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ABSTRACT 

Natural Language Processing and Understanding has become one of the most exciting and challenging 

fields in the area of Artificial Intelligence and Machine Learning. With the rapidly changing business 

environment and surroundings, the importance of having the data transformed in such a way that 

makes it easy to interpret is the greatest competitive advantage a company can have. Having said this, 

the purpose of this thesis dissertation is to implement a recommender system for the Human 

Resources department in a company that will aid the decision-making process of filling a specific job 

position with the right candidate. The recommender system fill be fed with applicants, each being 

represented by their skills, and will produce a subset of most adequate candidates given a job position. 

This work uses StarSpace, a novelty neural embedding model, whose aim is to represent entities in a 

common vectorial space and further perform similarity measures amongst them. 
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1. INTRODUCTION 

It has been a known fact that the most significant competitive advantage a company can possess is the 

ability to produce insights on its own data, improving the quality of the overall decision making. When 

data is structured (i.e., it is stored in a fixed field format), performing analysis on it is made more 

accessible, facilitating any form of pattern recognition or classification for business-driven analytics. 

However, the data can be of various types (such as documents, social media streams, databases etc.), 

most of the time being semi-structured or even unstructured. Transforming the unstructured data into 

something valuable and easy to interpret is probably one of the biggest challenges companies face 

nowadays and is one of their most significant necessities.  

The pillars of every company are its resources, and therefore, it is essential always to have the right 

people at the right time. Recruiters often struggle to go through a lengthy process of either finding 

people on LinkedIn or going through applicant resumes which are often big in volumes. This makes the 

recruitment process much more complex and time-consuming. Although a lot of research and 

developments have been done in AI and, more specifically, in Machine Learning in the past few 

decades, some issues have not been fully resolved. One of the biggest thorns in AI is the ability of a 

computer to interpret and understand the natural language. This is one of the reasons why this 

challenging topic will be the focus of this master thesis.  

Therefore, this work aims to develop a proof-of-concept application based on a recommender system 

whose goal is to aid the decision-making process of recruitment teams when filling specific job 

positions within a company. The followed methodology relies on a novelty neural network embedding 

model, which will work with text-based inputs representing job applicants and will be used to find an 

optimal subset of individuals whose profile is the closest to the intended one. This is achieved by 

training this model to accurately produce skills embeddings in a common vectorial space, based on 

profiles of real applicants, and further, represent other real candidates and job advertisements (what 

can be perceived as an ideal candidate) based on those embeddings. By encoding applicants and jobs 

based on these produced embeddings, the model should be able to apply similarity metrics among 

entities and quantify their degree of proximity, determining which candidates are more suited for a 

given role.  

To achieve this goal, two instances of this model will be produced for two independent datasets: the 

first resulting from the scrapping of thousands of LinkedIn profiles of professionals working in IT 

companies or IT-related positions, and the second being comprised of over a thousand resumes 

collected from job applicants of an IT company. Since this work deals with text-oriented data, it will 

also characterize the extensive data cleaning. This process involves the extraction and structuring of 

information necessary to form inputs accepted by the recommender system. 

To the best of our knowledge, this thesis relies on using the general-purpose neural embedding model, 

an approach that has not been followed in the domain of job-candidate recommendations. So, one of 

the challenges will also be to bring value and contribute to improving the state of the art regarding this 

specific area of applications.  

This thesis will initially include a general overview of some of the background concepts used (in section 

3), as well as a comprehensive state-of-the-art, followed by a detailed characterization of the proposed 

methodology (in section 4). Finally conclusions are presented in section 6. 
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2. STATE OF THE ART 

2.1.  TEXT MINING 

Using the three constraints of NLP – lexical, syntactic and semantic analysis is a commonly used 

approach among most researchers for extracting information from unstructured data in resumes.  

(Sanyal, Hazra, Ghosh, & Adhikary, 2017) and (Sadiq, Ayub, Narsayya, Ayyas, & Tahir, 2016) propose a 

solution for parsing the information from the resume using the three abovementioned constraints, 

which include several steps. First, the text is divided into various segments, i.e., sections of a resume 

using a data dictionary of possible headings found in a resume. Each of these segments of text is 

defined by specific name entity recognizers – chunkers. Second, syntactic analysis is performed in 

order to check for the grammatical correctness of the sentences, and lastly, the semantic meaning of 

the sentences is deducted to determine if the sentence makes sense or not. In both works, the results 

from the parser are presented in a JSON format file containing all the extracted relevant information, 

which are further used to map the candidates with job positions.  

The work presented in (Reza & Zaman, 2017) proposes a different solution to the same problem by 

suggesting two different methodologies for detecting the segments of the resumes. The first one is to 

convert the text to an HTML format from which the font size can be extracted and used as a measure 

for detecting sections in a resume. The second methodology is to use a data dictionary and build a 

parse tree that will indicate possible structural information of a heading in a resume. 

(Kulkarni, 2017) suggests a framework for mining relevant entities from a text resume by showing how 

the separation of parsing logic from entity specification can be achieved. The author proposes a 

linguistic-based approach by using RegEx expressions in order to extract information from the resume. 

The framework includes a configuration file that specifies entities along with the patterns for 

extraction. However, the solution proposed is only limited to one format of a resume and is prone to 

errors when encountered with different formats of resumes.  

The presented works overlap to some extent in their approaches, more specifically in the segment of 

detecting the sections of a resume, where all propose a usage of a predefined data dictionary of 

possible headings. Additionally, another approach suggests the parsing to be performed by converting 

the text to HTML format and further detecting the headings based on the font size. Furthermore, one 

of the works suggests parsing the data by using RegEx expressions, while others perform syntactic 

analysis.  

2.2. MACHINE LEARNING ALGORITHMS 

2.2.1. Supervised learning 

(Gopalakrishna & Varadharajan, 2019) proposes the implementation of a resume classifier application 

by using supervised learning algorithms. With the use of an ensemble learning-based voting classifier, 

profiles of candidates are classified into a domain based on their interest, work experience and 

expertise mentioned by the candidate in the profile. This model includes techniques of topic modelling 

to introduce a new domain to the list of domains upon failing to achieve the threshold value of 

confidence for the classification of the candidate profile. The Stack-Overflow REST APIs are called for 

the profiles which fail on the confidence threshold test set in the application. The topics returned by 
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the APIs are subjected to topic modelling to obtain a new domain, on which the voting classifier is 

retrained after a fixed interval to improve the accuracy of the model. The results showed that the 

ensemble learning-based voting classifier performs very well in comparison to the individual classifiers 

while predicting most of the instances of the test data since the confidence of the model while 

categorizing the resumes is influenced by the majority of the votes cast by the individual classifiers. 

 (Ko, Park, & Seo, 2002) suggests a study in which they measure the importance of sentences using 

text summarization techniques that attribute weights to specific text features, thus representing a 

document as a vector of features. Two methods measure the importance of each of the sentences. 

The first method gives higher weights to the sentences which are more similar to the title and the 

second method measures the importance of terms by TF, IDF and χ2 statistic values. The higher 

importance to the sentence is assigned to the one which has more important terms. In the end, the 

importance of the sentence is calculated as a combination of both methods. The experiments were 

conducted over two separate and labelled datasets on English and Korean language, and four different 

classifiers are used: Naive Bayes, Rocchio, K-NN and SVM. The F1 test is used as a performance 

measure, and the results show that this approach makes a significant improvement over these 

classifiers.  

2.2.2. Unsupervised learning 

(Schmidt, 2019) suggests a study that uses unsupervised learning to classify text, more specifically 

customer’s feedbacks. The way it is done is by predefining 11 categories of text along with a description 

for each category. The basic idea in this study is to create a label vector by using classic word 

embeddings (static and word-level, meaning each word gets one pre-computed embedding), which 

represent the 11 labels as vectors and calculate the cosine distance of each label (A) to the user’s 

feedback (B). The label with the highest similarity or higher than a certain threshold is assigned to the 

user’s rating. The positive feedback is that the model learns in a more human-like way by 

understanding the actual meaning of each category it shall predict, and the approach can be 

implemented with no available data at hand since the word embeddings are publicly available and 

pretrained. On the other hand, the drawback of this approach is that there is no testing data at all to 

evaluate the actual performance of the model before usage. Therefore, the confidence level is set 

quite high to avoid classifications of the user’s feedback incorrectly. 

 (Ko & Seo, Automatic Text Categorization by Unsupervised Learning, 2000) proposes a method that 

divides the documents into sentences and categorizes each sentence using keyword lists of each 

category and sentence similarity measure. This approach automatically creates training sentence sets 

using keyword lists of each category, which are later used for training and thus classifying text 

documents. For feature selection, χ2 statistic is used and Naive Bayes classifier as a statistical text 

classifier. Keywords are defined for each category by hand, which contain special features of each 

category sufficiently. The keywords are chosen based on their category names and their synonyms. 

The average number of keywords for each category is 3 (e.g., Category = Religion, Keywords = 

Christianity, Catholicism, Buddhism). The sentences which contain pre-defined keywords of each 

category in their content words are chosen as the initial representative sentences. The remaining 

sentences are called unclassified sentences and are assigned to their related category by measuring 

similarities of the unclassified sentences to the representative sentences. There exist error sentences 

in the representative sentences. They do not have special features of a category even though they 
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contain the keywords of the category. To remove them, the representative sentences are ranked by 

computing the weight of each sentence as follows: 

- Word weights are computed using Term Frequency (TF) and Inverse Category Frequency (ICF) 

- The size of the vocabulary is selected by ranking words according to their χ2 statistic with 

respect to the category. 

This method automatically created training sets using keyword lists of each category and used them 

for training after which it classified text documents.  

(Verma, 2017) proposes a method  to extract relevant words from resumes using Term Document 

Matrix. The relevant words are categorized based on their impact on the resume. The categories are 

role, language, database and web related skills, software packages, tools and frameworks, OS and 

experience skills. Each of the words is given a different weight 1,2,3 according to the job position. Then, 

all words summed from the resume give the rank of that resume. The importance of these words has 

been calculated according to the cluster. On top of this, a ranking methodology has been applied to 

find the most suitable candidate. This study uses the K-means algorithm to cluster the resumes and 

ReliefF to find the important features in each cluster. According to the tests done by manually selecting 

resumes for certain job positions, the model has retrieved relevant resumes that fit the job description. 

 

2.2.3. Recommender systems 

(Van Essen, 2018) proposes an interactive beer recommender system based on word embeddings from 

free-text user reviews. The dataset used for this work consists of user reviews and ratings from a public 

website. The document and word embeddings are trained using StarSpace (Wu, et al., 2018) and 

word2vec (Mikolov, Chen, Corrado, & Dean, 2013), which are later used as input for two different 

SVMs. The system builds a user profile by allowing each user to provide a list of beers they like and 

dislike, which are later used to train the SVM and recommend the users a list of 𝑛 beers. Both models 

are compared to baselines of similarity of the feature vectors, as well as popularity. The popularity 

baseline recommends the 𝑛 most frequently reviewed beers. The similarity baseline however, is done 

by computing the cosine similarity between an input and the rest of the items the user rated and thus 

ranking them from most to least similar. The prediction from each input is combined using late fusion 

by means of a voting system. The embeddings are evaluated using artificial actors, which are users that 

have already rated/reviewed beers on the website. By using precision, the performance of each of 

these actors is measured in the system. The results show that the classifiers using word2vec 

embeddings have a higher precision on already consumed beers; however, StarSpace outperforms 

with the popularity baseline when testing all beers.  

(Gornishka, Rudinac, & Worring, 2019) present an interactive multimodal learning system that allows 

search and exploration of social multimedia users in large networks, where similar users are 

recommended according to the chosen user of interest. The users, words and concepts are 

represented as embeddings using StarSpace. The goal of the study is to prove that these embeddings 

can be helpful not only for categorizing users but for automatically generating user and community 

profiles. By categorizing the users, it assists in annotating large datasets for communities that are 

frequently changing. Two datasets are used for the purpose of this work, publicly available data from 
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a neo-Nazi forum called Stormfront that contains user posts, and the second dataset containing tweets 

regarding extremist ideologies downloaded directly from Twitter. The approach is to generate both 

unimodal user representations and multimodal neural embeddings. The unimodal representations are 

done by using TFIDF, and the users are represented based on all modalities (entities, text, visual 

concepts and hashtags). The multimodal representations are created with StarSpace, by using the 

multilabel text classification training mode. 

Two different setups, from multiple possible, are showcased in the paper for creating user and content 

embeddings. For both setups, training examples are generated per post, and the corresponding user 

is assigned a positive label. The main difference is in the way the input documents are generated. Setup 

StarSpace CW-U trains a model with two separate examples per post, bag-of-concepts (C) and bag-of-

words (W) associated with a given user (U). Setup StarSpace W-UC, on the other hand, has bag-of-

words (W) as examples, but every post is labelled with the concepts (C) associated with the given user 

(U). This setup implicitly minimizes the distance between a user and the concepts they use by 

simultaneously minimizing the distance between both entities and the post itself. The approach is 

validated by using artificial actors that stimulate a user’s behaviour in the system, each of them 

covering a different task. All the experiments are done using a linear SVM with SGD as the interactive 

classifier. The results show that StarSpace outperforms the TFIDF representations in situations when 

the context and semantics are more relevant to the given task. On the other hand, TFIDF shows better 

results in encoding specific terms with not much context in need. 
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3. THEORETICAL BACKGROUND 

This section will cover a literature review of the algorithms and tools used in this master thesis. It will 

give a theoretical explanation of what the concepts are and how they work. The algorithms showcased 

here are accountable for two of the main parts of the proposed approach: (1) how to embed text into 

a multidimensional vector space and (2) visualize these embeddings for further validation. The 

algorithm chosen for embedding the text is StarSpace by Facebook AI Research  (Wu, et al., 2018). The 

embeddings produced from this model will be further visualized by using a dimensionality reduction 

technique called t-Distributed Stochastic Neighbor Embedding (t-SNE). Before going in-depth and 

explaining how both algorithms work, some introductory concepts will be presented as they are the 

base they rely on. Additionally, StarSpace will be compared against some algorithms mentioned in the 

State of the Art, and thus these algorithms will be briefly presented in this section as well. 

