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ABSTRACT
CHEOPS (CHaracterising ExOPlanet Satellite) is an ESA S-class mission that observes bright stars
at high cadence from low-Earth orbit. The main aim of the mission is to characterize exoplanets that
transit nearby stars using ultrahigh precision photometry. Here we report the analysis of transits
observed by CHEOPS during its Early Science observing programme for four well-known exoplanets:
GJ 436 b, HD 106315 b, HD 97658 b and GJ 1132 b. The analysis is done using pycheops, an open-
source software package we have developed to easily and efficiently analyse CHEOPS light curve
data using state-of-the-art techniques that are fully described herein. We show that the precision of
the transit parameters measured using CHEOPS is comparable to that from larger space telescopes
such as Spitzer Space Telescope and Kepler. We use the updated planet parameters from our analysis
to derive new constraints on the internal structure of these four exoplanets.

Key words: methods: data analysis – software: data analysis – software: public
release – planets and satellites: fundamental parameters

1 INTRODUCTION

The CHaracterising ExOPlanet Satellite (CHEOPS) was se-
lected as the first S-class mission in the European Space

? E-mail: p.maxted@keele.ac.uk

Agency (ESA) science programme and was successfully
launched on December 18, 2019 (Benz et al. 2021). Nominal
science operations started on April 18, 2020 after a period
of in-orbit commissioning (Rando et al. 2020). CHEOPS is
a follow-up mission that generates ultrahigh precision pho-
tometry for bright stars already known to host exoplanets
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(Benz et al. 2018). It has the flexibility to observe stars at
specified times over a large fraction of the sky.1 The ob-
serving time is split between the Guaranteed Time Obser-
vation (GTO) programme (72%), the Guest Observers (GO)
programme (18%) and the Monitoring and Characterisa-
tion (M&C) programme (10%). The CHEOPS GTO pro-
gramme includes observations to search for transits of plan-
ets detected in radial velocity surveys (Delrez et al. 2021),
to provide precise radius measurements for known transit-
ing exoplanets (Bonfanti et al. 2021; Leleu et al. 2021a), to
characterize exoplanet atmospheres from measurements of
their eclipses (Lendl et al. 2020), to study the dynamics
of exoplanet systems using transit time variations (TTVs,
Borsato et al. 2021), to search for moons and rings in ex-
oplanets systems (Akinsanmi et al. 2018), to measure the
tidal deformation of planets (Akinsanmi et al. 2019), and
some stellar science that is relevant to exoplanet studies,
e.g. characterisation of very low-mass stars in eclipsing bi-
nary star systems.

The CoRoT (Baglin et al. 2006) and Kepler
(Borucki et al. 2010) surveys have provided valuable
information on the Galactic exoplanet population based on
intensive monitoring of small areas of the sky. However,
most of the exoplanets identified from their transits by those
surveys are too faint to allow for detailed characterisation.
The best-characterised exoplanets are typically those dis-
covered by radial velocity surveys orbiting bright stars that
were subsequently found to be transiting, e.g. HD 209458 b
(V = 7.8), HD 189733 b (V = 7.8), GJ 436 b (V = 10.2) or
55 Cancri e (V = 6.0). Detailed characterisation has also
been possible for gas- and ice-giant planets transiting bright
stars discovered by ground-based transit surveys such as
WASP (Pollacco et al. 2006), HAT (Bakos et al. 2007),
KELT (Pepper et al. 2018) and MASCARA (Snellen et al.
2012). Surveys such as Mearth (Charbonneau et al. 2009)
and SPECULOOS (Delrez et al. 2018) are able to discover
Earth-size planets by looking for transits around M-dwarf
host stars. The Kepler K2 mission surveyed a larger area
of the sky around the ecliptic than the original mission
and so increased the number of planets discovered or-
biting bright stars with this instrument, e.g. HD 106315
(Barros et al. 2017; Crossfield et al. 2017; Rodriguez et al.
2017a). NASA’s Transiting Exoplanet Survey Satellite
(TESS; Ricker et al. 2014) is an all-sky survey with the
aim to discover exoplanets orbiting stars bright enough
for detailed characterisation with NASAâĂŹs James Webb
Space Telescope (JWST; Gardner et al. 2006). The focus of
the CHEOPS mission is the characterisation of a set of most
promising objects for constraining planet formation and
evolution theories, and to support spectroscopic studies of
these planets’ atmospheres with JWST, Ariel (Tinetti et al.
2018), and instrumentation on 30-m class telescopes
(Marconi et al. 2021). With its unique characteristics,
CHEOPS is complementary to all other transit survey
missions as it provides the agility and the photometric
precision necessary to re-visit sufficiently interesting targets
for which further measurements are deemed valuable. The
CHEOPS mission is also providing valuable experience for
the European space science community that is feeding into

1 https://www.cosmos.esa.int/web/cheops/the-cheops-sky

the development of the PLATO mission, an ESA M-class
mission with the challenging goal to detect and characterise
Earth-size planets with orbital periods up to one year that
transit bright stars (Rauer et al. 2014).

During the first 8 months of science operations, the
CHEOPS guaranteed-time observing programme (GTO)
scheduled and observed over 300 transits and eclipses of
known transiting exoplanet and eclipsing binary star sys-
tems. Another 24 long-duration observations were obtained
for 12 bright stars to search for transits due to exoplan-
ets discovered by radial velocity surveys. In addition, over
600 observations with a duration of 1-3 orbits2 each were
obtained. These “filler” observations ensure that CHEOPS
continues to collect useful science observations during short
intervals between time-critical observations of transits and
eclipses. The filler programmes within the GTO are being
used to study the variability of low mass stars on short
time scales, and to search for remnants of planetary systems
around hot subdwarf stars (Van Grootel et al. 2021).

These large data rates, the peculiarities of observing
from a nadir-locked orbit with a rotating field-of-view, and
the very high precision of the CHEOPS data require spe-
cialised software to enable efficient and accurate analysis of
the light curves, and timely publication of the results. Very
accurate models are needed to precisely match the features
visible in these ultrahigh precision light curves. The soft-
ware should be easy to run and efficient so that everyone
on the science team members has the opportunity to con-
tribute to the data analysis effort without requiring access
to large computing resources or extensive training. These re-
quirements led us to develop the pycheops software pack-
age, building on previous work to test the power-2 limb-
darkening law (Maxted 2018) and the development of the
qpower2 algorithm (Maxted 2018).

The pycheops software package is described fully in
Section 2 of this paper. The analysis of the CHEOPS light
curves for four transiting exoplanets observed during the
Early Science observing programme is described in Sec-
tion 3. Section 4 describes the method we have used to place
constraints on the internal structure of these planets. These
results are discussed in Section 5 and conclusions are briefly
given in Section 6.

2 THE PYCHEOPS SOFTWARE PACKAGE

2.1 Implementation and dependencies

pycheops is written in python version 3.7 and makes
extensive use of the packages numpy (Harris et al. 2020)
and scipy (Virtanen et al. 2020). matplotlib (Hunter
2007) is used for data visualisation and plotting. Tabu-
lar data, celestial coordinates and time scales are han-
dled using routines from the astropy3 software pack-
age (The Astropy Collaboration et al. 2018). The package
lmfit4 (Newville et al. 2020) is used for non-linear least-
squares minimization and parameter handling. For Bayesian

2 The duration of CHEOPS observations are measured in orbits
of 98.725 minutes each.
3 https://www.astropy.org/
4 https://lmfit.github.io/lmfit-py/
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data analysis techniques, we use the affine-invariant Markov
chain Monte Carlo ensemble sampler by Goodman & Weare
(2010) implemented in emcee5 (Foreman-Mackey et al.
2013) to generate samples from the posterior probabil-
ity distribution. Correlated noise is modelled using Gaus-
sian process (GP) regression in the form of the celerite
algorithm implemented in software package celerite26

(Foreman-Mackey et al. 2017; Foreman-Mackey 2018). We
use run-time compilation with numba7 (Lam et al. 2015)
to reduce the execution time for a few key subroutines
that are called frequently by emcee. Parameter correla-
tion plots are generated using the python module corner8

(Foreman-Mackey 2016). CHEOPS data are archived at the
Data & Analysis Center for Exoplanets (DACE) hosted
by the University of Geneva. These data can be accessed
directly from pycheops using the python-dace-client
python module available from the DACE website.9 This
client handles access to both proprietary data for science
team members and public data for general users.

We have successfully installed and tested pycheops on
machines running macOS, Windows 10 and Linux operating
systems.

2.2 Package structure

Almost all the functionality of pycheops is implemented as
a single python module of the same name that contains the
following sub-modules.

core – handles the software configuration, e.g. data loca-
tions and user options.
constants – contains fundamental constants and nominal
values for selected solar and planetary quantities defined by
IAU 2015 Resolution B3 (Mamajek et al. 2015). The Newto-
nian constant is taken to beG = 6.67408×10−11 m3 kg−1 s−2

(2014 CODATA value). The radius of the Earth is defined
to be R⊕ = 6371 km so that the volume of a sphere with
this radius equals the nominal volume of the Earth defined
in IAU 2015 Resolution B3. Similarly, the radius of Jupiter
is defined to be Rjup = 69911 km.
funcs – provides functions related to orbits and eclipses of
stars and planets in Keplerian orbits, e.g. the solution of Ke-
pler’s equation (Markley 1995) and the time of mid-eclipse
in an eccentric orbit using Lacy’s method (Lacy 1992). This
sub-module also includes a function to calculate the mass
and radius of a planet from the observed parameters of
its transit, and to plot the planet in the mass-radius plane
compared to various models and/or the parameters of other
known exoplanets taken from TEPCat (Southworth 2011).
instrument – contains data specific to the CHEOPS in-
strument, e.g. the instrument response function.
utils – provides utility functions, e.g. formatting of values
with errors for output and light curve binning.
ld – provides the parameters of the power-2 limb-
darkening as a function of stellar effective temperature
(Teff), surface gravity (log g) and metallicity ([Fe/H]). This

5 https://github.com/dfm/emcee
6 https://github.com/dfm/celerite2
7 https://numba.pydata.org/
8 https://corner.readthedocs.io
9 https://dace.unige.ch

sub-module also contains functions to convert between dif-
ferent parametrisations of the power-2 limb-darkening law.
Data are included for the CHEOPS TESS, Kepler, NGTS
and CoRoT passbands as well as various filters within the
SDSS and Johnson/Cousins photometric systems. The pa-
rameters are interpolated from tables generated from syn-
thetic 3D-LTE spectra from the stagger-grid calculated by
Magic et al. (2015). For stars outside the range covered by
the stagger-grid we use the coefficients for a 4-parameter
limb-darkening law provided by Claret (2019) for the Gaia
G band, which gives a close approximation to the CHEOPS
passband. The transformation from the coefficients a1, . . . a4

from Table 10 of Claret (2019) to the parameters h1 and
h2 of the power-2 limb-darkening law was done using a
least-squares fit to the intensity profile as a function of
r =

√
1− µ2 in the region r < 0.99.

models – provides models for photometric effects observed
in transiting exoplanet and eclipsing binary star systems,
e.g. transits, eclipses, ellipsoidal effect, etc., and a 2-body
Keplerian radial velocity model. These models are provided
in the form of lmfit Model classes and so can be easily com-
bined using arithmetic operators. Trends in the data cor-
related with parameters such as spacecraft roll angle, sky
background level, telescope tube temperature, etc. can be
modelled using the FactorModel class provided by this sub-
module.
dataset – provides the Dataset class that is used to down-
load, inspect and analyse a single eclipse or transit observa-
tion obtained with CHEOPS. The light curve plots in this
paper for observations consisting of a single visit were gen-
erated using this class.
multivisit – provides theMultiVisit class for the combined
analysis of multiple Dataset objects. For the analysis of mul-
tiple transits it is possible to include parameters ttv_01,
ttv_02, etc. in the model to allow for transit timing vari-
ations around a linear ephemeris. Similarly, the depths of
the eclipses L_01, L_02, etc. can be included as free pa-
rameters in the analysis of visits obtained during different
occultations. MultiVisit can be used for the analysis of a sin-
gle visit. The light curve plots in this paper for observations
composed of multiple visits were generated using this class.
starproperties – provides the StarProperties class for
convenient handling of information about the target star.
This class will automatically download and extract stel-
lar atmospheric parameters for the target star from the
SWEET-Cat catalogue (Santos et al. 2013; Sousa et al.
2018), if available.
planetproperties – provides the PlanetProperties class
for convenient handling of information about planets orbit-
ing the target star. This class will automatically download
and extract the properties of the transiting planet from the
TEPCat catalogue (Southworth 2011), if available.

In addition to these sub-modules, the package distri-
bution includes a script make_xml_files as an aid to
planning and execution of observing requests, and the script
combine to calculate the weighted mean of values with er-
ror estimates accounting for possible systematic errors using
the algorithm described in appendix A.

Distribution of pycheops is done via the python pack-
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age index website.10 Bug reports and software develop-
ment are coordinated using github.11 Several examples that
demonstrate and test the capabilities of pycheops are in-
cluded with the software distribution package in the form
of Jupyter Notebooks.12 These include an analysis of the
CHEOPS data for 4 eclipses of the transiting hot Jupiter
WASP-189 b first presented by Lendl et al. (2020) and a tu-
torial based on the observation of a single transit of KELT-
11 b using the same data analysed by Benz et al. (2021).
The “pycheops cookbook” included in the distribution pro-
vides installation instructions and data analysis recipes.

2.3 Transit and eclipse models

Transit light curves are calculated using the qpower2 algo-
rithm (Maxted & Gill 2019). This algorithm uses an ana-
lytic approximation to efficiently calculate the flux blocked
by a spherical planet of radius Rp orbiting a spherical star of
radius R? with an intensity profile described by the power-
2 limb darkening law Iλ(µ) = 1 − c (1− µα), where µ is
the cosine of the angle between the surface normal and the
line of sight. The algorithm is accurate to about 100 ppm
for broad-band optical light curves of systems with a star-
planet radius ratio k = Rp/R? = 0.1. This is sufficient to
recover transit parameters accurate to ±0.5% or better for
planets with k < 0.15 (Maxted & Gill 2019).

The parameters of the transit model for a planet with
orbital semi-major axis a and orbital inclination i are as
follows.

T0 = time of mid-transit
P = orbital period in days
b = a cos(i)/R?
D = (Rp/R?)

2 = k2

W =(R?/a)
√

(1 + k)2 − b2/π
fc =

√
e cos(ω)

fs =
√
e sin(ω)

h1 = Iλ( 1
2
) = 1− c(1− 2−α)

h2 = Iλ( 1
2
)− Iλ(0) = c2−α

For planets in circular orbits (eccentricity e = 0), the
parameterW is the width of the transit in phase units and b
is the transit impact parameter. D is the depth of the transit
in the absence of limb darkening. The parameters fc and fs
are used because they have a uniform prior probability dis-
tribution assuming that the eccentricity, e, and the longitude
of periastron, ω, both have uniform prior probability dis-
tributions (Eastman et al. 2013; Anderson et al. 2011). The
parameters h1 and h2 are used because suitable priors can
be applied to these parameters independently based on the
results from Maxted (2018), at least for inactive solar-type
stars – see also Short et al. (2019) for the correct calculation
of the physical limits on these parameters.

The secondary eclipse model uses the same parametri-
sation for the geometry of the star-planet system. The ad-
ditional parameters for this model are the planet-star flux
ratio, L, and the correction for the light travel time across

10 https://pypi.org/project/pycheops/
11 https://github.com/pmaxted/pycheops
12 https://jupyter.org/

the orbit ac. The eclipse models assumes that the flux distri-
bution across the visible hemisphere of the planet is uniform.

For the sampling of the posterior probability distribu-
tion of the model parameters within Dataset and MultiVisit
we assume that cos i, log k and log a/R? have uniform prior
probability distributions. The logarithm of the prior proba-
bility distribution for the parameters of the transit model is
then

log(P (D,W, b)) = log(2kW )− log(k)− log(a/R?),

where the factor 2kW is the absolute value of the determi-
nant of the Jacobian matrix J = d(D,W, b)/d(cos i, k, a/R?)
(Carter et al. 2008).

