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Abstract

Given a neural network, how many di�erent problems can it solve? This important and open
question in deep learning is usually referred to as the problem of the expressive power of a
neural network. Previous research has tackled this issue through statistical and geometrical
methods. This work proposes a new method based on a topological perspective.

Topology is the �eld of mathematics aimed at describing spaces and functions through
robust characterizing features. Topological Data Analysis is the young �eld developed to
extract topological insight from data.

We �rst show that topological features of the decision boundary describe the closest
notion of the intrinsic complexity of a classi�cation problem. These topological features divide
classi�cation problems into several equivalence classes. Linear-separability is an example of
such a class. We establish the topological expressive power of a network architecture as the
number of di�erent topological classes it is able to express.

Being a novel work in a young research �eld, most of the thesis is devoted to developing
this perspective and creating the tools required. The main objective of this thesis is to tackle
neural network’s understanding in general and architecture selection in particular, through a
novel approach.

Our results show that topological expressiveness has a complex correlation with many fea-
tures in a neural network’s architecture depending weakly on the total number of parameters.
Some of our results recapitulate previous research on geometrical properties, while others are
unique to this novel topological point of view, sometimes challenging previous research.

Keywords: Topological Data Analysis, Neural Networks, Machine Learning, Decision Bound-
ary, Persistent Homology, Voronoi Diagram.
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Resumo

Quantos problemas di�erentes consegue uma dada rede neuronal resolver? Esta pergunta
aberta é central no ramo de aprendizagem profunda e conhecida como o poder expressivo
de uma rede neuronal. Tentativas anteriores em resolver este problema �zeram-no usando
métodos estatísticos ou geométricos. Este trabalho apresenta um novo método baseado numa
prespectiva topologica.

Topologia é o ramo de matemática responsável por descrever espaços e transformações
com base em caracteristicas fundamentais. Topological Data Analysis (Análise Topológica de
Dados) é o recente ramo de investigação desenvolvido para extrair conhecimento Topológico
de dados.

Começamos por mostrar que uma caraterização topológica da barreira de decisão é a noção
mais próxima da complexidade de um problema de classi�cação. Estas caracteristicas topoó-
licas dividas os problemas de classi�cação em diversas classes de equivalência. O conjunto
de problemas separaveis por uma reta são um exemplo de uma destas classes. Establecemos
que a expressividade topológica de uma architectura neuronal é equivalente a quantas destas
classes consegue resolver.

Dado que é um método novo num ramo de investigação recente, grande parte desta tese
foca-se em desenvolver esta perspectiva e em criar as ferramentas necessárias para o seu
estudo. O objectivo desta dissertação é, apartir de uma abordagem original, enfrentar a falta de
compreensão de redes neuronais no geral e, em particular, informar a escolha de arquitecturas.

Os resultados obtidos mostram que a expressividade topológica tem correlações complexas
com diversos elementos da arquitectura de uma rede, mostrando uma depêndencia ténue no
número total de parametros. Alguns resultados seguem a mesma linha que a investigação
gemétrica anterior, outros são únicos à perspectiva apresentada e complementando resultados
anteriores.

Palavras-chave: Análise Topológica de Dados, Redes Neuronais, Aprendizagem Autónoma,
Barreiras de Decisão, Homologia Persistente, Diagrama de Voronoi
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Introduction

I do things like get in a taxi and say, "The library, and step on it.”

-David Foster Wallace (In�nite Jest)

1.1 An Oncoming Plateau

In August 31st 1955, leading information theorists John McCarthy, Marvin Minsky, Nathaniel,
Rochester, and the father of information theory himself, Claude Shannon proposed the Dart-

mouth Summer Research Project on Arti�cial Intelligence. Their objective was "That every aspect
of learning can be principled so precisely that a machine can be made to simulate it". In other
words, to create Arti�cial Intelligence1.

To say they have failed would be inaccurate. Having witnessed the explosive progress
of machine learning at the time, such as the �rst chess playing program and the self-taught
checkers program. (Schae�er [92]) their optimism was not unjusti�ed. Not much later, disap-
pointment and cynicism led to funding costs and loss of interest in the A.I. �eld.

In the late 1970s renewed interest fuelled new funding and research in the area, prompting
the creation the American Association of Arti�cial Intelligence. In 1984 the hype had spiraled
out of control, and the funding cutbacks and the downfall in research led to the collapse of
the A.I. industry in 1987 (Crevier [33]).

At the expense of being mediatic, data science has accepted several captivating terms that
fuel misconceptions. Pseudo-scienti�c buzzwords such as Big Data andCurse of Dimensionality

symbolize existing dilemmas yet are misleading because they place the blame on the data,
when in fact these are symptoms of outdated methodologies.

Big Data conveys the idea that data is immense, when in fact it is our existing methods
that cannot handle its complexity. Curse of Dimensionality misleads one into thinking that

1This was the �rst instance the term Arti�cial Intelligence was used.
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CHAPTER 1. INTRODUCTION

high dimensional data behaves abnormally, when it should instead lead one to question: why
care so much about dimensions after all?

The hype coming from past results has created a stubbornness in the methods of Data
Analysis. Holding back to previous achievements, existing approaches are not being updated
to keep up with the exponential increase in data complexity. The inevitable shortcomings
of these same approaches have been blamed on the data (using terms previously discussed)
making one believe that our ability for analytical insight is somehow asymptomatic. This
inevitably leads to cynicism and loss of interest, so much that there is now talk of a third "A.
I. winter".

This is disheartening since, historically, mathematics has always been ahead of the curve,
solving problems years before their applications have been found (such as ellipses).

The restrictions that standard data analysis poses on data (such as the assumption of
linearity) have not been relaxed from their early insights. Yet what we come to expect from
these same models has increased in complexity by orders of magnitude e.g. predicting the
market price of a house versus expecting autonomous driving. There are those who question
if the mathematical formalisms of geometry and statistics are su�cient. It might happen that
the nature of the data cannot be expressed as a summary of pairwise interactions, in this case
geometry which is the study of distance functions, captures only accidents on the data. There
are many arguments to believe in that insu�ciency of purely geometrical methods:

1. Quantitative characterization is insu�cient. The most recurrent problem with big
amounts of data is that one does not know what to look for. Data has knowledge but the
way it is presented assumes many forms. As such the �rst insight must be to extract a
robust characterization of the data. For example Carlsson [20] presents the example of
studying diabetes data. Before developing qualitative insights, the necessary �rst step
is to understand that the disease has 2 very di�erent types.

2. Metrics are not theoretically justi�ed. A metric completely governs the behaviour
of a whole space. It makes no distinction between local and global scales. Real world
scenarios rarely display the same rules, specially when human interactions are involved.
More often than not, in areas such as biology or economics, the global structure is
de�ned by a juxtaposition of local behaviours (for example Adam Smith’s Invisible

Hand) and not necessarily by pairwise interactions.

3. Coordinates are not natural. Although data is arranged into vectors, it does not
indicate that coordinates are always meaningful, or that these emerge naturally. The idea
that coordinates carry intrinsic meaning is sometimes hindering since it is to be expected
that fundamental properties resist coordinate changes. The superior performance of
Convolutional Neural Networks (CNNs) can be attributed to this. Before CNNs a 28×28
pixel image was handled as a vector of 756 dimensions.

4. Intrinsic properties should not depend on extrinsic factors. In geometry, a sphere
does not exist in of itself, only lying in an Euclidean space. Geometry considers objects

2



1.2 . THE ADVENT OF TOPOLOGY

always within a bigger space and never as a space of their own. This extrinsic view, while
more intuitive, is not natural for the object in question, since its intrinsic properties are
de�ned depending on the surrounding space that it is laying on.

1.2 The Advent of Topology

Topology is a recent �eld in Mathematics, going back less than 300 years. It is the study of
properties of spaces that are invariant under continuous transformations. Topological methods
aim to describe spaces and functions through characterizing features without the concept
of distance. Therefore, spaces with very di�erent geometries can be considered equivalent.
Topology surfaced from the necessity to generalize rigorously structural notions such as
continuity, compactness and connectedness

Topological Data Analysis (TDA) is the recent approach to Data Science through the
methods and perspective of Topology. The reasoning is that topological methods directly
confront the previously exposed handicaps of geometrical methodologies. Below is a brief
reasoning why TDA is appropriate to solve each of the points presented above:

1. Characterization. Topology was built2 precisely to study qualitative features of spaces
and transformations. Topological Data Analysis extends these methods to points clouds
as to extract these very same qualitative properties. Since Topology is a theoretically
sound and well structured �eld, its translation to data analysis generally provides reliable
results.

2. Absence of Metric. Topology conveys a notion of nearness through nested subsets
and not through pairwise functions. As such manages to describe robust global identi-
ties (shape) through local concepts. This insensitivity to the metric grants topological
features an invariance to continuous transformations.

3. Coordinate free. Topology only studies properties that do not depend on chosen coor-
dinates. This is due to the fact that Topology considers objects as spaces on their own.
For this point of view it is obvious that coordinates can be forfeited in most cases.

4. Intrinsic point-of-view. With the advent of topology (and Di�erential Geometry) geo-
metric objects started being considered as spaces of their own. The previously extrinsic

point of view only acknowledged the existence of such spaces when embedded in big-
ger ones, where one could "move outside"the space. While the extrinsic view is more
visually intuitive, the intrinsic is more �exible and descriptive albeit less intuitive.

Topological Data Analysis has increasingly gained interest in research and traction in its
applications. From dimensionality reduction (McInnes et al. [67]) to signal analysis (Perea
and Harer [84]), from graph reconstruction (Cerri et al. [24], Biasotti et al. [12]) to computer
vision. Among many other, it has found widespread success notably on complex network

2some argue the correct verb is discovered, author included.
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analysis and neuroscience (Petri et al. [85], Huang and Ribeiro [52]), and contagion network
analysis (Taylor et al. [100]). The reader is pointed to Carlsson [20] and Chazal and Michel
[26] for a comprehensive introduction on the perspective and accomplishments of Topological
Data Analysis.

1.3 This Contribution

1.3.1 Statement of Originality

The objective of this thesis is to apply the ideas from the new �eld of Topological Data Analysis
to tackle one of the biggest open problems in machine learning: "What is the expressive
power of a Neural Network?"

To understand how many di�erent problems a Neural Network can solve, one must �rst
ask what makes two problems di�erent? In this thesis we show that Topology is a natural
answer to both questions posed above. We partition classi�cation problems into classes based
on their topological features. Two binary classi�cation problems belonging in the same class
are by no means necessarily equal but topologically equivalent. Linear separability is an
example of an equivalence class of problems. The Topological Expressiveness of a Neural
Network can be understood as the number of these classes it is able to solve.

