Outage Probability for Directional Beamforming in
High Density Wireless Networks

Ayman T. Abusabah ¥ and Rodolfo Oliveira'*
TDepartamento de Engenharia Electrotécnica, Faculdade de Ciéncias e Tecnologia, FCT,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
iIT, Instituto de Telecomunicagdes, Portugal
emails: a.sabah@campus.fct.unl.pt, rado@fct.unl.pt

Abstract—In this paper, we derive the outage probability in di-
rectional millimeter-wave communications, capturing the effect of
beamforming. In the proposed scenario, multiple transmitters are
spatially distributed according to a spatial Poisson Point Process,
which can cause interference to a pair of transmitter/receiver
communicating nodes. The analysis considers a general distance-
based path loss with Rayleigh and Rician fading channels and a
sectored antenna model. Assuming that nodes are uniformly dis-
tributed over a circular or annular area centered at the receiver,
we derive the outage probability due to the aggregate interference
caused by multiple transmitters. The outage probability is based
on the Signal-to-interference-plus-noise ratio (SINR) derived for
the transmitter/receiver pair. Several simulations confirm the
effectiveness of the derived results for different wireless channels
and beamwidth values, highlighting the effect of directional
communications on the outage probability.
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I. INTRODUCTION

The recent advances in millimeter-wave (mmWave) wireless
communication systems are now capable of providing high
data rates up to several gigabits per second in portions of the
spectrum never used before. The high frequencies at mmWave
bands limit the communication range. Moreover, mmWave
systems’ efficiency is much higher for line-of-sight (LoS)
channels and take advantage of recent techniques such as
multi-input and multi-output (MIMO). Regarding the main
techniques adopted in the physical layer of mmWave systems,
we highlight the adoption of spatial multiplexing capable of
subdividing the transmitted signal into multiple spatial streams
simultaneously transmitted over the same channel but from
different antennas. Additionally, the existing mmWave systems
take advantage of classical array processing techniques capable
of directing the beam pattern by phasing multiple antenna
elements, aka beamforming (BF). BF has interesting properties
for short-range communication systems, because they may
achieve higher frequency spatial reuse depending on how the
spatial activation of the directional beams are scheduled [1].

Nowadays, the role of mmWave communication systems
schemes in short-range wireless communications is very im-
portant. These include several initiatives at the 60 GHz band,
such as next-generation personal area networks and wireless
local area networks [2]. Motivated by the adoption of mmWave
communication systems in short-range networks exhibiting

high spatial density of transmitters (TXs) per area unit, in
this work we evaluate the performance of a mmWave com-
munication link when exposed to the interference caused by
multiple TXs closely located to the link’s receiver (RX).

The outage probability of beamforming systems was studied
in several works considering intrinsic aspects such as imperfect
beamforming [3] and co-channel interference [4]. These works
do not account for the interference caused by multiple TXs
but only due to impairments and other propagation phe-
nomena. The characterization of the interference caused by
multiple mmWave beamforming TXs has been addressed in
[5] considering that the interferers are located according to a
spatial binomial point process. A spatial Poisson Point Process
(PPP) was adopted in [6] to derive the outage probability
caused by beamforming TXs that access the channel from
multiple random locations. The work in [7] considered the
outage analysis for random device-to-device networks under-
lying mmWave cellular networks. Moreover, the work in [8]
explored the possibility of base station co-operation in the
downlink of mmWave heterogeneous networks to reduce the
outage caused by high dense deployment, shadowing, and
blockage at mmWave band.

Differently from [6]-[8], in this work all TXs adopt a
beamforming sectored antenna model with different side lobe
gains according to the beamwidth and the boresight angle,
contributing to a more realistic antenna model. We assume
an operational scenario where multiple interferers are spa-
tially located according to a spatial PPP. Then we derive a
simple model to characterize the outage probability of the
mmWave communication link. The model takes into account
the interference caused by multiple TXs considering the spatial
distribution of the nodes, different radio propagation channels,
and directional beamforming. To characterize the outage prob-
ability we derive the distributions of the aggregate interference
and the received power at the RX, which are used to derive a
closed expression for the outage probability. The probability
is validated using simulation results that confirm the accuracy
of the proposed model.

