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Abstract

Very few animals habitually manufacture and use tools. It has been suggested that advanced tool 

behaviour co-evolves with a suite of behavioural, morphological and life-history traits. In fact, there 

are indications for such an adaptive complex in tool-using crows (genus Corvus species). Here, we 

sequenced the genomes of two habitually tool-using and ten non-tool-using crow species to search for 

genomic signatures associated with a tool-using lifestyle. Using comparative genomic and population 

genetic approaches, we screened for signals of selection in protein-coding genes in the tool-using 

New Caledonian and Hawaiian crows. While we detected signals of recent selection in New 

Caledonian crows near genes associated with bill morphology, our data indicate that genetic changes 

in these two lineages are surprisingly subtle, with little evidence at present for convergence. We 

explore the biological explanations for these findings, such as the relative roles of gene regulation and 

protein-coding changes, as well as the possibility that statistical power to detect selection in recently 

diverged lineages may have been insufficient. Our study contributes to a growing body of literature 

aiming to decipher the genetic basis of recently evolved complex behaviour.

Introduction
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Humans’ extraordinary ability to make and use tools is believed to have co-evolved with a suite of 

unusual traits, including: a large brain, advanced cognitive capacities, language, bipedalism, 

opposable thumbs, an extended developmental period, extreme sociality, and an ability to culturally 

transmit and accumulate knowledge (Henrich, 2015; Kaplan, Gurven, & Winking, 2009; Sprevak, 

2014; Sterelny, 2012). Inferring causal inter-relationships between these traits is extremely 

challenging, not least because some of them have reached degrees of sophistication or specialisation 

not found in any other species (Gibson, Gibson, & Ingold, 1994). But perhaps other tool users have 

evolved comparable tool-use-related traits? If so, what might their underlying genetic architectures be 

and can these be identified using genomic approaches? Addressing this challenging topic requires 

comparisons between multiple tool-using and non-tool-using species, ideally from a non-primate 

system (Rutz et al., 2016). Given the rarity of animal tool behaviour (Biro, Haslam, & Rutz, 2013; 

Hunt, Gray, & Taylor, 2010; Shumaker, Walkup, & Beck, 2011), the genus Corvus, which comprises 

over 40 species of crows and ravens (Haring, Däubl, Pinsker, Kryukov, & Gamauf, 2012), including 

at least two habitual tool users (Rutz et al., 2016), offers an exceptional opportunity for such 

replicated analyses.

The New Caledonian crow (Corvus moneduloides), from the South Pacific archipelago of 

New Caledonia, is one of the most accomplished non-human tool users (Hunt, 1996; Hunt & Gray, 

2002, 2003). The species is able to forage with, as well as manufacture, a diverse repertoire of tools 

(Hunt, 1996; Hunt & Gray, 2002, 2003; Rutz & St Clair, 2012; St Clair et al., 2018) and exhibits a 

range of traits that appear to be related to its tool-using lifestyle (Hunt & Uomini 2016). These 

include: (i) a genus-atypical bill morphology that aids dexterous tool handling (Matsui et al., 2016; 

Troscianko, von Bayern, Chappell, Rutz, & Martin, 2012); (ii) large, mobile eyes and an 

exceptionally wide field of binocular vision facilitating visual feedback and motor coordination 

during tool manipulation (Matsui et al., 2016; Troscianko et al., 2012); (iii) genetic predispositions 

that enable the ontogenetic development of basic tool skills (Kenward, Rutz, Weir, & Kacelnik, 2006; 

Kenward, Weir, Rutz, & Kacelnik, 2005); (iv) a prolonged juvenile dependency period providing 

opportunities for juveniles to hone their technical skills and learn from proficient adults (Holzhaider et 

al. 2011; Hunt et al. 2012; Bluff et al. 2010); and (v) a highly dynamic social system that may aid the 

social transmission of tool-related skills within and between generations (Holzhaider et al., 2011; St A
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Clair et al., 2015).

It has also been reported that New Caledonian crows have unusually large brains (Cnotka, 

Güntürkün, Rehkämper, Gray, & Hunt, 2008) with relatively enlarged associative forebrain regions 

(Mehlhorn, Hunt, Gray, Rehkämper, & Güntürkün, 2010), but these results could not be replicated 

with a larger sample of birds (Medina, 2013). While a number of studies have argued that the species 

possesses impressive problem-solving abilities (Gruber et al., 2019; Taylor, Elliffe, Hunt, & Gray, 

2010), some claims have been contested (for a recent review, see Rutz & Hunt 2020) and evidence 

that New Caledonian crows’ cognitive abilities exceed those of other corvids remains equivocal (see 

Taylor and Gray 2014). Indeed, very few studies have been carried out to date that compare the 

cognitive performance of New Caledonian crows to that of non-tool-using congeners, using tasks that 

do not require object manipulation (but see Teschke et al. (2013)).