A considerable body of work has been poured into understanding the expressive power of
Neural Networks through inherently geometrical approaches (Poole et al. [86]). This work is
the �rst to do it at a Topological level. Besides presenting a novel topological approach, it also
gathers, formalizes and translates other geometrical approaches, for instance Olah [80] and
Brahma et al. [15], to topological language. On top of this, some corrections are made to other
previously drafted topological perspectives on Neural Networks (Guss and Salakhutdinov [48],
Naitzat et al. [78] and Ramamurthy et al. [87]).

When this work began, the idea of a topological understanding of Neural Networks was
relatively uncharted ground, with notable exceptions such as Bianchini and Scarselli [11].
Although a couple of new directions have appeared since then (Guss and Salakhutdinov [48]
and Naitzat et al. [78]), they are very few and far between. That is partly because Topological
Data Analysis is a very young �eld but also due to the fact that the amount of research on the
applications of Neural Networks largely outnumbers the work on their understanding.

Aside from Chapter 2 and 3 the whole body of work is original, unless clearly stated
otherwise.

1.3.2 Outline of the Thesis

It is not expected from the reader to have any previous knowledge of TDA or Topology. This
thesis, however, assumes the reader is familiar with some introductory level Linear Algebra and
Real Calculus. The objective of this work is not to teach Applied Topology to the uninitiated
but to show what Topology consists of and to illustrate a speci�c example of how it can be
applied to the realm of Data Science.
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Chapters 2 and 3 introduce and familiarize the reader with necessary concepts from Topol-
ogy and how these are applied to Data Analysis. Both are based on several books, papers
and lecture notes. The author would like to emphasize the impact of the following textbooks:
Ghrist [45], Munkres [77] and Hatcher and Press [49].

Chapter 4 introduces classi�cation problems and their decision boundaries along with a
method to accurately sample it.

Chapter 5 introduces Neural Networks, develops a necessary tool for their understanding
(UDiPH) and explores their Topological Expressiveness.

The proofs of statements are presented in Appendices A. The proofs regarding clearly
elementary concepts were done by the author himself however the author takes no ownership
because the proofs of elementary concepts are, more often than not, obvious or their sources
untraceable. Of the remaining proofs some are also done by the author, typically for novel
statements presented in this work. When that is not the case the source of the proof is clearly
stated .
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Topology

One and one and one is three.

-The Beatles (Come together)

Topology is the �eld in mathematics that concerns itself with spaces and maps between spaces
or, informally, shapes and deformations. Its broad de�nition of structure, through systems of
open neighbourhoods (and their intersections), establishes Topological equivalence relations
as fundamental properties of spaces. A Topological invariant is a qualitative aspect that
is assigned to a space, with respect to a certain equivalence relation. This enables us to
categorize the space, by comparing it and by distinguishing it from other classes. The number
of connected components is an example of a topological invariant.

Topology is the sublimation of metric spaces. It is the generalization of metric spaces
agnostic of a distance measure. Its foundations lie on a notion of nearness through open sets.
This local concept of shape di�erences itself from Geometry, whose rigid shapes rely on the
distance between each pair of objects.

De�nition 2.0.1 (Topology). A topology on a setX is a collection T of subsets ofX satisfying
the properties:

1. ∅,X ∈ T

2. It is closed under unions.

3. It is closed under �nite intersections.

To the elements of T we call open sets. A set is said to be closed if its complementary
is open. Note that while, semantically, open and closed are antonyms their mathematical
de�nition is not mutually exclusive. In a seemingly counter-intuitive way there can be sets
that are both open and closed, for example both the complete space X and the null set ∅.
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CHAPTER 2. TOPOLOGY

We call a space X endowed with the topology T a topological space, and denote it by (X,T ).
Whenever the context is evident, we will simplify the notation to X.

2.1 Continuity

Continuity is a concept that is introductory in any math related subject. It is a fundamental
transformation in any �eld of mathematics, and, as such, there are many di�erent types of
continuous functions. The topological de�nition of continuity is broad and general enough
to cover all such di�erent cases.

De�nition 2.1.1. Let X and Y be topological spaces. A function f : X → Y is said to be
continuous if for each open set U ⊆ Y then f −1(U ) is also an open set in X

To f −1(U ) one normally refers to preimage of U . That is, the object that resulted in that
image. A continuous function is then a function where the preimage of an open set is also
open. Such nomenclature is often used and most times desirable as it removes any ambiguity
that the symbol f −1 might bring in terms of existence of inverse or assumptions of bijectivity
(which the de�nitions does not make). Let us now compare it with the familiar de�nition of
continuity of real calculus.

De�nition 2.1.2. A function f : R→ R is continuous at point p if for all ε > 0 there exists
δ > 0 such that:

‖p − x‖ < δ =⇒ ‖f (p)− f (x)‖ < ε (2.1)

We say that f is continuous if it is continuous in every point of its domain.

Such a de�nition should be familiar to the reader as it is fundamental to any introductory
calculus course. It is generally regarded as the “ε − δ de�nition”, and it informally states
that close points (δ apart) are mapped to close points (ε apart). Its also common to �nd
in introductory courses to Topology the exercise of proving the equivalence between both
de�nitions.

Theorem 2.1.3 (Munkres [77]). De�nition 2.1.1 and De�nition 2.1.2 are equivalent.

De�nition 2.1.4 (Homeomorphism). A function f is said to be an homeomorphism if and
only if is a continuous bijection with a continuous inverse.

Let f : X → Y be a homeomorphism. Since both f and f −1 are continuous we have
correspondence between not just the elements of X,Y (assured by bijectivity) but also a cor-
respondence between collections of open sets, by the de�nition of continuity. This means
that any property of X that can be expressed in terms of open sets yields the same property
in Y (and vice-versa). Such properties are called topological invariants. In Topology, struc-
tures are studied up to homeomorphism because homeomorphisms are the the isomorphisms
of Topology, that is they are the structure preserving maps in Topology, and describe an
equivalence relation in the �eld.
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2.2 . CONNECTEDNESS AND COMPACTNESS

2.2 Connectedness and Compactness

In mathematics the behaviours of non-�nite sets can be very di�erent and sometimes unin-
tuitive compared to �nite sets. There are many behaviours that hold for �nite set but not for
non-�nite sets. For example, for �nite sets, all functions are bounded, all functions attain a
maximum and a minimum, while these properties are not true for non-�nite sets. In a way,
compactness is the topological generalization of “�niteness”.

Consider a space X and a collection U = (Ui)i∈I of open sets Ui ∈ X. We say that the
collection U is a cover of X if X is equal to the union of all the sets, that is: X =

⋃
Ui .

De�nition 2.2.1 (Subcover). Let U = (Ui)i∈I be an open cover of X. We say that V is a
subcover of U if V is a cover of X and V ⊆ U

De�nition 2.2.2. A space X is said to be compact if every open cover of X has a �nite
subcover.

Note that to prove that a space is compact its necessary to �nd a �nite subcover for any
possible cover. While it is only necessary to �nd a cover that accepts no �nite subcover in
order to show a certain space is not compact.

Example 1. The real line R is not compact since it is not possible to have a �nite
subcover from the cover U = {(n− 1,n+1) | n ∈ Z}.

Example 2. The set {x ∈ R | 0 ≤ x ≤ 1} is compact, however {x ∈ R | 0 < x < 1} is
not since there is no �nite subcover from the cover U = {(1n ,1−

1
n ) | n ∈ N}.

Theorem 2.2.3. The image of a compact space under a continuous transformation is compact.

De�nition 2.2.4. A space X is disconnected if there exists open sets U,V whose disjoint
union is X. If no such pair of sets exist then X is said to be connected

Example 3. The set {x ∈ R | 1 ≤ |x| ≤ 2} is disconnected while the set {x ∈ R | 0 ≤
|x| ≤ 1} is connected.

The notion of connectedness naturally creates a partition of the space X into non-empty
sets with disjoint unions. These are what we call connected components of X. In a connected
space there exists only one connected component: the space X itself.

De�nition 2.2.5. Consider the equivalence relation de�ned on X as such; x is in relation
with y if there is a connected subspace of X containing both x and y. The equivalence classes
are called the connected components of X.

Theorem 2.2.6. The image of a connected space under a continuous map is connected.

Theorem 2.2.7. Let X,Y be topological spaces and X =
⊔
Xi and Y =

⊔
Yi its connected

components, if f : X→ Y is a homeomorphism then for all i there exists j such that f (Xi) = Yj
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2.3 Dimension

The geometric concept of Dimension is the minimal number of variables necessary to describe
each point of a space. However take for example the plane R2 and the real line R, since both
have the same cardinality it is possible to describe each point in the plane with a correspondent
point in the number line.

Then what is the dimension of R2? It is possible to repeat such a process with any two
sets of the same cardinality. Meaning every point in Rn can be described by an element in R
for any n.

Space �lling curves, such as the Hilbert curve, are an example of this process. A n-
dimensional Hilbert curve de�nes a map between n-dimensional space and one-dimensional
space. Thus one can understand there is an underlying concept in dimension that is not
captured by the geometric perspective alone.

The Topological de�nition of dimension can be motivated by understanding where Hilbert
Curves fail. Every space �lling curve hits some points multiple times. The multiplicity of
these overlaps directly depends on the dimension of the space being mapped. This idea is the
basis of the de�nition of dimension.

De�nition 2.3.1 (Re�nement). Let U be an open cover of X. We say that V is a re�nement
of U if V is a cover of X and every set in V is contained in some set of U

∀V ∈ V ∃U ∈ U V ⊆U (2.2)

Note that there is a small di�erence between a subcover and a re�nement. Every subcover
is a re�nement however the reciprocal is not true. Informally, a subcover “preserves the open
sets” while a re�nement can make them “smaller”.

Corollary 2.3.2. If V is a subcover of U then V is a re�nement of U

Intuitively the dimension of a cover is the minimal number of overlaps reached through
cover re�nements (minus one). For example the covering dimension of a circle is 1 because
given an arbitrary cover, it is not possible to �nd a re�nement that does not contain a point
belonging to 2 open sets.

Figure 2.1: Illustration of cover re�nements of a 1−dimensional space.

De�nition 2.3.3 (Lebesgue’s Covering Dimension). The covering dimension of a space X is
de�ned as the minimum number n such that any open cover U ofX has a re�nement V where
any point belongs to at most n+1 open sets of the cover.
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Example 4. The covering dimension of Rn is equal to n.

Theorem 2.3.4. Homeomorphic spaces have the same covering dimension.