3.1. BAG-OF-WORDS 

A Bag-of-words model is a method of extracting features from a text by describing the occurrence of 

the words within a document (Raschka & Mirjalili, 2021). This model is used in document classification, 

where the frequency of occurrence of each word is treated as a feature for training a classifier (McTear, 

Callejas, & Griol, 2016). It consists of two elements, a vocabulary of known words and a measure of 

their presence. Any information regarding the order of the words is disregarded, hence why it is called 

a “bag” of words. The general idea behind this algorithm is that documents are similar if their content 

is similar.  

3.2. WORD EMBEDDINGS 

Word embeddings are a more advanced approach to the bag of words model. These embeddings are 

representations of words encoded as a real-valued vector in a vector space, where similar words are 

closer to each other (Gulli & Pal, 2017). At training time, each word is represented as a point in an 

embedding space and is being adjusted based on the words that surround the target word. Unlike one-

hot encoded vectors, which are sparse and require thousands to millions of dimensions, these word 

embeddings reduce the dimensionality and represent the word with only tens to hundreds of 

dimensions. This subsection will present three different methods of word embeddings: 1) word2vec, 

2) FastText and 3) StarSpace. 

3.2.1. Word2vec 

Word2vec by (Mikolov, Chen, Corrado, & Dean, 2013) is a two-layer neural network trained to 

reconstruct contexts of words from a large corpus of text. The output result from the model is a vector 

space consisting of hundreds of dimensions, where each word from the corpus is assigned a 

corresponding vector in the space. These vectors represent numerical embeddings of the words. The 

words are positioned in such a way that words that share a common context are in close proximity to 

each other in the vector space. This similarity between the vectors is evaluated using cosine similarity. 

Aside from the positional proximity of similar words, some techniques for measuring the quality of the 

embeddings are utilized, which prove that words can have multiple degrees of similarity (Mikolov, Yih, 

& Zweig, Linguistic Regularities in Continuous Space Word Representations, 2013). By using simple 

algebraic operations on the word embeddings, results show that 𝑣𝑒𝑐𝑡𝑜𝑟(′𝐾𝑖𝑛𝑔′) − 𝑣𝑒𝑐𝑡𝑜𝑟(′𝑀𝑎𝑛′) +

𝑣𝑒𝑐𝑡𝑜𝑟(′𝑊𝑜𝑚𝑎𝑛′) = 𝑣𝑒𝑐𝑡𝑜𝑟(′𝑄𝑢𝑒𝑒𝑛′). 
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Word2vec is implemented with two different architectures, and both can be utilized depending on the 

context of the problem aimed to be solved. The Continuous-Bag-of-Words (CBOW) architecture aims 

to guess the target word given a set of neighbouring context words, whereas the Skip-gram (SG) 

architecture attempts to guess the context neighbouring words given the target word. The 

architectures are displayed visually in Figure 3.1. 

 

Figure 3.1 - Word2vec architectures, CBOW and Skip-gram 

According to (Mikolov, Chen, Corrado, & Dean, 2013), the CBOW architecture is much faster to train 

than Skip-gram and has better accuracy for predicting frequent words. However, Skip-gram works well 

with small amounts of data and is able to represent well rare words or even phrases.  

The objective function of the Skip-gram model, given a sequence of training words 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑇, 

is to maximize the probability of any context word given the current target word.  

𝐽(𝜃) =  
1

𝑇
∑ ∑ log 𝑝 (𝑤𝑡+𝑗|𝑤𝑡)

−𝑐≤𝑗≤𝑐,𝑗≠0

𝑇

𝑡=1

 

where 𝑐 is the number of context words used in training, 𝑇 is the number of words in the vocabulary, 

𝑤𝑡 is the target word for which the model has to predict its neighbouring 𝑤𝑡+1 context words and 𝜃 is 

the resulting vector representation of the words. The larger 𝑐 is, the more training examples are 

covered, which leads to a higher accuracy at the cost of training time. Both model architectures use 

the hierarchical softmax as the activation function in the output layer of the neural network in order 

to reduce its computational complexity. The vocabulary is represented as a Huffman binary tree where 

each leaf of the tree is a single word, and each internal node represents the relative probabilities of 

the children nodes. Each word has a unique path from the root to its leaf. In this tree hierarchy, the 

frequent words are assigned short binary codes, which reduces the number of output units that need 

evaluation. However, at prediction time, the probabilities for all words need to be computed, which 

thus leads to a vast neural network. Since both models are trained using stochastic gradient descent 

and backpropagation, specific issues arise concerning the computational complexity of the neural 

network. 

 (eq 3.1) 
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These issues were addressed by (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), where a two-step 

approach is presented with an aim to reduce the complexity and additionally improve the quality of 

the resulting embeddings. Negative sampling is an approach based on Noise Contrastive Estimation 

(NCE) by (Gutmann & Hyvarinen, 2012) which persists that a model should differentiate data from 

noise by means of logistic regression. The general idea behind this method is similar to SGD. Namely, 

instead of updating all the weights of all thousands of observations every time, it only uses 𝑘 of them 

which leads to an improved computational efficiency. In the context of the Skip-gram model of 

word2vec, the 𝑘 negative samples generated are words which are not context words, meaning that 

these words are not the correct predictions for the given target word. The second approach suggested 

is subsampling of frequent words, which thus leads to a decrease in the number of training examples. 

Frequent words, more commonly referred to as stop words, can occur thousands of times in a large 

corpus of text but lack to provide any valuable information to the model. For each word of the 

vocabulary, a probability is computed that defines whether the word will be disregarded from the 

training dataset. The results have shown a much faster and significant improvement of the accuracy of 

learned embeddings of rare words. 

3.2.2. FastText  

One limitation with word2vec is that it does not consider the morphology of words and simply assigns 

a distinct vector to each word. This is a limitation for morphologically rich languages. FastText is a word 

embedding model proposed by (Bojanowski, Grave, Joulin, & Mikolov, 2017) that is an extension of 

word2vec and tends to solve this constraint. The approach is based on the continuous skip-gram 

architecture where each of the words is represented as a bag of character n-grams, hence providing 

sub word information (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). (Bojanowski, Grave, Joulin, 

& Mikolov, 2017) define a scoring function 𝑠 which maps pairs of (word, context) to scores in ℝ. Given 

a dictionary of 𝑛-grams with size 𝐺, a word 𝑤 is denoted by 𝐺𝑤 ⊂ {1, … , 𝐺}, as the set of 𝑛-grams that 

appear in 𝑤. A vector representation 𝑧𝑔 is associated to each 𝑛-gram 𝑔. This means that a word is 

represented as the sum of the vector representations of its n-grams. The following scoring function is 

obtained: 

𝑠(𝑤, 𝑐) =  ∑ 𝑧𝑔
𝑇𝑣𝑐

𝑔∈𝐺𝑤

 

The n-grams help capture the meaning of shorter words and thus enable the model to learn prefixes 

and suffixes. Once a word is represented with its n-grams, a skip-gram model is trained to learn the 

embeddings. The skip-gram model is considered a BoW model with a sliding window over a target 

word where the order of the n-grams is disregarded. Another advantage of FastText over Word2vec is 

that it works much better with rare words, meaning that even if a word was not present in the training 

dataset, it can be broken down into n-grams in order to get the embedding. 

3.2.3. StarSpace 

StarSpace is a general-purpose neural embedding model for learning entity embeddings in order to 

solve a wide range of use cases such as text and image classification, ranking entities, embedding 

graphs, learning word, sentence and document embeddings, as well as collaborative filtering-based 

and content-based recommendations (Wu, et al., 2018). The method works by learning entity 

embeddings from relationships amongst sets of entities. The general idea behind the model is to learn 

(eq 3.2) 
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how to represent entities of different types into a common vector space and further compare them 

against each other. 

The model consists of learning entities that are described by a collection of discrete features (bag-of-

features) generated from a fixed-length dictionary. A given entity, for instance, a user, can be described 

by the bag of documents, movies, items they have liked. As mentioned before, StarSpace allows for 

entities of different types to be compared against each other, in this case, a user to be compared with 

a document, movie, item etc.  

In order to build embeddings in StarSpace, an entity needs to be represented in regards to its features. 

The dictionary of 𝐷 features, denoted as 𝐹, is a 𝐷 × 𝑑 matrix where 𝐹𝑖 indexes the 𝑖𝑡ℎ feature (row), 

obtaining the 𝑑-dimensional embedding to embed an entity 𝑎 with ∑ 𝐹𝑖𝑖∈𝑎 . In other words, each 

discrete feature from the dictionary of features is assigned a 𝑑-dimensional vector, and each entity 

composed of features is represented as a bag of features of the features in the dictionary, and their 

embeddings are learned implicitly. The goal of the model is to learn how to compare the entities 

amongst each other and thus minimize the following loss function: 

∑ 𝐿𝑏𝑎𝑡𝑐ℎ(𝑠𝑖𝑚(𝑎, 𝑏), 𝑠𝑖𝑚(𝑎, 𝑏1
−), … , 𝑠𝑖𝑚(𝑎, 𝑏𝑘

−))
(𝑎,𝑏) ∈ 𝐸+

𝑏−∈ 𝐸−

 

This function is composed of several components. 

1. Generating positive entity pairs (𝑎, 𝑏) from the set E+.                      

2. Generating negative entities 𝑏𝑖
− from the set 𝐸−. The model incorporates a 𝑘-negative 

sampling strategy (Mikolov, Chen, Corrado, & Dean, 2013) to choose 𝑘-negative pairs for each 

batch update. These samples are chosen randomly from the set of entities that can appear as 

𝑏 in the similarity function. 

3. Similarity function 𝑠𝑖𝑚(∙,∙), which is implemented as a hyperparameter and can be either 

cosine similarity or inner dot product. 

4. The loss function 𝐿𝑏𝑎𝑡𝑐ℎ that compares the positive pair (𝑎, 𝑏) with all the negative pairs 

(𝑎, 𝑏𝑖
−), 𝑖 = 1, … , 𝑘. It is also implemented as a hyperparameter with two available options: 

margin ranking loss and negative loss of softmax. However, the first has outperformed the 

latter in all the use cases showcased. 

The model is optimized by using Stochastic Gradient Descent (SGD), meaning that each step is one 

sample from the positive entity pair set – E+in the outer sum, using Adagrad (Duchi, Hazan, & Singer, 

2011) and Hogwild (Niu, Recht, Re, & Wright, 2011) over multiple CPUs. Additionally, a max norm of 

the embeddings is enforced in order to restrict the embedding vectors learned to lie in space 𝑅𝑑 as in 

other related works (Weston, Bengio, & Usunier, 2011). 

Due to the wide possibility of the model assessing various tasks, the generators E+ and E− work 

differently according to the specific training mode chosen. The process of generating positive entity 

pairs (𝑎, 𝑏) and negative entities 𝑏𝑖
− in the context of the problem proposed, i.e., content-based 

recommendation will be further explained in detail in the following section.  

In the content-based recommendation use case, which is one of the many use cases showcased in the 

paper of StarSpace, five different methods are used as comparison baselines, both supervised and 

(eq 3.3) 
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unsupervised. Unsupervised methods include Word2vec, fastText, Tagspace and TFIDF, while an SVM 

ranker using either fastText embeddings or BoW features is used as a supervised method. The tests 

have shown superior results in favour of StarSpace regarding all other methods.  

One of the main reasons for choosing StarSpace is the possibility of it handling featured labels. 

Featured labels mean that features can be used in order to represent labels. For instance, in StarSpace, 

a label can be a sentence that is represented by the words it contains. However, in the case of fastText, 

for example, a label needs to be a direct embedding like a word or a tag. This advantage of the model 

was key since the dataset used for assessing the problem proposed does not contain labels. Another 

useful feature that StarSpace provides is the option to assign weights to the words, which in turn helps 

the model to better learn the relationship dependencies amongst them. 

3.3. TEXT NORMALIZATION METHOD 

One of the most important methods applied in the data preprocessing phase is a text normalization 

method developed by (WB Advanced Analytics, 2017). The algorithm is based on the commonly used 

text similarity measure – cosine similarity. Cosine similarity measures the angle between the two 𝑛 – 

dimensional vectors projected in a multi-dimensional space (Deep, 2020). However, (WB Advanced 

Analytics, 2017) detected a significant disadvantage with this similarity measure. The sklearn version 

calculates the similarity matrix and stores all the results instead of only considering the top N most 

similar, which would translate to a computationally expensive process. Therefore, (WB Advanced 

Analytics, 2017) developed their library, which outperforms SciPy and NumPy functions by 40% in 

implementing a sparse matrix multiplication and selecting the top N results above a given threshold. 