While some non-tool-using crow species can learn to use tools in captivity, usually after some 

training or facilitation (Bird & Emery, 2009; Gallot & Gruber, 2019; Kanai, Matsui, Watanabe, & 

Izawa, 2014; Powell & Kelly, 1977), it was long thought that the New Caledonian crow is the only 

natural tool user within the genus. Recent work revealed, however, that the critically-endangered 

Hawaiian crow (C. hawaiiensis), from Hawai‘i Island in the North Pacific, is also highly skilled at 

making and using tools (Klump, Masuda, St Clair, & Rutz, 2018; Rutz et al., 2016). Two lines of 

evidence suggest that tool use is part of the Hawaiian crow’s natural behavioural repertoire (Rutz et 

al., 2016): naïve juveniles spontaneously develop functional tool use (i.e., without demonstrations or 

training), and tool use is a species-wide capacity (adults use tools in a highly dexterous manner, 

without facilitation). Furthermore, there are striking similarities between Hawaiian and New 

Caledonian crows in terms of craniofacial morphology (Rutz et al., 2016) and prolonged juvenile 

dependency (Banko, Ball, & Banko, 2002). Importantly, New Caledonian and Hawaiian crows are not 

closely related (Jønsson, Fabre, & Irestedt, 2012), suggesting that their tool behaviour arose 

convergently, in response to similar ecological conditions prevailing on their tropical home islands 

(Rutz et al., 2016).

High-throughput genome sequencing has greatly aided the identification of genomic regions 

under selection and has thus improved our understanding of the molecular basis of adaptive evolution. 

Several approaches have been developed to quantify selection pressures acting on the genome. One of A
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the best-known methods is to test for deviations from neutral evolution in protein-coding regions, 

using the ratio of non-synonymous to synonymous substitutions – the dN/dS ratio where a ratio larger 

than one indicates positive selection and a ratio smaller than one, purifying selection (Kimura, 1977; 

Yang & Bielawski, 2000). This approach has been used widely to examine gene family evolution in 

several lineages, including Drosophila (Hahn, Han, & Han, 2007), mammals (Agaba et al., 2016; 

Park et al., 2015) and birds (Almén et al., 2016; Sackton et al., 2019). Strong positive selection acting 

on a locus will also leave a signature in neighbouring genomic regions. When a beneficial mutation 

increases in frequency and becomes fixed in the population, genetic variation in the vicinity of the 

advantageous mutation can be reduced or eliminated in a ‘selective sweep’ (Smith & Haigh, 1974). 

Selective sweeps have been detected in the patterns of genetic variation in the vicinity of genes 

associated with pigmentation, olfaction and immunity in humans (Williamson et al., 2007). Similarly, 

great tit (Parus major) genomes show evidence for selective sweeps in regions containing genes 

related to cognition and neuronal function (with one such gene (ERG1) also exhibiting a high dN/dS 

ratio indicative of positive selection;  Laine et al., 2016), and selective sweeps are also implicated in 

the evolution of cognitive abilities in wasps (Miller et al., 2020). However, dN/dS may not be suitable 

for detecting selection in recently diverged species where sufficient numbers of substitutions may not 

have accumulated yet (Wolf, Künstner, Nam, Jakobsson, & Ellegren, 2009) and where polymorphism 

may bias its estimation (Mugal, Kutschera, Botero-Castro, Wolf, & Kaj, 2020). Moreover, the dN/dS 

ratio can only be estimated for protein-coding regions. In non-model organisms with limited ‘omics’ 

resources, genome scans for selective sweeps are a useful method to identify candidate genome 

regions for positive selection. Therefore, using both dN/dS and selective sweep detection approaches 

may better explore footprints of selection in closely related non-model organisms.  

Here, we use a comparative genomics approach to search for genetic signatures of selection 

associated with traits facilitating tool use, by comparing the tool-using New Caledonian and Hawaiian 

crows to a sample of ten non-tool-using congeners. Specifically, we undertook de novo whole genome 

sequencing and assembly of C. moneduloides and whole-genome resequencing of multiple individuals 

from our set of Corvus species to: (1) establish a new genomically-informed phylogeny; (2) explore 

the phylogenetic relationship between tool-using and non-tool-using crows; (3) identify signatures of 

positive selection in New Caledonian and Hawaiian crows using phylogenetic and population genetic A
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approaches, as well as possible signatures of convergent molecular evolution; and (4) contrast the 

population genomics of tool-using New Caledonian crows with those of a closely-related and 

ecologically-matched non-tool-using species, the white-billed crow (C. woodfordi), which is endemic 

to the tropical Solomon Islands, north of New Caledonia. Our findings suggest that relatively subtle 

genetic changes can contribute to the evolution of traits facilitating tool use, including highly unusual 

craniofacial morphology.

Materials and Methods

Sampling and genome sequencing

We collated and generated data for a total of 12  crow species (see Supplemental Information; Tables 

S1-S2). Short read data are deposited at ENA (https://www.ebi.ac.uk/ena; ENA project accession 

numbers PRJEB33755 (umbrella project), PRJEB33706 and PRJEB33707), and metadata are 

available in Table S2.

Reference genomes and annotation 

We used a published reference assembly and its annotation for C. (corone) cornix (NCBI assembly 

accession GCF_000738735.1; scaffold N50=16.4 Mb; Poelstra et al., 2014). For the purpose of this 

study, we also generated a de novo genome assembly of C. moneduloides (NCBI assembly accession 

number: GCA_009650515.1) using ALLPATHS v47402 (Butler et al., 2008) as described in the 

Supplemental Information. We then annotated this assembly using the Maker2 v2.31.7 annotation 

pipeline (Holt & Yandell, 2011), using a dataset of 1,300 manually curated C. (c.) cornix proteins, a 

transcriptome dataset for C. woodfordi (https://www.ebi.ac.uk/ena; ENA project accession numbers 

PRJEB33755 (umbrella project), PRJNA577979) and ab initio gene predictions. The annotation is 

available on Dryad (DOI: https://doi.org/10.5061/dryad.w0vt4b8m9).