We turn back to the space �lling curves and those overlaps that motivated the de�nition
of Covering Dimension. They are in fact surjective however these same overlaps are the ones
that prevent a space-�lling curve to become a bijection. No space-�ling curve is a bijection
because that would make it a homeomorphism between spaces of di�erent dimensions.

2.4 Manifolds

Manifolds are some of the most intuitive topological spaces. They serve as higher-order
generalizations of familiar structures like curves and surfaces.

De�nition 2.4.1. A n-manifold is a topological space1 that is locally homeomorphic to Rn

Being locally homeomorphic to Rn means that there exists a cover U = (Ui)i∈I of M and
a set of homeomorphisms φi : Ui → Vi ⊆ Rn where Vi is an open set. To each pair (Ui ,φi)
we call a chart and to the colletion of all charts we call an atlas. It is common to work
with smooth manifolds in order to de�ne derivatives. If such is the case we require that the
following maps be smooth for all i, j .

φi ◦φ−1j : φi(Ui ∩Uj )→ φj(Ui ∩Uj ) (2.3)

Figure 2.2: Illustration of a Manifold (left) along with homeomorphisms φi,j that map open
sets (Ui ,Uj ) from the manifold to an corresponding subsets of the 2−dimensional Euclidean
plane R2 (right).

Example 5. A 1−manifold is called a curve and a 2−manifold is called a surface.

Theorem 2.4.2. The dimension of an n-manifold is equal to n

Example 6. Consider the n-Sphere, denoted by Sn, which is the set of all points in
Rn+1 that are at the same distance from the origin. S1 is a circle, S2 is the surface

1The space is assumed to be Hausdor� and second countable. The reader is encouraged to ignore these terms
if unfamiliar.
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of a sphere. The dimension of Sn is always n. This fact becomes intuitive when
one considers the surface of the Earth. At local scales it looks like a �at surface.
This relation is actually homeomorphic, meaning at a local level the surface actually
behaves as the Euclidean plane, where the shortest distance between two point is a
straight line. It is possible to map homeomorphically a portion of its surface into a
plane, if it is su�ciently small. This is the intuition behind the chart. However its
not possible to use that same projection in every small portion of the sphere, and
de�nitely not for the whole sphere.

Example 7. A very trivial example of a n-manifold is Rn itself, or any open set of
Rn.

Proposition 2.4.3. Homeomorphic manifolds have the same dimension.

2.4.1 Riemannian Manifolds

De�nition 2.4.4 (Tangent Space). LetM be am-manifold embedded in Rn. Consider γ ∈ C∞

such that γ :]−ε,ε[→M is a path inM . Let p ∈M be the point where γ(0) = p. The tangent
space of M at point p is the set:

Tp(M) = {γ ′(0)} (2.4)

The tangent space is the set of all vectors of Rn at p that are the derivatives of any curve
passing through p.

It may be hard to understand what does the derivative of γ(0) represent when M is not
embedded. Let (U,φ) be a chart at point p. Meaning U is an open set with p ∈ U and
φ :U → V ⊆ Rn a homeomorphism. Then φ ◦γ de�nes a curve in Rn and (φ ◦γ)′(0) is its
tangent space.

Figure 2.3: Illustration of a Tangent Space

Theorem 2.4.5. The tangent space Tp(M) of an n−manifoldM is a n−dimensional vector space.
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Within this vector space it is possible to construct an inner product and de�ne a metric g .
The construction of these structures are beyond the scope of this thesis (and would require
an entire devoted chapter). However the reader is pointed to O’Neill [81] and Carmo [22] for
a good introduction in di�erential geometry, and to Crane et al. [32] for an introduction to
its discrete applications.

De�nition 2.4.6 (Riemannian Manifold). A Riemannian Manifold is a a smooth n-manifold
with a inner product gp on the tangent space Tp(M) for every p.

The interesting catch of Riemannian Manifolds is that this inner product de�nes a di�erent
metric for each point p in the Manifold. We will use this construction on Chapter 5.
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Topological Data Analysis

Topology! The stratosphere of human though! In the twenty-fourth century it

might possibly be of use to someone..."

-Aleksandr Solzhenitsyn (First Circle)

Topological Data Analysis (TDA) is the branch that employs the perspective and tools of
Topology into data science. However data is often presented as point clouds or images, never
explicitly as topological spaces. For example, if one were to analyze the number of connected
components of a point cloud with 100 points, it would come as a conclusion that there are 100
di�erent connected components. As such, the fundamental step in Topological data analysis
is to infer and reconstruct, from a discrete sample, the data manifold; a continuous space from
where the data has been sampled and from where we can extract topological insights.

3.1 Manifold Hypothesis

Inferring a governing mathematical structure from a discrete set of observations is a common
approach in data analysis, for example, statistics aims at approximating a distribution from
a set of observed samples. It is then no surprise to see the same approach being applied in
Topological Data Analysis, summarized under the following assumptions: 1. Data has shape;
we assume that the data, represented as a point cloud, has been sampled from a manifold. 2.
Shape matters; meaning the topological properties of said manifold carry relevant (if not
fundamental) information.

These assumptions have been condensed and popularly regarded as Manifold Hypothesis.

Proposition 3.1.1 (Manifold Hypothesis). Real-world data lie on low-dimensional manifolds
embedded within a high-dimensional space.
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There are many theoretical (Carlsson et al. [21] and Lui et al. [65]) and empirical (Carlsson
et al. [21], Fe�erman et al. [41], Lui et al. [65], and Olah [80]) indicators that the Manifold
Hypothesis is reasonable. For example, Carlsson et al. [21] showed that the space of natural
images is a Klein Bottle, and Fe�erman et al. [41] tested the theory to be acceptable up to a
given degree of certainty. It is also the basis for many non-linear dimensionality reduction
algorithms that �rst reconstruct the manifold, and only then embed it into lower dimensional
spaces such as Locally Linear Embedding (Saul and Roweis [91]), IsoMap (Tenenbaum et al.
[101]) and more recently UMAP (McInnes et al. [67]).

The collection of methodologies that aim at reconstructing this lower dimensional mani-
fold from data are called Manifold Learning algorithms. Such algorithms attempt to �t data
sampled from high dimensions into low dimensional manifolds. An intuitive example would
be linear regression where one tries to �t a line (1 dimensional manifold) onto a collection of
2-dimensional data points. Manifold Learning however is more generally used in the case of
non-linear algorithms, though the principle is the same.

This �rst step of manifold learning is essential to TDA. An inaccurate reconstruction (as
we will see) might drown any relevant topological features or fail to capture them altogether.
Regardless of the approach, manifold reconstruction is generally done through the use of
simplicial complexes.

3.2 Simplicial Complexes

We now explore the task of creating a continuous topological structure from a discrete set of
points. Take two points x,y ∈ Rn. Each one of them is what we call a 0-dimensional simplex.
One can create a continuous object by considering all the points between them:

σ = t0x+ t1y such that t0 + t1 = 1 (3.1)

We have created now a continuous interval by adding the line between x,y, which in turn is
called a 1-dimensional simplex. Similarly one can create a 2-dimensional simplex with three
points (x,y,z) and considering the convex set created by them:

σ = t0x+ t1y + t2z such that t0 + t1 + t2 = 1 (3.2)

Note that each n-dimensional simplex includes also all other possible simplices of lower di-
mension.

Figure 3.1: Illustration of simplicies of dimension 0,1,2 and 3.
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De�nition 3.2.1. Let S be an a�ne subspace of dimension n. A is said to be convex if
t0x + (1 − t0)y ∈ A ∀x,y ∈ S and 0 ≤ t0 ≤ 1. The smallest convex set that contains A is
called the convex hull.

De�nition 3.2.2. We call n-simplex the convex hull in Rm of n+1 points v0, . . . , vn in general
position1.

The points v0, . . . , vn are called the vertices and the simplex is given by:

∆n = {(t0, . . . , tn) ∈ Rn+1 |
∑
i ti = 1 and ti ≥ 0} (3.3)

A simplicial complex is a structure built by “glueing together” a collection of simplices of
di�erent dimensions.

De�nition 3.2.3 (Simplicial Complex). A simplicial complex, denoted as ∆-complex, is a
collection of n-simplicies closed under the restriction: for each simplex σ ∈ ∆, all its subsets
are also in ∆.

One can think of ∆-complexes (simplicial complexes) as higher order generalizations of
graphs, or better yet, graphs as ∆-complexes containing only simplices of dimension 0 (ver-
tices) and 1 (edges). When creating a graph the same restriction applies: for an edge (1-simplex)
to exist it requires two vertices (0-simplex).

Given a set of elements of a space it is possible to construct many di�erent simplicial
complexes (just like graphs). The main approach is to take a �nite cover of the space and create
higher order simplices depending on the intersections of that cover, i.e. add a 1-dimensional
simplex whenever the intersection of two sets if not null. The di�erent possibilities on how
to do this process give rise to di�erent famillies of simplicial complexes: alpha (Edelsbrunner
et al. [38]), tangential (Boissonnat and Ghosh [14]), witness (Silva and Carlsson [94]) and cover
complexes such as Mapper (Singh et al. [95]), and the most commonly used Čech Complex
and Vietoris-Rips complex (Vietoris [105]). In light of our later applications we focus on the
last two.

3.2.1 Čech Complex

Given a cover U = (Ui)i∈I we can construct a simplicial complex from U by adding a 1-
dimensional simplex (a line) for each intersection of 2 sets, a 2-dimensional simplex (a face)
for each intersection of 3 sets, etc. One can see that this is a simplicial complex because every
time we have a non-null intersection of three sets (a 2-simplex) it means that the pairwise
intersections of these sets are also non empty (all its 1-simplexes). Informally, this processes
can be described as adding a vertex for each set in the cover and then drawing a line if two
sets touch, a face if 3 sets touch etc.

The simplicial complex resulting from this construction is called the nerve of a cover.
1General position is when n + 1 points do not lie in a hyperplane of dimension less than n. Consider for

example 3 colinear points, they are not in general position since they �t in a hyperplane of dimension 2, a line.
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De�nition 3.2.4 (Nerve). Let U = (Ui)i∈I be a �nite collection of open sets. The simplex
{t1, . . . , tk} belongs to the nerve of U if Ut1∩, . . . ,Utk ,∅.

The nerve of a cover is a simplicial complex generally called Čech Complex. The Čech
Complex is constructed from an existing cover of the space. In order to construct a Čech
Complex from a set of points in Rn we must �rst build a cover. Let S be a �nite set of points
in Rn. Let Bx(r) be an open ball of radius r and center x ∈ S :

Bx(r) = {y ∈ Rn | d(x,y) < r} (3.4)

We now create one open ball centered at each point and with radius r . We then take the
collection B = (Bx(r))x∈S . The nerve of this collection is the Čech Complex of radius r created
from the sample S , denoted by Čech(r). Note the important property that for r0 ≤ r1 we have
Čech(r0) ⊆ Čech(r1).