2.4 Parameter decorrelation

Trends in a data set due to instrumental noise are often
correlated with parameters such as the instrument temper-
ature, the position of the star on the detector, background
count rate, etc. Removing these trends is known as decor-
relation or detrending and the coefficient that relates the
change in a parameter to the change in count rate is known
as a decorrelation parameter or detrending parameter. Sev-
eral decorrelation parameters are available for use within
pycheops. These decorrelation parameters can be included
as free parameters in the analysis of transits and eclipses so
that the covariance between the parameters of interest (tran-
sit depth, eclipse depth, etc.) and these “nuisance parame-
ters” can be quantified. Of particular relevance to CHEOPS
are trends in count rate, f , that depend on spacecraft roll-
angle, φ. CHEOPS is nadir-locked, which results in the ro-
tation of the stellar field around the line-of-sight once per
orbit. Stray light from the Earth (an important background
contamination in the images) is highly dependent on the roll
angle. The decorrelation parameters available to model these
trends are df/d sin(jφ) and df/d cos(jφ). Within the mod-
ule Dataset the decorrelation can be done for these roll-angle
decorrelation parameters up to the 2nd harmonic of the roll
angle, i.e. j = 1, 2 or 3. Within the module MultiVisit the
decorrelation against roll angle is done implicitly, i.e. with-
out explicit calculation of the decorrelation parameters, and
there is no limit to the number of harmonics that can be
used – see Section 2.9 for details.

Since sine and cosine functions have a range from
−1 to +1, the magnitude of the decorrelation parameters
df/d sin(jφ) and df/d cos(jφ) are approximately equal to the
amplitude of the instrumental noise in the light curve due
to correlations with each harmonic of φ. In a similar way, we
shift and scale the variables used for decorrelation so that all
the decorrelation parameters are approximately equal to the
amplitude of the instrumental noise in the light curve that
is correlated with the parameter. For example, decorrelation
against the x position of the star on the detector due to the
pointing jitter of the spacecraft uses the variable

∆x =
x− (xmax + xmin)/2

(xmax − xmin) /2
,

where xmin and xmax are the minimum and maximum val-
ues of x, and similarly for ∆y. The metadata provided with
CHEOPS light curves includes estimates of the count rate
in the photometric aperture due to three effects – the back-
ground level in the images, photo-electrons from nearby
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CHEOPS Early Science and pycheops 5

stars accumulated during the CCD frame-transfer,13 and ex-
tra counts accumulated during the exposure due to contam-
ination of the photometric aperture by nearby stars. These
are all positive quantities so we scale them between their
minimum and maximum values so that the decorrelation is
done against the variables bg, smear and contam, respec-
tively, that range from 0 to 1.

Linear and quadratic trends with time, e.g. due to in-
trinsic stellar variability, can be accounted from using the
decorrelation parameters dfdt and d2fdt2, respectively. The
decorrelation is done against the variable t − tmed, where
tmed in the median observation time of observations for the
visit in days.

2.5 Internal reflections (glint)

Bright objects within 24◦ from the target can cause internal
reflections that appear as small peaks in the light curve once
per spacecraft rotation cycle. We refer to this phenomenon
as “glint”. Glint due to moonlight does not occur at exactly
the same spacecraft roll angle every cycle because of the
motion of the Moon on the sky during the observation. The
module Dataset includes a function add_glint that can be
used to create a periodic cubic spline function to model this
effect. The cubic spline is calculated using a least-squares
fit to the residuals from the previous transit or eclipse fit
to the light curve, or to the data either side of the transit
or eclipse. The independent variable for this cubic spline is
either the spacecraft roll angle, or the position angle of the
Moon relative to the spacecraft roll angle on the sky. Once
the glint function, fglint(t) has been created, the light curve
model will include a term glint_scale×fglint(t). The factor
glint_scale ≈ 1 can be included in the analysis as a free pa-
rameter so that the impact of the uncertainty in correcting
for glint can be quantified. The function added to the model
to correct for glint also accounts for much of the instrumen-
tal noise due to spacecraft roll angle, so this feature can
also be used as an alternative to linear decorrelation against
sin(φ), cos(φ), sin(2φ), etc.

2.6 Ramp effect

Long-duration observations of bright stars with CHEOPS
sometimes show changes in the count rate at the start of
a visit with an amplitude up to a few hundred parts-per-
million (ppm) that decays smoothly over several hours. This
is an instrumental effect caused by changes in the instru-
ment point spread function (PSF). The changes in the PSF
are correlated with temperature changes recorded at vari-
ous points on the telescope tube, particularly the value of
thermFront_2 provided in the metadata for each visit. Based
on this correlation, the following equation has been devel-
oped to correct the measured flux (fmeasured) for the “ramp”
effect:

fcorrected = fmeasured × (1 + βr × (thermFront_2 + 12◦C)) .

13 CHEOPS has no shutter so pixels remain exposed during the
readout process. During the 25ms of the frame transfer, each
charge well collects light from each pixel crossed on its way to the
storage area. This produces vertical “smear” trails on the image
from nearby stars.

The value of the coefficient βr varies from βr =
140 ppm ◦C−1 to βr = 330 ppm ◦C−1 for photometric
aperture radii from 22.5 pixels to 30 pixels, respectively.
This ramp correction is not implemented by default in
pycheops, but can be easily applied using the function
Dataset.correct_ramp. This empirical approach to correcting
the ramp effect is sufficient for most purposes, but investi-
gations are continuing into more complex methods that may
provide a more accurate correction for this effect (Wilson et
al. 2021, in prep.)

2.7 Model selection

2.7.1 Akaike and Bayesian information criteria

For a model with k free parameters and maximum likeli-
hood L̂ for a fit to n observations, the Akaike and Bayesian
information criteria have the following definitions:

AIC = 2k − 2 ln(L̂);

BIC = k ln(n)− 2 ln(L̂).

Models with a lower AIC and/or BIC have a better balance
between the complexity of the model and the quality of the
fit. For a least-squares fit to observations oi with indepen-
dent Gaussian standard errors, σi, the log-likelihood for a
model that predicts values ci is

ln(L) = −χ
2

2
− 1

2

n∑
i=1

ln(σ2
i )− n

2
ln(2π), (1)

where

χ2 =

n∑
i=1

(oi − ci)2

σ2
i

.

The constant −n
2

ln(2π) is sometimes dropped from this def-
inition. This is the case for the values of the AIC and BIC
returned by functions in lmfit, but not for the log-likelihood
values returned by celerite2. For consistency, and to en-
able like-for-like comparison, we overwrite the values of AIC
and BIC returned by lmfit with values calculated using
equation (1) before the values are reported in the output
from routines in Dataset and MultiVisit.

2.7.2 Bayes Factors

The question of which decorrelation parameters to include
in the analysis of a given light curve is a model selection
problem. For nested models M0 and M1 with parameters
θ0 = {p1, p2, . . . , pn, 0} and θ1 = {p1, p2, . . . , pn, ψ}, given
the data D, the Bayes factor B01 is defined by

P (M0 | D)

P (M1 | D)
=
P (M0)

P (M1)

P (D |M0)

P (D |M1)
=
P (M0)

P (M1)
B01,

where P (D |M0) =
∫
P (D | θ0)P (θ0)dnθ and similarly for

P (D |M1). P (θ0) is the prior probability distribution for the
parameters of model M0. The prior on the extra parameter
ψ is the same for both models so we can use the Savage-
Dickey density ratio (Dickey & Lientz 1970; Trotta 2007) to
calculate the Bayes factor

B01 =
P (ψ = 0 | D)

P (ψ = 0)
.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3371/6440178 by U

niversity of St Andrew
s Library user on 13 D

ecem
ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

6 P. F. L. Maxted et al.

For a parameter assumed to have a normal prior with stan-
dard deviation σ0, P (ψ = 0) = 1/σ0

√
2π.

For the specific case where D is a CHEOPS light curve,
we find that the posterior probability distributions for the
decorrelation parameters are usually well-behaved and close
to Gaussian, as expected for a linear model. Assuming that
they are normally distributed and that the standard devia-
tion is given accurately by the error on the parameter given
by lmfit, and that a priori the two models are equally likely,
we can calculate the Bayes factor for models with/without
a parameter with value p± σp using

Bp = e−(p/σp)2/2 σ0/σp.

These Bayes factors are listed in the output from the
lmfit_report method for Dataset objects. Parameters with
Bayes factors >≈ 1 are not supported by the data and can
be removed from the model. This statistic is only valid for
comparison of the models with/without one parameter, so
parameters should be added or removed one-by-one and the
test repeated for every new pair of models.

2.8 Noise models

The standard error estimates provided with CHEOPS light
curves account for the known sources of noise in the data,
e.g. photon-counting statistics, detector read-out noise, er-
rors in background subtraction, etc. There will be additional
sources of noise that are not accounted for in these error es-
timates, e.g. undetected cosmic ray hits to the detector, vari-
ability of stars that contaminate the photometric aperture,
thermal effects, scattered light, intrinsic variability of the
target star, etc. The fitting routines in Dataset andMultiVisit
include a parameter σw that accounts for this additional
noise assuming that it is Gaussian white noise, i.e. a pro-
cess that perturbs each measurement independently by some
amount that has a normal distribution. The log-likelihood
for the model using the same notation as above is then

ln(L) = −χ
2

2
− 1

2

n∑
i=1

ln(σ2
i + σ2

w)− n

2
ln(2π),

where

χ2 =

n∑
i=1

(oi − ci)2

σ2
i + σ2

w

.

The fitting routines in Dataset and MultiVisit can use a
more sophisticated noise model that accounts for correlated
noise assuming that this is described by a Gaussian process.
The kernel that describes the correlations between observa-
tions obtained at times tn and tm is the SHOTerm kernel
implemented in celerite2, i.e.

kSHO(τ ; S0, Q, ω0) = S0 ω0 Qe
−ω0 τ

2Q ×
cosh (η ω0 τ) + 1

2 η Q
sinh (η ω0 τ), 0 < Q < 1/2;

2 (1 + ω0 τ), Q = 1/2;

cos (η ω0 τ) + 1
2 η Q

sin (η ω0 τ), 1/2 < Q;

where η = |1−(4Q2)−1|1/2 and τnm = |tn−tm|. This kernel
represents a stochastically-driven, damped harmonic oscilla-
tor, and is commonly used with Q = 1/

√
2 to model gran-

ulation noise in stars (Foreman-Mackey et al. 2017). The

software package celerite2 is used to calculate the log-
likelihood to observe a light curve for a given model and
choice of the hyper-parameters Q, ω0 and S0. The damping
time scale for this process is τ = 2Q/ω0 and the standard
deviation of the process is σGP =

√
S0 ω0 Q. The Dataset

module includes a function to plot the fast Fourier transform
(FFT) of the residuals from the best-fit transit or eclipse
model in log-log space so that the user can look for a slope
or peaks in the power spectrum due to stellar granulation
or oscillations (Sulis et al. 2020).

2.9 Implicit correction for trends correlated with
spacecraft roll angle

The field of view of the CHEOPS instrument rotates at
an angular frequency Ω ≈ 2π/98.725 radians/minute. This
rotation introduces instrumental noise at this frequency
and its harmonics. The CHEOPS point spread function
(PSF) is approximately triangular in shape so to account
for instrumental noise not removed by the data reduction
pipeline (DRP) we typically use a linear model of the form∑3
j=1 αj sin(j ·Ωt)+βj cos(j ·Ωt). Adding the 6 extra coeffi-

cients αj , βj as free parameters in the analysis of a single ob-
serving sequence (“visit”) is not generally a problem, but this
becomes inconvenient for the analysis of larger data sets be-
cause different coefficients are needed for each visit. Instead
of explicitly including the nuisance parameters α1, β1, . . . in
our analysis, we can marginalise over them using the trick
described by Luger et al. (2017). This trick (implicit decor-
relation) requires that we assume Gaussian priors on these
nuisance parameters, in which case the likelihood to obtain
the observed data y from a mean model µ(θ) with param-
eters θ is a multivariate normal distribution of the form

p(y|θ) = N (y;µ,C +AΛAT ), (2)

where the columns of the matrixA are the basis functions of
our instrumental linear model, i.e. sin(Ωt), cos(Ωt), etc., and
C is the covariance matrix that describes the measurement
errors on y. If we assume independent Gaussian priors on the
nuisance parameters all with the same standard deviation
σΩ then Λ = σΩI. The term σΩAA

T is of the form
Nroll∑
j=1

aj e
−cj τnm cos (dj τnm) + bj e

−cj τnm sin (dj τnm) ,

where τnm = |tn − tm| for observations obtained at
times tn and tm. This means we can easily calcu-
late the likelihood p(y |θ,α) using the celerite2 algo-
rithm developed by Foreman-Mackey (2018). Some sim-
ple trigonometry is sufficient to show that bj = cj = 0 and
α = {aj = σΩ, dj = jΩ, j = 1, 2, . . . Nroll}. This instrumen-
tal noise model can be combined with both the white noise
and the correlated noise models described in Section 2.8.

This implicit roll-angle decorrelation method is imple-
mented in the sub-module MultiVisit. The number of har-
monic terms Nroll can be selected with the keyword option
nroll. CHEOPS’ roll-angle rotation rate is not exactly con-
stant, particularly for stars far from the celestial equator,
so implicit decorrelation may not be as effective as explicit
decorrelation using the parameters df/d sinφ, etc. This issue
can be ignored if the trends with roll angle are weak, or miti-
gated by using a larger value of Nroll. A third option is to use
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CHEOPS Early Science and pycheops 7

the unwrap keyword option to remove the best-fit roll-angle
trend from each data set prior to analysis with MultiVisit us-
ing implicit roll-angle decorrelation. This is done by dividing
the light curve data from each visit by the values generated
by the following function:

1 +
∑
j

sin(jφ(ti))df/d sin(jφ) + cos(jφ(ti))df/d cos(jφ),

where φ(ti) is the spacecraft roll angle at observation time ti.
The decorrelation parameters df/d sin(jφ) and df/d cos(jφ)
are the best-fit values taken from the last fit to the light
curve. These best-fit parameter values are stored together
with other details of the fit when the data set is saved to an
output file. For trends correlated with parameters other than
roll angle, MultiVisit automatically selects the same decorre-
lation parameters that were used in the last fit to the light
curve from each visit.

2.10 Analytic maximum-likelihood transit fit

A key part of the science case for the CHEOPS mission is
to have a facility that can be used to search for transits
of small exoplanets orbiting bright stars discovered in ra-
dial velocity surveys. The analysis of the long visits used to
search for transits benefits from a method to inject and re-
cover synthetic transits in the light curve. Transit injection
and recovery can also be used to characterise the noise in
the light curve on different time scales. The method we have
developed for this task, described below, is implemented in
the pycheops function scaled_transit_fit.

We can use a factor s to modify the transit depth in a
nominal model m0 calculated with approximately the cor-
rect depth that is scaled as follows:

m(s) = 1 + s× (m0 − 1).

The data are normalised fluxes f = f1, . . . , fN with nominal
errors σ = σ1, . . . , σN . Assume that the actual standard
errors are underestimated by some factor β, and that these
are normally distributed and independent, so that the log-
likelihood is

lnL = − 1

2b2
χ2 − 1

2

N∑
i=1

lnσ2
i −N lnβ − N

2
ln(2π)

where

χ2 =

N∑
i

((fi − 1)− s(m0,i − 1))2

σ2
i

.

The maximum likelihood occurs for parameter values ŝ,
and β̂ such that ∂ lnL

∂s

∣∣
ŝ,β̂

= 0 and ∂ lnL
∂β

∣∣∣
ŝ,β̂

= 0, from which

we obtain

ŝ =
N∑
i=1

(fi − 1)(m0,i − 1)

σ2
i

[
N∑
i=1

(m0,i − 1)2

σ2
i

]−1

,

and

β̂ =
√
χ2/N.