The method receives four hyperparameters. Two compressed sparse row (CSR) matrices, one matrix 

being the ground truth matrix and another matrix with the data aimed to be normalized. Additionally, 

a number 𝑛 is provided, to retrieve only the top 𝑛 results, as well as a threshold for similarity. The 

process starts by first storing the input data as 𝑛 – grams. After the 𝑛 – grams are produced, a 

Tfidfvectorizer is used in order to count their occurrences. By using the sparse_dot_topn function the 

top 𝑛 most similar inputs above the given threshold are retrieved as result. 

3.4. T-SNE 

t-Distributed Stochastic Neighbor Embedding (t-SNE) by (Van Der Maaten & Hinton, 2008) is a 

technique for visualizing high dimensional data in a lower-dimensional space such as 2D or 3D. The 

method is commonly used as it can detect non-linear relationships in the data. The first stage of the 

algorithm is to compute the Euclidian distances between each of the data points. Later on, these 

distances are transformed into conditional probabilities that represent the similarity between two data 

points. As (Van Der Maaten & Hinton, 2008) describe in the paper, the similarity of data point 𝑥𝑗 to 

data point 𝑥𝑖 is the conditional probability 𝑝𝑗|𝑖  that 𝑥𝑖 would pick 𝑥𝑗 as its neighbor.  

𝑝𝑗|𝑖 =  

exp (−
‖𝑋𝑖 − 𝑋𝑗‖

2

2σ𝑖
2 )

∑ exp (−
‖𝑋𝑖 − 𝑋𝑘‖2

2σ𝑖
2 )𝑘≠𝑖
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The conditional probability of 𝑥𝑗 to be in close proximity to 𝑥𝑖 is represented by a Gaussian centered 

as 𝑥𝑖 with a standard deviation of σ𝑖. From the conditional probabilities a joint probability distribution 

is calculated.  

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
 

The second stage of the algorithm is to perform a dimensionality reduction to two or three dimensions 

as well as calculate a joint probability distribution for all the data points. In order to create the join 

probability distribution, a t-distribution is used instead of the Gaussian distribution, and the reason for 

this is the heavy tails property of the t-distribution. This enables the distances between points in the 

high-dimensional space to be extreme in low-dimensional space and thus help prevent crowding of 

the points, 

The third stage of the algorithm is to make the joint probability distribution of the data points in the 

low-dimensional space as similar as possible to the one in the high-dimensional space by using 

Kullback-Leiber divergence (KL divergence). KL divergence is a measure of the difference between two 

distributions.  

𝐷𝐾𝐿(𝑃 || 𝑄) = ∑ 𝑃(𝑥) log (
𝑃(𝑥)

𝑄(𝑥)
)

𝑥∈𝑋

 

The value ought to be smaller for distributions that are more similar to each other. The joint probability 

distribution for the data points in the low-dimensional space needs to be as similar as possible to the 

one in the original space, and this is achieved by using gradient descent. The cost function that the 

gradient descent tries to minimize is the KL divergence of the joint probability distribution P from the 

high-dimensional space and Q from the low-dimensional space.  

𝐶 = 𝐾𝐿(𝑃 || 𝑄) = ∑ ∑ 𝑝𝑖𝑗

𝑗𝑖

𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
  

The model accepts several hyperparameters that can be tweaked accordingly. Some of these 

parameters are related to the gradient descent, such as learning rate and the number of iterations. 

Another important parameter is perplexity. This hyperparameter is used for choosing the standard 

deviation in the Gaussian distribution representing the conditional probability distribution in the high-

dimensional space. This parameter can be interpreted as the number of neighbours of a single data 

point. 

However, t-SNE has some fallacies. By being a stochastic algorithm, it produces different results with 

every run. Additionally, despite preserving the local structure of the data, it might fail to preserve the 

global structure, which means that it can show clusters of data that are not really there. 

(eq 3.5) 

(eq 3.4) 

(eq 3.6) 

(eq 3.7) 
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4. METHODOLOGY 

This section will function as a roadmap to the approach presented in this thesis and is composed of 

the following four subsections: 

1. Data Collection, where the dataset is initially described. 

2. Data Preprocessing, in which the process of transforming the raw input text and feature 

engineering is characterized. 

3. Data Modelling, where the data partition, tuned hyperparameters and evaluation metrics 

that will be used are presented. 

4. Data Analysis, where the results from the data preprocessing phase will be presented. 

The overall organization of this section follows the schema presented in Figure 4.1. 

 

Figure 4.1 - Recommender system pipline 
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4.1. DATA COLLECTION 

This subsection will portray and describe the dataset used for the assembling of the model. There are 

two datasets used in the proposed solution. The first dataset, from now on denoted as resumes, is 

completely unstructured and is consisted of 3,997 documents. These documents are people’s resumes 

obtained from an IT consulting company as part of the recruitment process for jobs in the field of 

Business Intelligence, Data Science, Data Engineering, Software Maintenance, DevOps, Web 

Development, App Development, Graphic Design, Marketing, Management etc. The documents 

gathered were in three formats, pdf, doc and docx. The quantities of each of these formats are 

presented in Table 4.1. 

Table 4.1 - Quantities of resumes per format 

Format Word 

pdf 2,629 

doc 1,285 

docx 83 

 

The second dataset, from now on denoted as LinkedIn profiles, is semi-structured and is consisted of 

11,112 profiles scraped using a data-gathering tool – Phantombuster1. The process consisted of using 

two phantoms (tools) from Phantombuster – LinkedIn Search Export, for generating the URLs of the 

LinkedIn profiles according to applied filters and LinkedIn Profile Scraper for scraping the profiles 

provided. The filters applied on the search were by location, industry, language and service providers 

and the values inputted are presented in Table 4.2. 

Table 4.2 - Filter applied in the LinkedIn search 

Filter Type Filter 

Language English 

Location Australia, North America, Western and Central Europe, 

Scandinavia 

Industry Information Technologies and Services, Computer Software, 

Computer Networking, Computer and Network Security  

Service IT Consulting, Consulting, Web Development, Application 

Development, Custom Software Development, Project 

Management, Mobile Application Development, Software 

Testing, Android Development, iOS Development, Graphic 

Design, Cybersecurity, Database Development, Software 

Testing and Data Reporting 

 

 
1 https://phantombuster.com/ 
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The format in which the profiles are retrieved is a CSV file with a defined set of columns, indicating a 

feature from a user’s LinkedIn profile. These features consist of personal information, location, job 

title, job description, job date range, company, school, school degree, school date range, skills etc.  

 

4.2. DATA PREPROCESSING 

This subsection will carry out a detailed characterization of all the steps performed in the preparation 

of the data for the model. The natural language, as a result of the human being, tends to be very 

random and unique. Computer algorithms do not deal very well with this randomness and thus require 

some normalization of the text before it is imputed in a machine learning model. The data 

preprocessing is focused mainly on normalizing the text inputs and cleaning the noise, which will 

reduce the variance and thus improve the overall model’s performance. The process of text 

normalization consists of the following steps: 

1. Filtering out resumes and LinkedIn profiles that are not written in English, 

2. Removing capital letters by converting all text to lower case, 

3. Removal of languages within the skills, 

4. Acronym normalization, 

5. Matching semantically same but syntactically different written skills, 

6. Mapping fewer common skills to a more commonly present skill with similar meaning. 

However, since there are two different datasets involved, one which is consisted of unstructured 

documents and another which is semi-structured scraped LinkedIn profiles, the data preprocessing for 

the first dataset has some specific data preprocessing steps included and those will be presented 

separately and initially, following the remaining transformations common for both. The features from 

the datasets that are considered for the problem apprehended are the skills containing a candidate’s 

resume / LinkedIn profile. 

Additionally, due to the nature of the problem tackled and the information that is aimed to be obtained 

from the data, a dictionary of LinkedIn skills is used in feature extraction in both datasets. Before 

describing the feature extraction from the datasets, this subsection will contain a characterization of 

the above-mentioned dictionary. 

4.2.1. Language filter 

The first step in the data preprocessing phase is to eliminate any input which is not in English in order 

to ensure that the word embeddings are not affected by the different languages in the datasets. 

Starting with the resumes, since they were gathered from a Portuguese consulting company, 

intuitively, a language filter had to be applied. The language of the resumes was detected using 
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langdetect2, a python library ported from Google’s language-detection. The results showed that only 

30% of the resumes were in English. Table 4.3 shows the quantities for each language category. 

Table 4.3 - Quantities of resumes per language 

Language Quantity 

English 1,168 

Portuguese 2,829 

 

Likewise, similar analysis was conducted on the LinkedIn profiles. Despite applying English language as 

a filter on LinkedIn, the results retrieved showed that not all profiles scraped have this filter considered. 

Using the same method as before, around 7% of all the LinkedIn profiles were detected to not be 

written in English. The quantities of each are presented in Table 4.4. 

Table 4.4 - LinkedIn profiles quantities by language 

Language English 

English 10,291 

Other 822 

 

The size of each dataset after the filtering the language was 1,168 resumes and 10,291 LinkedIn 

profiles. 

4.2.2. Skills dictionary 

In order to be able to extract the skills from the resumes and LinkedIn profiles and differentiate an 

actual skill from a regular word, a dictionary of LinkedIn skills was gathered as an aid in the process.  

(Tabrizi, 2017) has provided a JSON file containing scraped data from the LinkedIn Topics Directory – a 

platform from LinkedIn providing exceptionally useful insights on skills, companies, universities and 

industries. Unfortunately, this platform has been discontinued, and thus the JSON file obtained from 

July 2017 is outdated. Nonetheless, its value has a significant contribution to the assessment of the 

problem apprehended. 

The LinkedIn Topics Directory served as a dictionary of all the available skills on LinkedIn along with 

some additional metadata for the majority of them. The number of scraped LinkedIn skills is 33,188, 

and the metadata obtained from  (Tabrizi, 2017) is the following: 

- Number of people that have a specific skill, 

- Top 10 companies where people who have a specific skill work, 

- Top 10 similar skills which serve as keywords in search of a person with a specific skill, 

 
2 https://pypi.org/project/langdetect/ 
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- Top 10 related skills, meaning people who have registered a specific skill also have 

registered these skills. 

For the purposes of this work, only three of these features took part in the construction of the 

dictionary of LinkedIn skills: the name of the skill, the frequency of occurrence and the top related 

skills. Certain transformations were done in order to prepare the data for the intended usage.  

Since the dataset available for the proposed work is not big enough, and the relationships between 

some skills could be lost, the idea was to generate those relationships by using the top related skills 

and their respective quantities from the above-mentioned dictionary and thus create a ratio for each 

related skill that will be later used as a weight on the inputs in the model. This feature was calculated 

as the ratio between the quantity of a top related skill and the quantity of the specific skill. This is done 

in order to ensure that the skills have some continuity into them, which means that, for example, if 

someone knows C++, it is highly likely that they know C as well. With this assumption, the skills are 

treated as dependent and correlated with each other. The given example is shown in Figure 4.2. 

  

Figure 4.2 - Example relations of skill C++ 

The figure shows the metadata for the skill C++, which has 3,715,730 profiles that have it registered, 

its top skills and their respective quantities along with the derived relations. To give an interpretation, 

a ratio of 0.55 for related skill C means that from all the profiles that have C++, 55% of them have C. 

This value will represent the weight for each of the related skills in the model.  

Furthermore, the analysis of the LinkedIn skills showed that there were some skills that were 

duplicates, which was noticeable when some of those skills show slight differences in the name, most 

often a character such as whitespace or a dash. Likewise, another analysis conducted was to detect 

skills that had slightly different relations but had the same name when trimmed. The merge of the 

relations is done in such a way that all the skills in the relations are considered. Furthermore, if a 

related skill appears multiple times, the bigger relation value is considered. An example of each 

scenario along with the end result are presented in Table 4.5 and  

Table 4.6. 
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Table 4.5 - Scenario 1 

Skill 1 (considered) Skill 2 Relations 

cloud computing cloud-

computing 

{'business development': 0.28, 'solution selling': 0.28, 'pre-

sales': 0.22, 'data center': 0.25, 'software as a service (saas)': 

0.32, 'integration': 0.29, 'enterprise software': 0.34, 'project 

management': 0.3, 'virtualization': 0.24, 'management': 0.4} 

 

Table 4.6 - Scenario 2 

Skill1 

(considered) 

Skill2 Relations Skill 1 Relations Skill 2 Relations 

(merged)  

web design webdesign {'web development': 

0.22, 'adobe 

photoshop': 0.37, 

'adobe creative suite': 

0.22, 'microsoft office': 

0.23, 'adobe illustrator': 

0.26, 'html': 0.2, 

'indesign': 0.2, 

'cascading style sheets 

(css)': 0.2, 'social 

media': 0.26, 'graphic 

design': 0.37} 

{'web development': 

1.0, 'adobe photoshop': 

1.0, 'adobe creative 

suite': 1.0, 'microsoft 

office': 1.0, 'adobe 

illustrator': 1.0, 'html': 

1.0, 'indesign': 1.0, 

'cascading style sheets 

(css)': 1.0, 'social 

media': 1.0, 'graphic 

design': 1.0} 

{'web development': 

1.0, 'adobe 

photoshop': 1.0, 

'adobe creative suite': 

1.0, 'microsoft office': 

1.0, 'adobe illustrator': 

1.0, 'html': 1.0, 

'indesign': 1.0, 

'cascading style sheets 

(css)': 1.0, 'social 

media': 1.0, 'graphic 

design': 1.0} 

 

As mentioned before, not all of the skills from the LinkedIn Topics Directory had metadata, meaning 

they only appeared within the relations of other skills. A total of 910 skills with missing metadata were 

extracted from the relations and placed as a skill in the final dictionary. Table 4.7 shows a small batch 

of these skills. 