Figure 3.2: Illustration of a Čech Complex. The simplicial complex (top) is built from a cover
of open sets (middle), each vertex is a set, each edge is an intersection. These open sets are
ε−balls centered in points sampled from the assumed topological space (bottom)

The Čech Complex is central to Topological data analysis because it provides a strong
theoretical guarantee because the topology of the nerve of a cover “is related” to the topology
of the union of the sets. Informally this means that no topological features are lost or created
when considering the cover and its nerve. Which means that the nerve of a “good enough”
cover is, for all intents and purposes, a “very good” approximation of the space. Many theorems
prove variants of such relations under di�erent conditions, and they are collectively called
nerve theorems. A good summary can be found in Meunier and Montejano [69].

3.2.2 Vietoris-Rips Complex

Informally in the Vietoris-Rips Complex, simplices are added if the pairwise distance between
vertices is less than a certain threshold r . That is, the simplex {t0, t1} exists if and only if
d(to, t1) ≤ 2r . Higher order simplices are added if all its subsimplices were added too. For
example a 2-simplex (triangle) is added to the complex if all its edges also belong to the
complex, which in turn belong if the distance between each vertex pair is less than 2r .
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Let (X,d) be a metric space. Consider a sample S = t1, ...tn from X, the Vietoris-Rips
Complex of radius d is de�ned as the set:

VRr = {〈t0, . . . , tk〉 | d(ti , tj ) ≤ 2r ∀i, j} (3.5)

The di�erence between both complexes is subtle. Vietoris-Rips complexes require only
a metric space, i.e. the pairwise distance between the elements. This makes Vietoris-Rips
complexes depend only on the geometry of X and not on an underlying geometry where X
maybe be embedded. Consider three points in a plane at the same distance 2d from each
other. VRd would contain the face of the triangle as a 2-simplex while Čech(d) would not
since there is no point present in all three balls. However if the same points where embedded
in a di�erent space where the intersection of the balls was not null, then the Čech complex
would include the 2-simplex while the Vietoris-Rips would remain the same.

Figure 3.3: Illustration of a Čech Complex (left) and a Vietoris-Rips complex (right) built
from the same cover. Note that Vietoris-Rips complex includes the 2−simplex while the Čech
doesn’t since the intersection of all three sets is null.

In contrast with the Čech complex, the Vietoris-Rips is not the nerve of a cover. Therefore
does not necessarily inherent the topology of the cover. However since Čech(r) ⊆ VRr some
properties of the nerve theorems still apply for Vietoris-Rips complexes (Latschev [59] and
Hausmann [50]).

Since checking for high order intersections is very computationally expensive, Vietoris-
Rips complexes are much preferred over Čech Complexes, since the former only require pair-
wise distances.

So given a dataset S as a set of points in Rn, what are then the topological properties that
we can extract from this simplicial complex? How does one proceed after reconstructing the
underlying “data manifold”?

3.3 Homology

Informally Homology counts the number of holes of a structure. It de�nes an equivalence
relation in topology. Meaning that it is an inherent feature of a space robust enough to
characterize it under continuous deformations. This equivalence relation emerges from the
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observation that it is possible to distinguish shapes based on the number of holes that they
have in each dimension.

3.3.1 Motivation

Consider the symbols O, Q, C, and IB. Let us now imagine we want to categorize these
symbols by the number of holes they have in di�erent dimensions.

Denote by β0 the number of connected components (0-dimensional holes) of each space.
in this way we have: β0(O) = β0(Q) = β0(C) = 1 and β0(IB) = 2. In a similar fashion let β1
de�ne the number of 1-dimensional holes, as such: β1(C) = 0, β1(O) = β1(Q) = 1, β1(IB) = 2.

If we de�ne an equivalence relation based on the value of (β0,β1) we observe that O and
Q are equivalent since they have the same characterisation (β0,β1) = (1,1). We shall say
(without de�nition for now) that these shapes are homology equivalent.

Notice that no matter how much we deform these symbols, as long as it is done in a
homeomorphic way, the number of holes does not change. This is why we are able to
recognize letters even in the most unconventional fonts. Homology is a topological invari-
ant and as such is subjugate to the homeomorphism class. Meaning that, in general terms,
X homeomorphic to Y =⇒ X homology equivalent to Y .

Example 8. The reciprocal is, however, not true. Take for example the symbols O
and Q although they have the same homology groups they are not homeomorphic.
The intuition behind this is that Q has a point for which there is no local homeomor-
phism to R. Informally it has a point that any scale, no matter how small, doesn’t
look like a line.

Given a simplicial complex, which represents our approximation to the data manifold,
how does one compute its homology?

3.3.2 Simplicial Homology

Simplicial homology counts how many closed submanifolds of each dimension are not a
boundary of a higher dimensional one. Given that two submanifolds are di�erent if they
are not boundaries of the same higher-dimensional submanifold. This de�nes an equivalence
relation where the representatives of each class are the closed submanifolds that are a boundary
of a non-existing manifold: a hole.

In practice, we �rst separate the simplicial complex into groups of simplices of the same
dimension. Then de�ne a map between the group of the n-simplices to the one of the n− 1-
simplices. Homology is an equivalence relation de�ned by this map.

De�nition 3.3.1. Let F2 be the �nite �eld with 2 elements. We denote by Cn(∆) the vector
space over F2 with basis the n−simplices of ∆

We motivate the construction of a map ∂ called the boundarymap. Consider a 2−simplex
(t0, t1, t2), geometrically it can be represented by a (�lled) triangle. The boundary map applied
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to this simplex outputs the boundaries of this simplex {(t0, t1), (t1, t2), (t0, t2)}. These are 1-
simplices that geometrically represent the lines that compose the triangle.

De�nition 3.3.2. Let ∂n+1 : Cn+1(∆)→ Cn(∆) be a linear transformation that sends a n+1-
simplex to a sum of basis n-simplex faces

Figure 3.4: Illustration of boundary operator ∂3 that maps a 3-dimensional simplex to its
2−dimensional boundary.

We de�ne the boundary of zero dimensional simplices to be equal to 0. Note that there
are some important elements of Cn(∆) whose boundaries is zero. That is let zn be an n−chain
of ∆, zn is called a n-cycle if ∂n(zn) = 0.

By de�nition the set of all cycles of Cn(∆) are the elements of the kernel of ∂n. We now
consider the construction:

. . .Cn+1(∆)
∂n+1−−−−→ Cn(∆)

∂n−−→ . . .C1(∆)
∂1−−→ C0(∆)→ 0 (3.6)

Lemma 3.3.3. ∂2 = ∂n ◦∂n+1 = 0 ∀n ∈ {0,1 . . . }

The lemma states that the boundary of a boundary is null, equivalently that every boundary
is a cycle. The following corollary shows that not every cycle is a boundary.

Corollary 3.3.4. img(∂n+1) ⊆ ker(∂n) ∀n ∈ {0,1 . . . }

Each element of img(∂n+1) is called an n-boundary. The corollary above shows that not all
cycles are boundaries of a higher dimensional manifold. Recall the beginning of this section,
we can now create a quotient group of all the cycles that are not boundaries of a higher
dimensional cycle. Homology is that equivalence relation of cycles.

De�nition 3.3.5 (Homology). Hn(∆) =
ker(∂n)
img(∂n+1)

Two n-cycles (elements of ker(∂n)) are homologous if they di�er by a an element of
img(∂n+1). And thus the dimension of this equivalence class will give us the number of cycles
that are not boundaries: the number of holes. This is called Betti number.

De�nition 3.3.6 (Betti number). βn = dim(Hn(∆)) = dim(ker(∂n))− dim(img(∂n+1))
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Example 9. Consider a circle, it has only a 1-dimensional hole, i.e dim(H1(S1)) = 1.
Similarly a sphere has only a 2-dimensional hole. In fact, regarding the n-sphere Sn

for n > 0 we have:

Hk(Sn) =

Z k = n

∅ otherwise
βk(Sn) =

1 k = n

0 otherwise
(3.7)

Example 10. Regarding the n-Torus Tn = (S1)n we have:

βk(Tn) =
(
n
k

)
(3.8)

Given then a simplicial complex we have now the tools to compute its homology in any
dimension. In the previous section we explained how to construct a simplicial complex from
a discrete set of samples. However the attentive reader will realize that there are many dif-
ferent simplicial complexes that can be created from a discrete set of samples (Fig. 3.5). For
example both Vietoris-Rips and Čech Complexes are dependent on a radius parameter. Both
generate di�erent complexes for di�erent radii and these complexes might have very di�erent
homologies.

Figure 3.5: Simplicial Complexes constructed from a a discrete set of observations from a
underlying data manifold (orange). Note that all constructions are valid however only one
captures the correct homology of the data manifold.
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3.4 Persistent Homology

3.4.1 Motivation

Both Čech and Vietoris-Rips complexes depend on a parameter (radius) for construction. Dif-
ferent parameter values generate simplicial complexes of varying homologies. How can one
infer the homology of the data manifold? Persistent homology is the main tool in TDA that
solves this problem. The work�ow starts by constructing simplicial complexes for each value
of the parameter, one then computes the homology of each complex and evaluate which
homology classes persist for the most values of the parameter.

The intuition behind Persistent Homology is to assess the interval within which a homol-
ogy class is relevant under the assumption that features that persist over a longer interval
have more signi�cance. Recall the observation in Section 3.2.1 that for di�erent values of
radius r0 ≤ r1 we have Čech(r0) ⊆ Čech(r1). If we were a consider a set of increasing values
of radius {r0, r1, r2, . . . , rn−1, rn} we would have the following sequence of nested simplicial
complexes: Čech(r0) ⊆ Čech(r1) ⊆ Čech(r2) ⊆ · · · ⊆ Čech(rn−1) ⊆ Čech(rn) Such sequence
of simplicial complexes ordered by inclusion we call �ltration. This is the basic setup of
persistent homology.

3.4.2 Filtration

De�nition 3.4.1. A �ltered space (or �ltration) is a sequence of subspaces 0 = X0 ⊆ X1 ⊆
. . .Xk = X that begins with zero and ends with the space.