For the standard errors on these parameters we use
σ−2
s = − ∂

2 lnL
∂2s2

|ŝ,β̂ and σ−2
β = − ∂

2 lnL
∂2β2 |ŝ,β̂ to derive

σs = β

[
N∑
i=1

(m0,i − 1)2

σ2
i

]−1/2

and

σβ =
[
3χ2/β4 −N/β2]−1/2

.

Whether or how much of the data outside transit to include
depends on whether these data can be assumed to have the
same noise characteristics as the data in transit. Note that
including these data has no effect on s or σs, because of
the factors (m0,i− 1) in their calculation, but will affect the
estimates of β and σβ .

If the noise scaling factor β is large (>≈ 2) then it may
be more appropriate to assume that the nominal errors pro-
vided with the data are a lower bound to the true standard
errors, e.g. if there is an additional noise source that is not
well quantified such as poor cosmic-ray rejection. We can
assume that actual standard error on observation number k
is σk with probability distribution

P (σk |σ0,k) =

{
0 σk < σ0,k
σ0,k
σ2
k

σk ≥ σ0,k

This is a less informative prior on the standard error dis-
tribution than the “error scaling” method and so the results
tend to be more pessimistic. Assuming independent mea-
surements and uniform priors, the posterior probability dis-
tribution is then

lnL = C +

N∑
k=1

ln

[
1− exp(−R2

k/2)

R2
k

]
,

where C is a normalising constant and Rk = (mk−fk)/σ0,k

(Sivia & Skilling 2006, section 8.3.1). This is a function of
one parameter only so the minimum can be found efficiently
using any suitable numerical algorithm. The standard error
on s is then found from the values of s that give a log-
likelihood that is 0.5 less than the maximum log-likelihood,
i.e. one standard deviation (1-σ) assuming a Gaussian dis-
tribution.

2.11 Mass and radius calculations for the star and
planet

The analysis of the light curve for a transiting exoplanet
in a circular orbit provides constraints on three geometrical
parameters – the scaled semi-major axis, a/R?, the planet-
star radius ratio, k = Rp/R?, and the impact parameter, b =
a cos i/R? (Seager & Mallén-Ornelas 2003). Kepler’s law can
be used to convert the parameter a/R? to a direct constraint
on the mean stellar density

ρ? =
3M?

4πR3
?

=
3π

GP 2(1 + q)

(
a

R?

)3

. (3)

In general, the mass ratio q = Mp/M? is negligible for tran-
siting exoplanets. The same information is available from
the analysis of transits for planets in non-circular orbits pro-
vided that independent constraints are available for both the
eccentricity, e, and the longitude of periastron, ω (Kipping
2014). These parameters combined with the semi-amplitude
of the star’s spectroscopic orbit due to the planet, K, lead
directly to a measurement of the planet’s surface gravity,

gp =
2π

P

(1− e2)1/2K

(Rp/a)2 sin i
(4)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3371/6440178 by U

niversity of St Andrew
s Library user on 13 D

ecem
ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

8 P. F. L. Maxted et al.

(Southworth et al. 2007). One more constraint is needed to
obtain the mass and radius of the planet. This is typically
an estimate for either the mass or radius of the host star.
Estimates for both mass and radius will be needed in cases
where the stellar density is poorly constrained by the light
curve, e.g. if the transits are shallow compared to the noise.

The function funcs.massradius within pycheops imple-
ments these calculations using the nominal solar and plane-
tary constants defined in the module constants. Confidence
limits and standard errors on parameters are calculated us-
ing a Monte Carlo approach with a sample of 100 000 val-
ues per parameter. For parameters specified as a mean with
standard error the sample of values is generated assuming
a normal distribution. For parameters provided as a sample
of points from the posterior probability distribution (PPD),
e.g. using the output from emcee, we select 100 000 val-
ues from the sample, with re-selection if required. Where
multiple input samples with the same length are provided,
e.g. samples generated from emcee, values are sampled in
a way that preserves correlations between these parameters.
Output statistics generated from the Monte Carlo sample
include: mean, median and half-sample mode, standard er-
ror, and asymmetric error bars calculated from the 15.9%,
median and 84.1% percentile points of the sample. The func-
tion funcs.massradius accepts input of the parameters M?,
R? and a/R? independently, so it is possible to calculate a
value of ρ? from a/R? that is inconsistent with the input
values of M? and R?. This leads to an ambiguity over which
values of M? and R? to use in the calculation of the planet
mass and radius. To resolve this ambiguity, Rp is calculated
from k and R?, and is only calculated if both of these values
are provided. Similarly, gp is only calculated from equation
(4). The mean planet density, ρp, is calculated from gp and
mp, i.e. the input value of R? is not used in the calculation
of ρp. The sub-modules MultiVisit and Dataset both provide
massradius class methods that use the output from the last
fit to the light curve(s) as input to funcs.massradius. For
these class methods, if only one of the parameters M? or
R? is provided by the user then the other is calculated from
a/R? using equation (3).

If the width of the transit is not well defined by the
light curve itself, e.g. due to gaps in the light curve or if the
transit is shallow, then it is very useful to place a prior on the
mean stellar density. As can be seen from equation (3), this
stellar property is directly related to the parameter R?/a
and this parameter is itself directly related to the transit
width, e.g. for circular orbits the transit width in phase units
is W = (R?/a)

√
(1 + k)2 − b2/π. The StarProperties class

can be used to estimate the mean stellar density, ρ?, for
stars with surface gravities 3.697 < log g < 4.65 using a
linear relation between log(ρ?) and log g derived using the
method and data described in Moya et al. (2018).

3 EARLY SCIENCE PROGRAMME

In this section we report the results from the first exo-
planet transits observed by CHEOPS during its Early Sci-
ence programme for four well-known exoplanets: GJ 436 b,
HD 106315 b, HD 97658 b and GJ 1132 b. These observations
are used to assess the in-flight performances of CHEOPS
for measuring transit parameters, and to compare this per-

formance with the results obtained by reanalysing transit
light curves from the Kepler K2 mission, TESS, and Spitzer
Space Telescope (Spitzer, hereafter). The targets were se-
lected from a list of well-known transiting exoplanets based
on their visibility around the dates when CHEOPS nominal
science operations were due to start. Several targets were se-
lected in order to demonstrate the capabilities of CHEOPS
for transiting planets over a range of stellar and planetary
properties. The Early Science programme also includes ob-
servations of the eclipses of WASP-189 b, the orbital phase
curve of 55 Cnc b and the transits of ν2 Lupi b. The results
from these observations are reported elsewhere (Lendl et al.
2020; Delrez et al. 2021; Morris et al. 2021).

3.1 Observations

The log of CHEOPS observations is presented in Table 1.
The data set comprises three transits each for GJ 436 b and
GJ 1132 b, two transits of HD 106315 b and one transit of
HD 97658 b. CHEOPS observes from low-Earth orbit so ob-
servations are often interrupted because the line of sight to
the target is blocked by the Earth or because the satellite
is passing through the South Atlantic Anomaly (SAA). The
ratio between the uninterrupted observation time and the
total duration of the observation sequence (“visit”) is also
noted in Table 1 and is at least 58% for all of the visits
analysed here.

3.2 Photometric extraction

All CHEOPS data are automatically processed at the
CHEOPS science operations centre (SOC). The data re-
duction pipeline (DRP) calibrates the raw images, e.g. it
applies bias, gain and non-linearity corrections, subtracts
the dark current and scattered light, and applies a flat-field
correction. The CHEOPS field of view rotates continuously
so the photometric aperture used to measure the flux from
the target star is periodically contaminated by the read-
out trail from other stars on the CCD. This “smear” effect
is also corrected for by the DRP. The DRP also simulates
the field of view based on the positions and magnitudes of
the target and nearby stars as listed in the Gaia DR2 cat-
alogue (Gaia Collaboration et al. 2018). The contamination
of the photometric aperture by nearby stars is reported in
the DRP data products so that the user has the option to
apply or ignore this contamination correction. Light curves
are calculated using three pre-defined aperture radii with
radii of 22.5, 25 and 30 pixels14 labelled RINF, DEFAULT
and RSUP, respectively. Light curves labelled OPTIMAL
are also provided for a fourth aperture radius calculated
to maximise the signal-to-noise ratio for the target while
minimising contamination from other stars in the image.
The data files generated by the DRP include a data re-
duction report that summarizes each data processing step
and that provides various data quality metrics. Full details
can be found in Hoyer et al. (2020). All light curves in this
paper were processed using CHEOPS DRP version cn03-
20200703T111359.

14 The image scale for CHEOPS is 1 arc second per pixel.
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CHEOPS Early Science and pycheops 9

Table 1. Log of CHEOPS observations. Data sets are labelled by the sequence number given in the first column throughout this paper.
Eff. is the fraction of the observing interval covered by valid observations of the target. Rap is the aperture radius in pixels used to
compute the light curve analysed in this paper. The column Texp gives the exposure time in terms of the integration time per image
multiplied by the number of images stacked on-board prior to download.

# Target G Start date Duration Texp Nobs Eff. File key Rap

[mag] [UTC] [s] [%]

1 GJ 436 9.57 2020-03-27T23:56:16 27433 1× 60s 340 74 CH_PR100041_TG000302_V0102 25.0
2 2020-04-02T06:53:35 27433 1× 60s 334 73 CH_PR100041_TG000303_V0102 25.0
3 2020-04-23T11:05:36 28153 1× 60s 300 64 CH_PR100041_TG001301_V0102 25.0

1 HD 106315 8.89 2020-04-02T22:43:57 87305 1× 41s 1954 92 CH_PR100041_TG000802_V0102 25.0
2 2020-05-01T14:59:19 85992 1× 41s 1510 72 CH_PR100041_TG001401_V0102 25.0

1 HD 97658 7.51 2020-04-22T04:59:16 27650 3× 11s 607 72 CH_PR100041_TG001201_V0102 25.0

1 GJ 1132 12.14 2020-03-26T23:52:36 26052 1× 60s 301 70 CH_PR100041_TG000401_V0102 15.5
2 2020-03-28T14:27:57 27613 1× 60s 269 58 CH_PR100041_TG000402_V0102 15.0
3 2020-04-04T02:48:40 30674 1× 60s 314 61 CH_PR100041_TG000403_V0102 15.0

Table 2. Summary of the initial analysis for individual visits for targets with more than one visit using Dataset.lmfit_transit. Tc is the
time of mid-transit and RMS is the standard deviation of the residuals from the best fit. The numbering of the visits is the same as in
Table 1. Note that the standard errors quoted here are based on the estimated covariance matrix, so may be underestimated. Values
preceded by = were held fixed in the analaysis. Data from the individual visits to GJ 1132 provide no useful constraint on the impact
parameter, b. The variables in final column are as follows: time, t; spacecraft roll angle, φ, PSF centroid position, (x, y); smear correction,
smear; aperture contamination, contam; image background level, bg. Digits in parentheses are standard errors in the final digit of the
preceeding value.

# Target BJDTDB Tc D W b RMS Decorrelation parameters
−2458900 [%] [ppm]

1 GJ 436 36.6865(1) 0.49(5) 0.0156(4) 0.74± 0.03 262 t
2 41.975(1) 0.63(3) 0.0160(5) 0.77± 0.02 265 t, contam, bg
3 63.1321(3) 0.65(1) 0.0196(2) 0.67± 0.02 266 t, sin(φ)

1 HD 106315 42.944(1) 0.031(2) 0.0161(2) 0.63± 0.04 238 t, x, bg, smear, x
2 71.592(13) 0.027(2) 0.0160(5) = 0.63 250 sin(φ), x

1 GJ 1132 = 35.6559 0.30(3) 0.0193(3) =0.77 1262 contam, smear, t, cos(φ), sin(2φ), cos(2φ),
2 = 37.2849 0.22(4) 0.0118(18) =0.77 1125 contam, bg, t, x, y, sin(φ), cos(2φ), sin(2φ)
3 = 43.8006 0.27(13) 0.0138(12) =0.77 1408 contam, bg, t, sin(φ), cos(2φ)

3.3 Host star characterisation

For all targets we determined the stellar radii utilising
a modified version of the infrared flux method (IRFM;
Blackwell & Shallis 1977). The method allows for deriva-
tion of angular diameters of stars using known relation-
ships between this parameter, stellar effective temperature,
and an estimate of the apparent bolometric flux. The an-
gular diameter combined with the parallax can then be
used to calculate the stellar radius. In this study we used
a Markov-chain Monte Carlo (MCMC) method to compare
the synthetic fluxes, determined by attenuating stellar atmo-
spheric models with a galactic extinction law parameterised
by the reddening E(B−V ). The reddened spectra were con-
volved with the broadband response functions for the cho-
sen bandpasses. These were compared to the observed Gaia
G, GBP, and GRP, 2MASS J, H, and K, and WISE W1
and W2 fluxes and relative uncertainties retrieved from the
most recent data releases (Gaia Collaboration et al. 2020;
Skrutskie et al. 2006; Wright et al. 2010) in order to obtain
the apparent bolometric fluxes. The resulting angular di-
ameters are combined with the offset-corrected Gaia EDR3
parallaxes (Lindegren et al. 2020) to derive stellar radii.

In this study, we used the ATLAS stellar atmo-
spheric models (Castelli & Kurucz 2003) for HD106315 and
HD97635, however for the cooler stars in the sample (GJ 436
and GJ 1132) we adopted the radii derived using Phoenix
models (Allard et al. 2011) as these spectral energy distribu-
tions contain molecular band absorption that can be impor-
tant in the characterisation of M-dwarfs. Atmospheric mod-
els for calculation of the synthetic photometry were built
from stellar parameters measured from the analysis of the
star’s spectrum, as described in the individual subsections
on each star below.

For each star the effective temperature, Teff , the metal-
licity, [Fe/H], and the radius, R?, were used as input pa-
rameters to infer the mass M? and age t? from two dif-
ferent sets of stellar evolutionary models, namely PARSEC
v1.2S (Marigo et al. 2017) and CLES (Scuflaire et al. 2008).
The isochronalM? and t? from PARSEC v1.2S were derived
by applying the grid-based interpolation method known as
isochrone placement and described in Bonfanti et al. (2015,
2016). In the case of CLES, instead, a direct computation of
the evolutionary track based on the set of input parameters
was performed. The consistency of the two pairs was suc-
cessfully checked following the validation procedure based
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10 P. F. L. Maxted et al.

on the χ2 test presented in details in Bonfanti et al. (2021),
so that we finally merge the two probability distributions of
both M? and t? and computed their respective medians and
standard deviation.

The results and additional details of the analysis are
presented separately for each target in the subsection below.
Photospheric abundance ratios are quoted relative to the
solar composition from Asplund et al. (2009).

3.4 Light curve analysis

We used pycheops version 1.0.0 to analyse the data. The
photometric aperture was selected based on the lowest point-
to-point root mean square (RMS) reported in the data re-
duction reports. The correction for contamination calculated
by the DRP was applied to all light curves. We applied a cor-
rection for the ramp effect to all data sets apart from the ob-
servations of GJ 1132. This correction is generally very small
(<≈ 100 ppm). Observations with high background levels due
to observing close to the Earth’s limb (> 5% above the me-
dian background level) were excluded from the analysis. We
also excluded data points more than 5 standard deviations
from a median-smoothed version of each light curve. Typi-
cally, fewer than 5 data points are rejected from the analysis
using this criterion.

To select decorrelation parameters we did an initial fit
to each light curve with no decorrelation and used the RMS
of the residuals from this fit, σp, to set the prior on the decor-
relation parameters, N (0, σp) or, for df/dt, N (0, σp/∆t)
where ∆t is the duration of the visit. We then added decorre-
lation parameters to the fit one-by-one, selecting the param-
eter with the lowest Bayes factor at each step and stopping
when Bp > 1 for all remaining parameters. This process
sometimes leads to a set of parameters including some that
are strongly correlated with one another and so are therefore
not well determined, i.e. they have large Bayes factors. We
therefore go through a process of repeatedly removing the
parameter with the largest Bayes factor if any of the param-
eters have a Bayes factors Bp > 1. The second step of this
process typically removes no more than 1 or 2 parameters.