Table 4.7 - Skills with missing metadata 

Skill 

search engine optimization (seo) 

search engine marketing (sem) 

internet protocol suite (tcp/ip) 

business-to-business (b2b) 

react.js 
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This concludes all the transformations done with the provided file of scraped LinkedIn skills and thus 

the creation of the dictionary of skills that will be further used in the data preprocessing. 

4.2.3. Resume parser 

Dealing with raw documents implies that, in order to extract information, a parser needs to be built. 

The goal of the parser is to transform the raw documents to text and further process it by segmenting 

its content and performing feature extraction. The process of parsing the resumes is consisted of some 

specific steps: 

1. Conversion of the word documents to a pdf format,  

2. The transformation process of document to textual data,  

3. Segmentation of sections 

First and foremost, in order to have a unified dataset that can be processed at once, a decision was 

made to convert all the word documents to a PDF format. One of the reasons why PDF was chosen 

over Word is the wide availability and support of libraries in python for extracting text from PDF 

documents. The process of converting the word documents to PDF was consisted of two steps. The 

first step was to convert all the files with .doc extension to .docx extension, due to the library further 

used only being supported in Windows 2007 above. This was done through the Microsoft VBA Editor 

in Word. The second step was to convert all the .docx files to PDF using the python library comtypes3. 

After all of the above-mentioned steps were carried out, the dataset was unified and consisted only of 

PDF documents.  

The next step in the process is to convert the raw document to textual data that can later be 

transformed. This task was carried out by using pdfminer4, a python library serving as a text extraction 

tool for PDF documents. More specifically, the conversion from documents to textual data was 

performed with pdf2text, a command line tool for extracting text from PDFs. Before performing the 

extraction, all the PDF documents were converted to text documents, by altering the extension from 

pdf to txt. The pdf2text method was then applied on the previously converted text documents and 

thus all the text from the documents was extracted and stored into a pickle5 file. 

Once the task was concluded and all the resumes were converted to text, the next stage in the 

preprocessing phase was to detect the sections of each resume and split it accordingly so they can be 

later processed. This task is very important in a resume parser as the end goal is to extract the correct 

information from the desired sections. Several methods were considered for the section detection, all 

of which are previously mentioned in the state of the art. Given the circumstances of the available 

dataset, a decision was made to define a set of possible section titles for each section separately. The 

sets were built based on analysis over the various section titles available in the resumes. The possible 

sections defined for the purpose of the parser were: personal information, skills, education, 

experience, languages, publications, achievements,  annexes, additional information and ambiguous. 

The ambiguous section would contain sections which were very rare and do not belong to any of the 

other sections. A dictionary was built containing all the above-mentioned sections and was later used 

in the detection algorithm. After converting all the text to lower case, the split of each resume was 

 
3 https://pypi.org/project/comtypes/ 
4 https://pypi.org/project/pdfminer/ 
5 https://docs.python.org/3/library/pickle.html 
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done by identifying the starting positions of each detected section title from the dictionary and thus 

storing it separately for further analysis. Additional cleaning was done in regards for line breaks, page 

breaks, tab spaces, typographical symbols as well as pdf specific characters which were not detected 

by the UTF-8 encoding. 

After the resumes have been parsed and transformed to a semi-structured format, the next step in the 

process is to perform feature extraction, text normalization and cleaning the noise in the data. 

4.2.4. Skills normalization 

The process of skills normalization with all the transformations that contain it, are described in the 

following subsection and correspond to both datasets. 

First and foremost, the normalization of the skills starts by removing capital letters and converting all 

text to lower case, since python is case sensitive and would make the feature extraction much harder. 

The next step in the process was to remove the non-skill words from the skills section. Despite having 

the skills sections extracted from the resumes and LinkedIn profiles as well, analysis showed that 

additional preprocessing had to be carried out on both datasets in order to normalize the skills and 

filter out text which was noise. One relevant information to mention regarding the LinkedIn profiles is 

that under the skills & endorsements section on a LinkedIn profile, there is an option to input a 

subsection of languages as well, despite this section existing separately. Likewise, some skills sections 

parsed from the resumes also had the languages contained within. Since this information is irrelevant 

for the proposed solution, a decision was made to remove it from each input. This was carried out by 

using a manually created file containing around 65 languages which are mainly from European descent 

or are spoken by a rather big population. By doing a simple match, this data was successfully removed 

and thus the section text cleaned. 

Given the nature of the text that is being processed, people most often replace the full name of a skill 

with its acronym. An example of such acronyms would be: NLP for Natural Language Processing,  ETL 

for Extract Transform and Load, BI for Business Intelligence and so on. Having said this, the next step 

in the process was to handle the normalization of these acronyms and thus associate them with the 

full name of the skill and vice versa in order to reduce the variance. The method of acronym 

normalization considered is detecting a short form of a skill, its long form and a long form – short form 

combined together. An example of each is given below. 

1) Short form, for example NLP, 

2) Long form, for example Natural Language Processing and 

3) Long form (short form), for example Natural Language Processing (NLP) 

With this in mind, the solution for associating a skill to its acronym was constructed by combining the 

above-mentioned forms, first by matching 1) in 3) and second by matching 2) in 3). The resulting skill 

was the format under 3) as common ground for three. A mapping table was constructed which was 

further used to detect the corresponding acronyms and map them to their respective names.  

The next step in the transformations was to match semantically same but syntactically different 

written skills. These transformations would cover typos, plurals and differently written skills. The 

process encompasses matching of two datasets of skills, the user inputted skills from the datasets and 
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the skills from the dictionary. The dictionary is considered as ground truth and as such would be the 

target of the possibly erroneous user inputted skills. The implementation would require a calculated 

similarity of each skill in the datasets in relation to all the others skills in the dictionary. Following the 

approach presented by (Deep, 2020) in the literature review section, several different 

hyperparameters were tested before obtaining the best result. In Table 4.8 are shown the 

hyperparameter values were used to obtain the best results. 

Table 4.8 - Optimal hyperparameters for the text normalization algorithm 

Hyperparameter Value 

1st CSR matrix Dataframe of distinct skills from 
the datasets to be normalized 

2nd CSR matrix Skills dictionary 

n-grams 2 

Top-N 5 

Threshold 0.84 

 

In regards to the LinkedIn profiles, all these transformations lead to a decrease in the number of 

distinct skills present in the dataset, from 25,693 to 22,568. However, further analysis showed that 

98% of the skills had an occurrence of less than 1.5% of the total amount of LinkedIn profiles. This 

implied that these skills were not represented well enough and were thus considered noise. After 

filtering out the dataset according to this condition, the number of distinct skills i.e., vocabulary size, 

was 464. 

As for the resumes, the size of the dataset was decreased for 100 resumes for which the parser did not 

detect a skills section, resulting in 1,068 samples. Furthermore, the above-mentioned transformations 

led to a less significant decrease of 6,706 to 6,632 distinct skills. Additionally, 94% of the extracted 

skills had an occurrence of less than 6.5% of the total amount of resumes, which either means an 

erroneous extraction or an underrepresented skill and were as well eliminated from the dataset 

resulting in a vocabulary of 388 skills.  

4.2.5. Model Input 

After all the transformations are concluded, the final step is to not only represent each candidate with 

the skills enlisted in their profile but also with the related skills previously generated. However, since 

the related skills and their respective weights are obtained from a different dataset, i.e., all the 

LinkedIn profiles available at the moment of extraction, there are some additional skills that occur 

within them that do not occur at all in the datasets used in this work. Thus, to prevent expanding the 

universe of available skills in the datasets to unknown ones, the related skills considered in the end 

were the only ones that have occurred within the datasets. By doing this, the related skills serve their 

purpose of providing the model with the “missing” relationships between the skills and aid the learning 

process. Therefore, the original set of skills are all associated with a weight of 1, whilst the related ones 

will have the calculated weight as explained in subsection 4.2.2. Additionally, in order for the model to 

treat the skills as labels, as it is intended in this use case, the prefix __label__ is appended before every 

skill. An example for a single input in the model, i.e., a single candidate is as follows: __label__1 

__label__2 … __label__M. 
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4.3. DATA MODELING 

The data modelling succeeds the preprocessing stage and is consisted of the characterization of the 

chosen train mode in StarSpace, the partitioning of the data into train, test and validation datasets, as 

well as the hyperparameters tweaked in the process. Thus, this subsection will consist of a) description 

of how the chosen train mode works, b) data partitioning and c) definition and reasoning behind the 

chosen hyperparameters in training. 

4.3.1. Content-based recommendation (trainMode=1) 

As described in the literature review, StarSpace can be used in different training modes, depending on 

the use case. The proposed solution uses train mode 1, as the aim is to build a recommender system 

as an end result. Considering the context of the datasets, in the chosen train mode, a user is 

represented as a bag-of-skills which are enlisted in their resume or LinkedIn profile. The way the model 

works is that it does not learn direct embeddings of the users. Rather a user will have an embedding 

which is the average of all the skills embeddings the user possesses. The skills, on the other hand, are 

embedded directly as features in the dictionary. This use case gives better results when the number of 

users is bigger than the number of skills, and the number of skills for every user is small on average. 

Each input is a single user represented by the bag-of-skills, where each skill is treated as a featured 

label. Additionally, each of the skills is assigned the weight computed in the data preprocessing step. 

As each input is represented as a collection of labels, a positive entity pair (𝑎, 𝑏) is generated such that 

𝑏 is a randomly selected label from the collection, while the rest of the labels from the collection are 

selected as 𝑎. The positive entity pair represents a correct output, or in the given context, set of skills 

that are most likely to occur together. The negative entities 𝑏𝑖
− are generated by using the negative 

sampling method proposed by (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). StarSpace is trained 

to map similar features in closer proximity in the vector space rather than the negatively sampled 

features. An illustrative example of a set of entity pairs given the context of this work would be: 

 ((𝑝𝑦𝑡ℎ𝑜𝑛, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑝𝑎𝑛𝑑𝑎𝑠, 𝑑𝑎𝑡𝑎 𝑠𝑐𝑖𝑒𝑛𝑐𝑒, 𝑁𝐿𝑃), 𝑛𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠) 

((𝑝𝑦𝑡ℎ𝑜𝑛, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑝𝑎𝑛𝑑𝑎𝑠, 𝑑𝑎𝑡𝑎 𝑠𝑐𝑖𝑒𝑛𝑐𝑒, 𝑁𝐿𝑃), 𝑛𝑜𝑑𝑒. 𝑗𝑠) 

((𝑝𝑦𝑡ℎ𝑜𝑛, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑝𝑎𝑛𝑑𝑎𝑠, 𝑑𝑎𝑡𝑎 𝑠𝑐𝑖𝑒𝑛𝑐𝑒, 𝑁𝐿𝑃), 𝑤𝑒𝑏 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡) 

((𝑝𝑦𝑡ℎ𝑜𝑛, 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔, 𝑝𝑎𝑛𝑑𝑎𝑠, 𝑑𝑎𝑡𝑎 𝑠𝑐𝑖𝑒𝑛𝑐𝑒, 𝑁𝐿𝑃), 𝑝ℎ𝑜𝑡𝑜𝑠ℎ𝑜𝑝), 

In which the subset of python, machine learning, pandas, data science and NLP and considered as 𝑎, 

while neural networks, a true label, is considered as 𝑏. Moreover, the 𝑏𝑖
− entities are accordingly the 

skills node.js, web development and photoshop, which are considered negative as they are not closely 

related to the previous.  

4.3.2. Data Partition 

The objective of this task is to describe the partitioning of the data into a training, test and validation 

dataset. The initial datasets are respectively split, by random, into partitions of 75% training, 10% 

validation and 15% test dataset. These respective datasets are later used as inputs in the model, each 

of which is utilized for a specific part of the process. 
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4.3.3. Hyperparameters 

Several hyper parameters were tweaked in order to test their impact on the overall performance of 

the model. A grid search algorithm was implemented in order to determine the optimal values for each 

of the hyperparameters in an elegant manner. The hyperparameters that were chosen for the grid 

search are described in below. 

Dimensionality – size of the embedding vectors. The dimensionality of word embeddings has an 

influence on its performance (Yin & Shen, 2018). Smaller embedding vectors would mean compressing 

the words too much and not representing the semantics well enough. On the other hand, too large 

vectors would require the model to learn more parameters which will thus require more data. 

Moreover, a larger dimensionality would mean that the model would not only consider relevant 

information, but also consider noise while learning the embeddings. The default value for this 

parameter is 100. 

Epochs – number of epochs, hence the number of times the whole dataset will pass through the model. 

The number of epochs, as any other hyperparameter is determined through a matter of trial and error. 

Depending on the type of problem assessed by the model, a very large number of epochs could lead 

to an overfitting of the model, as it will learn the dataset to an extent that it won’t be able to generalize 

well enough. Conversely, a small number of epochs could lead to an underfitted model which occurs 

when the model is unable to capture the underlying patterns in the data. An epoch is comprised of 

one or more batches. The default value for this parameter is 5. 