0 =X0 ⊆ X1 ⊆ . . .Xk = X
Filtration Parameter ε−−−−−−−−−−−−−−−−−→

(3.9)

If we consider X to be a simplicial complex, then a �ltered simplicial space is the nested
sequence of its subcomplexes. Let us consider a �ltration based on a parameter ε, e.g. a
sequence of Čech Complex of increasing radius (εi)i∈N. The inclusion Xi ⊆ Xj de�nes a linear
map fi , j :Hn(Xi)→Hn(Xj ) on the n−homology groups of both subcomplexes, for all n.

Hn(X0) Hn(X1) Hn(X2) . . . Hn(Xk−1) Hn(Xk)
f0,1 f1,2 fk−1,k (3.10)

A homology class in Hn(Xi) is said to persist if its image is in Hn(Xi+1) otherwise it is
said to die. Similarly, a homology class Hn(Xi) is said to be born if it not in the image of
Hn(Xi−1). To the value εdeath−εbirth we call the persistence of the homology calssHn(Xi+1).

For the rest of the work we will consider only �ltrations of Vietoris-Ripps simplicial com-
plexes. A Vietoris-Rips �ltrations is intuitive to visualize and understand. The �ltration
parameter is the radius. Increasing this �ltration parameter can be seen as increasing the
radius of each data point. At a certain radius ε0 a hole, an element of H1 appears. As we
increase the radius more and more subcomplexes are added. Eventually, at radius value ε1,
drowning out the hole. The value ε1−ε0 is persistence of the hole; which values of the radius
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thisH1 element exists. The bigger the persistence, the more relevant the topological feature is.
Small persistence values are normally associated with noise. In case of Vietoris-Rips �ltration,
where the parameter is the radius, the persistence is also a measure of the radius of the hole.

Figure 3.6: Vietoris-Rips �ltration of a set of points along with the birth and death value of
each homology class, represented as a bar below. The size of the bar, death-birth, is called
the persistence. The upper bars represent the 0−dimensional homology classes (connected
components), and the bottom represent the 1−dimension (holes).

3.4.3 Persistence Diagrams

We represent the births and deaths of n-dimensional homology classes by a multiset of points
in R2, the n-th persistence diagram [37]. For each group we map (x,y) = (εbirth, εdeath).
Drawing births along the x axis and deaths on the y axis. The persistence of a given point is
equal to its horizontal or vertical distance to the diagonal. Naturally there are no points below
the diagonal.

As pointed by Mileyko et al. [70] the space of persistence diagrams is not complete. This
means that it is not possible to develop basic statistical inference. To �x this we consider
generalized persistence diagrams which is the union of the persistence diagram and a set
of in�nite number of points in the diagonal.

De�nition 3.4.2 (Generalized Persistence Diagram). A generalized persistence diagram is a
multiset of points in R2 along with the diagonal {(x,y) | x = y}.

Figure 3.7: Illustration of the construction of a persistence diagram (left), r denotes the param-
eter of the simplicial �ltration (right). In the case of a Vietoris-Rips �ltration it denotes the
radius of the cover.
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For the rest of the work we will only consider generalized persistence diagrams and there-
fore drop the pre�x. We can equip the space of the persistence diagrams with a metric called
the Wasserstein Distance. The intuition behind this is to make a one-to-one matching be-
tween points of two di�erent diagrams. Such a bijection exists due to the existence of points
in the diagonal. The bijection η is chosen to be the one that minimizes the Lp distance of each
matching. The p−Wasserstein distance is that value.

De�nition 3.4.3 (Wasserstein distance). The p-th order Wasserstein distance between two
persistence diagrams d1,d2 is de�ned as

Wp(d1,d2) = inf
γ

∑
x∈d1

‖x −γ(x)‖p


1
p

(3.11)

Just like the Lp norms, there is a di�erent Wasserstein distance for each p ∈ (0,∞]. For
p = ∞ we have what is commonly called the bottleneck distance. Intuitively, it is the
shortest distance for which there is a perfect matching of the two diagrams.

W∞(d1,d2) = inf
η
sup
x
‖x − η(x)‖ (3.12)

Figure 3.8: Illustration of p−Wasserstein distance between two persistence diagrams d1,d2.
In orange we see the shortest possible pairing of points in d1 with points in d2 (the bijection
η). Since we work with generalized persistence diagrams it is possible to pair also with the
diagonal.

3.4.3.1 Stability

The most important corollary from the bottleneck distance, and a result also from Cohen-
Steiner et al. [27], is its stability. Intuitively, it means that small variations in the data create
small variations in the corresponding persistent diagrams.

Theorem 3.4.4. Let f and g two functions and D(f ) and D(g) their respective persistence

diagrams. Then:

W∞(D(f ),D(g)) ≤ ‖f − g‖∞ (3.13)

The proof, quite extensive and o� the scope of this project, can be found in Cohen-Steiner
et al. [27]. Stability is among the most important result regarding persistence diagrams. While
most results phrase stability in regards of∞−norms, Skraba and Turner [96] recently provided
new stability results for p−Wasserstein norms, especially for Vietori-Rips �ltrations.
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3.4.3.2 Persistence Diagrams in Machine Learning

The integration of topological summaries, such as persistence diagrams in machine learning
is an active and ongoing research �eld. The major speed bump is that the space of persistence
diagrams is not a Hilbert space (Bubenik and Wagner [19]). This means that its not possible
to directly apply many of machine learning methods (such as PCA, since they require the
existence of an inner product). Commonly used work�ows consist in �rst mapping the dia-
grams into a Hilbert space. Several approaches include maps into �nite vectors (Adams et al.
[1], Di Fabio and Ferri [34], and Kališnik [55]) and functional summaries (Bubenik [18] and
Rieck et al. [89]) and various others (Le and Yamada [60]). Obviously such map introduces
deformation and potential losses of information (Carrière and Bauer [23]) and even for p > 2

a map from the space of persistence diagrams and the p−Wasserstein distance to a Hilbert
space does not even exist (Wagner [106]).

Nevertheless its possible to de�ne probability measures in the space of persistence dia-
grams (Mileyko et al. [70]), guaranteeing that statistics such as mean and expectations are
well-de�ned. In this work the most complex structure we will consider is the metric space
of persistence diagrams endowed with p−Wasserstein distance in Chapter 5 which is a trivial
construction. By assuming a simple structure we do not project on the data behaviours that
might be consequence of more complex embeddings. For example, it is common to consider
data as vectors in an euclidean vector space. This is a comfortable embedding yet it assumes
the existence of many structures (such as inner products, vector norms, dimensions) that
might be misleading for example, the embedding dimension can be completely unrelated to
the intrinsic dimension of the data.

3.5 Topological Data Analysis Pipeline

The common topological data analysis pipeline is as follows:

1. Obtain raw data. It can be images, time-series data, graphs and networks. Most com-
monly, it is presented as a point cloud, i.e a set of vectors in Rn.

2. Create �ltration. From the raw data by constructing a nested sequence of simplicial
complexes. For point clouds the main �ltrations include: Vietoris-Rips(Vietoris [105]),
witness (Silva and Carlsson [94]), Cover (Singh et al. [95]), Chech, Tangential (Bois-
sonnat and Ghosh [14]) and Alpha (Edelsbrunner et al. [38]). For images (or other
cubical data) it is common to use cubical persistence introduced by Wagner et al. [107].
For graphs, Flag Complexes (Whitney [108]), also commonly called Clique Complexes
(or uncommonly, Whitney Complexes) are normally used, these are equivalent to the
Vietoris-Rips complex.

3. Topological Summaries. There are a multitude of possible topological summaries to
take from a �ltration of simplicial complexes. The most common are the Persistence
Diagrams along with the Wasserstein Distance (or Bottleneck). However many others
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exist including: Persistence Landscape (Bubenik [18]), Persistence Images (Adams et al.
[1]), Persistence FlameletsPadellini and Brutti [83], Heat Vectorizations (Reininghaus
et al. [88]), Persistence Entropy (Atienza et al. [4]) and Betti Curves. In Chapter 4 we
introduce a novel one: Topological Complexity.

Figure 3.9: Common pipeline of topological data analysis. Consider that data comes from
an underlying manifold (left), create a �ltration of simplicial complexes (center). Compute
persistent homology of �ltration and other topological summaries such as the persistence
diagram (right).

3.5.1 Computational Overview

The bulk of the computational manpower on this work has been developed in Python. There
is an increasing number of libraries for topological data analysis available. These include
(by order of importance to this work): Ripser (Bauer [9], Tralie et al. [103]), GUDHI (The
GUDHI Project [102]) and Giotto (Tauzin et al. [99]). It is important to stress that of the large
plethora of available resources, most of them are not included nor required in this project
(because they were not used). The reader is pointed to the work of Otter et al. [82] for a
computational overview and comparison of most of these projects. Although there is very
little standardization in the �eld, several libraries have started to push TDA computation in
that direction (such as GUDHI and Giotto).
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Classification and Topological
Complexity

This algorithm has been proved to work, but has never been observed to do so.

-Alexander Barvinok (Illinois Mathematics Colloquium)

In order to understand how many di�erent problems a given Neural Network can solve we
�rst need to understand what it is that makes two problems distinct. This chapter aims to
de�ne the basis of a classi�cation problem, how previous geometric approaches have tackled
the above question and above all how can we approach them topologically. The objective is
to establish a baseline and build momentum for understanding topological expressiveness.

4.1 Classi�cation Problem

Let S be a sample of points of Rn. Let S be composed by a disjoint union of sets S =
⊔
Ci .

We call each class Ci . Without loss of generalization and unless explicitly stated, we will only
consider binary classi�cation problems. That is, situations where S = AtB.

A binary classi�cation problem can generally be considered to �nding a function f : Rn→
{0,1} such that:

f (s) =

1 s ∈ A

0 s ∈ B
∀s ∈ S (4.1)

4.1.0.1 Characterizing Classi�cation Problems

The complexity of a problem can range from very simple, such as when the two classes can
be separated by a straight line, to very hard, when classes are entangled in non-obvious ways.

29



CHAPTER 4. CLASSIFICATION AND TOPOLOGICAL COMPLEXITY

Analyzing the complexity of a given problem is the necessary �rst step in solving it. But how
to do it?

A �rst approach by Ho [51] separates geometric descriptors of complexity into three cate-
gories: i) class ambiguity, ii) boundary complexity and iii) sample sparsity and dimensionality.
The work has been extended in Lorena et al. [64] and Mollineda et al. [73] with geometrical
and statistical descriptors of binary and multiclass problem complexity. In all these works,
the authors recognized boundary complexity as the closest notion to the intrinsic di�culty
of a classi�cation problem. While the other categories are more symptoms of an ill-de�ned
classi�cation problem. However, authors did not agree on any reliable metric for measuring
boundary complexity or even de�ning it. Note that all the approaches described so far are
inherently geometrical.