Gaussian-process (GP) regression is an effective way to
account for the additional uncertainty in the parameters
derived from observational data in cases where the time-
correlated noise sources (“systematics”) are present. The use
of GP regression is common practice within the exoplanet re-
search community, partly because much of the research into
exoplanets for the first two decades of this relatively new
branch of astrophysics had to use instrumentation that was
never designed to observe the weak signals from exoplanet
systems. Time-correlated noise sources may arise within the
instrument, the environment (particularly for ground-based
observations) or from astrophysical noise sources, e.g. intrin-
sic variability of the host star. By design, CHEOPS has very
low levels of instrumental noise. Analysis of long-duration
observations of bright stars with CHEOPS have demon-
strated that instrumental noise is between 15 and 80 ppm on
timescales of a few hours for isolated stars in the magnitude
range covered here. These observations also show that the
standard error estimates on the count rates provided with
the DRP data files are reliable but slightly under-estimate
the true noise in the light curves by a factor ≈ 1.3. This
may be due to small errors in the calibration of the data,

e.g. flat-fielding errors, or weak cosmic ray events that are
difficult to identify if they affect pixels near the peaks in
the image of the star. To account for this small amount of
extra noise we assume that it is Gaussian white noise with
standard deviation σw. The amplitude of the noise due to
stellar granulation and stochastically-driven oscillations for
late-type star has been characterised in detail using data
from the Kepler mission (Kallinger et al. 2014). For dwarf
stars (log g <≈ 4), the amplitude of this noise on time scales
relevant to the observations presented here (∼ 102 – 103

µHz) is typically no more than 100 ppm. Therefore, there
is little justification a priori to include a GP in the analysis
of a CHEOPS light curve for moderately bright dwarf stars.
For all the light curves analysed here, we checked that the
power spectrum plotted in log-log space is flat, i.e. consistent
with white noise, as expected. Consequently, we do not in-
clude GPs in the analysis of the light curves analysed here.
Note that the same argument does not apply to subgiant
stars, e.g. we observed granulation noise in the CHEOPS
light curve of KELT-11 (log g ≈ 3.7) and included a GP
in the analysis of that system using pycheops (Benz et al.
2021). Similarly, CHEOPS is able to detect and characterise
granulation noise and solar-like oscillations for very bright
Sun-like stars such as ν2 Lupi (V=5.65, Delrez et al. 2021).

For all of the visits analysed here, we repeated the anal-
ysis using different photometric apertures, or without reject-
ing data with high background levels, or without the correc-
tion for the ramp effect, or (except for GJ 1132) excluding
the correction for contaminating background stars. For the
analysis with MultiVisit we also experimented with differ-
ent values Nroll. In all these cases, the results are negligibly
different to the results reported here.

Sampling of the PPD for the model parameters is done
with emcee using 256 walkers and 512 steps following a
“burn-in” phase of 1024 steps to ensure that the sampler has
converged. Convergence of the sampler was checked using
visual inspection of the parameters values from all the walk-
ers plotted versus step number. These “trail plots” show no
trends in mean value or width and all the walkers appeared
to be randomly sampling the parameter values in very sim-
ilar way.

For convenience, the light curves are normalized to their
median value prior to analysis. We store the original light
curve prior to normalisation and use this post hoc to convert
the parameter ci used to model the out-of-transit level for
data set i to an observed out-of-transit count rate in photo-
electrons per second [e−/s].

3.4.1 GJ 436 b

The warm-Neptune GJ 436 b orbits a moderately-bright
M2.5V star (V = 10.6, G = 9.6) with an orbital period
of 2.64 days (Butler et al. 2004). It was the first Neptune-
mass exoplanet found to transit its host star (Gillon et al.
2007). Several studies have scrutinised the evaporating at-
mosphere of this planet using observations from ultraviolet
(Kulow et al. 2014; Ehrenreich et al. 2015; Lavie et al. 2017;
dos Santos et al. 2019) to infrared wavelengths (Pont et al.
2009; Knutson et al. 2011, 2014; Lanotte et al. 2014). A
second planet has been posited to explain the significant
orbital eccentricity of GJ 436 b (e ≈ 0.15; Ribas et al.
2008; Maness et al. 2007) but recent studies based on ex-
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Figure 1. CHEOPS transit light curves of GJ 436 b. Upper panel : All data after removing trends. Observed light curves are displayed
in cyan. The dark blue points are the data points binned over 0.002 phase units. The best-fit transit model is shown in green. Middle
panel : Observed light curves are displayed in cyan offset by multiples of 0.005 units. The dark blue points are the data points binned
over 0.002 phase units. The full model including instrumental trends is shown in brown and the transit model without trends is shown
in green. Lower panel : Residuals obtained after subtraction of the best-fit model in the same order as the upper plot offset by multiples
of 0.002 units.

tensive radial velocity data have not confirmed previous
claims for the existence of this second planet (Lanotte et al.
2014; Trifonov et al. 2018). The orbit of GJ 436 b is sig-
nificantly misaligned with the rotation axis of its host star
(Bourrier et al. 2018).

To estimate the mass and mean stellar density of GJ 436
we used the empirical calibrations implemented in the soft-
ware kmdwarfparam (Hartman et al. 2015). These empir-
ical relations are well-determined for stars with masses and
radii similar to GJ 436. For the input to kmdwarfparam
we used the apparent magnitudes in the V, J, H and K
bands listed on SIMBAD and the parallax from Gaia EDR3.
The results are summarised in Table 3. The mass and ra-
dius obtained from kmdwarfparam agree very well with our
values obtained using the methods described in Section 3.3
(M = 0.444±0.034M�, R = 0.444±0.059R�) but are more
precise. These radius estimates also agree well with the value
R = 0.455±0.018R� measured directly using interferometry
by von Braun et al. (2012).

We observed three transits of GJ 436 b (Table 1). The
transit ingress was observed on all three visits but only the
final visit covers the point of mid-transit and the egress was
only partly observed during the first visit. We first analysed
the transits individually using Dataset.lmfit_transit in or-
der to identify which decorrelation parameters are needed
for each visit. We fixed the orbital period at the value
P = 2.6438980d (Lanotte et al. 2014). We also fixed the
limb darkening parameters at the values inferred from the
tables provided by Claret (2019). The results are sum-
marised in Table 2. Between 1 and 3 useful decorrelation
parameters were identified per visit, with the highest-order
term needed for decorrelation against roll angle being sin(φ).

GJ 436 is moderately bright and there is little contamination
of the photometric aperture from other stars. As a result,
the instrumental noise trends in the light curves have very
low amplitudes (<≈ 300 ppm). A small but significant linear
trend with time is seen for all three visits which we ascribe to
stellar variability on time scales longer than the visit dura-
tion. The power spectral density (PSD) of the residuals from
these initial fits are shown in Fig. B1 of the supplementary
online material. The small amount of power near orbital fre-
quency of the CHEOPS spacecraft and its first harmonic for
data set 1 is not statistically significant, i.e. the PSDs of the
residuals are consistent with the white-noise level expected
based on the typical error bar per datum. The trends in the
data with spacecraft roll angle and our fit to this trend for
data set 3 are shown in Fig. C1 of the supplementary online
material.

For the combined analysis of the visits using MultiVisit
we set priors on fc and fs based on the values of e =
0.152 ± 0.009 and ω = 325.8◦ ± 5.7◦ from Trifonov et al.
(2018). The limb-darkening parameter h2 has only a subtle
effect on the light curve during the ingress and egress phases
of the transit so we decided to fix this parameter at the value
inferred from the tables provided by Claret (2019). We in-
clude h1 as a free parameter in the analysis with a Gaussian
prior centred on the value obtained from the same tables
with an arbitrary choice of 0.1 for the standard error. We
also imposed a prior on the mean stellar density based on
the values obtained from kmdwarfparam (Hartman et al.
2015). Based on the results of the analysis for the individual
visits we decided to use Nroll = 1. Increasing this value by 1
or 2 has a negligible effect on the results. The results from
this analysis are given in Table 3 and the fits to the light
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12 P. F. L. Maxted et al.

Figure 2. Correlation plot for selected parameters from our analysis of GJ 436.

curves are shown in Fig. 1. Correlations between selected
parameters from this analysis are shown in Fig. 2. These
results are discussed in the context of previous studies of
GJ 436 b in Section 5.1.

3.4.2 HD 106315 b

HD 106315 is a F5V star with a V -band magnitude of 8.95
that is known to host at least two planets (Crossfield et al.
2017; Rodriguez et al. 2017a). The inner planet (b) is a
super-Earth with a radius of 2.44R⊕ and an orbital period of
9.55 days; the outer planet (c) is a Neptune-size planet with
a radius of 4.35 R⊕ and a period of 21.06 days (Barros et al.
2017). Kosiarek et al. (2021) have measured accurate masses
for these planets based on extensive multi-year radial veloc-
ity measurements for these planets together with transits ob-
served with Spitzer. That study was motivated by on-going
and planned observing programmes with Hubble Space Tele-
scope (HST) and James Webb Space Telescope (JWST) to
characterise the atmospheres of these planets. These authors
find that the orbital eccentricity of these planets is close to
e = 0 based on their extensive radial velocity data and on
stability arguments.

The rotation of HD 106315 measured from spectral line
broadening is moderately fast (vrot sin i? ≈ 13 km s−1) but
the K2 light curve and ground-based photometry show that
the intrinsic variability of this star is <≈ 0.2% at optical wave-
lengths (Crossfield et al. 2017; Kosiarek et al. 2021). There

are several published estimates for the mass and radius of
this star based on a variety of methods – these are sum-
marised in Table 4 together with our own estimates based
on the methods described in Section 3.3. We have used these
results to estimate the mass of this star and to set a prior on
the mean stellar density for the analysis of the light curve.
In both cases we have used the weighted mean value and the
weighted sample standard deviation to set the value and its
error. We use the sample standard error rather than the
standard error in the mean because the values in Table 4
are not completely independent and the differences between
these estimates may reflect systematic sources of uncertainty
e.g. the unknown helium abundance for this star.

To derive the stellar atmospheric parameters for
HD 106315 in Table 4 we used version 5.22 of the Spec-
troscopy Made Easy sme package (Piskunov & Valenti 2017)
to analyse the spectrum of this star observed with the High
Accuracy Radial velocity Planet Searcher (HARPS) spectro-
graph on the European Southern Observatory (ESO) 3.6-m
telescope. All available HARPS spectra were downloaded
from the ESO science archive and co-added prior to analysis.
In this package synthetic spectra are calculated starting from
a first guess of individual stellar parameters and utilizing a
grid of stellar models, in this case taken from the ATLAS-
12 set (Kurucz 2013). Atomic parameters were downloaded
from the VALD data base (Piskunov et al. 1995). Keeping
all but one parameter fixed and iterating and minimizing un-
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CHEOPS Early Science and pycheops 13

Figure 3. Correlation plot for selected parameters from our analysis of HD 106315.

Figure 4. CHEOPS transit light curves of HD 106315 b. Upper panel : Observed light curves are displayed in cyan offset by multiples
of 0.002 units. The dark blue points are the data points binned over 0.001 phase units. The full model including instrumental trends is
shown in brown and the transit model without trends is shown in green. Lower panel : Residuals obtained after subtraction of the best-fit
model in the same order as the upper plot offset by multiples of 0.002 units.
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14 P. F. L. Maxted et al.

Table 3. Results from our analysis of GJ 436 b. Gaussian priors
on parameters with mean µ and standard deviation σ are noted
using the notation N (µ, σ). For each data set i = 1, 2, 3, ci is
the mean count rate out of eclipse, dfi/dt is the linear trend with
time, dfi/dcontam is the correlation of flux with the predicted
contamination of the aperture by background stars, and dfi/dbg
is the correlation of flux with the estimated background level in
the image. The quantities contam and bg are normalized so that
the coefficients give the amplitude of the trend in each light curve.
This analysis uses implicit roll-angle decorrelation with Nroll = 1.

Parameter Value Notes

Input parameters

Teff [K] 3505± 51 1
log g (cgs) 4.91± 0.07 1
[Fe/H] −0.04± 0.16 1
M? [M�] 0.445± 0.018

P [d] 2.643898 2
K [m s−1] 17.38± 0.17 3

Model parameters

D 0.00700± 0.00018
W 0.01593± 0.00015

b 0.802± 0.012

T0 0.26212± 0.00012 N (0.262, 0.01), 4
h1 0.733± 0.051 N (0.73, 0.1)

h2 = 0.633

lnσw −12.1± 3.3 N (−10, 5)
c1 [106 e-/s] 15.36531± 0.00045

df1/dt [d−1] 0.00059± 0.00017
c2 [106 e-/s] 15.40448± 0.00082

df2/dt [d−1] 0.00076± 0.00016

df2/dbg −0.00036± 0.00016
df2/dcontam 0.000373± 0.000094

c3 [106 e-/s] 15.34905± 0.00054

df3/dt [d−1] 0.00034± 0.00020

Derived parameters

Mp [M⊕] 21.72± 0.63
Rp [R⊕] 3.85± 0.10

R? [R�] 0.422± 0.010
Rp/R? 0.0837± 0.0011

a/R? 14.56± 0.30

i [◦] 86.84± 0.11
log(ρ?/ρ�) 0.773± 0.027 N (0.724, 0.032)

gp [m s−2] 14.35± 0.67

ρp [g cm−3] 2.09± 0.15
σw [ppm] 6± 29

1: Schweitzer et al. (2019). 2: Lanotte et al. (2014). 3:
Trifonov et al. (2018). 4: BJDTDB − 2458947.

til no further improvement is realized one arrives eventually
at a set of stellar parameters (Fridlund et al. 2017).

We observed two transits of HD 106315 b with CHEOPS
(Table 1). The first transit was observed when the target was
close to the anti-Sun direction so the observing efficiency is
very high. The data set for the second visit shows spurious
jumps in values of the spacecraft roll angle versus time due
to a software bug that was fixed in DRP version 13.0. These
spurious roll angle values were corrected prior to the analysis
presented here. We first analysed both transits individually
using Dataset.lmfit_transit in order to identify which decor-
relation parameters are needed for each visit. We fixed the
orbital period at the value P = 9.552105d and assumed

Table 4. Mass, radius and mean stellar density estimates for
HD 106315.

M? [M�] R? [R�] log(ρ?/ρ�) Ref.

1.227± 0.064 1.257± 0.014 −0.209± 0.027 1
1.154± 0.042 1.269± 0.024 −0.248± 0.029 2
1.091± 0.036 1.296± 0.058 −0.300± 0.060 3
1.027± 0.034 1.281± 0.058 −0.311± 0.061 4
1.07± 0.03 1.18± 0.03 −0.186± 0.035 5

1.088± 0.043 1.252± 0.041 −0.229± 0.045 Mean

1. This work. 2. Kosiarek et al. (2021) 3. Barros et al. (2017) 4.
Rodriguez et al. (2017b) 5. Crossfield et al. (2017)

that the orbital eccentricity is e = 0 (Kosiarek et al. 2021).
We also fixed the limb darkening parameters at the values
inferred from the tables provided by Maxted (2018). The
second data set does not cover the ingress or egress to the
transit so the impact parameter is unconstrained by these
data. We fixed the impact parameter to the value deter-
mined from the analysis of the first data set for the analysis
of the second data set. The results are summarised in Ta-
ble 2. Between 2 and 4 useful decorrelation parameters were
identified per visit, with the highest-order term needed for
decorrelation against roll angle being sin(φ). HD106315 is
bright and there is little contamination of the photomet-
ric aperture from other stars. As a result, the instrumental
noise trends in the light curves have very low amplitudes
(<≈ 120 ppm). A small but significant linear trend with time
is seen for the first visit which we ascribe to stellar variabil-
ity on time scales longer than the visit duration. The power
spectral density (PSD) of the residuals from these initial fits
are shown in Fig. B2 of the supplementary online material.
There is a small excess in power at low frequencies for the
second data set that we assume is related to rapid changes
in the scattered light level towards the start and end of each
visit. This can lead to a gradients in the background level
in some images that is not (yet) accounted for in the data
reduction pipeline. The trends in the data with spacecraft
roll angle and our fit to this trend for data set 2 are shown
in Fig C2 of the supplementary online material.