We assessed the quality of the assembly and annotation of the two reference genomes using 

the BUSCO v. 1.22 (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015) pipeline and the 

‘vertebrata’ dataset (631 genes). We also identified orthologous coding sequences of the two 

annotations using orthAgogue v1.0.3 (Ekseth, Kuiper, & Mironov, 2014). Specifically, we identified 
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orthologs, paralogs and co-orthologs as described in Ekseth et al. (2014) (See Supplementary 

Material).

Short reads processing and protein-coding gene sets generation 

We trimmed adapters and mapped the newly sequenced and available short reads for the 12 crow 

species to both the C. (c.) cornix and C. moneduloides assemblies. We marked duplicates and 

realigned reads around indels (see Supplemental Information). Next, we generated consensus 

genomes for each of the 12 species from the resulting bam files, and following Mugal et al. (2020), 

masked polymorphic sites with ‘Ns’, thereby only considering fixed sites for tests of positive 

selection (PAML, McDonald Kreitman tests). For all downstream analyses, we only retained protein-

coding sequences with at least 80% completeness (i.e., containing no more than 20% ‘N’ relative to 

the gene in the respective annotation) in order to avoid potential bias when calculating indices of 

selection. Because of varying data quality among re-sequenced genomes, not all consensus genomes 

had the same number of genes with 80% completeness. Therefore, in order to maximise the ≥

number of genes with 80% completeness, while also maintaining adequate sample sizes and ≥

statistical power, we generated datasets for 5, 7 and 8 species (see Supplemental Information).

Phylogenetic tree reconstruction 

We extracted sequences of 631 core vertebrate genes present in all species (‘vertebrata’ dataset from 

BUSCO; Simão et al., 2015) and aligned them in PRANK v100802 (Loytynoja & Goldman, 2005). 

We then used RAxML (Stamatakis, 2014) to perform a maximum likelihood analysis,  assuming a 

GTR + gamma model of sequence evolution including four rate categories for each codon position 

and using 1,000 bootstrap iterations. Taeniopygia guttata was specified as the outgroup (see 

Supplemental Information).

Tests of positive selection 

We used two approaches to identify signatures of positive selection between habitually tool-using and 

non-tool-using species. First, we used codeml from the PAML package v4.9 (Yang, 2007) to test for 

different rates of evolution between crow lineages (Supplemental Information, Table S3). PAML A
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estimates dN/dS (ω), which compares the rate of substitutions at synonymous sites (dS), which are 

presumed neutral, to the rate of substitutions at non-synonymous sites (dN), which are under 

selection. A dN/dS > 1 is thus taken to imply the action of positive selection on a protein-coding gene, 

whereas a dN/dS < 1 indicates purifying selection. We used a branch model and considered a ‘null 

model’ assuming one ω value across the entire tree, and an ‘alternative model’ assuming one separate 

ω for some branches and another ω for the remainder of the tree. Null and alternative models were 

compared using a Likelihood Ratio Test (LRT) with 1 degree of freedom. False Discovery Rate 

(FDR) for multiple testing corrections were applied (Benjamini, Heller, & Yekutieli, 2009), using the 

‘qvalue’ R package (Storey, Bass, Dabney, & Robinson, 2019) at a FDR threshold of 0.05. We tested 

the hypothesis that a sequence evolved at different rates in the tool-using C. moneduloides or C. 

hawaiiensis lineages compared to the rest of our Corvus phylogeny. We ran these tests labelling only 

the C. moneduloides branch or labelling both C. moneduloides and C. hawaiiensis to have a different 

ω from the rest of the tree (Table S3). For the latter model, we tested (1) a different ω for each species 

and (2) the same ω for both species, thereby testing for a signal of convergent positive selection in the 

two species (Yang & Bielawski, 2000; Yang, 2007; see Supplemental Information). In order to assess 

the effects of the varying quality of the assemblies and their annotation on our results, these tests were 

run twice, using genes extracted either from the C. moneduloides reference genome or from the C. (c.) 

cornix reference genome. This approach also enabled us to look for evidence of genetic novelties 

arising in C. moneduloides versus C. (c.) cornix that might correlate with tool use. For each of the two 

reference genome assemblies, we compiled three different species datasets that used comparisons 

among 5, 7, or 8 species of the genus Corvus together with an outgroup, the zebra finch (T. guttata). 

Compiling these three subset of our data allowed us to (1) maximise the number of genes with 80% 

completeness and maintain adequate sample sizes and statistical power (Table S3; see above and 

Supplemental Information); and (2) minimise the discovery of false positives associated with 

ancestral and lineage-specific polymorphisms (Mugal et al., 2020; Mugal, Wolf, & Kaj, 2014) by 

excluding C. woodfordi, the closest related species of C. moneduloides, from these analyses (Fig. 1, 

S1). To ensure that analyses using different reference genomes produced similar results, we compared 

ω values obtained under the null model from analyses using different reference genomes for 

individual genes. We also compared the average ω of genes within Gene Ontology (GO) terms (see A
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Supplemental Information). Finally, we compared ω values obtained under the alternative model 

using different reference genomes for the C. moneduloides lineage and for the background lineages.