Section II introduces the system model. Section III derives
the outage probability of the mmWave link. The accuracy of
the proposed model is evaluated in Section IV. Finally, Section
V concludes the paper.

Regarding the notation adopted in the paper, fx(.) is



adopted to represent the Probability Density Function (PDF)
of a Random Variable (RV) X. P[X = z] and E[X] represent
the probability and the expectation, respectively. ¢x is the
Characteristic Function (CF) of X. I'(z) and I'(p,z) are
the Gamma function and the incomplete gamma function,
respectively. oF1 (a, b; ¢; z) denotes the Gauss Hypergeometric
function.

II. SYSTEM MODEL AND ASSUMPTIONS
A. Network Model

We consider a scenario where nodes are distributed accord-
ing to a homogeneous PPP! with density A\ over an annular
region with an inner radius, Rz, and an outer radius, R, i.e.,
Rz <r < Rp. For the particular case of Rz = 0 a circular
region is considered. Without loss of generality, we condition
on a reference RX at the origin, which according to Slivnyak’s
theory in stochastic geometry [9], yields to a homogeneous
PPP with the corresponding density A. At a given time slot,
we assume that the reference RX is connected with one TX
and other TXs may cause interference to the reference RX. We
also consider a single-hop transmission only, with the same
transmission power for all nodes.

B. Gain Pattern and Beamforming Modeling

All nodes are assumed to be equipped with antenna arrays
for performing directional beamforming. We adopt a sector-
ized antenna model as depicted in Fig. 1, to represent the gain
pattern G and G at the TX and RX, respectively, as follows

max
Gmer,

min
Gme,

if 0] < w/2

if 0] > w/2’ %

Grr(0) = {
where G™% and G™™ are the gains of main and side lobes,
respectively, defined by a beamwidth w € (0, 27) and the bore-
sight angle direction # € [—m, ). Without loss of generality,
we assume that all nodes are on the same horizontal plane,
i.e., no variation in beam pattern over the elevation angle,
and we work with the normalized 2-D pattern. While the
antenna modeling might look quite simplified, it was adopted
in [10] for establishing innovative MAC policies and has been
considered in other works [11], [12].
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Fig. 1. Beamforming sectored antenna model.

IThe PPP has convenient mathematical properties and has been adopted as
a mathematical model for seemingly random processes in the discipline.

The RX at the origin and its corresponding TX are assumed
to steer their gain patterns toward each other. Assuming perfect
estimation of angles of arrival and no alignment errors, the
directivity gain of the intended link is Gz = GI**GF**. The
beam orientation of interferers is assumed to be uniformly
distributed in [—m, 7). Since the output of (1) is G™** or
G™™ over [—m, ), the resulting gain distributions of an i-th
interfering node observed at the RX, G; z(6), or observed at
the TX, G’z ;, are discrete and their probability density function
(PDF) is given by

fGi,I(g) = fGI,i(g) - p5(g - Gmam) +p5(g - Gmin)’ )

where p = w/2m is the main lobe hit rate and p = 1 — p is
the main lobe miss rate between interferers and the RX.

C. Communication Model

We consider a large-scale, distance-based path loss and
small-scale fading for modeling the wireless channel. There-
fore, the received power caused by an ¢-th node at the RX is
given by

P, = P,H,G, 1G1,r; “, (3)

where P, is the same transmitted power across all nodes. We
consider both Rayleigh and Rician small-scale fading channels
in which H; is drawn from a Gamma distribution as will be
shown later. Moreover, G; 7 and Gz ; represent the gain of
the ¢-th TX and the gain of the RX, respectively. o > 2 is the
large-scale path loss coefficient, and r; is the distance between
an i-th TX and the reference RX. To avoid P; > P, in the
near field, we consider that Rz > 1, [13].