We used the same fixed values of e and P for the com-
bined analysis of the two visits usingMultiVisit. We set priors
on the limb-darkening parameters h1 and h2 based on the
results from Maxted (2018). We included the small correc-
tion to the tabulated values recommended by Maxted (2018)
based on the observed offset between these values and the
observed values of h1 and h2 for stars similar to HD 106315.
Based on the results of the analysis for the individual visits
we decided to use Nroll = 1. Changing this value by ±1 has
a negligible effect on the results. The results from this anal-
ysis are given in Table 5 and the fits to the light curves are
shown in Fig. 4. Correlations between selected parameters
from this analysis are shown in Fig. 3.

We also attempted a similar analysis without the prior
on the stellar density. The results from that analysis are
consistent with the results presented here but with increased
uncertainties, particularly for the impact parameter, b (D =
0.000283±0.000028,W = 0.01647±0.00043, b = 0.54±0.31).
The mean stellar density obtained from this analysis of the
light curve with no prior on ρ? is log(ρ?/ρ�) = −0.16±0.26.
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Table 5. Results from our analysis of the transits for HD
106315 b. Gaussian priors on parameters with mean µ and stan-
dard deviation σ are noted using the notation N (µ, σ). For each
data set i, ci is the mean count rate out of eclipse, dfi/dt is the lin-
ear trend with time and dfi/dsmear is the correlation of flux with
the smear correction. The quantity smear is normalized so that
the coefficient gives the amplitude of the trend in the light curve.
This analysis uses implicit roll-angle decorrelation with Nroll = 1.

Parameter Value Notes

Input parameters

Teff [K] 6450± 105

log g (cgs) 4.28± 0.10

[Fe/H] −0.09± 0.05
[Mg/H] −0.09± 0.12

[Si/H] −0.05± 0.06
M? [M�] 1.091± 0.029

P [d] 9.552105 1
K [m s−1] 2.88± 0.85 1

Model parameters

D 0.000284± 0.000014
W 0.01637± 0.00038

b 0.601± 0.045

T0 1952.4979± 0.0017 2
h1 0.777± 0.012 N (0.777, 0.012)

h2 0.419± 0.055 N (0.421, 0.055)

lnσw −9.34± 0.10 N (−9.3, 1.0)
c1 [106 e-/s] 20.05254± 0.00028

df1/dt [d−1] −0.000154± 0.000020
df1/dbg 0.000029± 0.000037

df1/dsmear 0.000089± 0.000030

c2 [106 e-/s] 20.02291± 0.00024

Derived parameters

Mp [M⊕] 10.1± 3.0
Rp [R⊕] 2.25± 0.10

R? [R�] 1.222± 0.045

Rp/R? 0.01686± 0.00041
a/R? 15.95± 0.55

i [◦] 87.84± 0.23

log(ρ?/ρ�) −0.224± 0.045 N (−0.229, 0.045)
gp [m s−2] 19.5± 6.0

ρp [g cm−3] 4.8± 1.6
σw [ppm] 87± 9

K2 light curve analysis

D 0.000277± 0.000016
W 0.01662± 0.00050

b 0.586± 0.054
T0 0.2030± 0.0020 2
h1 0.778± 0.012 N (0.78, 0.012)

h2 0.422± 0.054 N (0.419, 0.055)

lnσw −9.942± 0.037
Rp/R? 0.01663± 0.00048

a/R? 15.92± 0.56
i [◦] 87.89± 0.25

log(ρ?/ρ�) −0.227± 0.046 N (−0.229, 0.045)
σw [ppm] 48± 2

1: Kosiarek et al. (2021). 2: BJDTDB − 2457615.

Table 6. Mass, radius and mean stellar density estimates for
HD 97658. The error quoted on the mean value is the standard
deviation of the sample.

M? [M�] R? [R�] log(ρ?/(ρ�) Ref.

0.758± 0.044 0.761± 0.009 0.236± 0.030 1
0.74± 0.02 0.74± 0.02 0.26± 0.04 2
0.74± 0.01 0.73± 0.01 0.279± 0.019 3
0.77± 0.05 0.741± 0.024 0.276± 0.053 4

0.752± 0.035 0.743± 0.017 0.263± 0.037 Mean

1. This work. 2. Brewer et al. (2016). 3. Bonfanti et al. (2016). 4.
Van Grootel et al. (2014).

These results are discussed in the context of previous
studies of HD 106315 b in Section 5.2. To aid this discus-
sion, we also performed an analysis of the 6 transits of
HD 106315 b in the K2 light curve of HD106315 using very
similar assumptions to those used in our analysis of the
CHEOPS light curve. We used the light curve corrected for
instrumental effects using the ks2c algorithm (Aigrain et al.
2015) downloaded from the Mikulski Archive for Space Tele-
scopes15 (MAST). There are clear offsets in the mean flux
level either side of each transit in this light curve so we used
a smooth function generated with a Gaussian process fit to
the data between the transits to put the flux level onto a con-
sistent scale for every transit. We used the same light curve
model from pycheops used for the analysis of the CHEOPS
light curve and set the same priors on the transit parameters
and mean stellar density. The priors on the limb-darkening
parameters were similar to those used for the analysis of the
CHEOPS light curve although the values differ due to the
different instrument response functions. We did account for
the finite integration time of the K2 observations but did
not include any additional parameters for decorrelation of
instrumental noise sources. The results from this analysis are
also given in Table 5. These results and the results from pre-
vious studies (Crossfield et al. 2017; Rodriguez et al. 2017a;
Barros et al. 2017) are consistent with one another but the
errors on the transit parameters vary by a factor ≈2 be-
cause of the different assumptions made in each study, e.g.
the error on a/R? is sensitive to the prior used for ρ?.

3.4.3 HD 97658 b

The super-Earth HD 97658 b orbits a moderately bright
K1V star (V = 7.7, G = 7.5) with a period of P =
9.43 d (Howard et al. 2011). Transits of the host star by
this planet were found using ground-based observations
(Henry et al. 2011) and confirmed using follow-up obser-
vations with Spitzer (Van Grootel et al. 2014) and the Mi-
crovariability and Oscillations in STars (MOST) telescope
(Dragomir et al. 2013). Guo et al. (2020) analysed near-
infrared spectra of HD 97658 b observed during four transits
with the WFC3 instrument on HST, together with exten-
sive observations of the transit from the STIS instrument on
HST, Spitzer and MOST. Despite this wealth of data their
atmospheric modeling results were inconclusive. Guo et al.

15 https://archive.stsci.edu/
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16 P. F. L. Maxted et al.

Figure 5. CHEOPS transit light curve of HD 97658 b. Upper panel : Observed light curve displayed as cyan points. The dark blue points
are the data points binned over 11.5 minutes. The full model including instrumental trends is shown in brown and the transit model
without trends is shown in green. Multiple versions of the full model sampled from the PPD are also shown in light brown. Middle panel :
Same as the upper panel after dividing-out the instrumental trends in the data. Lower panel : Residuals from the best-fit model.

Figure 6. Correlation plot for selected parameters from our analysis of HD 97658.
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Table 7. Results from our analysis of HD 97658. Gaussian priors
on parameters with mean µ and standard deviation σ are noted
using the notation N (µ, σ). RMS is the standard deviation of the
residuals from the best fit.

Parameter Value Notes

Input parameters

Teff [K] 5137± 36 1
log g (cgs) 4.47± 0.09 1
[Fe/H] −0.35± 0.02 1
[Mg/H] −0.25± 0.03 1
[Si/H] −0.31± 0.04 1
M? [M�] 0.752± 0.035
P [d] 9.489295 2
K [m s−1] 2.81± 0.15 2

Model parameters

D 0.000825± 0.000017
W 0.012440± 0.000051

b 0.475± 0.037

T0 1961.87639± 0.00023 3
h1 0.715± 0.011 N (0.72, 0.012)

h2 0.406± 0.054 N (0.397, 0.055)

lnσw −10.70± 0.64
c [106 e-/s] 56.55066± 0.00082

df/d sin(φ) 0.000110± 0.000013 N (0.0, 0.00015)

df/dbg −0.000101± 0.000032 N (0.0, 0.00015)

Derived parameters

Mp [M⊕] 7.62± 0.42

Rp [R⊕] 2.293± 0.070

M? [M�] 0.741± 0.018
Rp/R? 0.02872± 0.00030

a/R? 23.35± 0.51

i [◦] 88.83± 0.12
log(ρ?/ρ�) 0.278± 0.029 N (0.267, 0.029)

gp [m s−2] 14.2± 1.1

ρp [g cm−3] 3.48± 0.36
σw [ppm] 23± 14

RMS [ppm] 137

TESS analysis

T0 0.9407± 0.0010 4
D 0.000805± 0.000039
W 0.01235± 0.00020

b 0.498± 0.046

h1 0.771± 0.012 N (0.773, 0.012)
h2 0.391± 0.056 N (0.39, 0.055)

lnσw −7.905± 0.018
Rp/R? 0.02838± 0.00068
a/R? 23.21± 0.52

i [◦] 88.77± 0.14

log(ρ?/ρ�) 0.270± 0.029 N (0.267, 0.029)
σw [ppm] 369± 7

1. Sousa et al. (2018). 2. (Guo et al. 2020).
3: BJDTDB − 2458961. 4: BJDTDB − 2458904.

were able to rule out previous claims of additional planets
in the HD 97658 system based on a large set of radial ve-
locity observations obtained over two decades. Their anal-
ysis of these radial velocities also shows that the orbit of
HD 97658 b is circular or nearly so (e <≈ 0.03). Variability
of the activity indicators in the same spectroscopic data set
lead to an estimate of Prot ≈ 35 d for the rotation period

Table 8. Low mass stars with precise log g measurements. Digits
in parentheses are the standard error in the final digit of the
preceeding value.

Star Mass/M� log g [cgs] [Fe/H] Ref.

J0543−56 B 0.1641(59) 5.09(4) 0.23 1
J1038−37 B 0.1735(67) 5.04(4) 0.31 1
J1013+01 B 0.1773(77) 5.02(2) 0.29 1
J1115−36 B 0.1789(61) 5.12(3) 0.30 1
J0339+03 B 0.2061(95) 5.12(5) −0.25 1
J2349−32 B 0.174(6) 5.104(14) −0.28 2
SAO 106989 B 0.256(5) 4.82(13) −0.2 3
HD 24465 B 0.233(2) 05.029(7) 0.3 3
CM Dra A 0.2310(9) 4.994(07) −0.30 4, 5
CM Dra B 0.2396(9) 05.010(6) −0.30 4, 5
J0522−25 A 0.1739(13) 5.057(21) – 6
J0522−25 B 0.2168(48) 5.007(20) – 6
J1934−42 B 0.1864(55) 5.045(12) 0.29 7
J2046+06 B 0.1974(62) 05.074(8) 0.00 7

1. von Boetticher et al. (2019) 2. Gill et al. (2019)
3. Chaturvedi et al. (2018) 4. Morales et al. (2009)
5. Terrien et al. (2012) 6. Casewell et al. (2018) 7. Swayne et al.
(2021)

of this star. They conclude that HD 97658 b is a favourable
target for atmospheric characterisation through transmis-
sion spectroscopy with JWST.

The TESS light curve of HD 97658 shows very little
intrinsic variability in this star (<≈ 0.02%), as is expected
for a very slowly rotating K-dwarf. The results from recent
studies of the host star properties are summarised in Ta-
ble 6 together with the results from our own analysis. We
have used the weighted mean of these results to calculate
the values of the stellar mass and mean density used in this
analysis, and the weighted sample standard deviation to es-
timate the errors on these parameters. We use the sample
standard deviation rather than the standard error in the
mean because the values in Table 6 are not completely in-
dependent and the differences between these estimates may
reflect systematic sources of uncertainty, e.g. the unknown
helium abundance for this star.

We observed a single transit of HD 97658 b with
CHEOPS (Table 1). Although the observing efficiency is
quite high (72%) the coverage of the ingress to the tran-
sit is poor. HD 97658 is a moderately bright and isolated
star so the level of instrumental noise in the light curve is
very low.

We used an initial analysis of this transit with
Dataset.lmfit_transit to determine which decorrelation pa-
rameters should be used in our final analysis. We fixed
the orbital period at the value P = 9.489295d and as-
sumed a circular orbit (Guo et al. 2020). The stellar atmo-
spheric parameters are taken from the SWEET-Cat cata-
logue (Santos et al. 2013; Sousa et al. 2018). These are a ho-
mogeneous set of parameters derived using the ares+moog
methodology (Sousa 2014) which were originally presented
in Mortier et al. (2013). The limb darkening parameters h1

and h2 were included as free parameters in this initial fit.
The mean stellar density with its error from Table 6 was
included as a constraint in the least-squares analysis. This
initial analysis shows that there are weak trends in the data
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Figure 7. A typical image of GJ 1132 obtained with CHEOPS
prior to calibration and cosmic ray removal. The blue circles in-
dicate photometric apertures with radii of 15.0 and 22.5 pixels.

with amplitudes ≈ 100 ppm correlated with sin(φ) and the
background level in the images. There are no other signif-
icant instrumental trends in the light curve. If we include
a linear trend with time in the least-squares analysis we
find that it has an amplitude <≈ 40ppmd−1. Based on these
results we used Dataset.emcee_sampler to sample the joint
PPD for the transit model parameters, the two decorrela-
tion parameters, and the hyper-parameter lnσw for our noise
model. The results are given in Table 7. We set priors on the
limb-darkening parameters h1 and h2 based on the results
from Maxted (2018). We included the small correction to the
tabulated values recommended in Maxted (2018) based on
the observed offset between these values and the observed
values of h1 and h2 for stars similar to HD 97658. The fit to
the light curve is shown in Fig. 5 and correlation plots for
selected parameters are shown in Fig. 6. The power spectral
density (PSD) of the residuals shown in Fig. B3 of the sup-
plementary online material is consistent with the expected
white-noise level based on the median error bar per datum.
The trends in the data with spacecraft roll angle and our
fit to this trend are shown in Fig. C3 of the supplementary
online material.

These results are discussed in the context of previous
studies of HD 97658 b in Section 5.3. To aid this discussion,
we also performed an analysis of the 2 transits of HD 97658 b
in the TESS light curve of HD97658 using very similar as-
sumptions to those used in our analysis of the CHEOPS
light curve. We used the light curve PDCSAP_FLUX val-
ues provided in the data file downloaded from MAST. Al-
though the variability between the transits in this light curve
is very small (<≈ 0.02%) we used a smooth function gener-
ated with a Gaussian process fit to the data between the
transits to ensure that the flux level is on a consistent scale
for both transits. We used the same light curve model from
pycheops used for the analysis of the CHEOPS light curve
and set the same priors on the transit parameters and mean
stellar density. The priors on the limb-darkening parameters
were similar to those used for the analysis of the CHEOPS
light curve although the values differ due to the different in-
strument response functions. The results from this analysis
are also given in Table 7.

Table 9. Results from our analysis of GJ 1132. Gaussian pri-
ors on parameters with mean µ and standard deviation σ are
noted using the notation N (µ, σ). For each data set i, ci is the
mean count rate out of eclipse, dfi/dt is the linear trend with
time, dfi/dcontam is the correlation of flux with the predicted
contamination of the aperture by background stars, dfi/dsmear
is the correlation of flux with the smear correction, and dfi/dbg
is the correlation of flux with the estimated background level in
the image. The quantities contam, smear and bg are normalized
so that the coefficients give the amplitude of the trend in each
light curve. These results were obtained using implicit roll-angle
decorrelation with Nroll = 2.