As a second approach to identify positive selection, we applied the McDonald-Kreitman 

framework (McDonald & Kreitman, 1991; Mugal et al., 2014) to test for evidence of selection in C. 

moneduloides, contrasting divergence with polymorphism data, based on the C. moneduloides 

genome assembly and annotation. Variant discovery and genotyping were performed using the GATK 

pipeline v3.4.0 (DePristo et al., 2011; Van der Auwera et al., 2013) from processed bam files as 

described in the Supplemental Information. The VCF file was annotated using snpEff v4.2 (Cingolani 

et al., 2012). Counts of synonymous (pS) and non-synonymous (pN) polymorphic changes for each 

gene were extracted from the VCF file and merged with counts of synonymous (dS) and non-

synonymous (dN) substitutions for the branch leading to C. moneduloides in different PAML runs (5, 

7, or 8 species; as described above). We tested for significant deviations from neutrality for each gene 

by performing Fisher’s exact tests in R v3.4.2 (R Core Team, 2019). FDR corrections were applied 

with a threshold of 0.05. Further, we calculated the neutrality index NI=(pN/dN)/(pS/dS). In the case 

of neutral evolution, the ratio of nonsynonymous to synonymous substitutions and polymorphisms 

should be represented at equal proportions resulting in NI=1. Conversely, for genes under positive 

selection and indicating an excess of non-synonymous fixed differences, this index will result in a 

value of NI<1 (Rand & Kann, 1996). For further details, see Supplemental Information.

Pathway and biological function analysis. 

To examine the functional implications of our results, we explored Gene Ontology (GO) and 

performed a statistical overrepresentation test of biological processes in PANTHER (Mi, 

Muruganujan, Casagrande, & Thomas, 2013). We used as input all candidate genes indicative of 

positive selection identified with PAML and McDonald-Kreitman tests in C. moneduloides or C. 

hawaiiensis. We used Fisher’s exact test with multiple FDR correction and a FDR threshold of 0.05.

Population genomic analyses in C. moneduloides and C. woodfordi 

C. moneduloides and C. woodfordi are closely related and inhabit ecologically similar tropical islands, 

but only the former is known to use tools for extractive foraging (Jønsson et al., 2012). A comparison A
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of genome-wide diversity in coding and non-coding regions within these species, which experience 

comparable levels of mutational load (Kutschera et al., 2020), may thus reveal evidence of more 

recent selection that is unique to C. moneduloides. Selective sweeps should leave a signature of 

locally reduced diversity. Such reductions in diversity that are unique to C. moneduloides (and do not 

appear in C. woodfordi) would point to selection pressures other than those associated with living on 

tropical islands, possibly including selection on tool-use-related traits. Therefore, we examined low-

diversity genomic regions from processed bam files using ANGSD v0.917 (Korneliussen, 

Albrechtsen, & Nielsen, 2014) and calculated genome-wide diversity indices for C. moneduloides and 

C. woodfordi (see Supplemental Information). To polarise the site frequency spectrum (SFS), we 

reconstructed an ‘ancestral’ consensus genome using all the available data from the C. corone species 

group, C. frugilegus, and C. dauuricus. This ancestral consensus genome was assembled as for the 

other species (see Supplemental Information). We then estimated Tajima’s D, and Fay and Wu’s H in 

overlapping windows of 50kb with a step size of 10kb based on this polarised SFS. We used a 

threshold for Tajima’s D of -1.51 based on population genetic simulations (see Supplemental 

Information). To check for evidence of population structure, we ran a PCA with PLINK v1.9 (Chang 

et al., 2015).

Results

Comparison of reference genome assemblies and annotations 

The de novo assembled genome of the New Caledonian crow (C. moneduloides) had a total size of 

1.01 Gb,  a contig N50 of 331 kb and a scaffold N50 of 4.5 Mb  (SI Materials and Methods). Overall, 

the reference genome annotations contained 14,149 and 18,649 protein-coding gene models for C. (c.) 

cornix and C. moneduloides, respectively. Mean gene model length is 1,416 bp for  C. moneduloides 

and 1,759 bp for C. (c.) cornix. We examined homology between protein-coding sequences from the 

two reference genomes with orthAgogue (Ekseth et al., 2014) resulting in 12,100 orthologs. Out of 

these, 8,489, 3,714 and 1,942 were unique orthologs, paralogs and co-orthologs, respectively (see 

Supplemental Information).

Phylogenetic relationshipsA
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The topology of our phylogenetic tree based on 631 core vertebrate genes was broadly consistent with 

earlier phylogenetic reconstructions based on fewer molecular markers (Fig. 1,S1; Haring et al., 2012; 

Jønsson et al., 2012; Rutz et al., 2016). However, there are some notable differences; for example, in 

our phylogeny C. hawaiiensis groups with C. corax, rather than with C. frugilegus (Fig. 1,S1).

Phylogeny-based tests of positive selection

Next, we screened for genes with evidence of positive selection using comparative genomic analyses. 

We mapped re-sequencing data from 12 Corvus species to either the C. (c.) cornix or the C. 

moneduloides reference genome and extracted all protein-coding sequences. Using the C. 

moneduloides reference genome, for which we generated an annotation of 18,649 protein-coding 

genes, we recovered 17,967, 17,487 and 17,155 genes with 80% completeness for the 5-, 7- and 8-≥

species datasets, respectively. With the C. (c.) cornix reference genome, we recovered 10,138, 10,096, 

and 10,070 genes with 80% completeness for the 5-, 7-, and 8-species datasets, respectively (Table ≥

S3).