Our approach starts by understanding what makes classi�cation problems similar. While
it is not obvious for all types of classi�cation tasks, there is one natural subset of problems of
equal complexity: linearly separable problems. Note that this is not a measure, but an entire
class of problems, regardless of data complexity, coordinates and ambient dimension. Such
mantra should come familiar to the reader by now because this is describing a topological
feature of an intrinsic object in classi�cation: the decision boundary.

Linearly separable problems are problems whose decision boundary has trivial homol-
ogy. Following the same idea there should be a class of problems that are bi-linearly separable,
i.e. that can be solved (classes can be separated) using two lines. This class would already
include the XOR problem. Bi-linearly separable problems are problems whose decision bound-
ary has trivial H1 homology (are lines) but non-trivial H0 (there are two of them). We will
use this to motivate topological complexity later.

Our approach is then to use Topology to capture this characterization of complexity that
is inherent to its perspective. A topological approach to classi�cation complexity has been
previously proposed by Guss and Salakhutdinov [48]. The authors argue that a classi�cation
problem is complex if its classes display non-trivial homology. For example, classes with many
connected components pose a more di�cult challenge that those with just one. However, at
di�erence with Guss and Salakhutdinov [48], we do not focus on the homology of each class as
a measure of complexity, but rather on the homology of the decision boundary. This is due
to the fact that the classes’ homology can sometimes be misleading. For example, topologically
complex classes might be linearly separable, e.g. the task of classifying between two concentric
circles is challenging not because they are circles, but because they are concentric (Fig. 4.1(a)
versus (b)).

4.2 Decision Boundary

4.2.1 Necessity of De�nition

Characterizing the complexity of a classi�cation problem based on the homological complexity
of its decision boundary rises a big statement: all decision boundaries have the same homology.
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(a) (b)

Figure 4.1: Two di�erent classi�cation problems where classes have the same topology how-
ever (b) is linearly separable while (a) is not.

Without this assurance it is not possible to make our analysis.
The problem above stems for the observation that a decision boundary is not unique. For

example, support vector machines de�ne a decision boundary that minimizes an empirical
margin, while Neural Networks learn one that minimizes a user de�ned loss.

As a �rst step we formally de�ne a decision boundary as the hypersurface that maximizes
the interclass distance. This construction is reasonable since any other disparity metric (for
example, support) is based on distance. Under this assumption, the decision boundary we aim
to approximate is the union of the edges of adjacent Voronoi cells corresponding to points of
di�erent classes and is unique.

De�nition 4.2.1 (Voronoi Cell). Let (X,d) be a metric space and S = {s1, ..., sk} be a set of
elements of X. The Voronoi cell associated with point si is the set:

Vsi = {x ∈ X | d(x,si) ≤ d(x,sj )∀i , j} (4.2)

We call Voronoi Cover (or Voronoi Diagram) to the collection (Vs)s∈S .

Figure 4.2: Illustration of a Voronoi diagram (dotted line) along with the decision boundary
(solid line) of two classes (black and white).

Intuitively, the Voronoi cell of a point si is the set of all the points that are the closest to
si than to any other datapoint. Given two points of di�erent classes ai ,bi their edge is the
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intersection of both cells. This intersection is empty unless both points have adjacent cells. In
that case the edge de�nes a bounded hyperplane.

De�nition 4.2.2 (Decision Boundary). Let S = AtB, given points of di�erent classes a ∈ A
and b ∈ B their decision boundary is the set:

DBa,b = Va ∩Vb = {x ∈ Rn | d(x,a) = d(x,b) ≤ d(x,s)} (4.3)

We call Decision Boundary the union:
⋃
a∈A,b∈BDBab

We call decision boundary the collection of all these edges. Therefore, for a classi�cation
problem in Rn with c classes, the decision boundary is a n− 1-manifold since it is a union of
bounded hyperplanes.

4.2.2 Sampling the decision boundary.

While Voronoi diagrams are fundamental structures, computing one on n points inRd requires
O(n logn+ndd/2e)[5], making it prohibitive in high dimensions. One can bypass this hurdle
by taking advantage of the fact that we do not require the complete boundary but only enough
to compute its topology. Thus we introduce an algorithm to sample the decision boundary
that is theoretically exact and computationally feasible for high dimensions. The central idea
is to sample randomly a point and then “push” it into the decision boundary, by iteratively
projecting it to the hyperspace orthogonal to its closest points belonging to di�erent classes.
Algorithm 1: Sample the decision boundary

Input: A← list of points class A
B← list of points of class B
n← number of points to sample from boundary
iteration← number of iterations

Output: Q← list of n points in the decision boundary of A and B
Q← Sample n points uniformly.;
for each iteration do

for each point p in Q do
pA← Nearest Neighbour of p in A ;
pB← Nearest Neighbour of p in B ;
project p to the hyperplane orthogonal to pA − pB;
p← proj(pA−pB)⊥(p) ;

end

end

Proposition 4.2.3. The algorithm converges to the edges of adjacent Voronoi cells corre-
sponding to points of di�erent classes.

Proof. By de�nition the Voronoi cell associated with point si ∈ S is the set {x ∈ Rn | d(x,si) ≤
d(x,sj )∀i , j}. Given a point ai belonging to a class, and bi belonging to another class, we
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have that the set of points in the common edge of their Voronoi cells is given by: DBab = {x ∈
Rn | d(x,ai) = d(x,bi) ≤ d(x,sj )}.
Therefore, at a given iteration of the algorithm, if point P does not belong to the setDBab then,
by de�nition of Voronoi cell, there has to exist a point aj (or bj ) such that d(P ,aj ) < d(P ,ai) =
d(P ,bi). Therefore this point is considered the new closest neighbor in the next iteration. It
follows that the algorithm only stops when all points reach the decision boundary.

Figure 4.3: Example of the algorithm with just one sampled point (black), orange and green
represent points of di�erent classes. The Voronoi Diagram represented in grey. It �rst �nds it
closest neighbours of di�erent classes and then projects the point to the orthogonal hyperplane.

(a) Initial uniform sampling (b) After 1st Epoch

(c) After 2nd Epoch (d) After 3rd Epoch

Figure 4.4: Example of the decision boundary sampling algorithm over 3 epochs. First we
sampleN points uniformly distributed (black) (a). Each point is then pushed to the hyperplane
orthogonal to the closest neighbours of each class (orange and green). The process is repeated
3 times (a)→(b), (b)→(c), (c)→(d).
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(a) Concentric Circles (b) Spirals

Figure 4.5: Sampled points in the decision boundary (black). Along with the Voronoi diagram.
Note that all points lie on the edges of the Voronoi cells belonging to points of di�erent classes
(orange and green).

4.2.3 Complexity

As stated before, calculating the Voronoi diagram of n points in Rd has a time complexity of
O(n logn+ndd/2e)[5].

Below we study the complexity of our algorithm. The method is composed of two main
steps:

1. The (conditional)Neighbour Search.This step has an average complexity ofO(logn),
although this can be reduced using approximate nearest neighbour methods such as
Nearest Neighbour Descent (Dong et al. [35]) and HNSWLIB (Malkov and Yashunin [66]),
Fig. 4.6.

2. Getting the orthogonal hyperplane. Calculating a orthonormal basis of the subspace
orthogonal to a vector w ∈ Rd is normally done by taking the null-space of a matrix
[w | 0]. That is, the square matrix d × d with only one non-zero column, w. Such
operation has average complexity of O(d3), which is good but still above that sub-
quadratic sweet-spot. It is possible however to calculate it using QR-Decomposition
which approximates the orthonormal basis using a least-squares method. This method
lowers the complexity to O

(√
d
)
, Fig. 4.6.

Running our method through k epochs to calculate the decision boundary using n points in
Rd has average complexity of O

((√
d + logn

)k)
. This is orders of magnitude faster than

calculating the Voronoi diagram, making the proposed algorithm very reliable even high
for dimensions (above 1000). For perspective, standard (Support Vector Machine) SVM has
O(n2d + n3) complexity, which is known to be underperforming for high number of points.
On the other hand we have Linear Regression, with its misleading name, with O(nd2 + d3)

complexity. This might seem surprising but Linear Regression relies on matrix inversion
which is a complex task for high dimensions Fig (4.6).
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(a) (b)

Figure 4.6: Comparison of the time complexity of our proposed sampling method and the
common calculation of the Voronoi diagram for varying dimensions (a) and number of points
(b). For comparison there are also the time complexities of the standard SVM algorithm
O(n2d +n3) and Linear Regression O(nd2 + d3). Note the logarithmic scale on both axes.

4.2.4 Stability

The sampling algorithm was designed to enable us to compute the persistent homology of
the decision boundary. As such, stability denotes how many point are needed to accurately
evaluate the homology of the decision boundary. In this regard our method is inherently
robust, by construction, due to two factors:

1. Fewer points are required to capture topological properties compared to geomet-
ric properties. To accurately describe a certain topological feature one does not require
all the points. Consider for example a circle. It is possible to capture its topological
properties with only 4 points, given that they are uniformly distributed for example this
is the basis of the Witness Complex (Silva and Carlsson [94]). In practice, this means
in a dataset with 1000 points we should require much fewer to accurately capture the
topology of its decision boundary.

2. The initial sample covers the space uniformly. If we condition the initial cover of
points, in the algorithms initialization, to be uniformly distributed, it is easy to see that
they will approximately cover of the space uniformly1.

In conclusion, by construction our method captures the accurate topological features of the
decision boundary using a small number of points (Fig. 4.7). This is a desirable property
especially in case of very large datasets. As a rule of thumb we recommend sampling the same
number of points as the cardinality of the sparsest class.

4.2.5 Scalability

Another major improvement of our method relative to the one developed by Ramamurthy
et al. [87] is its scalability. Their method allows only binary classi�cation while our method is

1This is ongoing work
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Figure 4.7: Left: Sampling 20,50,100 and 200 points (black) in the decision boundary of two
classes (orange and green). Center: The persistence diagrams associated to each set of sampled
points (from the decision boundary). Right: The Wasserstein Distance matrix of the H1
persistence diagrams of decision boundaries sampled from 10 to 1000 points.

scalable to multiclassi�cation problems. At a given iteration for each point pwe compute its
closest neighbours pA and pB. The only requirement is that these belong to di�erent classes,
disregarding the total number of classes. Consider a multiclassi�cation problem, given by
a dataset S = {s0, s1, . . . sn} = A0

⊔
A1

⊔
. . .Ak where k is the number of classes. At a given

iteration for each points p we compute its closest neighbours pAi and pAj here the only
requirement is that i , j . Nothing else is a�ected, including complexity.