Batch size – size of mini batch in training. A batch is the number of examples used in each iteration of 

the training phase. The smaller the batch size the higher the variance, meaning that the model will 

update its parameters more frequently, leading to big oscillations in the loss function and a slower 

overall convergence to optimal embeddings. However, by introducing a very high batch size, the rate 

of the updates of the parameters will be much lower, leading to an averaging of the whole batch of 

examples, which might vary  a lot from one to another, thus introducing bias to the model. The batch 

size is a typical example of the bias vs variance trade-off.  The default value for this parameter is 5. 

Validation patience – the number of iterations of validation where the model does not improve before 

the training is stopped. An iteration is the number of batches needed to complete an epoch. This 

hyperparameter is crucial for maintaining the optimal hyperparameter values and stop the model from 

overfitting. A smaller value might be insufficient and lead the model to a higher validation error, while 

a larger value might lead to an overfitted model, which is exactly what is aimed to avoided with the 

use of this parameter. The default value for this parameter is 10. 

Negative Search Limit – number of negatives sampled during each batch. Too few negatives sampled 

would lead the model to not be able to differentiate well enough between the positive and negative 

samples. Too many negatives sampled would introduce too much noise in the model. The default value 

for this parameter is 50. 

Table 4.9 presents the variations of hyperparameters tested in the process of obtaining the optimal 

result. 
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Table 4.9 - Set of values for hyperparameters tuning 

Hyperparameter StarSpace API Values 

Dimensions dim [50, 150, 250] 

Epochs epoch [10, 30, 50] 

Negative Samples negSearchLimit [50,100,150] 

Batch Size batchSize [5,10] 

Early Stopping validationPaticence [10,15,20] 

 

4.3.4. Evaluation metrics 

StarSpace has built-in metrics for evaluating the performance of the model. Aside from metrics for 

validating the results, such as hits @ k and mean predicted rank, the model provides the standard train 

and validation loss and error as a metric for evaluating the model in the training phase.  

4.3.4.1. Error 

The error function is computed as the average loss of all the examples in all the mini-batches of a single 

epoch. The loss function is updated for every mini batch within an epoch. 

4.3.4.2. Hits @ k 

The hits@k metric is the equivalent of precision@k metric for text classification. Precision is defined 

as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

which can be interpreted as the proportion of the retrieved entities that are relevant to the user. In a 

binary classification, precision takes all the entities into consideration, however precision@k only 

evaluates the top k results retrieved by the system. This variant of the metric does not consider the 

order of retrieved entities but rather the percentage of relevant entities retrieved in the top k results.   

4.3.4.3. Mean Rank 

The mean rank metric represents the mean predicted rank of the chosen entity among 𝑛 entities. This 

metric represents the arithmetic average of the positions of the entities ranked ascendingly and 

measures the ability of a retrieval system to score a true result among all possible results.  

  

 

 

 

 

(eq 4.1) 
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4.4. DATA ANALYSIS 

This subsection will carry out descriptive statistics based on the analysis performed over both datasets 

before and after the data preprocessing. Considering the type of data at disposal, the analysis will 

cover a general overview of the data and present measures such as frequency counts of the skills 

available in the datasets and average number of skills per candidate. All of the graphs will be shown 

for both datasets, side by side. First and foremost, in order to obtain a general idea of the skillset of 

the users, an analysis was done of the most frequent skills. However, since every candidate in the 

model is represented with the original set of skills and the related skills, the following presented will 

show the top 20 most frequent skills before and after merging both skillsets. 

  

Figure 4.3 - Top 20 most frequent skills (Original) 

– LinkedIn Profiles 

Figure 4.4 – Top 20 most frequent skills (Original) 

– Resumes 

At first glance, one can conclude that the majority of the skills in the LinkedIn profiles are non-technical, 

an umbrella group that encompasses areas such as management, entrepreneurship or sales. This can 

be confirmed by the fact that only four skills from the top 20 are actually closely related to the area of 

software development.  

However, it is harder to make such a conclusion for the skills obtained from the resumes, as there are 

some which presumably imply erroneous parsing like business, software, application, writing, etc. As 

described in 4.2.2, the dictionary used in the feature extraction process contains various different skills 

available from the LinkedIn database, thus leading the regex methods applied to possible wrongful 

matches. Nevertheless, the most frequent skills from the resumes imply that the candidates come 

from a more technical background. 
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It can be observed that both lists differ with the previous to some extent and that is mainly due to the 

related skills that are appended to each candidate’s original skillset. Some of these skills, like the 

Microsoft Office Suite, are generic, in the sense that most people have them enlisted in their profiles 

and logically they appear in the related skills very often.  

Furthermore, the data exploration process continues with computing the occurrences and the number 

of skills in order to identify how well each feature is represented in the datasets. What the graph below 

represents is the number of skills that occur within the given range of values, for instance, in the 

LinkedIn profiles there are 13,070 skills that occur only once, 8,420 that occur from 2 to 30 times and 

so on. 

  

  

Figure 4.5 - Top 20 most frequent skills (Original 

+ Related) – LinkedIn profiles 

Figure 4.6 - Top 20 most frequent skills (Original  

+ Related) – Resumes 
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Figure 4.7 - Binning of skills occurrences – 

LinkedIn profiles 

Figure 4.8 - Binning of skills occurrences - 

Resumes 

This particular analysis served to filter the vocabulary size, which lead to a reduction in its variance. 

The assumption made was to remove skills which are not well represented. Several different 

thresholds were applied in order to obtain the best result possible. Another interesting statistic 

explored is the number of skills each user is represented with. Despite the fact that there is no evidence 

that the dimensionality of the word vectors is correlated with the vocabulary size, it served as a good 

starting point in the tuning of this particular hyperparameter.   

The average number of skills per candidate in the LinkedIn profiles is 74, while for the resumes this 

number is 125. This large number is a result from the related skills attributed to the original set. 

However, the larger average number of skills per resume is presumablly due to erroneous feature 

extraction.

  

Figure 4.8 - Binning of skills per candidate – 

LinkedIn profiles 

Figure 4.9 - Binning of skills per candidate – 

Resumes 
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5. RESULTS AND DISCUSSION 

This section is the pinnacle of this work and presents the results of the proposed methodology along 

with a discussion regarding the experiments that lead to the optimal hyperparameters chosen for the 

model. It is comprised of a brief summary of the model performance metrics together with its 

embeddings, outputs and several practical examples of most adequate candidates’ retrieval for given 

job positions. Additionally, multiple conducted experiments will be showcased, that not only validate 

the assumptions made throughout this work, but also illustrate the importance of certain 

hyperparameter choices. 

5.1. RESULTS 

5.1.1. Training performance 

During the training phase, the model is tuned in such way that it learns how to optimize the loss 

function in regards to the training set. At the end of every iteration, it evaluates its performance over 

an independent set of data, known as the validation set, in order to ensure that the model does not 

overfit. However, these quantitative metrics used to assess the model’s performance are not a clear 

indicator of the quality of the embeddings produced as an output. The loss function will be used to 

assess the training performance, whereas for the evaluation, hits@k and Mean Rank will be presented. 

The results shown are regarding the optimal hyperparameters which are given in Table 5.1.  

Table 5.1 - Optimal hyperparameters for StarSpace 

Hyperparameter Value 

Dimensions 150 

Epochs 30 

Negative samples 50 

Batch size 5 

Early stopping 20 

 

The model was run with the same hyperparameters on both datasets, the LinkedIn profiles and the 

resumes. The results are shown in Figure 5.1 and Figure 5.2 correspondingly.  
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Figure 5.1 - Training and validation sets performance – Loss function – LinkedIn profiles 

When observing the performance of the model on the dataset of the LinkedIn profiles, it can be noticed 

that the loss function on both training and validation sets converges, although there is some noticeable 

variance on the validation set. Early stopping od 20 iterations is used as a regularization method to 

avoid overfitting of the model.  

 

Figure 5.2 - Training and validation sets performance – Loss function – Resumes 

However, when running the model on the dataset of the resumes, the results show inferior 

performance. The validation loss is much higher and does not seem to converge throughout epochs, 

meaning that it is not able to generalize well. The fact that the dataset is completely unstructured and 

the parser is not as robust contributes to these results, in addition to the smaller amount of data inputs 

available for the model to learn from. 

5.1.2. Skills embeddings 

As referred to in section 4.4, certain experiments were done by reducing the vocabulary size. Even 

after all the transformation steps applied, the number of distinct skills was more than double of the 

dataset size and a set of them had very few occurrences. Intuitively, an assumption can be made that 

the model would not only suffer lack of data given the complexity of the vocabulary size, but also 

receive a lot of noise and thus not be able to learn the embeddings correctly. Having said this, certain 

skills that had very small occurrences throughout the whole dataset were filtered out. Initially, for the 

dataset of LinkedIn profiles, the threshold applied was an occurrence of above 1.5% of all the available 

inputs, resulting in a vocabulary size of 464 skills. Like-wise, for the resumes this threshold was slightly 

higher due to the small ratio of the vocabulary size and the data inputs, thus an occurrence of less than 

6.5% of all the available inputs was only considered, resulting in a vocabulary size of 388 skills.  

The skills embeddings produced by the model for the dataset of LinkedIn profiles are shown in Figure 

5.3.   
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Figure 5.3 - tSNE output of the skills embeddings 

One can observe that StarSpace does not provide clusters as blobs, but rather arms of a star. When 

zooming into the arms of the star to see more clearly how the skills were grouped, despite some 

related skills being in close proximity in the vector space,  other ones were not as coherent. For 

instance, Figure 5.4 and Figure 5.5 represent the embeddings from two of the arms of the star. 

 

Figure 5.4 - Skills embeddings in the bottom-left arm of the star 
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Figure 5.5 - Skills embeddings in the upper arm of the star 

However, since t-SNE is a heuristic algorithm with a convex cost function, it is prone to produce 

different outputs with every initialization. Additionally, it is highly dependent on the hyperparameters 

chosen, one of which being the perplexity. Therefore, these outputs are not consistent and thus 

unreliable in order to properly evaluate the quality of the embeddings. An alternative approach would 

be to generate the nearest neighbors for a set of the embeddings and validate if they are closely related 

in terms of a job position. Having said this, the skills embeddings for the resumes will be presented 

only by the nearest neighbors approach. 

The examples and their corresponding 10 nearest neighbors from the dataset of LinkedIn profiles are 

presented in Table 5.2, where the Skill column contains the examples for which this evaluation was 

performed, i.e., the skills, and nearest neighbors are the embeddings in their closest proximity, along 

with the calculated degree of similarity. For purposes of presentation, the label prefix is omitted. 

Table 5.2 - Nearest neighbors for the skills embeddings – LinkedIn profiles 

Skill Nearest neighbors Similarity 

Python 

Linux  

C  

Java  

Javascript  

C++ 

MySQL 

SQL 

C#  

Bash  

0.722398 

0.670724 

0.623791 

0.580158 

 0.573350 

0.521145 

0.506378 

0.443652 

0.407018 
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Windows 0.371283 

Project Management 

Leadership  

Management  

Microsoft Office 

Microsoft Excel  

Strategic Planning  

Microsoft Word  

Business Development  

Change Management  

Marketing  

Customer Service 

0.804328 

0.795947 

 0.71733 

0.689631 

0.625083 

0.611664 

0.596941 

0.548703 

0.545072 

0.544908 

Graphic Design 

Adobe Creative Suite  

Adobe Illustrator  

Web Design  

Indesign  

Adobe Photoshop  

Photography 

Blogging  

Socialmedia  

Wordpress  

Advertising 

0.837977 

0.823914 

0.819836 

0.773138 

0.478329 

 0.412290 

0.255544 

0.251899 

0.244313 

0.234385 

C++ 

SQL 

C  

Java  

C#  

XML  

Linux  

Python 

Javascript  

HTML  

MySQL 

0.78949 

0.780733 

0.723974 

0.692142 

0.649427 

0.588765 

 0.573350 

0.552689 

0.540757 

0.515474 

Marketing 

Social Media  

Online Marketing  

Social Media Marketing  

Business Development  

Marketing Strategy  

Online Advertising  

Strategic Planning  

Business Strategy  

Leadership  

E-commerce 

0.734581 

0.699936 

0.694485 

0.679288 

0.651426 

0.646929 

0.560859 

0.558255 

0.551333 

0.543282 

HTML 

PHP 

Javascript  

Java  

0.729689 

0.673449 

0.646176 
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Cascading Style Sheets(Css)  

MySQL  

C  

Adobe Photoshop  

Jquery  

C++  

C# 

0.626763 

0.622788 

0.595573 

0.588608 

0.587062 

0.540757 

 0.484910 

 

When observing the nearest neighbors for the skill marketing, it can be assumed that the majority of 

these skills correspond to the field itself. Since this specific skill can also be interpreted as an area of 

expertise, it can be noticed that some of its neighboring labels are actually subfields of marketing, such 

as social media marketing, online advertising and online marketing. Others such as marketing strategy 

and strategic planning are expertise which are closely related with the field. Moreover, some of the 

skills such as business strategy or business development are competencies which border with business 

development as a field, but are nonetheless used interchangeably. 

A more challenging example would be a multidisciplinary skill like python. Python as a coding language 

spans throughout several subfields of IT such as Data Science, Web Development or DevOps, making 

it harder for the model to correctly embed it in the vector space. Some of its neighboring labels are 

other programming languages like C, C++, C# or Java which although different, are very common 

among IT candidates because they are often included as part of their skillset. Additionally, most Python 

applications are developed in Linux, with bash being the command language for executing scripts, 

which in fact validates their close proximity in the vector space. A label such as JavaScript is more 

common for an area like Web Development, while SQL and MySQL are skills that could be more 

associated with Data Science, as they are both querying languages used for analyzing databases. 