Using these datasets and branch models of codon substitution rates, we tested for evidence of 

positive selection on branches leading to C. moneduloides and C. hawaiiensis as well as for 

convergent evolution between them. Overall, we found evidence of positive selection in C. 

moneduloides in 12 genes: five genes when using C. moneduloides as the reference genome and seven 

genes when using C. (c.) cornix as the reference genome (Table 1). Among the five genes identified 

using the C. moneduloides reference genome, we found two genes (CAPN15, CAMLG), one gene 

(TPBGL) and two genes (SPSB1 and CIITA) under putative positive selection (ω > 1) in the 5-,  7- 

and 8-species datasets, respectively (Table 1).  We found only one gene (CIITA) under putative 

positive selection in C. moneduloides and C. hawaiiensis when assuming the same substitution rate 

for both species (Table 1).

Among the seven genes identified using the C. (c.) cornix reference genome, we found three 

(LHX1, ZC2HC1A, and DTNBP1), two (HTRA2, TBC1D10A) and two genes (NPRL2, SLC6A20) 

with ω > 1 as candidates for positive selection in C. moneduloides using the 5-species, 7- and 8-

species dataset, respectively (Table 1). It is worth noting that several other genes have unreasonably 

high ω values, indicative of the low number of synonymous changes in crows reducing the A
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denominator in dN/dS to near zero (Table 1), which can occur when comparing closely related species 

(Wolf et al., 2009).

While candidate genes overlapped between species sets, no candidate genes were shared 

among the analyses using the two different reference genomes. This lack of overlap may result from a 

genuine absence of these genes due to varying quality of the respective annotations, or it may simply 

be explained by the fact that there were only 12,100 orthologs in common between the two 

annotations. Additionally, the lack of overlap may be caused by incomplete lengths of gene models in 

both genomes’ annotations. We therefore tested whether there was any correlation in the estimates of 

ω under the null model (a single common ω for the entire tree) between analyses using two different 

reference genomes. Correlations were strong for all species datasets (Fig. S2). Strong correlations 

were also evident when averaging ω values of individual genes across GO terms (Spearman rank 

correlations between 0.80 and 0.81 across all datasets; Fig. S2). In contrast, the correlations for p- and 

q-values of individual genes were much weaker (Spearman rank correlations between 0.20 and 0.57 

across all datasets). Correlations of ω estimates for the C. moneduloides lineage in alternative models 

across analyses using different reference genomes were also much lower (~0.5; Fig. S3). Moreover, in 

datasets using the C. (c.) cornix reference genome, pairwise correlations of ω estimates for the C. 

moneduloides lineage from three separate software runs were high but not perfect (~0.8), while 

correlations of ω estimates for the background lineages were much better (~0.9; Table S4). 

McDonald-Kreitman tests 

We contrasted between-species substitutions on the C. moneduloides branch obtained from the PAML 

analyses with within-species polymorphism based on the C. moneduloides reference genome. Across 

three different datasets, we found a total of 14 candidate genes with NI smaller than one (Rand & 

Kann 1996) at p<0.05 (Fisher’s exact test) (Table S5). Of these, 11 genes were present in the 5-

species dataset (17,967 genes) and one gene (LOC100232337) was present in the 7-species dataset 

(17,487 genes). This same gene also formed part of the results from the 8-species dataset (17,096 

genes) based on the model with C. moneduloides and C. hawaiiensis with different substitution rates, 

along with two more genes (NCOR2, PTPN9) with NI<1 and p<0.05 (Fisher’s exact test) (Table S5). 

After applying the false discovery rate (FDR) correction for multiple testing (q=0.05), no gene with A
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NI<1 remained significant for any of the datasets. None of the 14 candidate genes identified in the 

McDonald-Kreitman test showed a signal for positive selection in the phylogeny-based analyses using 

PAML.

 

GO term over-representation analysis 

Over-representation analysis based on gene function (gene ontology biological processes) showed that 

genes with elevated ω (mostly in C. moneduloides; Table 1) and with an excess of non-synonymous 

fixed differences (McDonald-Kreitman tests; Table S5) were associated with cell differentiation, 

growth and development, brain and nervous system, and retinal development (e.g., LHX1; Table S6).

Comparative population genomics in a tool-using and a non-tool-using crow species

We calculated population genetic diversity statistics for C. moneduloides and C. woodfordi in 50 kb 

sliding windows with 10 kb overlap. Overall, genetic diversity (π) is lower in C. woodfordi (mean and 

95% CI, Autosomes: 0.00036 [0.000356, 0.000359], Z-Chromosome: 0.00026 [0.000256, 0.000268]) 

than in C. moneduloides (A: 0.0011 [0.00105, 0.00106], Z: 0.00081 [0.000803, 0.000822]). The 

relationship between genetic diversity and chromosome length is strongly negative in both species (C. 

moneduloides: rho=-0.73, p < 0.001; C. woodfordi: rho=-0.9, p<0.001). As in other avian lineages 

(Dutoit et al., 2017; Ellegren, 2013; Weissensteiner et al., 2017), larger chromosomes have lower 

diversity, on average, than smaller chromosomes. At the same time, Tajima’s D was on average 

slightly lower in C. woodfordi (Autosomes: 0.180 [0.175, 0.184], Z chr.: -0.046 [-0.0623, -0.0341]) 

than in C. moneduloides (Autosomes: 0.182 [0.179, 0.185], Z chr.: 0.32 [0.304, 0.334]). In both 

species, mean Tajima’s D was consistently greater than zero (Fig. 2). Fay and Wu’s H was on average 

higher than zero in C. moneduloides (except on the Z-chromosome), while in C. woodfordi values 

were consistently lower than zero (Fig. S4).