4.3 Topological Complexity

Recall the thought experiment of linearly separable problems and bi-linearly separable prob-
lems. The �rst has trivialH0 class while the second one does not. We can say that classi�cation
problems in the latter class are more complex than in the former because their decision bound-
aries have trivialH0 homology. The a�rmation is obvious when one realizes that any linearly
separable problem is also bi-linearly separable, meaning that a model that solves the latter
category also solves the former.

Intuitively a decision boundary with more connected components is more complex than
another with just one. We propose that a classi�cation problem is complex if and only if its
decision boundary has non-trivial topology. But how to quantify this complexity?

Figure 4.8: Illustration of decision boundary with trivial homology and decision boundaries
with increasing H0 and H1 homology groups.

The de�nition of topological complexity has been �rst introduced by Farber [40] in the
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context of motion planning problems. It formalizes this general idea we have been introducing
so far. However it is based on a topological features di�erent than homology called homo-
topy, that is much more di�cult to work with in practice. While it has garnered a lot of
attention, including an application to simplicial complexes (Fernández-Ternero et al. [42]), a
computationally feasible work�ow has not yet been achieved.

On the other hand Bianchini and Scarselli [11] present an intuitive heuristic for topologi-
cal complexity as the sum of its Betti numbers. However, with real-world data, one has to take
persistent homology as a measure of the homology groups of each dimension. Ramamurthy
et al. [87] also tackle this problem using only persistent homology. In their approach they
develop a heuristic for topological complexity as the total sum of persistence.

Our approach �ts somewhere in the middle. It has direct topological meaning beyond
persistence, while managing to leverage only persistence diagrams. We de�ne topological
complexity as the p−Wasserstein Distance to a contractible space 2.

De�nition 4.3.1 (Topological Complexity). Given a k-persistence diagramDk , we callp−Topological
Complexity T (Dk) to its p−Wasserstein Distance to the empty diagram. That is, let γ be such
that it maps each point x ∈ Dk to its closest point in the diagonal. Then the Topological
Complexity is given by:

Tp(Dk) =

∑
x∈Dk

‖x −γ(x)‖p


1
p

(4.4)

Throughout all experiments, for both topological complexity and Wasserstein distance we
considered p = 1.

In this sense topological complexity can be understood as the topological distance to
something we know to be not complex. This has direct application to classi�cation problems.
We can characterize their complexity by measuring how topologically far away they are from
being linearly separable, i.e. not complex.

Figure 4.9: Illustration of topological complexity measure.

We generated 25 binary classi�cation problems in R2 with increasing complexity. In order
to map topological complexity to one dimension we assured that dim(H0)=dim(H1) (Fig 4.10
b). This makes it possible to order the 25 problems from least complex, (dim(H0)=dim(H1)=1),
to the most complex, dim(H0)=dim(H1)=50.

2A space with trivial homology
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We then took 3 di�erent Neural Network architectures. All architectures had a total of
5000 parameters, however they had very di�erent structure. One was shallow and wide (79,
59 neurons), another very deep (44, 34, 33, 24, 18, 17,15, 13, 6), the third had a strong middle
bottleneck similar to an autoencoder (50, 36, 14, 2, 14, 36, 50).

The justi�cation for this experiment is twofold. First, we wanted to cement the topologi-
cal complexity of the decision boundary as an adequate measure of a classi�cation problems
intrinsic di�culty. Second to motivate the next section. Notice that even though all archi-
tectures have the same number of parameters, they have very di�erent behaviours towards
tackling complex classi�cation problems (Fig. 4.10).

(a) (b)

Figure 4.10: (a) Average (30 runs) number of epochs to reach 95% accuracy on binary clas-
si�cation problems of di�erent complexity, for di�erent architectures. (b) Example problem
H0 =H1 = 4.

For all architectures, a more complex problem (under our metric) directly relates to di�-
culty in classi�cation (Fig. 4.10 (a)). Even though all architectures have the same number of
parameters, the autoencoder severely underperforms compared to the wide and the deep one,
who seems to be the least in�uenced by the increase in di�culty..

In the next section we will explore the idea of topological expressiveness of a neural
network. After having identi�ed, in this section, what makes classi�cation problems di�erent,
one can now measure expressiveness by how topologically di�erent and complex are the
decision boundaries that a given architecture is able to express.

4.3.1 Stability

The main concern on the de�nition of the metric is the stability to noise. One might have that
noise, i.e. points close to the diagonal, end up increasing the topological complexity, when in
high numbers (Fig.4.11), because Topological Complexity is de�ned as a geometric mean of
all the distances to the diagonal.

Since topological complexity is de�ned over the p−Wasserstein distance, the stability
results of topological complexity are the same as the ones of Wasserstein Distance. Most
importantly for when p =∞ we have:

T∞(D(f )k) ≤ ‖f ‖∞ (4.5)
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(a) Data (b) Noise

Figure 4.11: Comparison of two persistence diagrams, a) has one very persistent homology
class, while b) has many but with non-relevant persistence, normally regarded as noise.

where D(f )k is the k−persistence diagram of f . Given a persistence diagram its topological
complexity is invariant to the addition of noise, for p =∞. At least as long as the persistence
of the noise is smaller than that of the data. This conclusion is obvious by realizing that T∞(D)

is equal the maximum of the distances to the diagonal.
But what happens to the stability of Tp as we consider di�erent values of p? As an ex-

periment we took a persistence diagram with one homology class (Fig.4.11 a)) and began to
add noise to its diagonal (Fig.4.11 b)). This was done incrementally up to a Noise-to-data ratio
of 100 to 1, meaning 100 noise classes for each data class (Fig.4.12 b)). For each persistence
diagram we computed its topological complexity for di�erent values of p = 1,2,3 and p =∞
(Fig.4.12 a)).

(a) (b)

Figure 4.12: Topological complexity of a series of persistence diagrams with increasing noise-
to-data ratio. (a) compares the stability for di�erent p values of the p−Wasserstein distance
used to compute topological complexity. (b) is a sample of the persistence diagrams corre-
sponding to the noise-to-data ratios: 0, 1, 20 and 100

The values of topological complexity were normalized to the same scale as to be com-
parable. Unsurprisingly Tp is remarkably stable as p increases, ending up being completely
invariant to noise for p =∞.
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Topological Expressiveness of Neural
Networks

Computers are useless. They can only give you answers.

-Pablo Picasso

5.1 Neural Networks

A fully connected dense Neural Network of n-layers can be seen as a chain:

X0
L0−−→ X1

L1−−→ . . .Xn−1
Ln−1−−−→ Xn (5.1)

Where X0 is called the input and Xn the output. Each Li is generally de�ned to be the
composition of an a�ne transformation with a non-linear continuous monotonous function,
called activation function.

Li(x) = a(Wix+Bi) (5.2)

EachXi is a set of points in Rk , where k is the number of neurons in each layer i.e. the number
of rows in the matrix Wi−1. One normally regards Neural Networks as a single function
f : X0→ Xn given by:

f = Ln−1 ◦ · · · ◦L1 ◦L0 (5.3)

5.1.1 Topological Perspective

The realization that feed forward Neural Networks are but a sequence of maps between spaces
has opened the door for topological tools that explain them. For example one would want to
know what morphism φi is induced by the map Li in the homology classes of Xi .

H•(X0)
φ0−−→H•(X1)

φ1−−→ . . .H•(Xn−1)
φn−1−−−−→H•(Xn) (5.4)
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There are some situations where each transformation Li is a homeomorphism meaning that
both Xi and Li(Xi) have the same topology, and φi is an isomorphism.

Proposition 5.1.1. Let Wi be a m×n matrix such that m ≥ n and rank(Wi) = n, and let a be
a continuous bijection with continuous inverse. The transformation:

Li(x) = a(Wix+Bi) ∀x ∈ Xi (5.5)

de�nes a homeomorphism between Xi and Xi+1 = Li(Xi).

The above result states that, in theory, all topological features of the data are preserved
from one layer to the next as long as the �nal layer has at least the same amount of neurons
as the initial and the activation function is a homeomorphism (such as hyperbolic tangent or
the sigmoid function). There is, however a caveat. Computationally speaking, as pointed by
Naitzat et al. [78], functions like the hyperbolic tangent lose their otherwise homeomorphic
behavior due to rounding errors of �oating point precision numbers. In truth it is a piecewise
function de�ned as:

tanhδ(x) =


1 if �(tanh(x)) > 1− δ

�(tanh(x)) otherwise

−1 if �(tanh(x)) < −1+ δ

(5.6)

Where �(x) is the �oating point representation of x and δ the unit round-o�. This means that
while tanh: Rn→ (−1,1)n is a homeomorphism, tanhδ : Rn→ [−1,1]n is not.

Even though most architectures of dense Neural Networks are classi�ed as homeomor-
phisms, in reality they are not. This poses a huge problem to say, study the topological
properties of data through training, or as they travel through the network. This topic is
explored further in section 5.2.4 and central in section 5.3.

As the �eld of Topological Data Analysis develops, approaches to Neural Networks have
become progressively more common in recent years. Bianchini and Scarselli [11] evaluate the
maximum complexity certain architetures can express. They use the sum of Betti numbers as
an heuristic for topological complexity. Guss and Salakhutdinov [48] showed that persistent
homology can be used to characterize the capacity of neural architectures in direct relation to
their ability to generalize on data. Rieck et al. [90] pointed that the 0-dimensional homology
class of the weights and their connections is an adequate indicator of a given Neural Network’s
learning performance. Naitzat et al. [78] and Brahma et al. [15] propose an early topological
understanding to the impact of Neural Networks in the topology of the data.

In order to advance on the work proposed by the above authors we must �rst develop
one last tool to help us capture the topological features of Neural Networks. Each network is
a map f : X0→ Xn (made of the composition of functions Li ). Understanding the topologi-
cal characteristics of a Neural Network is understanding the topological characteristics of a
transformation.
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This is fundamentally di�erent from what we have until now. Proposition 5.1.1 provides
both with a strong baseline but also the assurance that such baseline is only theoretical, not
computationally veri�able.

Thus in order to understand how each function Li : Xi → Xj acts topologically the com-
mon pipeline is to compare the persistent homology of both Xi and Xj . This is however not
so trivial since Xi and Xj are di�erent metric spaces and their persistent homology might not
be comparable. We now present a novel method to solve this problem.