As a matter of comparison of the two models, the nearest neighbors for the same examples were 

obtained for the dataset of resumes. 

Table 5.3 - Nearest neighbors for the skills embeddings – Resumes 

Skill Nearest neighbors Similarity 

Python 

Shell Scripting  

Routing  

SQL 

Twitter  

Construction  

Telecom  

Machine Learning  

Events  

Continuous Improvement  

Chemistry 

0.412858 

0.394275 

0.382964 

0.318225 

0.313599 

0.298699 

0.297703 

0.286437 

0.273059 

0.272843 

Project Management 

Customer Service  

Graphic Design  

Leadership  

0.554446 

0.509754 

0.494189 
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Software Documentation  

Service - Oriented Architecture (SOA)  

Microsoft Office  

Investments  

Ecology  

Digital Marketing  

Negotiation 

0.491384 

0.464253 

0.401446 

0.401319 

0.390912 

0.386764 

0.372855 

Graphic Design 

Adobe Photoshop 

Adobe Illustrator  

Leadership  

Project Management  

Wireless Technologies  

Digital Marketing  

Product Management  

Program Management  

Microsoft Excel 

Adobe Creative Suite 

0.66633 

0.611562 

0.531271 

0.509754 

0.462757 

0.431325 

0.420257 

0.417645 

 0.413010 

0.412126 

C++ 

C  

Java  

MySQL  

Javascript 

Microsoft Word  

Software Development  

Research  

Linux  

PHP 

SQL 

0.856979 

0.710362 

0.672454 

 0.616220 

0.572703 

0.509616 

0.493199 

0.482972 

0.479872 

 0.452620 

Marketing 

Marketing Strategy  

Social Media  

Business Strategy  

Strategy  

Social Media Marketing  

Strategic Planning  

Video Production  

Microsoft Powerpoint  

Leadership  

Investments 

0.576612 

0.545157 

0.539996 

0.486134 

0.457117 

0.454019 

0.436849 

0.434614 

0.425067 

0.419977 

HTML 

Web Development  

Javascript  

Unix  

Perl  

Electrical Engineering  

Shell Scripting  

Litigation  

0.530001 

0.501092 

0.497654 

0.443475 

0.441803 

0.426458 

0.413693 
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Operations Management  

Wordpress 

.NET 

0.394454 

 0.383370 

0.381892 

 

As can be observed, the nearest neighbours obtained for the resumes are not as adequate as the 

previous. Although some skills appear to be related in practice, for instance, the skills for marketing or 

c++, other ones such as python or project management are not as coherent with the skills in their 

nearest proximity. The lack of data undoubtedly affects how well the model will learn the embeddings 

of the skills as it has much fewer examples from each skill in order to correctly place it in the vector 

space.  

5.1.3. User embeddings 

After the skills embeddings are generated, the next step is to create user embeddings based on the 

skills each candidate is represented with. This is carried out by computing a weighted average over the 

produced skills embeddings and their corresponding weights. A weighted average is done in order to 

ensure that the related skills which have a lower weight do not contribute equally to the resulting 

vector, as opposed to the highly related ones, which may or may not be a part of the original skillset 

of a candidate.  

Given a candidate 𝐶 represented with a set of skills 𝑆, the corresponding user embedding 𝐸𝐶  is 

calculated as: 

𝐸𝐶 =  ∑
1

𝑁
𝑤𝑖𝑠𝑖 ,

𝑁

𝑖=1

 

where 𝑁 is the number of skills and 𝑤𝑖 ∈ 𝑊 are the weights associated with each skill 𝑠𝑖 ∈ 𝑆. An 

example is illustrated in Table 5.4 where each of the skills embeddings is represented with only three 

dimensions. 

Table 5.4 - Example of a user embedding 

Skills Embeddings User Embedding 

__label__python:1   [0.1 0.3 0.5] 
1

3
[

1 × 0.1 1 × 0.3 1 × 0.5
0.9 × 0.6 0.9 × 0.8 0.9 × 0.2
0.8 × 0.9 0.8 × 0.1 0.8 × 0.5

] = [0.45 0.36 0.36] __label__pandas:0.9   [0.6 0.8 0.2] 

__label__sql:0.8 [0.9 0.1 0.5] 

 

Given the poor results on the dataset of resumes previously described in 5.1.2, this subsection will only 

characterize the user embeddings produced from the dataset of LinkedIn profiles. The vector space of 

the user embeddings for the dataset of LinkedIn profiles is presented in Figure 5.6. 

(eq 5.1) 
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Figure 5.6 - tSNE output of the user embeddings 

Likewise, due to the unreliability of t-SNE and a large number of data points, the quality of the 

embeddings is validated by the nearest neighbours approach, where the input is a set of skills which 

represent a given job position. A job position is represented in the same way as a candidate, hence as 

a vector of all the skills required. In case weights are not provided, the model assumes the default 

weight of 1 for each given skill.  Having said this, a job position would represent the perfect candidate 

as it would include all the required skills. Thus the candidates in its closest proximity would be the 

adequate ones for the job position. The examples illustrated in Table 5.5, Table 5.6 and Table 5.7 are 

based on real job advertisements obtained from LinkedIn, where each job position is broken down into 

a set of required skills enlisted in the advertisement itself. However, the vector of the job position will 

only consist of skills that belong to the set used to train the model, disregarding any other 

requirements such as education, languages, experience, seniority etc. The following three distinct job 

positions were chosen to evaluate the quality of the embeddings: 1) Data Scientist, 2) Marketing 

Specialist, and 3) Front-end developer. For further reference, the full descriptions of the job 

advertisements are available in appendix 9.2.  

The first job advertisement is for the position of a Data Scientist at a consulting company. The company 

is offering a full-time job for an associate-level Data Scientist with a degree in Computer Engineering 

and experience with non-relational databases and technologies such as R, Python, Java or Scala. 

Additionally, it is required that the candidate is fluent in English, has good communication skills and is 

flexible and dynamic. The input vector for the job position consists of Python, Machine Learning, Data 

Science, Java, R and Databases. The top three candidates obtained by the nearest neighbours 

algorithm are displayed in Table 5.5. 
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Table 5.5 - Top 3 candidates for the job position of a Data Scientist 

Job Position Candidates 

Data Scientist 

 

Python, 

Machine Learning, 

Data Science, 

Java, 

R, 

Databases 

 

Candidate 1 

Current Job Position CEO | Chief Data Strategist @ a 
company that provides data 
science solutions 

Top 10 Skills 1. Algorithms 
2. Machine Learning 
3. Mathematical Modeling 
4. Data Analysis 
5. Data Mining 
6. Computer Science 
7. Python 
8. Big Data 
9. Artificial Intelligence 
10. C++ 

Candidate 2 

Current Job Position CEO @ a financial analytics AI 
company 

Top 10 Skills 1. Machine Learning 
2. R 
3. Data Analysis 
4. Deep Learning 
5. C++ 
6. Python 
7. Data Science 
8. SQL 
9. MATLAB 
10. TensorFlow 

Candidate 3 

Current Job Position CTO @ an IT company 

Top 10 Skills 1. R 
2. TensorFlow 
3. Python 
4. Deep Learning 
5. Software Development 
6. Software Architecture 
7. Computer Vision 
8. SQL 
9. Data Engineering 
10. Mathematical Physics 

 

As can be observed, all three candidates are executives of a C-level job position, two Chief Executive 

Officers and one Chief Technology Officer. Although it is not precisely known how balanced the dataset 

is in regards to the level of seniority of the candidates, one might argue that the model retrieves 

candidates who are more experienced. Therefore it is more probable that they will have the skills the 

job requires, as well as other ones which are highly related to the former. For instance, skills such as 

Machine Learning, TensorFlow, Deep Learning, Computer Vision, Data Science, Data Analysis, Data 

Mining etc. are clearly skills that are linked to a Data Scientist. Additionally, Python and R are a perfect 

match to the given requirements. However, despite the fact that none of the top 3 candidates have 

Java or Scala as a skill in their profile, it can be observed that some do have C++ , also an object-oriented 

language, which has a high weight of 0.53 for Java in its related skills in the dictionary. Moreover, Java 
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is highly related with Scala with a weight of 0.79. Likewise, none non-relational databases appear in 

these candidates’ profiles, however some have enlisted Big Data and Data Engineering, which are the 

subfields to which non-relational databases belong. Figure 5.7 illustrates a visual representation of the 

skills distribution of these candidates. 

 

 
Figure 5.7 - Skill counts for the top 3 candidates for the Data Scientist job position 

The second job advertisement is regarding the position of a Marketing Specialist in a Marketing 

Agency. The employer is offering a full-time job to an associate level Marketing Specialist with an 

expertise in development and optimization of Search Engine Marketing as well as Social Media 

Marketing campaigns. The job requires extensive knowledge in Google Ads, Facebook Ads, Google 

Analytics, good knowledge in Web Marketing and knowledge in JavaScript. The top three candidates 

obtained for the given job position are illustrated in Table 5.6. 

Table 5.6 - Top 3 candidates for the job position of a Marketing Specialist 

Job Position Candidates 

Marketing Specialist 

 
Candidate 1 

Current Job 
Position 

Search Engine Optimization 
Manager @ an internet 
marketing service company 
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Google Ads, 

Google Analytics, 

Facebook, 

Search Engine Optimization 
(SEO), 

Search Engine Marketing 
(SEM), 

JavaScript, 

Web Marketing, 

Social Media Marketing 

 

Top 10 Skills 1. Search Engine Optimization 
(SEO) 

2. Search Engine Marketing 
(SEM) 

3. Social Media Marketing 
4. Social Media Optimization 

(SMO) 
5. Google AdWords 
6. Google Analytics 
7. Content Management 
8. Web Marketing 
9. Web Development 
10. Facebook 

Candidate 2 

Current Job 
Position 

Chief Technology Officer @ a 
marketing company 

Top 10 Skills 1. Google Analytics 
2. Search Engine Optimization 

(SEO) 
3. Search Engine Marketing 

(SEM) 
4. Web Marketing 
5. Social Media Marketing 
6. Google AdWords 
7. Web Analytics 
8. Online Marketing 
9. CMS 
10. WordPress 

Candidate 3 

Current Job 
Position 

Marketing Technology and 
Business Development Manager 
@ a law firm 

Top 10 Skills 1. Customer Relationship 
Management (CRM) 

2. Email Marketing 
3. User Experience 
4. Content Marketing 
5. Social Media 
6. Marketing Strategy 
7. User Interface 
8. Web Marketing 
9. Web Analytics 
10. Search Engine Optimization 

(SEO) 

 

In a similar manner, the candidates retrieved are on a higher hierarchical position, two managers and 

one Chief Technology Officer. The skillset of these candidates is an almost perfect match in regards to 

the job position vector, as the majority of the required skills are either directly or indirectly linked to 

the candidates. The only required skill which is not enlisted in either of the candidates’ profiles is 

JavaScript. However, some of the candidates have skills such as CMS or Web Development which are 

both associated with JavaScript in the dictionary with a weight of 0.9 and 0.27 accordingly. This is a 
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clear example of the importance of the relations incorporated in the model. The visual representation 

of the distribution of skills for these candidates is shown in Figure 5.8. 

 

Figure 5.8 - Skill counts for the top 3 candidates for the Marketing Specialist job position 

Lastly, the user embeddings were evaluated for the job position of a Front-end Developer. The job 

position described in the advertisement is fit for an experienced Front-end Developer that has strong 

computer science fundamentals and is fluent in technologies such as React.js, Node.js or JavaScript. 

Additionally, the candidate ought to have extensive experience in software design and development, 

as well as be able to work in an agile engineering environment. The candidates that scored best are 

presented in Table 5.7. 

Table 5.7 - Top 3 candidates for the job position of a Front-end Developer 

Job Position Candidates 

Front-end developer 

 

JavaScript, 

Node.js, 

React.js, 

Front-end development 

Candidate 1 

Current Job 
Position 

Software Engineer @ an IT 
company 

Top 10 Skills 1. JavaScript 
2. Node.js 
3. Computer Science 
4. Object Oriented Design 
5. Web Development 
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Computer Science  

Agile Methodologies 

Software Design 

Software Development 

 

6. Software Engineering 
7. Agile Methodologies 
8. React.js 
9. Redux.js 
10. Angular 

Candidate 2 

Current Job 
Position 

Software Engineer @ an IT 
company 

Top 10 Skills 1. Node.js 
2. React.js 
3. JavaScript 
4. Front-end Development 
5. Computer Science 
6. Web Development 
7. Scrum 
8. Agile Methodologies 
9. Software Development 
10. Web Services 

Candidate 3 

Current Job 
Position 

Software Engineer @ an IT 
company 

Top 10 Skills 1. Node.js 
2. JavaScript 
3. Software Development 
4. Software Design 
5. Algorithms 
6. Front-end Development 
7. Algorithm Design 
8. jQuery 
9. Backbone.js 
10. Java 

 

In contrast to the previous two job positions, the candidates obtained in this scenario are not high-

level executives, but software engineers. Based on their skillset, all of them are experienced Front-end 

Developers with expertise in several JavaScript technologies. It can be observed that all candidates 

possess Node.js and JavaScript, while skills like React.js, Web Development, Computer Science, Front-

end Development, Agile Methodologies and Software Development are only present in two candidates’ 

profiles. Additionally, since the job position requires expertise in software design, one candidate 

possess this exact skill, while other has Object-oriented design which in fact is an approach to Software 

Design. Moreover, this skill has a direct relation to Software Design in the dictionary with a weight of 

0.48 and an even stronger relation with Software Development with a weight of 0.72. In regards to the 

requirement for experience in an Agile environment, despite one of the candidates not possessing this 

skill, other skills from their profiles, such as Software Design, indicate a relation with Agile 

Methodologies with a weight of 0.22. A visual representation of the skills of the obtained candidates 

is presented in Figure 5.9. 
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Figure 5.9 - Skill counts for the top 3 candidates for the Front-end Developer job position 

These examples show fitting results based on the inputs for the job positions, however there is no 

reassurance if these outputs are in fact the most adequate ones from the pool of candidates. The 

following subsection will show the scores of the evaluation metrics obtained in the testing phase. 