In C. moneduloides, we found 81 genomic windows with Tajima’s D  lower than what would 

be expected for neutrally evolving regions based on population genetic simulations (see Methods; Fig. 

S5). PCA analysis did not reveal any obvious patterns of population structure in C. moneduloides 

(Fig. S6A) despite individual samples originating from different islands and different sampling years. 

In C. woodfordi, samples were differentiated along the first PC axis according to sampling location A
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(Fig. S6B). Undetected population admixture would increase values of Tajima’s D (Huber & 

Lohmueller, 2016; Tajima, 1993), although this would make the simulation-based threshold 

conservative. Extracting all candidate windows with Tajima’s D < -1.51 in C. moneduloides as 

potentially indicating a selective sweep, as well as 1 Mb up- and down-stream, and then merging all 

overlapping windows into contiguous regions, we obtained 11 wider regions spanning an average of 

~2Mb (Fig. 2b). In several of these windows, Tajima’s D was only reduced in C. moneduloides 

(highlighted in grey in Fig. 2b), and in these same regions Fay and Wu’s H was also markedly 

reduced only in C. moneduloides. The 11 wider regions contained a total of 350 genes (Table S7), 

among which three genes have previously been associated with craniofacial or bill morphology 

evolution in avian lineages (CALM1, PPP4R4, DKK2; Abzhanov et al., 2006) and two genes with the 

mouse ‘small maxilla’ GO term (TRPS1, Suemoto et al., 2007; CHST11; Klüppel, Wight, Chan, 

Hinek, & Wrana, 2005; Fig. 2b). Over-representation analysis (GO) of biological processes of these 

350 genes revealed an over-representation of genes related to glycosylation (Table S8). However, 

none of these 350 genes showed evidence of positive, divergent selection in our PAML analyses or 

McDonald-Kreitman tests (see above).

Discussion
There are over 40 species of crows and ravens worldwide (Haring et al., 2012). While this taxonomic 

group exhibits surprisingly conserved morphology and behaviour, habitual tool use seems to have 

evolved in only two island species: the New Caledonian and the Hawaiian crow (Hunt, 1996; Rutz et 

al. 2016). Here, we sequenced the genomes of 12 crow species, established a phylogeny from these 

data, and used comparative genomic approaches to search for genomic signatures of a tool-using 

lifestyle in coding sequences. While we detected signals of positive selection near genes associated 

with bill morphology (as expected from earlier work; Matsui et al., 2016; Troscianko et al., 2012), 

genetic changes associated with tool behaviour in crows appear subtle. Perhaps, key adaptations do 

not require extensive changes in protein-coding regions but are rather underpinned by several genes of 

small effect or differences in gene regulation. Finally, the lack of concordance among our analyses 

using different reference genomes, which vary in quality for mapping re-sequencing data from 

different species, illustrates the limitations of using a single reference assembly for tests of positive A
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selection and offers an important cautionary note to interpretations made using these unidirectional 

comparisons.

Phylogenetic reconstruction based on substitutions in 631 genes confirmed that C. 

moneduloides and C. hawaiiensis are distantly related, suggesting that their tool behaviour evolved 

convergently (Rutz et al., 2016). The interspecific relationships identified within the genus differ 

slightly compared to earlier phylogenies based on a few nuclear and mitochondrial markers (Haring, 

Gamauf, & Kryukov, 2007; Jønsson et al., 2012).

Across all species comparisons, we identified candidate signals of positive selection in 12 

genes associated with cell differentiation, growth and development, and involved in brain, nervous 

system and eye development. Positive selection was identified mostly in C. moneduloides, while only 

one gene coding for class II major histocompatibility complex transactivator (CIITA), showed weak 

but convergent signals for positive selection in C. moneduloides and C. hawaiiensis. We further 

investigated population genomic signals of selection in C. moneduloides and C. woodfordi, an 

ecologically-matched non-tool-using sister species. These analyses identified genomic regions with 

low genetic diversity (i.e., low Tajima’s D and Fay and Wu’s H) in C. moneduloides, proximal to 

genes associated with bill morphology, potentially as a result of recent selection. This could be 

indicative of selective sweeps (Fay & Wu, 2000; Kim & Stephan, 2002; Smith & Haigh, 1974; 

Stephan, 2016) that occurred as a result of selection on genes underlying variation in bill morphology 

that enhances tool manipulation skills (Matsui et al., 2016; Troscianko et al., 2012). The overall 

positive values of Tajima’s D and negative Fay and Wu’s H on a genome-wide level suggest that we 

may have sampled structured populations in both species with unequal representation (Huber & 

Lohmueller, 2016; Tajima, 1993). In fact, an earlier study has found significant local structuring of C. 

moneduloides populations (Rutz, Ryder, & Fleischer, 2012), although island-scale patterns appeared 

weaker (Abdelkrim, Hunt, Gray, & Gemmell, 2012). No data on population structure are available for 

C. woodfordi, but significant structuring has recently been reported for another crow species 

inhabiting a remote tropical island, the Mariana crow (C. kubaryi; Cortes-Rodriguez et al., 2019). 

Curiously, Tajima’s D is negative on the Z chromosome in C. woodfordi which might be due to sex-

biased dispersal or strong purifying selection. A biased sampling of heterogametic females bearing on 

diversity estimates is not a likely cause for this negative Tajima’s D since four out of five C. A
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woodfordi were males. A complete description of population structure and gene-flow in these species 

will require more systematic sampling of more individuals, which was outside the scope of the current 

study. 

