (γ). Such ‘heuristic’ treatment ignores that both animal behaviour and 

hormones are often equifinal – different behaviours or hormones serving the same function – 

and multi-final – the same behaviour or hormone serving several functions [128–130]. Future 

experiments could try to isolate these parameters further and, in addition, examine possible 

interactions (e.g., social preferences up-regulate threat-responding). Second, not all parameters 
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in the conflict participation function have been covered across social vertebrates, and there are 

a range of context-dependencies that can complicate straightforward predictions. Conclusive 

evidence for oxytocin-induced reputation concerns and compliance with group norms, for 

example, appears limited to humans (Fig. 3). Third, our analysis collapsed across various 

measurements and manipulations of oxytocin, and some evidence is strictly correlational. For 

example, research with humans mostly relied on up-regulating oxytocin and has not examined 

how oxytocin antagonists reduce conflict participation. Also, research often either considered 

only females or males, while some effects might be sex-specific.  

The converging evidence for ‘tend-and-defend’ functionality across social vertebrates should 

not be taken as if oxytocin is required for participation in group conflict to emerge. Some highly 

social species such as bees engage in lethal intergroup conflict [131] yet lack oxytocin 

homologs. Whereas social vertebrates may have co-opted the oxytocinergic circuitry to support 

a ‘tend-and-defend’ response during the intergroup conflict, other species may rely on different 

neuroendocrine systems to produce strategic engagement in intergroup conflict. In addition, in 

social vertebrates, other neurohormonal mechanisms may contribute to conflict participation. 

For example, oxytocin and vasopressin co-evolved, where vasopressin differs in two amino 

acids compared to oxytocin [14]. Yet, like oxytocin, vasopressin regulates affiliative behaviour 

and context-dependent aggressive behaviour (e.g., competition, territory defence) [38,132]. 

Furthermore, the sex steroid testosterone mediates aggressive behaviour, which can influence 

group conflict outcomes [133], and the stress hormone cortisol mediates the natural “fight-or-

flight” response to threatening conspecifics [47]. Future work into the neurohormonal 

underpinnings of conflict participation is needed, particularly in how distinctly different 

neurotransmitters and hormones interact in producing prosocial behaviour towards genetically 

related and culturally similar conspecifics and aggression towards more or less rivalling out-

groups.  
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