The outage occurs when the received signal-to-interference-
plus-noise ratio (SINR) at the reference RX is below a defined
SINR threshold, ~, > 0, which can be formulated as follows

Yo
Pout = P{y < 70} = /0 £, (2)dz, 4

where P,,; is the outage probability, v and f,(z) represent
the SINR at the reference RX and its corresponding PDF,
respectively. Based on (3), v can be defined as

Pr
= —_— 5
=30 (5)
where Pr = P,GzH;r;“ is the intended received power,

i.e., the power received at the reference RX and transmitted
by a corresponding TX. Moreover, ¥ = [, + n, where
n represents the background noise power, while I, is the
aggregate interference power seen at the reference RX and
written as follows

N
I,=Y Picll, (6)
i=1

where N is a RV characterized by a homogeneous PPP that
represents the number of active TXs over the region given by
the area A = ’/T(R%,) —R2). Our goal is to compute P,,; which
requires characterizing ~y as explicitly shown in (4). In the next
section, we describe the required steps for characterizing y and
consequently obtaining P,,;.



III. COMPUTATION OF OUTAGE PROBABILITY

To compute P,,; in (4), it is required to derive fy(z). The
distribution of ~ is merely the ratio distribution between Pz
and Y. Therefore, we start the analysis by characterizing the
RVs Pr and then Y.

A. Characterization of Pr

The distribution of Pr = P,GzH,r; “ is a product between
the constants (P;Gz) and the RVs H; and r; “. Both Rayleigh
and Rician small-scale fading channels are considered. The
Rayleigh channel can describe the stochastic fading when there
is no LoS signal. When the channel is a Rayleigh distributed,
H; can be drawn from an exponential distribution with mean
1 , therefore, it can be expressed by a Gamma distribution W1th
the shape parameter, k¥ = 1, and the scale parameter, § = ﬁ
as follows

H; ~ Exp(p) ~ Gamma(k, ). @)

On the other hand, the Rician fading channel is parameterized
through K and Q2 where K represents the quotient between the
power in the LoS component and the power in the other non-
LoS components, and 2 represents the total power from both
components. Then, the received signal amplitude is Rician
distributed with parameters 12 = ﬁ—% and o? = %
Kip = 10logy, (K) is the decibels representation of K. By
definition, if X ~ Rice(v, o), then (£)? follows a non-central
Chi-squared distribution with 2 degrees of freedom and non-
centrality parameter (5)2 Consequently, moment matching
can then be used to obtain a simplified Gamma approximation

for H; as follows
H; ~ Gamma(k,0), 8)
where k and 6 are the shape and scale parameters, respectively,
given by [14]
(42072 40%(v? 4 0?) ©)
T 40212+ 02) T (12 4 202)2
By definition, if X ~ Gamma(k,0) and ¢ > 0, cX ~
Gamma(k, cf), therefore
Hz, ~ Gammal(k,0z), (10)

where Hz, = P,GzH; and 07 = P,Gz0. Note that, k and 0
are defined as in (7) for the Rayleigh channel and as in (8)
for the Rician channel.

Lets assume that L; = r*
loss, Pz can be written as

is the RV representing the path

Y

Since the nodes are uniformly distributed over A = 7(R% —
RZ%), the probability that an interfering node is positioned
at distance r from the RX is given by the CDF Fr(r) =

2
ﬁ which yields to the PDF fr(r) = rmzZpmy.

Consequently, the CDF and PDF of L; are respectlvely stafed
as follows

2 p2
Fr, ()= ((ZR%];I%)), for R <1< R, (12a)

2121
()=—="— for R¥<1<RY. 12b
fL[() OZ(R%*R%)’ or iz S0 < Ry ( )
Assuming that the RV Hz, is independent of the RV L,, then,
the PDF of Pz is simply given by the ratio distribution as
follows
(oo}
freo) = [ Wl 1912, ) (13)
The integral in (13) can be solved by replacing fr,, (1) by (12b)
and fu, (Is) by (10), yields to

e (ls)kfle%lzs 2la—1
freo)= [ .
)= foy T TmeE a2

(14)
After solving the integral in (14), the PDF of Pz is written as

frs(s) —( [k+ Z P;f} -T [k;+ 2 R%SD

« 91

(15)
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B. Characterization of P;