Parameter Value Notes

Input parameters

Teff [K] 3090± 65

log g (cgs) 5.07± 0.06

[Fe/H] −0.31± 0.10
M? [M�] 0.192± 0.022

R? [R�] 0.207± 0.0124

P [d] = 1.6289287 1
K [m s−1] 2.85± 0.34 2

Model parameters

D 0.00244± 0.00020

W 0.01876± 0.00054
b 0.43± 0.16

T0 0.91419± 0.00044 N (0.9138, 0.002), 3
h1 0.861± 0.069 N (0.75, 0.1)
h2 = 0.753

lnσw −7.034± 0.056 N (−7.0, 0.5)
c1 [106 e-/s] 1.32092± 0.00074
df1/dt [d−1] 0.00421± 0.00091

df1/dsmear 0.00117± 0.00063

df1/dcontam −0.00149± 0.00052
c2 [106 e-/s] 1.2976± 0.0016

df2/dt [d−1] 0.0041± 0.0014
df2/dbg −0.0022± 0.0011

df2/dcontam −0.00158± 0.00052

c3 [106 e-/s] 1.3038± 0.0023
df3/dt [d−1] 0.00398± 0.00077

df3/dbg −0.0022± 0.0010

df3/dcontam −0.0060± 0.0011

Derived parameters

Mp [M⊕] 1.74± 0.25
Rp [R⊕] 1.11± 0.10

R? [R�] 0.207± 0.016
Rp/R? 0.0494± 0.0021

a/R? 16.3± 1.1

i [◦] 88.50± 0.66
log(ρ?/ρ�) 1.338± 0.086 N (1.307, 0.089)

gp [m s−2] 13.7± 2.8

ρp [g cm−3] 7.0± 1.9
σw [ppm] 881± 50

1. Southworth et al. (2017). 2. Bonfils et al. (2018).
3: BJDTDB − 2458938.

3.4.4 GJ 1132 b

GJ 1132 is a nearby M4.5V star (d ≈ 12 pc) that was found
to host a transiting exoplanet using ground-based pho-
tometry from the MEarth project (Berta-Thompson et al.
2015). GJ 1132 b is a small rocky planet with a radius of
∼2.4 R⊕, a mass of ∼1.7 M⊕, and an orbital period of

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3371/6440178 by U

niversity of St Andrew
s Library user on 13 D

ecem
ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

CHEOPS Early Science and pycheops 19

Figure 8. Correlation plot for selected parameters from our analysis of GJ 1132.

P = 1.63 days. Additional photometry from the MEarth-
South telescopes and over 100 hours of observations with
Spitzer by Dittmann et al. (2017) did not reveal any ad-
ditional transiting exoplanets in this system. Neverthe-
less, Bonfils et al. (2018) found evidence for a second non-
transiting planet in this system (GJ 1132 c) with an orbital
period P ≈ 8.83d from extensive radial velocity observa-
tions. Southworth et al. (2017) claimed the detection of an
extended atmosphere on GJ 1132 b based on an increased
transit depth in the z′ and K bands relative to other wave-
lengths. Subsequent spectrophotometric observations with
the LDSS3C multi-object spectrograph on the Magellan
Clay Telescope by Diamond-Lowe et al. (2018) failed con-
firm the anomalous transit depth around wavelengths of
1µm and are consistent with a featureless spectrum, imply-
ing that GJ 1132 b has a high mean molecular weight atmo-
sphere or no atmosphere at all. More recently, Swain et al.
(2021) have claimed the detection of atmospheric absorp-
tion features in the transmission spectrum of GJ 1132 b
obtained with the WFC3 instrument on HST over the
wavelength range 1.13 – 1.64µm, but at a much lower level
than the broad-band features claimed by Southworth et al.
(∼ 250 ppm cf. ∼1500 ppm). Mugnai et al. (2021) found no
evidence for molecular absorption in the transmission spec-
trum of GL 1132 b from their analysis of the same WFC3
data analysed by Swain et al. (2021).

Based on its V-band magnitude (V≈ 14.9, Girard et al.
2011), GJ 1132 lies beyond the faint magnitude limit of

CHEOPS (V=12-13). However, the high scientific interest
of small planets transiting M dwarfs, which are favourable
for atmospheric characterisation, motivated us to assess the
precision that CHEOPS can achieve for such faint targets.
CHEOPS has a very broad spectral response which is very
similar to the Gaia G-band, so the count rate for cool stars
like GJ 1132 is equivalent to a Sun-like star with the same G-
band magnitude but approximately 1 magnitude brighter in
the V-band. Nevertheless, GJ 1132 is a faint star (G = 12.1)
in a crowded part of the sky (Fig. 7) and the transits due
to GJ 1132 b are shallow, so this is a challenging target for
observations with CHEOPS.

The three transits of GJ 1132 b we observed with
CHEOPS have an observing efficiency from 58% to 70%.
The duration of the transit is approximately half that of a
CHEOPS orbit but we were unfortunate that the majority of
the transit falls in a gap for two of the visits. The light curves
are dominated by instrumental noise due to contamination
of the aperture by nearby stars. For this reason, the OPTI-
MAL photometric aperture has a radius ≈ 15 pixels, much
smaller than the aperture size typically used for CHEOPS
observations. In addition to the problems with contamina-
tion and unfortunate scheduling, it was found that using the
science images to track the star during the visits gives worse
performance than using the off-axis star trackers. This mode
of operation (“payload in the loop”) was disabled for the fi-
nal visit. The RMS pointing residual was reduced from 2.7′′

and 3.8′′ for the first two visits to 0.36′′ for the final visit.
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20 P. F. L. Maxted et al.

Figure 9. Top: CHEOPS observations of 3 transits of GJ 1132 b. Upper panel: All data after removing trends. Observed light curves are
displayed in cyan. The dark blue points are the data points binned over 0.0025 phase units. The best-fit transit model is shown in green.
Middle-upper plot Observed light curves are displayed in cyan offset by multiples of 0.01 units. The full model including instrumental
trends is shown in brown and the transit model without trends is shown in green. Middle-lower panel: Same as the middle-upper panel
after removing trends correlated with space-craft roll angle. Lower panel: Residuals obtained after subtraction of the best-fit model in
the same order as the upper plot offset by multiples of 0.005 units.

GJ1132 shows little intrinsic variability. MEarth pho-
tometry of GJ 1132 shows rotational modulation with
a period Prot ≈ 125 days and an amplitude ≈ 0.1%
(Berta-Thompson et al. 2015). To estimate the mass of
GJ 1132 we used the mass –MK relation from Benedict et al.
(2016). The absolute K-band magnitude of GJ 1132 based on
the parallax from Gaia EDR3 (π = 79.321±0.018 mas) and
the Ks-band magnitude from 2MASS (Ks = 8.322 ± 0.027)
is MK = 7.819 ± 0.027. To estimate the error in this value
we used the standard deviation of the residuals from this re-
lation for the 9 stars in Benedict et al. with MK in the range
7.62 to 8.02. Including the small additional uncertainty in-
herited from the error in MK we estimate that the mass of
GJ 1132 is 0.192± 0.022M�.

To estimate the mean stellar density of GJ 1132 we
compiled a sample of stars with accurate and precise sur-
face gravity measurements. We use surface gravity rather
than mean stellar density directly because this parameter
can be determined independently of any assumptions about
the primary star mass for eclipsing binaries where an M-
dwarf transits a solar-type star. The properties of these
stars are given in Table 8. Note that the value of log g
quoted in Table 4 of Casewell et al. (2018) is incorrect so
we have re-calculated this value based on the mass and ra-

dius values given in the same table. We found that the 5-Gyr
solar-metallicity isochrones from Baraffe et al. (2015) gives
a good estimate for the mass – log g relation in this mass
range. There is no clear trend with [Fe/H] in the residuals
for these stars so we do not account for [Fe/H] when we
estimate log g. Based on this isochrone and the standard er-
ror of the residuals, we estimate that the surface gravity of
GJ 1132 is log g = 5.070 ± 0.056. The mean stellar density
and radius implied by these values of the mass and log g
are R = 0.212 ± 0.018R� and log(ρ/ρ�) = 1.307 ± 0.089,
respectively. This radius estimate is in very good agree-
ment with the value R = 0.202 ± 0.016R� inferred from
the absolute G-band magnitude using the MG –R relation
from Rabus et al. (2019). Our mass and radius estimates
are in good agreement with the values M = 0.181 ± 0.019,
R = 0.207 ± 0.016R� from Berta-Thompson et al. (2015).
The slight increase in the mass and radius are a conse-
quence of the slightly smaller parallax for GJ 1132 from Gaia
EDR3 compared to the value used by Berta-Thompson et
al. (π = 83.07± 1.69 mas).

The Teff and [Fe/H] estimates for GJ 1132 in Table 9
were obtained using odusseas, a machine learning tool to
derive effective temperature and metallicity for M dwarf
stars based on the measurement of the pseudo equivalent

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stab3371/6440178 by U

niversity of St Andrew
s Library user on 13 D

ecem
ber 2021



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

CHEOPS Early Science and pycheops 21

Table 10. Results from our reanalysis of the MEarth light curves
for GJ 1132. Gaussian priors on parameters with mean µ and
standard deviation σ are noted using the notation N (µ, σ). The
parameters z0 . . . z5 are the coefficients of the polynomial used to
model the trend of tabulated flux with air mass. The tabulated
flux values are assumed to all have the same standard error, σf .

Parameter Value Notes

Model parameters

D 0.00237± 0.00010
W 0.01903± 0.00033

b 0.41± 0.23

T0 2457184.55855± 0.00069 BJDTDB

P [days] 1.6289227± 0.0000041

h1 0.805± 0.037 N (0.769, 0.15)
h2 = 0.76

z0 0.000070± 0.000079

z1 0.0082± 0.0012
z2 −0.0423± 0.0055

z3 0.0723± 0.0095

z4 −0.0504± 0.0069
z5 0.0125± 0.0018

arot −0.000108± 0.000034

brot −0.000034± 0.000025
lnσf −5.6410± 0.0039

Derived parameters

Rp/R? 0.0487± 0.0010

a/R? 16.2± 1.8
i [◦] 88.6± 1.0

log(ρ?/ρ�) 1.33± 0.15

σf [ppm] 3549± 14

widths of stellar absorption lines in high-resolution opti-
cal spectra (Antoniadis-Karnavas et al. 2020). We applied
odusseas to the spectrum obtained by combining the spec-
tra of GJ 1132 observed with the HARPS spectrograph. This
estimate of Teff is in reasonably good agreement with the
value Teff = 3203±53K based on the star’s absolute G-band
magnitude and the Teff –MG calibration from Rabus et al.
(2019).

We used an initial analysis of each transit with
Dataset.lmfit_transit to determine which decorrelation pa-
rameters should be used in the combined analysis of the
three light curves. The correction of the ramp effect has not
been calibrated for aperture radii less than 22.5 pixels so we
did not apply the ramp correction to the light curves used
here calculated with aperture radii ≈ 15 pixels. Extrapolat-
ing the ramp correction as a function of aperture radius sug-
gests that this correction is < 30ppm for these light curves.
We fixed the orbital period at the value P = 1.6289287d
(Southworth et al. 2017) and assumed a circular orbit for
this initial analysis, and the limb darkening parameters h1

and h2 were fixed at the values determined from Table 10 of
Claret (2019). We find that the individual transits provide
no constraint on the impact parameter so we fixed this pa-
rameter at a nominal value b = 0.77. The mean stellar den-
sity estimate described above (log(ρ/ρ�) = 1.307 ± 0.089)
was included as a constraint in the least-squares analysis.
Contamination by background stars is the dominant source
of instrumental noise in the light curves so we included
dfdcontam as a decorrelation parameter in the analysis of

all the light curves. Other decorrelation parameters were se-
lected in the usual way based on their Bayes factors using
the method described in the introduction to this section. A
summary of the results from this initial analysis is given in
Table 2. The power spectral density (PSD) of the residu-
als shown in Fig. B4 of the supplementary online material
is consistent with the expected white-noise level based on
the median error bar per datum for all three data sets. The
trends in the data with spacecraft roll angle and our fit to
these trends for each data set are shown in Fig. C4 of the
supplementary online material.

Bonfils et al. (2018) find that the eccentricity of the or-
bit is e < 0.22 at the 95% confidence level so for the com-
bined analysis of the visits using MultiVisit we assumed that
the orbit is circular. The limb-darkening parameter h2 has
only a subtle effect on the light curve during the ingress and
egress phases of the transit so we decided to fix this param-
eter at the value inferred from the tables provided by Claret
(2019). We include h1 as a free parameter in the analysis
with a Gaussian prior centered on the value obtained from
the same tables with an arbitrary choice of 0.1 for the stan-
dard error. We imposed the same prior on the mean stellar
density as used in the analysis of the individual visits. Based
on the results of the analysis for the individual visits we de-
cided to use Nroll = 2. The results from this analysis are
given in Table 9 and the fits to the light curves are shown in
Fig. 9. Correlations between selected parameters from this
analysis are shown in Fig. 8. The results found for an anal-
ysis with Nroll = 3 or using the unwrap option are almost
indistinguishable from those presented here. We also tried
an analysis with Nroll = 1 but there are clear trends in the
residuals related to the roll angle. Even so, the results are
consistent with those presented here. Very similar results
were also found using the RINF aperture with a radius of
22 pixels. The optimum value of Nroll for the RINF aperture
data is Nroll = 3; the values of D and b obtained are insen-
sitive to the choice of Nroll or whether the unwrap option is
used.

Dittmann et al. (2017) noted that the value of Rp/R?
that they measured using MEarth data is inconsistent with
the value obtained using Spitzer photometry at 4.5µm. We
have reanalysed the MEarth photometry provided in their
Table 1 because there is a clear non-linear trend in these data
when plotted as a function of air mass. To model these data
we use the qpower2 transit model implemented in pycheops
plus a 5th-order polynomial as a function of sec z − 1 to ac-
count for trends with air mass (where z is the zenith distance
of GJ 1132 at the time of observation) plus a sinusoidal
model arot sin(2πt/Prot) + brot cos(2πt/Prot) with a period
Prot = 125 d to account for stellar variability modulated by
the stars rotation period. We did not impose a prior on the
mean stellar density for the analysis of the MEarth data and
only data within 0.075 phase units of the mid-transit were
included in the fit. The results from this reanalysis are also
given in Table 10.

These results are discussed in the context of previous
studies of GJ 1132 b in Section 5.4.

3.4.5 Accuracy of the qpower2 algorithm

We used the ellc light curve model (Maxted 2016) to calcu-
late a transit light curve for each of the 4 planets using direct
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numerical integration of the power-2 limb darkening law. We
then fit these light curves with light curves calculated using
the qpower2 algorithm to measure the systematic error in
the parameters Rp/R? and a/R?. In all cases, we find that
this systematic error is negligible compared to the random
error in these quantities.

3.5 Updated transit ephemerides

3.5.1 GJ 436 b

We used a linear fit to the time of mid-transit from Table 3, 8
times of mid-transit from Lanotte et al. (2014), and 4 times
of mid-transit from Lothringer et al. (2018) to establish the
following linear ephemeris for the times of mid-transit:

BJDTDB(T0) = 2455475.82450(3) + 2.64389759(7)× E.

Values in parentheses give the standard error in the final
digit of the preceding quantity. There is no evidence for any
change in period greater than Ṗ /P ≈ 6.0×10−10 from these
data.

3.5.2 HD 106315 b

We used a linear fit to the two times of mid-transit from
Table 5 to establish the following linear ephemeris for the
times of mid-transit for HD 106315 b:

BJDTDB(T0) = 2458427.132(1) + 9.55211(2)× E.

3.5.3 HD 97658 b

We used a linear fit to the two times of mid-transit from
Table 7, one time of mid-transit from Van Grootel et al.
(2014), and 18 times of mid-transit from various instru-
ments from Guo et al. (2020) to establish the following lin-
ear ephemeris for the times of mid-transit:

BJDTDB(T0) = 2457234.82213(16) + 9.4893072(25)× E.

Values in parentheses are the standard error in the final
two digits of the preceding quantity. This is a slight improve-
ment on the value of the orbital period given by Guo et al.
(2020) (P = 9.489295(5)d), partly because of the extended
baseline including the observation from CHEOPS, but also
because we choose our reference time of mid-transit (cycle
E = 0) to minimize the covariance between this value and
P .