The subtle genetic changes identified for tool-using New Caledonian and Hawaiian crows are 

consistent with the observation that crows in general have large brains compared to other birds when 

corrected for body size, and exhibit notable behavioural plasticity and innovation potential (Emery & 

Clayton 2004). As noted in the introduction, some crow species that do not routinely use tools in the 

wild, such as rooks (C. frugilegus), can use stick-type tools under laboratory conditions, usually 

following some facilitation (e.g., Bird & Emery, 2009). Thus, the cognitive ability for basic tool use 

probably arose in the common ancestor of Corvus (Lefebvre, Nicolakakis, & Boire, 2002). We found 

evidence for positive selection and selective sweeps near genes that control bill morphology and 

development, but not near genes associated with brain function. Bill shape is one of the most striking 

differences between habitually tool-using and non-tool-using crows (Matsui et al., 2016; Troscianko 

et al., 2012; Rutz et al. 2016; Fig.1). Several lines of evidence suggest that straight bills and highly-

mobile (and large) eyes facilitate the handling of stick-type tools (Matsui et al., 2016; Troscianko et 

al., 2012). Indeed, non-tool-using rooks are not as dexterous as C. moneduloides and C. hawaiiensis at 

using tools, presumably partly because they lack enabling bill features (Bird & Emery, 2009). At 

present, it is unclear if selection for specialized craniofacial features preceded (e.g., to enable 

woodpecker-like chiselling of deadwood; for Rutz & St Clair, 2012), and/or followed (Hunt & Gray, 

2007; Matsui et al., 2016), the emergence of tool behaviour (Troscianko et al., 2012). In any case, 

while morphological change seems a necessary component for the early evolution of habitual 

dexterous tool behaviour, more subtle changes affecting ontogenetic programmes and cognitive 

capacities may also occur, but remained undetected in our present analyses.

There is high conservation in gene sequence and chromosomal synteny in birds (Zhang et al., 

2014), and the crow lineage diverged relatively recently (~17.5 mya), with the last common ancestor 

of C. moneduloides and C. hawaiiensis dated to the mid-Miocene (~11 mya; Jønsson et al., 2012). It 

seems probable, therefore, that the relatively short evolutionary time frames since their divergence 

may have limited the possibility for repeated changes in coding regions, and thus resulted in the low 

number of overall substitutions among the crow lineages, leading to low statistical power in some of A
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our tests. This is consistent with the lack of a strong signal for positive selection we observed using 

dN/dS analyses and McDonald-Kreitman tests. Moreover, our results indicate that, while single 

estimates of ω were robust to the reference genome under the null model, these estimates varied 

substantially according to the chosen reference genome for the alternative models. This may further 

explain the lack of overlap in the identified candidate genes from our analyses using two different 

reference genomes and further indicates that our dN/dS analyses may be limited in resolution and 

power. Importantly, the lack of overlap in candidate genes between dN/dS analyses illustrates the 

limitations associated with using a single assembly for tests of positive selection. Because using one 

or the other assembly led to inconsistent results, different interpretations and conclusions on the link 

between genomic changes and a trait could have been drawn. However, mapping re-sequenced data to 

two different reference genomes and performing reciprocal dN/dS analyses enabled us to determine 

whether the signals of positive selection in coding genes observed have a robust biological basis or 

instead result from mapping or analysis bias. We thus caution against the use of a single reference 

genome and strongly recommend that reciprocal tests be performed whenever possible, especially 

when several assemblies of varying qualities (i.e., contiguity, coverage) are available. Ideally, 

reference genomes should be assembled for each species under consideration along with population 

genomic data to also account for within species variation.

It is possible that genomic changes underlying recent adaptations across this phenotypically 

conserved group of birds may not be reflected in extensive coding sequence divergence but instead in 

regulatory regions (Mack & Nachman, 2017; Wittkopp & Kalay, 2011). This, too, is consistent with 

our findings of signatures of selective sweeps up- and downstream of candidate genes and a mixed 

signal within coding sequences, although this interpretation should be treated cautiously due to low 

sample sizes. Analysis of regulatory motifs, such as conserved non-exonic elements (CNEEs), would 

enable more refined examination of the genomic adaptations to tool behaviour in crows. However, the 

need for large sample sizes, high-quality assemblies extending to non-coding elements for all crow 

species, as well as high-quality gene annotations, means a robust analysis of such CNEEs is beyond 

the scope of the present study.

The importance of regulatory changes in driving phenotypic differences (King & Wilson, 

1975) has become increasingly obvious as relevant genomic data have become available. Work in A
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humans, rodents, flies and fish indicate that regulatory variants have broad influence on the 

transcriptome and the proteome, sexual dimorphism, skin colour, behaviour, disease susceptibility, 

and cognition (Albert & Kruglyak, 2015; Enoch et al., 1998; Mank, 2017; Miller et al., 2007; Miller 

et al., 2020; Wray, 2007). A recent study examining the loss of flight in ratites, for example, adds to a 

growing body of evidence suggesting that changes in regulatory regions are frequently more 

important than changes in protein-coding genes (Sackton et al., 2019). While coding sequence 

variation is important in some classes of genetic divergence (e.g., immune function; Blais et al., 

2007), and the relative importance of coding and non-coding divergence has been debated, regulatory 

changes may be of primary importance for phenotype evolution in very recently diverged species 

(Mack & Nachman, 2017; Wittkopp & Kalay, 2011). 