Since the aggregate interference power, denoted by I,, rep-
resents the summation of the power generated by each node,
we first start our analysis by characterizing the interference
power caused by an individual node. According to (3), F;
can be seen as a product of P, and the RVs H;, G;, and

«

r; “, where G; = G; Gz, is the directivity gain of an i-

th interfering link. Similar to II-A, P,H; ~ Gamma(k: 0,),
where 0, = P,0. Consequently, the PDF of S; = H “t22 can be

concluded as follows

b2 ] e )

te 2 (16)
« 237 o 0
a(RE, — RZ)T(k)

The RV P, represents a product between the RVs S; and G;.
Actually, G; can be seen as a product of two random gains,
G; 7 and Gz ;, where each follows the PDF in (2). Intuitively,
the possible set of outputs for G; are {Gm‘”‘2, G"””Q,
GmazGmin} with probabilities {p?, p*, 2pp}, respectively.
Therefore, the PDF of (; can be expressed as follows

fa.(9) =p*d(g — G™") + 723(g — G™") (17
+ 2])?5(9 _ (;mw,ac(;vmin)7
where p? represents the probability that the TX main lobe and
RX main lobe hit each other, p? represents the probability that
the TX main lobe and RX main lobe miss each other, and 2pp
represents the probability that one hits and the other misses.
The PDF of P; can then be found by the classical product
distribution as follows

fpi<x>:/oo Lfa

o 9]

(9)fs.(x/g)dg (18)



This integral can be solved by replacing f¢,(g) and fs,(2/g)
by (17) and (16), respectively, obtaining

2 =2
D z D x
T Gmax? fS'i (Gmawz > + Gmin? fsi <Gmin2 >

2pp T
+ Gmin(Gmaz fS’i <GminGmaz ) :

fPi (Z‘)

19)
Consequently, the MGF of P;, defined as ®p,(s) = Ele*]

is represented in (20) where g;(z) = oF; (k, =2, =22 7).

? o’ o

C. Characterization of Y

According to (6), the RV I, represents the summation of
N independent RVs (I, = P; + P> + ... + Py). As mentioned
before, N follows a homogeneous PPP distribution where

A"

AlA]
n!

P[N =n] = 1)

Since P; are independent, then for a specific number of active
interferers n, we can write

Dp,in(s) = Pp ()X Ppy(s) - - - xPp, (s) = (Pp,(s))"

Using the law of total probability, the PDF of the aggregate
interference I, can be expressed as

. (22)

= > f,GIN =n)P[N =n]. (23)
n=0

Thus, the MFG of the aggregate interference, @y, (s), can be

written as
oo .
o [ eIy =)
—00

B1,(5) = Ele"] = i PIN =
_ZP CI)II”()_ZW(

— n!
24

As e =3 (™
dr(s)=e

We can obtain the k-th moment of I, from (25), i.e
E[I¥] = 4. ®; (s)|s=o. For the approximation of Y = I, +7,
the moments can then be matched with the respective moments
of a given distribution. Empirical data was used in a maximum
log-likelihood estimation process to determine the parameters
of the known distributions, where the Gamma distribution
achieved the highest accuracy in representing the aggregate
interference. This observation is confirmed by [15], where it is

)/nl, (24) can be expressed as follows

AlA|(@p; (s)-1) (25)

AlA]

shown that aggregate interference due to large-scale and small-
scale fading can be approximated by a Gamma distribution.
Therefore, the PDF of Y can be written as follows

—y

yk -1 efeq

fr(y) = m,

where the shape and scale parameters, k., and 6.4, respec-
tively, are given by

for y > 0, (26)

E[Y]” E[Y?] — E[Y]”
keq = g Oeg = —, 27
B2 —Ey? E[Y] @n
with E[Y] = E[I,] + n and E[Y?] = E[I?] + 2nE[L,] + n?,
where E[I,] and E[I?] are given in (28a) and (28b), respec-
tively.

D. Computation of Py

Given that Pz and Y are independent RVs, then, P,,; can
be formulated as follows

Yo [oo
Pyt :/0 /0 yfp,(yz) fy (y)dydz.