Using the same data set we find the following quadratic
ephemeris for the time of mid-transit:

BJDTDB(T0) = 2457234.82195(12) + 9.4892968(38)× E
+0.5× (1.46± 0.48)× 10−7 × E2.

The Bayesian information criterion for this ephemeris
is 37.9 cf. 55.5 for a linear ephemeris, i.e. there is strong evi-
dence from these data that the orbital period of HD 97658 b
is not constant. The observed times of mid-transit and our
updated ephemerides are shown as residuals from the linear
ephemeris from Guo et al. in Fig. 10.

Figure 10. Observed − calculated times of mid-transit for
HD 97658 b based on the linear ephemeris from Guo et al. (2020).
The dashed line shows our updated linear ephemeris. The solid
line with shaded band shows our updated quadratic ephemeris ±
1 standard deviation.

Figure 11. In order of increasing mass – GJ 1132 b, HD 97658 b,
HD 106315 b, and GJ 436 b in the mass-radius plane compared to
other extrasolar planets with well-determined parameters taken
from TEPCat (cyan points) and models from Zeng et al. (2016)
for planets composed of 100% rock (lower line) or water (upper
line). The mass and radius of Earth, Uranus and Neptune are also
shown using the initial letters of these planets’ names.

3.5.4 GJ 1132 b

We used a linear fit to the times of mid-transit from Ta-
ble 9, 27 times of mid-transit from Dittmann et al. (2017), 5
times of mid-transit from Mugnai et al. (2021), and 9 times
of mid-transit from Southworth et al. (2017) to establish the
following linear ephemeris for the times of mid-transit:

BJDTDB(T0) = 2457554.32450(9) + 1.6289292(4)× E.

The errors reported on the times of mid-transit in Table 3
of Mugnai et al. (2021) are clearly too small. We used the
root-mean-square residual from a linear fit to these times of
mid-transit to assign a more realistic error of 0.00042 d to
these values. There is no evidence for any change in period
greater than Ṗ /P ≈ 3.6× 10−9 from these data.
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Table 11. Improved planet mass and radius estimates. See Sec-
tion 3.6 for details of the data sources combined to obtain the
input values of Rp/R?, a/R? and sin i used here.

Parameter Units Value Error Notes

GJ 436 b

P [d] 2.64389759

M? [M�] 0.445 ± 0.018

K [m s−1] 17.38 ± 0.17 1
e 0.152 ± 0.009 1
sin i 0.99843 ± 0.00004

Rp/R? 0.08261 ± 0.00022
a/R? 14.46 ± 0.09

R? [R�] 0.425 ± 0.006
Mp [M⊕] 21.68 ± 0.63

Rp [R⊕] 3.83 ± 0.06

gp [m s−2] 14.50 ± 0.24
ρp [g cm−3] 2.12 ± 0.06

HD 106315 b

P [d] 9.55211

M? [M�] 1.088 ± 0.043

K [m s−1] 2.88 ± 0.85 2
Rp/R? 0.01686 ± 0.00041

a/R? 15.95 ± 0.55

sin i 0.99931 ± 0.00013

R? [R�] 1.221 ± 0.045

Mp [M⊕] 10.1 ± 3.0
Rp [R⊕] 2.25 ± 0.10

gp [m s−2] 19.6 ± 6.0

ρp [g cm−3] 4.9 ± 1.6

HD 97658 b

P [d] 9.4893072

M? [M�] 0.752 ± 0.035
K [m s−1] 2.81 ± 0.15 3
Rp/R? 0.02863 ± 0.00030

a/R? 23.69 ± 0.49
sin i 0.999816 ± 0.000034

R? [R�] 0.724 ± 0.019
Mp [M⊕] 7.69 ± 0.47

Rp [R⊕] 2.26 ± 0.06

gp [m s−2] 14.7 ± 1.0
ρp [g cm−3] 3.65 ± 0.33

GJ 1132 b

P [d] 1.6289289
M? [M�] 0.192 ± 0.022

K [m s−1] 2.85 ± 0.34 4
Rp/R? 0.04901 ± 0.00054
a/R? 16.38 ± 0.55

sin i 0.9997 ± 0.0001

R? [R�] 0.205 ± 0.010

Mp [M⊕] 1.74 ± 0.25
Rp [R⊕] 1.10 ± 0.06
gp [m s−2] 14.2 ± 2.0

ρp [g cm−3] 7.2 ± 1.2

1: Trifonov et al. (2018). 2: Kosiarek et al. (2021). 3. Guo et al.
(2020). 4. Bonfils et al. (2018).

3.6 Planet mass and radius estimates

The values of the planet mass (Mp) and radius (Rp) given
in Tables 3, 5, 7 and 9 are based on the values of a/R?, i
and k = Rp/R? measured from the CHEOPS light curves
only. In this section we make improved estimates for Mp

and Rp using all published estimates for these parameters
that are of similar precision to the values obtained from the
CHEOPS data, or better. For all four planets we have used
our best estimate for the stellar mass, M?, together with
the mean stellar density, ρ? derived using Kepler’s law from
a/R?, to infer a value of R? and, hence, Rp = k × R?. The
masses and radii obtained are shown in Fig. 11.

3.6.1 GJ 436 b

Lothringer et al. (2018) observed two transits of GJ 436 b
using the STIS spectrograph on HST with the G750L
low-resolution grism covering the wavelength range 0.53 –
1.03µm. These observations do not cover the egress of the
transit so Lothringer et al. used fixed values for a/R? and
i from Morello et al. (2015) in their analysis. The weighted
mean transit depth from the values at various wavelengths
given in their Table 3 using our method described in Ap-
pendix A is 6746± 30ppm. Lothringer et al. find that using
values of a/R? and i from different sources introduces an ad-
ditional uncertainty ≈ 130ppm in the transit depth. Taking
this into account, we find that the planet-star radius ratio
from this study is k = 0.08213± 0.00081.

Knutson et al. (2014) used the Wide Field Camera
3 (WFC3) instrument on HST to observe 4 transits of
GJ 436 b over the wavelength range 1.2 – 1.6µm. From their
Table 1 we use the values a/R? = 14.41 ± 0.10 and i =
86.774◦ ± 0.030◦, and the four values of Rp/R? from each
visit which we combine to obtain the weighted average value
k = 0.08362± 0.00015.

Transits of GJ 436 b observed several times with Spitzer
at 3.6µm, 4.5µm and 8.0µm. Some or all of these data
have been analysed by Knutson et al. (2011), Beaulieu et al.
(2011), Morello et al. (2015) and Lanotte et al. (2014).
These studies use a variety of techniques to account
for instrumental noise that is comparable to the transit
depth in these light curves. Here we use the results from
Lanotte et al. since this is the only study to use all the avail-
able data. From the parameters in their Table 3 we obtain
the values k = 0.08258 ± 0.00017, i = 86.858◦ ± 0.52 and
a/R? = 14.54± 0.15.

None of the studies above find any strong evidence for
variations in transit depth with wavelength due to opacity
sources in an extended atmosphere on GJ 436 b, so we have
combined all these estimates of Rp/R? irrespective of wave-
length. The values of a/R?, sin i and Rp/R? obtained by
combining the above estimates with the results from Table 3
are given in Table 11, together with the resulting planetary
mass and radius estimates.

3.6.2 HD 106315 b

The values of sin i and Rp/R? in Table 11 come from
combining our results in Table 5 based on the analy-
sis of the CHEOPS and K2 light curves with those from
Kosiarek et al. (2021) based on the analysis of two transits
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of HD 106315 b observed with Spitzer at 4.5µm.We have not
used the values of a/R? from Kosiarek et al. because they
are either inconsistent with the mean stellar density mea-
sured independently by several authors shown in Table 4,
or not precise enough to be useful. The values of a/R? in
Table 5 from the analysis of the CHEOPS and K2 are not in-
dependent. They are both strongly constrained by the same
prior that we placed on ρ? for the analysis of both these light
curves, so we only used the value of a/R? from the analy-
sis of the CHEOPS light curve. Where Kosiarek et al. quote
asymmetric error bars on a parameter we use the larger of
the two error bars. The values from different sources have
been combined using the algorithm described in Appendix
A. Kosiarek et al. argued that the orbital eccentricity of
HD 106315 b is likely to be small based on the observed
radial velocities and on stability arguments for the orbits
of the two planets in this system. Based on this analysis
we fix e = 0 for our calculation of the mass and radius of
HD 106315 b.

3.6.3 HD 97658 b

Extensive photometry of the transits of HD 97658 b using
Spitzer and HST has been presented by Guo et al. (2020).
Their Table 2 seems to imply that they were able to establish
a value of a/R? = 26.7± 0.4 from the analysis of their HST
light curves. However, this seems unlikely given that these
data have poor coverage of the transit, e.g. the egress was
not observed at all, so it is unclear to us where this estimate
of a/R? comes from. It also appears from their Table 2 that
they assumed for the analysis of the transits that the orbital
eccentricity is e = 0.078 and that the longitude of periastron
is ω = 90◦. Again, it is unclear where these estimates comes
from – previous estimates of ω have very large uncertainties
because the eccentricity of the orbit is low.16 Unfortunately,
this value of ω maximizes the difference between the value
of the mean stellar density inferred from the transit width
via Kepler’s law assuming either a circular or eccentric orbit.
The results of their radial velocity analysis presented in their
Table 7 assume that the orbit is circular. Using equation (34)
from Kipping (2014), the difference is 26%, with the value
derived for e = 0 being larger than the true value if e > 0.
A full re-analysis of the data in Guo et al. (2020) is beyond
the scope of this study so we have decided not to use the
results from the analysis of the HST and Spitzer light curves
by Guo et al. in this analysis. However, the results from the
radial velocity analysis by Guo et al. are unambiguous so
we have followed them in assuming that the orbit is circular
and have used the value of K from their Table 7.

Four transits of HD 97658 b observed by Dragomir et al.
(2013) with the MOST satellite provide the following es-
timates for the transit parameters: k = 0.0306 ± 0.0014,
a/R? = 24.36+0.97

−1.1 , i = 89.◦45+0.37
−0.42. From the analysis

of a single transit observed at 4.5µm with Spitzer by
Van Grootel et al. (2014) we obtain the following values:
k = 0.02780+0.00075

−0.00077, a/R? = 24.9 ± 1.4, i = 89.◦14+0.52
−0.36,

16 We attempted to contact Xueying Guo via her co-authors but,
at the time of writing, we have not obtained clarification of these
points.

Figure 12. Planet-star radius ratio as a function of wavelength
for GJ 1132 b. Points are colour-coded as follows: blue – CHEOPS,
red – MEarth, orange – Diamond-Lowe et al. (2018), green –
Southworth et al. (2017), magenta – WFC3, cyan – TESS. The
radius ratio obtained from Spitzer observations at 4.5µm is in-
dicated with dotted lines. The planet-star radius ratio measured
using MEarth data by Dittmann et al. (2017) is plotted with an
open circle symbol.

where the value of a/R? has been calculated from the val-
ues of D, W and b in their Table 2. We have combined
these estimates with the values of k, a/R? and i from Ta-
ble 7 to obtain the values shown in Table 11 using the al-
gorithm described in Appendix A. Where asymmetric error
bars are quoted on values we have used the larger value as
the standard error estimate. Similarly to the K2 light curve
of HD 106315 b, we have not used the value of a/R? from the
analysis of the TESS light curve in this calculation because
it is not independent of the value from the analysis of the
CHEOPS light curve – both values are strongly constrained
by the same prior on ρ?. Guo et al. (2020) did not find any
strong evidence for features in the transmission spectrum
of HD 97658 b so we have ignored any possible wavelength
dependence in the planetary radius for the calculations sum-
marised in Table 11.

3.6.4 GJ 1132 b

Measurements of Rp/R? for GJ 1132 b from various sources
are listed in Table 12. We have not used the estimates from
Southworth et al. (2017) in our calculations for reasons that
will be discussed in Section 5.4. The values of a/R? and
sin i in Table 11 are the weighted means of the values from
the same sources used to calculate k calculated using the
algorithm described in Appendix A. We have ignored any
possible wavelength dependence in the planetary radius for
the calculations summarised in Table 11. This point will also
be discussed in Section 5.4.

4 CONSTRAINTS ON THE INTERNAL
STRUCTURE

We used the retrieval code already employed in the case
of TOI-178 (Leleu et al. 2021b) to constrain the planetary
internal structure. Here, we briefly recall the ingredients
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Table 12. Planet-star radius ratio as a function of wavelength
for GJ 1132 b. The flux-weighted mean photon wavelength for
each observation and its standard deviation are indicated in the
column headed 〈λ〉.

Bandpass 〈λ〉 [nm] Rp/R? Ref.

CHEOPS 787± 126 0.0494± 0.0021 1
MEarth 842± 79 0.0487± 0.0010 1
Spitzer 4442± 284 0.0492± 0.0008 2
LDSS3C 901± 90 0.0490± 0.0010 3

Mean 0.0490± 0.0005

MEarth 842± 79 0.0455± 0.0006 2
g′ 482± 35 0.0493± 0.0014 4
r′ 626± 34 0.0519± 0.0012 4
i′ 764± 36 0.0498± 0.0008 4
z′ 900± 52 0.0575± 0.0019 4
J 1235± 68 0.0457± 0.0058 4
H 1648± 76 0.0418± 0.0057 4
K 2166± 87 0.0610± 0.0075 4
g′ 482± 35 0.0565± 0.0013 5
i′ 482± 35 0.0511± 0.0009 5
WFC3 1366± 146 0.0495± 0.0010 6
TESS 890± 107 0.0481± 0.0010 6

1. This work. 2. Dittmann et al. (2017). 3. Diamond-Lowe et al.
(2018). 4. Southworth et al. (2017), GROND. 5.
Southworth et al. (2017), PISCO. 6. Mugnai et al. (2021).

of the model and apply it to three of the exoplanets ob-
served with CHEOPS during the Early Science observing
programme. More details on the code can be found in
Leleu et al. (2021b).

We use a global Bayesian model to fit the observed prop-
erties of the star and planet. The observed properties of the
star are its mass, radius, age, effective temperature, and the
photospheric abundances [Si/Fe] and [Mg/Fe]. The observed
properties of the planet are the planet-star radius ratio, the
radial-velocity semi-amplitude, and the orbital period. The
hidden planetary properties are the mass of solids (where
“solids” refers to the mass of planet not due to H or He
gas), the mass fractions of the core, mantle and water, the
mass of the gas envelope, the Si/Fe and Mg/Fe mole ratios
in the planetary mantle, the S/Fe mole ratio in the core,
and the equilibrium temperature due to irradiation by the
star. Then, for any given combination of hidden planetary
properties and stellar properties, one can compute the re-
sulting planet-star radius ratio and the radial-velocity semi-
amplitude.

The two important ingredients of such a calculation are
the physics included in the forward model that is used to
calculate the radius of a planet with a given mass and struc-
ture, and the prior distribution on the planetary hidden pa-
rameters. We assume in the calculations presented below a
fully differentiated planet, consisting of a core composed of
Fe and S, a mantle composed of Si, Mg and Fe, a pure wa-
ter layer, and a gas layer composed of H and He only. The
equations of state used for these calculations are taken from
Hakim et al. (2018) and Fei et al. (2016) at pressures below
240 GPa, and from Sotin et al. (2007) and Haldemann et al.
(2020) at higher pressures. The temperature profile is as-
sumed to be adiabatic. For the gas envelope, we use the

Table 13. List of equation of state (EoS) used in the forward
model.

Layer Composition EoS

Core Fe, FeS Hakim et al. (2018),
Fei et al. (2016)

Mantle [Mg,Fe]SiO3,
[Mg,Fe]O,
[Mg,Fe]2SiO4,
[Mg,Fe]2Si2O6 Sotin et al. (2007)

Volatile H2O Haldemann et al. (2020)

semi-analytical model of Lopez & Fortney (2014) which pro-
vides the thickness of the gas envelope as a function of the
gas mass fraction, the equilibrium temperature, the mass
and radius of the solid planet, and the age (assumed to be
equal to the stellar age).