5.1.4. Validating a recommender system 

One of the most difficult parts of recommender systems is measuring the quality of the 

recommendations produced. Recommender systems have been widely used in real-life applications 

and as such have been the topic of research for many years. However, it has been shown that there is 

a disparity between industry and academia in the evaluation methods of these models (Peska & Vojtas, 

2020). Hence, there are two approaches in evaluating a recommender system, on-line and off-line. 

While academics are more focused on the traditional Machine Learning evaluation measures that do 

not describe the results fully, but only partially, business users find the results from the on-line 

experiments on live systems much more valuable.  

5.1.4.1. Off-line evaluation 

Off-line evaluation can be divided into two categories, implicit and explicit feedback. Implicit feedback 

helps estimating the results through interactions with the product, clicks, views, purchases, searches 

etc. Explicit feedback on the other hand, is often collected through a star rating system, which is not 
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always provided. This evaluation approach encompasses traditional measures from Machine Learning 

and Information Retrieval in order to estimate the performance of the recommendations. These 

measures include RMSE, Normalized Discounted Cumulative Gain (NDCG@k), Recall@k, F1 Score and 

Precision@k (Moosend Engineering & Data Science, 2019) and are generated based on the predictions 

done on the test dataset. 

5.1.4.2. On-line evaluation 

Unlike the off-line evaluation, online evaluation incorporates the context along with the actual needs 

of the user and their behaviour and interaction with the recommender system in a live environment. 

These experiments are often conducted through A/B Testing, which can be very time-consuming. A/B 

Testing is a research methodology that evaluates the user experience with the product by comparing 

two versions of a single variable, A and B. Depending on the context of the recommender system, 

various different metrics can be obtained to assess the performance, such as Click-through rate (CTR), 

user engagement, click rank, click-skip etc. The choice for the online measures is highly dependent on 

the business context in which the recommender system is used. 

5.1.5. Model evaluation 

This work will only include an off-line evaluation of the model’s performance due to a lack of resources 

for further validation. The testing of the model for the utilized training mode of StarSpace is carried 

out by the model picking one label at random as RHS and the remaining ones as LHS for each input in 

the test dataset. It then proceeds to predict the top K labels for RHS given the labels in the LHS. The 

predictions for several test examples chosen at random from the dataset of LinkedIn profiles are shown 

in Table 5.8, Table 5.9 and Table 5.10. 

Table 5.8 - Prediction example 1 

LHS RHS Predictions 

__label__asp.net  

__label__c#  

__label__jquery  

__label__xml  

__label__ajax  

__label__visualbasic.net(vb.net)  

__label__sql 
__label__cascadingstylesheets(css) 

__label__html  

__label__javascript  

__label__visualbasic  

__label__php  

__label__mysql  

__label__visualstudio  

__label__json  

__label__webservices  

__label__java 
__label__softwaredevelopment 

__label__.net 

(--) [0.704231]   __label__visualbasic.net(vb.net)  

(--) [0.587176]   __label__visualstudio  

(--) [0.562166]   __label__c#  

(--) [0.558221]   __label__visualbasic  

(++) [0.541923]  __label__.net  

(--) [0.532695]   __label__java  

(--) [0.529999]   __label__sql  

(--) [0.495328]   __label__mysql  

(--) [0.466303]   __label__c++ 
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Table 5.9  - Prediction example 2 

 

Table 5.10 - Prediction example 3 

LHS RHS Predictions 

__label__javascript  

__label__php  

__label__jquery  

__label__java  

__label__adobecreativesuite  

__label__amazonwebservices 

__label__git  

__label__linux  

__label__sql  

__label__cascadingstylesheets(css)  

__label__html  

__label__node.js  

__label__databases  

__label__ajax  

__label__contentmanagementsystems  

__label__docker 

__label__mysql 

(--) [0.697342]  __label__php  

(--) [0.666098]  __label__linux  

(++) [0.644585] __label__mysql  

(--) [0.628341]  __label__javascript  

(--) [0.617939]  __label__amazonwebservices  

(--) [0.615915]  __label__docker  

(--) [0.562549]  __label__java  

(--) [0.551631]  __label__git  

(--) [0.541903]  __label__node.js 

 

Since each candidate is represented as a collection of their skills, meaning that the embedding of a 

candidate is the average of the skills’ individual embeddings, the resulting embedding could appear in 

the predictions for the RHS label as it could be close to the LHS embedding. An experiment was 

performed by using a hyperparameter named excludeLHS. This feature was incorporated within 

StarSpace as a contribution from the community post its release, with the sole purpose to exclude the 

labels on the LHS in the predictions. However, its functionality is questionable since the results 

retrieved still had labels from the LHS considered in the predictions. More examples can be seen in 

Appendix 9.3.  

As a matter of reference, the evaluation metrics for both models are presented in Table 5.11. 

 

LHS RHS Predictions 

__label__datamining  

__label__enterprisesoftware 

 __label__machinelearning  

__label__entrepreneurship  

__label__distributedsystems  

__label__artificialintelligence  

__label__security  

__label__java  

__label__javascript 

__label__bigdata 

(--) [0.765734] __label__distributedsystems  

(--) [0.602714] __label__datamining  

(--) [0.560003] __label__artificialintelligence  

(++) [0.529039] __label__bigdata  

(--) [0.475364] __label__computerscience  

(--) [0.453208] __label__machinelearning  

(--) [0.427805] __label__dataanalysis  
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Table 5.11 - Evaluation Metrics 

Dataset Hits @ 1 Hits @ 10 Hits @ 20 Hits @ 50 Mean Ranks 

LinkedIn profiles 0.26% 4.68% 11.7% 26.72% 209 

Resumes 0% 1.2% 1.8% 5% 365 

 

The way these results are interpreted is that for only 0.26% of the examples, the model managed to 

predict the correct label as the top 1. In 4.68% of the examples, the correct label was predicted in the 

top 10 results and so on.  Additionally, the mean rank position of 209 represents the arithmetic average 

position of the predicted entities from all entities, meaning that it takes into consideration the 

positions of the true label for each test example. As expected, the evaluation metrics for the resumes 

are far worse than the previous ones based on the assumptions made in this section. 

 

5.2. DISCUSSION 

This subsection will cover the experiments conducted during the training phase of the model. It will 

include graphs that show how the performance of the model was impacted with the tunning of certain 

hyperparameters. Additionally, it will include experiments that justify the implemented methodology 

and argue why certain decisions were made in the process. 

5.2.1. Hyperparameter impact on the embeddings 

Several hyperparameters were tweaked in the training phase in order to obtain the optimal model 

performance. Hyperparameters such as number of epochs, early stopping and batch size will not be 

presented as their impact is already widely known. For this reason, the experiments presented will be 

concerning two hyperparameters, 1) Dimensionality and 2) Negative Sampling. Since the loss function 

alone cannot be considered as an indicator of the quality of the embeddings produced, the decisions 

for the hyperparameters optimal values were chosen based on the evaluation metrics as well. 

5.2.1.1. Dimensionality 

The dimensionality selection process has always been an open challenge in NLP. Although there is no 

scientific proof on how to choose the vector size of the embeddings, some of the approaches proposed 

by experts in field are either doing an ad-hoc selection or through a grid search algorithm. Another 

empirical approach used by researchers is to do a grid search algorithm for various dimensionalities, 

evaluate them on a functionality test, such as word analogy, and thus proceed to choose the most 

optimal value (Zi & Shen, 2018). A combination of both approaches is considered in the tuning of this 

particular hyperparameter. 

A grid search algorithm was applied for a dimensionality size of 50, 150 and 250 and the impact on the 

loss function is presented in Figure 5.10. 
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Figure 5.10 - Effect of the dimensionality hyperparameter on the loss function 

The least performant dimensionality is, as expected, the smallest dimensionality of size 50. Observing 

the remaining two dimensionalities of 150 and 250, it can be noticed that although the latter 

outperforms the first in some epochs, the difference is not as significant to justify the increase of 

dimensions and therefore of parameters in the model. A larger vector embedding size will lead to an 

added unnecessary complexity to the model. Additionally, the evaluation metrics for the smaller 

dimensionality slightly outperformed the latter. Having this in mind, a decision was made to fixate the 

size of the embedding vectors to 150.  

5.2.1.2. Negative Sampling 

In a similar manner, the grid search algorithm was applied for the negative sampling hyperparameter 

for the values 50, 150 and 200. The effect of each value on the loss function is shown in Figure 5.11. 
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Figure 5.11 - Effect on the negative samples hyperparameter on the loss function 

Although the greater values for negative samples show an improvement in the loss function, the 

decision for the optimal value was not as forthright as with the dimensionality hyperparameter. The 

experiments showed that adding more negative samples decreases the predictive power of the model, 

which thus led to suboptimal results. To further validate the effect that the negative sampling had on 

the quality of the embeddings, the nearest neighbours for the same skills and user embeddings as 

presented before were reproduced. The results showed a significant drop in the quality of the 

embeddings, thus considering 50 as the optimal number for negative samples. 
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6. CONCLUSIONS 

This section aims to summarize the key research findings, outcomes and conclusions carried out during 

the course of this work. It will revise the research question raised and argue the decisions made in the 

proposed methodology. 

The recruitment process for the right candidates relies on HR professionals’ eye-scanning dozens, or 

even at times, hundreds of resumes to fill a certain job position. More often than not, recruiters are 

given a wide pool of applicants who may or may not have the required qualifications. This procedure 

can be time-consuming and lead to a delayed hiring process, with a risk of losing good applicants to 

competitors.  

The main purpose of this work was to address these open issues and refine the recruitment process 

not only by accelerating it, but also by making it less costly in terms of resources. The proposed 

methodology is based on the implementation of a novelty neural embedding model developed by 

Facebook AI Research, known as StarSpace. StarSpace is a general-purpose model that can be utilized 

in various different modes, all of which cover a different type of use case in the field of ML. In the 

context of this application, by using either of the two independent datasets, one consisting of 

completely unstructured resumes in the form of documents and another consisting of semi-structured 

LinkedIn profiles, each candidate is represented as a bag of their skills. StarSpace then learns the 

embeddings of the skills and maps them in a common vectorial space where it compares them against 

each other. By having the skills embeddings produced, one can further represent a candidate as an 

average of their skills’ embeddings. In the same way, a job position can be represented as an average 

of the skills’ embeddings required. One of the advantages of the proposed methodology is that by 

complementing the dataset with an auxiliary dictionary, one can characterize each candidate by not 

only their original skillset, but also by related skills, which have a dose of similarity with the 

aforementioned. The idea behind the recommender system is for a given job position, a vector of 

required skills, to output the candidates whose embeddings are closest to the input, even if some of 

the candidates may or may not be represented by those specific skills, but with ones which are in close 

proximity in the common vectorial space. An advantage to StarSpace is that it can generalize to new 

candidates without the need to retrain the model. However, the drawback is that the same scenario 

does not apply to new skills. 

Extensive data preprocessing was performed on the datasets in order to clean and normalize the text 

and avoid unrepresentative data going into the model. The techniques applied significantly decreased 

the size of the vocabulary by eliminating 98% of the noise in the dataset of LinkedIn profiles and 94% 

of the noise in the dataset of the resumes. Moreover, multiple experiments were carried out in the 

fine-tuning of the model, ranging from tweaking the hyperparameters to applying filters on the 

dataset’s vocabulary. Like any other use case in ML, hyperparameter choices reflect the standard 

trade-off between bias and variance. Having said this, the conclusions carried out from this process 

are that a smaller number of dimensions compresses that data too much, and the model is unable to 

learn all the information needed. However, a greater number of dimensions also increases the number 

of parameters in the model and affects the performance while not showing significant improvements, 

thus a common ground had to be established. On the contrary, the improved performance for the 

negative sampling hyperparameter resulted in inferior quality of the embeddings.  
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The main difficulties encountered during the development of this work revolved, first and foremost, 

around the challenging process of parsing and correctly extracting the data from both the unstructured 

resumes and semi-structured LinkedIn profiles. The difficulty in parsing the resumes resulted in a very 

erroneous feature extraction process which led to omitting the dataset in the further development of 

this work. Aside from the unstructured nature of the resumes, this obstacle is also reflected on the 

dataset of LinkedIn profiles as it limited the possibilities for obtaining various features to further 

represent a candidate such as: experience, seniority level or education. Another relevant difficulty is 

concerning the evaluation of the model. Although the traditional statistical measures were used to 

assess its performance, studies have shown that they do not always represent the true usability of a 

model in a real-life environment. Additionally, no similar works in this field were found that would 

serve as a benchmark for the proposed methodology.  