Solving (29) yields to a closed-form expression for P,,,; given
by (30), where where g2(x) = oF1(keg, k + keg, 1 + keg, ),
and Qg(l‘) = QFl(k/‘ + k’eq, kieq — %, 1+ k?eq — %, J,‘)

(29)

IV. PERFORMANCE ANALYSIS

This section presents numerical results based on the pro-
posed model and provides some interpretations. The numer-
ical results obtained with the model are compared with the
results obtained through Monte Carlo simulation results (108
realizations of the stochastic process were run) to evaluate
the accuracy of the derived outage probability in directional
communication. The network and channel parameters are
listed in Table I, unless otherwise specified.

TABLE I
NETWORK AND CHANNEL PARAMETERS.
Symbol Value Symbol Value
P 1 mW Rz,Ro Im,5m
1 2 P {10, 20, 30, 50} nodes / m?
Kap 0 GmaT 1
Q 1 mW Gmin {0.05,0.10}
@ 4 w {45°,60°}
n 1012w Yo {—30, —25, —20, —15, —10, —5}

First, The outage probability, P,,;, is plotted versus differ-
ent SINR thresholds, ~,, considering various densities for the
nodes, as shown in Fig. 2. The results clearly indicate higher
outage values when adopting higher nodes density. This can

1

Pr8) = p e R

(pQR%QI (GmaIQREaseo) + pQR%QI (Gm’ijEaSeo) + QPﬁR%QI (GmaIGminREaseo) _ sz?DQI (GmazR(_gaSQ

-7’ R>0 (Gme “s6 ) — 2pPRS 01 (Gm"'meinR(;as@o))

(20)
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(28a)
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2
(RE — R3)
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14+«
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Fig. 2. Outage probability P, considering different density of the nodes
for a Rician fading channel with parameters Kyp = 0, v = 0.707, 0 = 0.5,
G™mm = (.1, and w = 45°.
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Fig. 3. Outage probability P, considering a Rayleigh fading channel for
p=2and X = 50.
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be attributed to the higher aggregate interference caused by
more TXs.

The outage probability is plotted again versus different
SINR thresholds for a Rayleigh fading channel as illustrated in
Fig. 3. To demonstrate the effect of directional beamforming,
different gain levels of the beam side lobes and different
beamwidths are considered. The “simulation” curves were
obtained through Monte Carlo simulation while “theoretical”
curves were obtained with the computation of the P,,; given
in (30). The similarity comparison between the simulated data
and the theoretical derivations indicates the high accuracy of
the proposed approximation. Besides, the results reflect the
effect of the side lobes on the outage probability where the
results show that the probability of outage increases when
considering higher side lobes gain, i.e., G™" = 0.10 over
G™" = (.05, as depicted in Fig. 3. On the other hand, the
results indicate that the outage probability decreases when
adopting small w values (narrower beams), i.e., w = 45° over
w = 60°, due to the concentration of higher power in specific
and smaller spatial regions.

Fig. 4 shows the outage probability when considering a
Rician fading channel. Once again the same conclusions can
be taken with regards to the increase in the outage probability
due to the increase in the side lobes gain and the decrease in
the outage probability as the beams become narrower.

V. CONCLUSIONS

This work derives the outage probability by characterizing
the SINR considering the effect of beamforming when the
nodes are distributed according to a homogeneous PPP. In
addition to the large-scale path loss, the proposed model
considers two types of small-scale fading channels, Rayleigh
and Rician. The proposed approach and derivations were
validated through simulations, by considering different channel

—kega —ke ke a kegq a
Py =Bz B0) " (oleq) 000770 (R%RZ“’“ (M) _ R g2, (%Roé’eq
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Fig. 4. Outage probability P, considering a Rician fading channel with
parameters Ky = 0, v = 0.707, 0 = 0.5, and A\ = 50.

and gain pattern parameters, confirming the effectiveness and
the accuracy of the proposed approximation.

Finally, we highlight that the adopted beamforming model
(two lobes approximation) does not represent the actual an-
tenna array. The assumption of multi lobes will be studied in
a complementary way to the study we present, being a subject
to be addressed in future works.
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