One challenge for studies on the genetic basis of complex traits, such as tool behaviour, which 

may not only be associated with specialised morphology but also with developmental, cognitive and 

other behavioural adaptations, is that such traits are likely polygenic and not underpinned by strong 

divergent selection on only one or a few genes (Nagel et al., 2018; Savage et al., 2018). This implies 

that changes in the frequency of advantageous alleles may be subtle and thus hard to detect (Pritchard, 

Pickrell, & Coop, 2010; Stephan, 2016). Moreover, epigenetic processes are known to regulate genes 

associated with a wide range of traits, including some associated with cognition (Goldberg, Allis, & 

Bernstein, 2007). Methylation patterns, one form of epigenetic regulation, have been shown to 

correlate with higher expression of neuronal genes in humans (Lister et al., 2009). Great tits (Parus 

major), for example, a species that is a useful model for cognitive studies (Laine et al., 2016) have 

reduced CpG and non-CpG methylation signatures similar to those found in the neuronal tissues of 

mammals (Guo et al., 2014; Laine et al., 2016). Consequently, further investigation of the molecular 

basis of adaptations associated with the tool-using and -making abilities of New Caledonian and 

Hawaiian crows would likely benefit from the examination of both genetic and epigenetic changes in 

coding and regulatory regions.

Taken together, our results indicate that the genetic changes associated with habitual tool-

related behaviour in crows are surprisingly subtle, perhaps reflecting, in part, the difficulty in 

identifying signatures of selection in recently diverged lineages, and the fact that crows, in general, 

share a common capacity for behavioural innovation. However, at least one of our findings is A
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consistent with a potential adaptation to tool behaviour in New Caledonian and Hawaiian crows - an 

unusually straight bill. Investigating the genetic basis of traits that can facilitate seemingly 

sophisticated skills such as advanced tool behaviour is challenging. In fact, traits such as the unusual 

bill shape of New Caledonian crows and (to a lesser extent) Hawaiian crows are very likely to be 

underpinned by numerous genes of small effect and not by a few genes of large effect, as has been 

documented for speech (Atkinson et al., 2018; Krause et al., 2007), intelligence and personality 

(Nagel et al., 2018; Savage et al., 2018). Furthermore, with the realisation that changes in regulatory 

regions can be associated with developmental pathways (Sackton et al., 2019), the exploration of 

genetic and epigenetic changes in regulatory regions will be instrumental in understanding the 

evolution and genetic basis of a variety of traits that may not be obvious based on the examination of 

protein-coding regions alone.
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Figure and Table legends

Table 1. Candidate genes under putative positive selection when comparing C. moneduloides and/or C. 

hawaiiensis to other crow species. Abbreviations: sp. - species.

Reference dataset Gene Full gene name ω Species with ω > 1A
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genome name

C. moneduloides 5 sp. CAPN15 calpain-15 - Cysteine Peptidases 1.01 C. moneduloides

C. moneduloides 5 sp. CAMLG

calcium signal-modulating 

cyclophilin ligand - Transporter 18.57 C. moneduloides

C. moneduloides 7 sp. TPBGL trophoblast glycoprotein-like 1.79 C. moneduloides

C. moneduloides

8 sp. same 

rates CIITA

class II major histocompatibility 

complex transactivator 1.05

C. moneduloides and C. 

hawaiiensis

C. moneduloides

8 sp. diff. 

rates SPSB1

splA/ryanodine receptor domain 

and SOCS box containing 1 1.46 C. moneduloides

C. cornix 5 sp. LHX1 LIM homeobox 1 13.27 C. moneduloides

C. cornix 5 sp. ZC2HC1A

zinc finger C2HC-type containing 

1A 5.41 C. moneduloides

C. cornix 5 sp. DTNBP1 dystrobrevin binding protein 1 1.78 C. moneduloides

C. cornix 7 sp. HTRA2 HtrA serine peptidase 2 9.78 C. moneduloides

C. cornix 7 sp.

TBC1D10

A

TBC1 domain family member 

10A 7.99 C. moneduloides

C. cornix

8 sp. diff. 

rates NPRL2

NPR2 like, GATOR1 complex 

subunit 2.48 C. moneduloides

C. cornix

8 sp. diff. 

rates SLC6A20 solute carrier family 6 member 20 1.02 C. moneduloides

Figure 1. Phylogeny and worldwide distributions of the Corvus species investigated. (a) Maximum 

Likelihood Phylogeny based on 631 core eukaryotic, single-copy genes. Red points at nodes indicate 95% ≥
bootstrap support. Note that the branch to T. guttata has been truncated to 30% of its actual length for clearer 

visualisation. (b) Contemporary geographical distribution of crows used in this study. 

Figure 2. Genome-wide diversity in C. moneduloides. (a) Nucleotide diversity (�) and tests of 

neutrality summary statistics (Fay and Wu’s H, and Tajima’s D) in windows across all C. (c.) cornix scaffolds, 

placed on in silico chromosomes from Weissensteiner et al. (2017). (b) Tajima’s D statistics in the 11 regions 

identified as candidates for positive selection as well as the locations of five genes with a known association to 

development of bill morphology in birds (depicted with black horizontal bars). Regions highlighted by vertical A
cc

ep
te

d 
A

rt
ic

le

https://paperpile.com/c/mMQEwp/j0hL5/?noauthor=1


This article is protected by copyright. All rights reserved

grey regions show where Tajima’s D is below the theoretical threshold of -1.51 (dashed horizontal lines) in C. 

moneduloides but not in C. woodfordi.
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