We assume that the logarithm of the gas-to-solid ratio
in the planet has a uniform distribution. The mass of the
planet core, the planet mantle and the mass of water have
uniform priors except that the mass fraction of water in the
solid planet is limited to a maximum value of 0.5. We assume
that the bulk Si/Fe and Mg/Fe mole ratios in the planet is
equal to the one in the star. This assumption will not be
valid for planets that have undergone events such as giant
impacts that can strongly affect these mole ratios. From the
knowledge of the bulk ratio in the planet as well as the core-
to-mantle mass ratio, the Si/Fe and Mg/Fe mole ratios in
the mantle can be computed analytically. Importantly, the
solid and gas part of the planet are computed independently,
which means that we do not include the compression effect of
the planetary envelope on its core. Including the feedback
from the gas envelope onto the planetary core is left for
future work, and is well justified a posteriori given the small
value of the gas envelope.

5 DISCUSSION

In this section we compare the results from Section 3 to the
results from previous studies of these planets, and discuss
the implication of all these results and the analysis in Sec-
tion 4 for our understanding of these planetary systems and
the performance of CHEOPS compared to other instrumen-
tation.

5.1 GJ 436 b

The transit depth for GJ 436 b that we have measured using
CHEOPS (7000± 180 ppm) is consistent with the weighted
mean value 6800 ± 30ppm from 8 transits observed with
Spitzer at 3 wavelengths by Lanotte et al. (2014). The re-
sults in their Table 8 show that this weighted mean is domi-
nated by a single observation at 3.6µm with an uncertainty
of 40 ppm cf. a typical uncertainty of 100 ppm for the other
transits. Thus, the precision in the transit depth measure-
ment we have achieved from 3 visits covering ∼half of two
transits is about half that achieved with a typical observa-
tion of a single visit with Spitzer. This is a consequence of the
larger aperture of the Spitzer Space Telescope cf. CHEOPS,
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the gaps in the CHEOPS observations, and the red colour
of this M-type star favouring observations at infrared wave-
lengths.

Although the precision of the transit depth measure-
ment by Lanotte et al. is 6 times better than our measure-
ment using CHEOPS, the precision in the planet radius mea-
surement using all available data in Table 11 (3.85±0.06R⊕)
is only a factor of two better than the value based on
CHEOPS data only in Table 3 (4.00± 0.13R⊕). This is be-
cause the uncertainty in the stellar radius is now the dom-
inant source of uncertainty in the calculation of the plan-
ets’ radius. The high cadence of the CHEOPS observations
helps to reduce this uncertainty because this allows for an
accurate measurement of the transit shape and width, from
which we can infer an accurate measurement of the mean
stellar density.

GJ 436 is a slowly-rotating star (Prot ≈ 50d) that shows
little intrinsic variability at optical wavelengths (<≈ 0.5%,
Knutson et al. 2011; Lothringer et al. 2018). We might then
expected changes in flux at the rate df/dt ∼ 0.0001d−1 if
this intrinsic variability is due to modulation in the visibility
of long-lived star spots by rotation. The observed values of
df/dt in Table 3 show variability at a rate several times
larger than this estimate over a timescale ≈ 8 hours. If there
is variability with an amplitude ≈ 0.002 due to short-lived
bright or dark regions in the photosphere of GJ 436 that are
not occulted by the planet then there will be a systematic
error ≈ 0.1% in Rp/R?.

Our internal structure models (see Fig. D1 of the sup-
plementary online material) suggest that GJ 436b has a sig-
nificant gas envelope, with a mass between 0.67 M⊕ and
1.73 M⊕ (all given values are the 5% or 95 % quantiles).
The mass fraction of water in the planet is essentially un-
constrained (comprised between 0.08 and 0.41 of the mass
of the core).

5.2 HD 106315 b

The value of the orbital period derived in Section 3.5.2 is
significantly different from the value given by Kosiarek et al.
(2021) based on their analysis of two transits observed with
Spitzer and the published time of minimum based on K2
data (9.55287 ± 0.00021d). The time of conjunction given
by Kosiarek et al. for the transit observed with Spitzer on
the date 2017-09-10 is clearly discrepant by over an hour.
This discrepancy introduces a systematic error in the pre-
dicted time of mid-transit of almost 7 hours using their
linear ephemeris for the observing date 2025 discussed by
Kosiarek et al.. The uncertainty on the time of mid-transit
for observations in 2025 with our updated linear ephemeris
is now less than 10 minutes.

The precision in the planet radius we derive from two
transits of HD 106315 b observed with CHEOPS is very sim-
ilar to that obtained from about 80 days of observations with
K2 covering 6 transits. Although Kepler has a larger aper-
ture that CHEOPS and observed more transits during the
K2 mission, 3 of the transits contain only 1 or 2 valid ob-
servations and all the transits are affected by missing data
points. As a result, there are only 20 valid K2 observations
during the transit of HD 106315 b. These data are also af-
fected by inaccuracies in the correction for spurious flux
variations due to the spacecraft motion. There is very good

agreement between the transit depth measurements from
the two instruments. CHEOPS is very well suited to ob-
servations of bright, isolated stars like HD 106315, and the
very low levels of instrumental noise for such targets allows
for accurate and precise characterisation of broad, shallow
transits such as those produced by HD 106315 b.

In term of internal structure, the internal structure
modelling (see Fig. D2 of the supplementary online mate-
rial) shows that HD 106315b has a gas envelope smaller
than 10−3M⊕ (all given values are the 5% or 95 % quan-
tiles), a large mass fraction of water (comprised between
0.04 and 0.47 of the mass of the core, with some preference
for large water fraction), and an iron mass fraction in the
planet smaller than for the Earth. Both explains why the
density of the planet is smaller than the one of the Earth,
and of a pure silicate sphere (see Fig. 11).

5.3 HD 97658 b

HD 97658 is the brightest target observed during the Early
Science programme so any systematic noise sources not re-
moved by the DRP or our decorrelation techniques are most
likely to be seen in the light curve of this star. We experi-
mented with using a Gaussian process to model correlated
noise in the analysis of this visit using the kernel described
in Section 2.8. This requires some thought about the use
of priors on the hyper-parameters of the noise model to
avoid the transit signal being modelled as noise with an
amplitude ≈ D correlated on a timescale ≈ W . To avoid
this problem we use an intermediate step where the tran-
sit parameters D, W , T0, etc. are fixed at the values ob-
tained in the least-squares fit and we use emcee to sam-
ple the joint PPD of the decorrelation parameters and the
hyper-parameters of the GP, S0 and ω0 (Q is fixed at the
value 1/

√
2). We find that the convergence of the sampler

is improved if we also set a prior on the parameter, c, the
mean flux level out of transit. We set a Gaussian prior on
c with the same mean as the flux values out of transit and
a width 4 times the standard error on the mean on these
values. Based on the results from this intermediate step, we
set Gaussian priors on S0 and ω0 centred on the mean of
the values sampled from the PPD and with standard devi-
ation equal to twice the standard deviation of the sampled
PPD. This enables us explore the correlations between the
transit parameters and the hyper-parameters of the noise
model without exploring unreasonable parts of the param-
eter space, e.g. solutions where the light curve contains no
transit. The results from this analysis are indistinguishable
from the results in Table 7, e.g. D = 0.000822 ± 0.000019,
W = 0.012442±0.000054. The amplitude of correlated noise
estimated from the standard deviation of the Gaussian pro-
cess, σGP =

√
S0 ω0 Q, is 25±35ppm based on this analysis.

The value of the Bayesian information criterion (BIC) for the
best fit including a Gaussian process is slightly lower than
that without a GP, but the difference is less than 10 so the
evidence that the GP is fitting a real signal is not strong.

The precision of our transit depth measurement from
a single visit with CHEOPS improves on the measurement
based on two transits observed with TESS by a factor 2.
There is good agreement in the transit depth measured by
the two instruments. The precision of the planet-star radius
ratio from the combined measurement is less than 1%. The
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error in the planet radius, Rp, is now dominated by the
uncertainty in the stellar radius (Table 11).

The internal structure of HD 97658b (see Fig. D3 of the
supplementary online material) is comparable to the one of
HD 106315b, with however a larger mass of the gas envelope
(smaller than ∼ 10−2M⊕), a similar water mass fraction
(between 0.06 and 0.48 of the mass of the core), and a similar
iron mass fraction in the planet. Interestingly, the posterior
distribution of the water mass fraction peaks at large values
compared to the two planets discussed above (in particular
GJ 436 b).

5.4 GJ 1132 b

Some care is needed when comparing values of Rp/R? as
a function of wavelength for observations obtained through
broadband filters because GJ 1132 is an M4.5V-type star
that has a very red spectrum with strong features due to
molecular absorption. These features of the stellar spectral
energy distribution should be accounted for when calcu-
lating the effective wavelength and bandwidth for observa-
tions obtained with different instruments. For the results
shown in Fig. 12 and given in Table 12 we used a syn-
thetic spectrum from the BT-Settl grid of models (Allard
2014) to calculate the effective wavelength and bandwidth
for each observation from the flux-weighted mean photon
wavelength and its standard error. The MEarth instrument
uses a long-pass filter with a cutoff wavelength of 715 nm.
We assumed that MEarth has the same instrument response
as CHEOPS for wavelengths redder than this cutoff and
0 response otherwise. For the LDSS3C instrument used by
Diamond-Lowe et al. (2018) we assume a uniform response
over the wavelength range 710 – 1030 nm.

From Fig. 12 it is clear that there is significant dis-
agreement between the value of Rp/R? observed in the z′

bandpass by Southworth et al. (2017) and the values ob-
tained using CHEOPS, MEarth, TESS and LDSS3C, despite
the substantial overlap in the bandpass for each instrument.
Light curves of GJ 1132 from ground-based instruments us-
ing broadband filters will be affected by systematic errors
because these observations require the use of nearby stars
to monitor the atmospheric transparency and extinction.
These comparison stars typically have very different spectra
to GJ 1132, so they are not affected by changes in observing
conditions in the same way as GJ 1132. This is particularly
true for observations at infrared wavelengths that are af-
fected by variable water absorption bands. We conclude that
the large radius for GJ 1132 b observed by Southworth et al.
in the z′ is not strong evidence for an extended atmosphere
on this planet.

In the case of the MEarth data we were able to account
for the systematic noise correlated with air mass because
there is a large amount of data available for this star ob-
tained over many nights. The data from the LDSS3C instru-
ment are not affected by this effect because the extinction
correction was done in multiple narrow pass bands. There is
excellent agreement between the values of Rp/R? and other
transit parameters measured using these instruments and
with the values derived using extensive data from Spitzer at
4.5µm. This gives us some reassurance that CHEOPS data
analysed using pycheops can provide accurate and precise
measurements for the properties of transiting planets, even

in cases such as this where there is poor coverage of the indi-
vidual transits, the field of observation is crowded, and the
target is fainter than the design specification of the instru-
ment. It should be noted that this is partly due to a well-
determined mass–density and mass–absolute-magnitude re-
lations for stars with masses ≈ 0.18M�. This demonstrates
the importance of having a good understanding the host star
for accurate characterisation of exoplanet systems.

The focus of the study by Swain et al. (2021) using ob-
servations of GJ 1132 b with the WFC3 instrument on HST
was the detection and interpretation of subtle features in
the transmission spectrum over the wavelength range 1.13-
1.64µm. That study does not report all the transit param-
eters derived from their analysis of the “white light” light
curve produced by combining the data at all observed wave-
lengths. The time of mid-transit is reported in their Table 1
with “MJD” in the units column. The value given has the
wrong number of digits for a modified Julian date and is 0.5
days less than the time of mid-transit from Southworth et al.
(2017) quoted as a prior in the same table. We assume that
this time of mid-transit is actually given as BJDTDB−0.5. In
that case, the offset of this time of mid-transit from the value
predicted by our updated linear ephemeris is −118 ± 18 s,
i.e. significantly earlier than expected. There is some am-
biguity here as it is unclear what time scale has been used
for the value given in their Table 1. Swain et al. state that
they derive the key parameter Rp/R? from the white-light
data but do not quote the result. It appears that the value
of the parameter R?/a was fixed in their analysis although
the value selected is not given. A fixed value for the orbital
semi-major axis, a, is provided in their Table 1 but it is un-
clear why since this parameter has a negligible effect on the
shape and depth of the transit, unless it is used indirectly
with some other parameter to infer R?/a. The value of the
orbital inclination is quoted in their Table 1 as i = 87.◦3577
with upper and lower limits of 0.◦0430105 and 0.◦044457, re-
spectively. We take this to mean that they have derived a
value i = 87.◦358±0.◦044. This value is marginally consistent
with the average value i = 88.◦62 ± 0.◦30 derived from the
four data sets used to determine the mass and radius of the
planet in Table 11.

During the preparation of this manuscript,
Mugnai et al. (2021) published an analysis of the same
HST data used by Swain et al. (2021) using two different
methods. In contrast to the results from Swain et al.,
Mugnai et al. found no evidence for any molecular sig-
natures in the wavelength range covered by the WFC3
instrument. This study was published subsequent to the
analysis presented in Sections 3.6 and 4. We have not
updated the analysis in those sections because the planet
radius derived from their “white-light” light curves is very
close to the value used in our analysis. There is also
very good agreement between the planet-star radius ratio
obtained by Mugnai et al. from their analysis of the TESS
light curve and the value we have obtained from the analysis
of the CHEOPS and MEarth light curves, as can be seen
from the values listed in Table 12 and from Fig. 12.

The internal structure models (see Fig. D4 of the sup-
plementary online material) indicate that the planet is a
bare dry core. The gas fraction is negligible and the water
mass fraction could be up to 27%. The mass fraction of the
iron core ranges between 2% and 35%, with a small fraction
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of sulphur in it. All these values are similar to some extent to
Earth values, so the planet could be pictured as a very hot
(massive) Earth analogue. This scenario is consistent with
the lack of any detected spectral features in the transmission
spectrum of GJ 1132 b.

6 CONCLUSIONS

We have used observations of stars observed during the Early
Science programme to demonstrate that CHEOPS data can
be analysed straightforwardly using pycheops in order to
determine accurate and precise transit parameters for tran-
siting extrasolar planets. The performance of CHEOPS is
comparable to or better than other space-based instrumen-
tation despite its modest aperture because of the very low
levels of instrumental noise by design for this instrument.
Compared to K2, MOST and Spitzer, CHEOPS also has the
distinct advantage that it is currently operational. CHEOPS
also has the flexibility to schedule observations to coincide
with the transits and eclipses of known exoplanets, or to
search for suspected transiting exoplanets in multi-planets
systems (Bonfanti et al. 2021). pycheops has already been
used for the analysis of CHEOPS data in several studies
(Bonfanti et al. 2021; Lendl et al. 2020; Benz et al. 2021;
Leleu et al. 2021a; Borsato et al. 2021; Van Grootel et al.
2021). CHEOPS observations are on-going so we can look
forward to the publication of many exciting results from the
partnership of this unique instrument and the pycheops
software.
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APPENDIX A: MEAN AND ERROR ESTIMATES FOR QUANTITIES THAT MAY BE AFFECTED
BY SYSTEMATIC ERRORS

Where we have multiple estimates for a stellar or planetary parameter that may be affected by systematic errors, we assume
that the systematic error on all these estimates has the same value, σsys. Note that σsys may also be used to characterise the
variance due to interesting astrophysical signals, e.g., changes in planet radius with wavelength or transit timing variations.
The log-likelihood to obtain the observed measurements y = {yi ± σi, i = 1, . . . , N} is then

ln p(y |µ, σsys) = −1

2

∑
i

[
(yi − µ)2

s2
i

+ ln
(
2π s2

i

)]
,

where s2
i = σ2

i +σ2
sys. We assume a broad uniform prior on the mean, µ and a broad uniform prior on lnσsys. We then sample

the posterior probability distribution using emcee with 1500 steps and 128 walkers. We discard the first 500 “burn-in” steps
of the Markov chain and use the remaining sample to calculate the mean and standard deviation of the posterior probability
distribution for µ, i.e. our best estimate for the value of the parameter and its standard error.
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