To conclude, StarSpace as a novelty neural embedding model, with hardly any implementations in 

practice, showed solid results for the problem assessed and managed to fulfil the purpose of this work. 

Its flexibility in entity representation can be utilized in various different contexts within the same 

universe. For instance, by applying the same approach, companies can be described as a bag of 

employees which in turn are represented as a bag of their skills, and thus proceed to compare them 

against other companies or even compare the given candidate with a company’s general skillset, all in 

the same vector space.  
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

This section will describe the limitations and flaws encountered during the implementation of this 

work, along with proposals for future developments that could potentially add value to the solution. 

The first limitation is related to the dictionary of LinkedIn skills used in the process of feature 

extraction. The dictionary was generated from an outdated file that contained data from the LinkedIn 

Topics Directory, a feature that has been discontinued since 2017. This limitation is applicable for skills 

which are rarer amongst candidates in the dataset. Additionally, and more importantly, aside from 

serving as a ground base for feature extraction, the dictionary also contains a set of related skills, along 

with a calculated ratio of co-occurrence, that indicates a continuity among these features in the model. 

Considering the constantly changing business environment, more specifically the rapid evolvement of 

technologies, this outdated information could lead to the model becoming obsolete with time, as it 

will not be fed with the relationships between certain skills and competencies that are yet to be 

discovered.  

The second limitation of this work is related to the preprocessing of both resumes and LinkedIn 

profiles. Since the resumes are not unified in a single template, but are rather completely unstructured, 

the feature extraction process is very complex and prone to significant errors. Resume parsing of 

unstructured data is a very challenging task in NLP as in incorporates interpreting human language that 

varies significantly from one individual to another. The approach used in this work for splitting a 

resume in sections before proceeding with feature extraction, is far from robust in regards to 

unforeseen resumes that will most likely be fed with future use of the solution. Additionally, the results 

showed that the feature extraction process in the resumes was rather unsuccessful. Moreover, despite 

the lack of need to perform detection of sections in the LinkedIn profiles, as it was already given, the 

ability to extract relevant experience is far from simple, since people tend to be very creative with their 

ways of expression. 

The third limitation follows up on the previous. One of the most relevant elements of a recruitment 

process for a given job position, aside from the competencies, is the experience of the candidate along 

with their seniority level, which is not incorporated in this work. The reason for the absence of this 

feature is mainly due to the complexity for its extraction from the datasets. Additionally, the dataset 

of the LinkedIn profiles only includes two previous job experiences, which can lead to wrongful 

information regarding the true seniority level of a candidate. The drawback of this feature can also be 

observed in the results for the nearest neighbors algorithm for the given job positions, where despite 

requesting associate level professionals, the majority of the retrieved candidates were high-level 

executives. 

Last but not least, a very relevant limitation of this work is the online validation of the recommender 

system. As previously described in this work, the greatest challenge in recommender systems is 

measuring the quality of the recommendations. The datasets at disposal are not labeled and as such 

make the validation process much harder. Although the results shown through the methods of nearest 

neighbors, along with the traditional statistical measures for model evaluation, are solid, the nature of 

the problem assessed requires further validation performed through methods of real-life user 

interaction. 
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Having said all this, there are several proposals for addressing the aforementioned limitations of the 

system, beginning with the outdated dictionary used as a ground base in the feature extraction and 

feature engineering process. Regarding potentially missing skills, one approach to this limitation would 

be for a recruiter to manually update the existing dictionary with missing skills that are present 

amongst candidates. However, this approach does not apply to the issue with the outdated and 

missing relationships. A solution to this limitation would be to feed the model with a considerable 

amount of data so that it can learn the relationships between the skills independently. However, since 

vast amounts of data are not always available, another approach would be to create separate models 

where each would be concentrated in one or more similar areas of expertise. For instance, one model 

would be fed and trained with data from professionals in the area of marketing and sales, another for 

IT professionals which are purely technical, or maybe are a mixture of managerial and technical 

competencies, and so on. This approach would however sacrifice the model’s ability to generalize at a 

cost of performance in specific tasks. 

Continuing with the second and third limitation, concerning the structure of the data and the feature 

extraction process, a great contribution to this work would be a unified template of resumes, as 

opposed to the unstructured and semi-structured data at disposal. Having a predefined structure will 

lead to an improved feature extraction and a decreased margin of error in the data preprocessing 

phase. With this in mind, the availability of features such as previous experiences, seniority level and 

even education will be much more attainable. Additionally, considering that people are not equally 

fluent in every skill enlisted in their resume or LinkedIn profile, the proposed template could have an 

input field with a predefined scale where the candidate could assign the level of knowledge along with 

each expertise. All these features combined would enrich the model and hopefully lead to a better 

embedding of the candidates in the vector space, which would be a great added value to the end-users 

of the system. 

Finally, this work is completed with a proposal of a baseline for online evaluation of the model. The 

evaluation would be divided into two phases where, for a given period of time the HR recruiter would 

have a hands-on experience with the system. The first phase would be to perform a cross-validation 

of the traditional approach against the recommendations produced by the system, obtain certain 

measures and further use these insights to fine-tune the model. The second phase consists of two 

approaches. One approach would be for the dataset to be initially narrowed down to a smaller subset 

with more adequate people given the job requirements, which will reduce the amount of work by the 

recruiter. The second approach is a suggestion mechanism, in which the recruiter would consider the 

top candidates retrieved by the system and thus proceed to interview them as plausible candidates for 

the role. 
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9. APPENDIX 

9.1. SCRAPED LINKEDIN SKILLS, JSON EXAMPLE 
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9.2. JOB ADVERTISEMENTS 

9.2.1. Data Scientist 

Transformation, adaptability and innovation are part of our DNA.  

We are passionate about technology and want to be part of your story. 

Do you want to make your IT and Telecommunications career goals real? Do we share the same 

passion? You've arrived at the right place, to Smart! 

 

What does it take to be a DATA SCIENTIST?   

 

• Degree in Computer Engineering or similar 

• Professional experience as a Data Scientist 

• Experience with R, Python, Java or Scala  

• Experience with non-relational database  

• Good communication skills 

• Flexibility and dynamism 

• English 

 

Why us? 

• We make the projects we participate in real 

• We love what we do, and are proud of the results of our work. 

• We are simple and efficient 

• We value our people 

• We are a dynamic, integrity and trustworthy team 

 

Seniority Level    Employment Type 

Associate    Full-time 

Industry    Job Functions 

Information Technology & Services Information Technology 

 

9.2.2. Marketing Specialist 

Company X, is looking for an important final company, in a strong moment of expansion, a / a: 

 

Digital Marketing Specialist, with the aim of strengthening the Advertising team. 

 

Responsibility: 

• Development and optimization of SEM (Google Ads, Bing Ads) and SMM (Facebook Ads, 

LinkedIn Ads) campaigns from a strategic and operational point of view. 

Requirements 

• Excellent knowledge of Google Ads and Facebook Ads platforms; 

• Excellent knowledge of Google Analytics and tracking systems (tags, pixels, definition of 

goals on Google Analytics); 
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• Excellent ability to analyze, measure and report results; 

• Knowledge of JavaScript; 

• Good web marketing skills (SEO, SEM, Social, Content); 

• Excellent knowledge of written English and good knowledge of spoken English; 

• Google Ads and Google Analytics certifications. 

What we offer: 

• Professional and economic classification and growth commensurate with previous 

experiences with direct insertion in the Company; 

• Dynamic work environment, the possibility of joining a successful, fast-growing and 

extremely innovative group. 

 

Seniority Level    Employment Type 

Associate    Full-time 

Industry    Job Functions 

Staffing & Recruiting    Marketing, Sales 

 

9.2.3. Frontend developer 

About The Teams 

We are hiring Frontend Engineers for the following teams: 

Driver Growth 

The Driver Growth team leads the acquisition and retention platform and product efforts for drivers, 

couriers, and other earners worldwide. We are looking for engineers in Amsterdam to grow our 

existing team focused on Assisted Access (Hero) and growth incentive levers (Referrals/SIP). 

Web Payments 

The payments team builds products that we integrate into a growing number of businesses, 

collaborating closely with these teams. This is an opportunity to influence and build the next 

generation of user-facing payments solutions from scratch, working alongside designers, data 

scientists, user researchers, and product managers. 

What you’ll do 

Decision Portal 

As a software engineer on the Compliance Decision Portal team, you will be driving the architecture, 

strategy and execution on building a Portal to enable Uber agents globally process millions of 

documents, reports and other earner artifacts efficiently. Your work helps Earners get on the road 

faster by reducing friction in the funnel. 

What You’ll Do 
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• Design, deliver and maintain systems that enable hundreds of agents to process millions of 

earner documents, which is a critical step in unlocking Earner access to Uber’s platform. 

• Collaborate with product managers, data science and global operations teams to gather 

requirements. 

• Partner with fellow engineers to architect, develop and scale our Decision Portal, while 

keeping operational issues in mind. 

• Mentor and support your fellow teammates. 

• Drive ongoing efficiency and reliability improvements that improve the quality of the systems. 

• Write clear documentation so that other engineers can partner to contribute and deliver. 

What You'll Need 

• 3+ years of frontend engineering experience 

• Strong CS fundamentals. 

• Experience with JavaScript, Node.js or React. 

• Extensive software design and development skills. Ability to learn, and adapt to new 

technologies and contribute in a productive environment. 

• Experience working in an agile engineering environment. 

We ignite opportunity by setting the world in motion. We take on big problems to help drivers, riders, 

delivery partners, and eaters get moving in more than 10,000 cities around the world. 

We welcome people from all backgrounds who seek the opportunity to help build a future where 

everyone and everything can move independently. If you have the curiosity, passion, and collaborative 

spirit, work with us, and let’s move the world forward, together. 

We are proud to be an Equal Opportunity/Affirmative Action employer. All qualified applicants will 

receive consideration for employment without regard to sex, gender identity, sexual orientation, race, 

color, religion, national origin, disability, protected Veteran status, age, or any other characteristic 

protected by law. We also consider qualified applicants regardless of criminal histories, consistent with 

legal requirements. If you have a disability or special need that requires accommodation, please let us 

know by completing this form. 

 

 

 

 

 

 

 



58 
 

9.3. PREDICTION EXAMPLES 

For the purposes of presentation, the scores of the predictions are consisted of only 3 decimals. 

LHS RHS Predictions 

__label__projectmanagement 

__label__webdesign 

__label__businessprocessimprove

ment 

__label__customerexperience 

__label__editing 

__label__dataanalysis 

__label__microsoftexcel 

__label__customersatisfaction 

__label__videoproduction 

__label__qualityassurance 

__label__adobephotoshop 

__label__microsoftpowerpoint  

__label__iosdevelopment 

__label__management 

__label__cross-

functionalteamleadership 

__label__webdevelopment 

__label__adobecreativesuite 

__label__microsoftoffice 

__label__html  

__label__indesign 

__label__cascadingstylesheets(css)  

__label__socialmedia 

__label__graphicdesign 

__label__
adobeillus

trator 

(--) [0.647]__label__videoproduction  

(--) [0.598] __label__customerexperience  

(--) [0.566]__label__editing  

(--) [0.521]__label__adobephotoshop  

(--) [0.500]__label__indesign  

(++) [0.415] __label__adobeillustrator  

(--) [0.413]  __label__graphicdesign  

(--) [0.412]  __label__writing  

 

 

LHS RHS Predictions 

__label__userinterfacedesign 

__label__mobileapplicationdevelopment  

__label__userexperience 

__label__userexperiencedesign 

__label__webdesign 

__label__mobiledevices 

__label__graphicdesign 

__label__creativedirection 

__label__iosdevelopment  

__label__informationarchitecture 

__label__androiddevelopment 

__label__webdevelopment 

__label__adobephotoshop 

__label__adobecreativesuite 

__label__microsoftoffice 

__label__adobeillustrator 

__label__html 

__label__indesign 

__label__cascadingstylesheets(

css) __label__socialmedia  

__label__ 

interactio
ndesign 

(--) [0.972]__label__creativedirection  

(--) [0.496]__label__adobephotoshop  

(--) [0.496]__label__adobecreativesuite  

(++) [0.475]__label__interactiondesign  

(--) [0.453]__label__graphicdesign  

(--) [0.445]__label__editing  

(--) [0.445]__label__editing  

(--) 
[0.430]__label__userexperiencedesign  

(--) [0.392724]__label__digitalstrategy 

 

LHS RHS Predictions 

__label__cascadingstylesheets(css) 

__label__drupal  

__label__jquery 

__label__webdevelopment 

__label__webdesign 

__label__businessstrategy  

__label__mysql  

__label__html  

__label__php  

__label__adobecreativesuit

e __label__microsoftoffice 

__label__adobeillustrator 

__label__indesign 

__label__socialmedia 

__label__graphicdesign 

__label__javascript 

__label__contentmanagem

entsystems  

__label__git  

__label__
adobepho

toshop 

(--) [0.871]__label__drupal  

(--) [0.507]__label__php  

(++) [0.452]__label__adobephotoshop  

(--) [0.391]__label__webdevelopment  

(--) [0.390]__label__contentmanagementsystems  

(--) [0.389]__label__graphicdesign  

(--) [0.381]__label__webdesign  

(--) [0.379]    __label__xhtml  
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