5.2 UDiPH: Uniform Distributed Persistent Homology

5.2.1 Motivation

The study of the homology of the spaces Xi induced by a Neural Network, i.e the homology
of the activations of each layer,

H•(X0)
φ0−−→H•(X1)

φ1−−→ . . .H•(Xn−1)
φn−1−−−−→H•(Xn) (5.7)

pose a speed bump in the common pipeline of topological data analysis. Since Xi and Xj are
di�erent metric spaces (for i , j) the persistence values are not comparable. Vietoris-Rips
�ltrations use the metric of the space as a �ltration parameter and hence spaces with di�erent
metrics will necessarily have di�erent persistent homology regardless if they have the same
homology or not. This is because a standard Vietoris-Rips �ltration (through the use of the
metric) captures always some geometry of space. Thus a change in geometry will a�ect the
topological summary of persistence homology. Even though no change in topology happened.

Take for example a space Xi and a map Li : Xi → Xj . One way to gain insight on the
map Li is to compare the topology of both Xi and Xj . However if Lj is a transformation
that simply scales all pairwise distances by a certain factor, this function is obviously an
homeomorphism and, as such it preserves all topological features. This implies that both
Xi and Xj have the same homology. However, the persistence values of Xj are going to be
scaled by that same factor (Fig 5.1) and thus di�erent from Xi . If one were then to calculate
the Wasserstein distance between the diagrams of both metric spaces, one would �nd the
distance to be di�erent than zero, even though the homology had not changed. In this case
Wasserstein distance is measuring the change in persistence and not the change in homology.
This is a major inconsistency in the perspective of topological data analysis. The tools we use
to capture geometric invariant features, are dependent on said geometry.

In this chapter we present UDiPH (Uniform Distributed Persistent Homology). This novel
approach creates a new metric space that both preserves the topology, and is independent
of geometric changes. The objective is to then do a regular Vietoris-Rips �ltration over this
new metric space, which will highlight the topological properties (homology) and less the
geometric ones (sizes). Notice on Fig. 5.1 a) that the persistence homology of a �ltration using
this UDiPH method still captures the 2 di�erent H1 classes (holes), however their persistence
value is very similar.
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(a) Example metric space.

(b) Example metric space where distances are scaled by a factor of 3

Figure 5.1: Comparison of persistence diagrams of a metric space (a) and the same but scaled
by a factor of 3. The persistence diagrams are calculated using standard Vietoris-Rips �ltration,
and also using the presented novel approach UDiPH (Uniform).

Compare it with regular persistent homology where the persistence of both H1 classes is
di�erent. This is due to the fact that the Vietoris-Rips �ltration uses the ambient metric as a
�ltration parameter. Thus the di�erent persistence values represent the size of each H1 class:
one smaller, the other bigger.

After applying a simple scale, as described in the example above, the persistence values
obtained through the standard Vietoris-Rips �ltration have also been scaled by the same factor.
On the other, hand the persistent homology captures through our UDiPH method has remained
the same.

Such features can be desirable of course. The persistence values are normally used to vali-
date the existence of the homology classes they represent. This is fundamental when working
with static point clouds. In a di�erent scenario, take a Neural Network for example, this de-
pendence on persistence is undesirable since we have a sequence of dynamic metric spaces,
and this we require a new way to compare their persistences. We wish to push persistence
homology back towards its topological roots and remove some of its quantitative features in
favor of a more qualitative topological characterization.

5.2.2 Background

Fuzzy mathematics deals with common mathematical structures that accept some uncertainty
measurement. It has found its way into set theory, metric spaces (Kramosil and Michálek [58])
and topology (Chang [25])
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(a) Standard Vietoris-Rips �ltration.

(b) Simplicial �ltration using UDiPH.

Figure 5.2: Illustration of a standard Vietoris-Rips �ltration (a) where the �ltration parameter
is the ambient metric, or (b) the metric constructed using UDiPH.

De�nition 5.2.1 (Fuzzy Set). Let X be a set and. A fuzzy set A is the set:

A = {(x,µA(x)) | x ∈ X} (5.8)

where µA : X→ [0,1] is called the membership function.

Let A,B be two fuzzy sets and µA,µB their respective membership functions.

1. The complement of A is de�ned by the membership function:

µX\A = 1−µA (5.9)

2. The intersection A∩B is given by:

µA∩B =min{µA,µB} (5.10)

3. The union A∪B is given by:

µA∪B =max{µA,µB} (5.11)

De�nition 5.2.2 (Fuzzy Topology). A fuzzy topology T on a set X is a collection of fuzzy
sets of X satisfying:

1. ∅,X ∈ T

2. It is closed under unions.

3. It is closed under �nite intersections.
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5.2.3 Construction

5.2.3.1 Intuition

UDiPH is novel approach to the computation of persistent homology built on a new metric
space that better focuses on the topological features of the data. Given two metric spaces X
and Y , our objective is two create new metric spaces X and Y where the persistence values
of the respective persistence diagrams are comparable.

X Y

X Y

UU

Wp

Wp

This new metric space is built as to preserve a fuzzy topology that is constructed in an analo-
gous manner for both spaces.

This method is the same as used by McInnes et al. [67] who, in turn, is built over the
theoretical guarantees of Spivak [97]. The construction steps, including the construction of
the fuzzy topology, are the same used in McInnes et al. [67]. The main pipeline is as follows:

1. Assume uniform sampling. Assume that the data has been uniformly sampled from
a data manifold with respect to a Riemannian metric.

2. Approximate metric. For each data point, create a local metric space that approxi-
mates this Riemannian metric thus validating the uniformity assumption.

3. Fuzzy Topology. Merge di�erent metric spaces into a fuzzy topological space.

4. Create new metric space that preserves topology. Create global metric based on
topological structure.

5.2.3.2 Uniform Distribution

Similarly to Niyogi et al. [79] and McInnes et al. [67], this algorithm’s main assumption is that
the data is uniformly distributed in the data manifold. Naturally, real world data is rarely that
well behaved from the perpective of ambient metrics. However we assume that the manifold
from which the data has been sampled has a Riemannian metric that makes this assumption
true.

In Fig.5.3 a) we have a set of points that are uniformly distributed with respect to both
the ambient dimension and the geodesic. In this case, all the drawn circles have the same
radius. Consider now Fig. 5.3 b) where we have some data that is not uniformly distributed
with regards to the ambient metric. Under this assumption we create di�erent metric spaces
for each point such that the data is now uniformly distributed. Here each circle also has the
same radius (but not in ambient dimensions). By creating a di�erent notion of distance for
each point, we enforce our assumption. We then unify all these metric spaces into a fuzzy
topological space.
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(a) (b)

Figure 5.3: Example of the assumption of uniform distribution. In both scenarios the balls
represent have all radius one. with respect to the ambient dimension a), or to a Riemannian
metric b).

5.2.3.3 Approximate Metric

Informally, if a sample S is uniformly distributed in X with relation to a certain metric, then
in a ball of �xed radius around each xi ∈ S there is approximately the same number of points.
Conversely, a ball centered at a certain point that contains its k-nearest neighbours should
have the same radius for all xi ∈ S .

From the previous step we already assumed that there exists a metric such that S is uni-
formly distributed in X. We now need to approximate that metric using the ambient metric.
The following lemma guarantees that we can approximate geodesic distances from a point
to its neighbours by normalizing distances with respect to the distance to its k-th nearest
neighbour.

Lemma 5.2.3 (McInnes et al. [67]). Let (M,g) be a Riemannian manifold in Rn, and let
p ∈ M be a point. If g is locally constant about p in an open neighbourhood U such that
g is a constant diagonal matrix in ambient coordinates, then in a ball B ⊆ U centered at p
with volume πn/2

2Γ (n/2n+1)with respect to g , the geodesic distance from p to any point q ∈ B is
1
r dRn(p,q), where r is the radius of the ball in the ambient space and dRn is the existing metric
on the ambient space.

In practice this means that if {x1i ,x
2
i , . . .x

k
i } are the k-nearest neighbours of xi ∈ S , then

we take,

d′(xi ,x
j
i ) =

d(xi ,x
j
i )

max
m∈{1,...,k}

d(xi ,x
m
i )

∀xi ∈ S. (5.12)

The reader is pointed again to the de�nition of Manifold in order to have an informal
intuition of lemma 5.2.3. Since manifolds are locally homeomorphic to an euclidean space.

5.2.3.4 Fuzzy Topology

We now create a cover of X using fuzzy sets. For each point xi we create a fuzzy set. For each
of its k−nearest neighbours {x1i ,x

2
i , . . .x

k
i } the membership function µi is given by:
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µi(x
j
i ) = exp

−d′(xi ,xji )σi

 (5.13)

Where σi is such that:
k∑
j

µ
j
i = log2 k ∀xi ∈ S (5.14)

The value of σi is a normalizating factor useful to unite all di�erent metric spaces. The
reader is once again pointed to Spivak [97] and McInnes et al. [67] for a thorough explanation
of this process. The proofs and derivations are well into Category Theory which is beyond the
scope of this thesis.

We wish to build a global metric through the membership functions µi . Notice however,
that the membership functions are not necessarily symmetric. That is, its not true that

µi(xj ) = µj(xi) ∀xi ,xj ∈ S (5.15)

The next step is then to take care of this asymmetry. Let xi be the mth-neighbour of xj . And
xj be the nth-neighbour of xi , we consider the new value:

δij = µi(xj ) +µj(xi)−µi(xj )µj(xi) (5.16)

If the intuition of a membership function is that of a probability of belonging to that set then
δij can be informally understood as the probability of xi or xj belonging to each other’s set
minus the probability of belonging to the intersection:

δij = µi(xj )︸︷︷︸
P (xj∈Xi )

+ µj(xi)︸︷︷︸
P (xi∈Xj )

−µi(xj )µj(xi)︸       ︷︷       ︸
P (xij∈Xi∩Xj )

(5.17)

Figure 5.4: Illustration of di�erent local metric spaces (grey circles) resulting in non symmetric
distances between points (dotted lines) since both circles have the same radius.
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5.2.3.5 Metric Space

The resulting construction is a 1-dimensional fuzzy simplicial complex (a.k.a. weighted
graph)de�ned by the adjacency matrix A = [δij ]. This topological space is the approximation
of our data manifold in which, by construction, the data is uniformly distributed.

As our objective is to be able to calculate persistence homology we need to create a metric
space. However, we wish to take advantage of the newfound metrics and manifold in order
to do this. This can be done in two steps:

1. Local metric. If we consider distance of xi to xj as the probability of xi not belonging
in the fuzzy set Xj we create the dissimilarity matrix A′ = [1−δij ], which is symmetric
by construction.

2. Global metric. We then extend this notion and de�ne the distance between any two
points xi ,xj ∈ S as the shortest path in the simplicial complex A′ , which is an approxi-
mation of the geodesic distances in the manifold.

5.2.4 Stability

5.2.4.1 Of a Transformation

Consider a function f : X → Y on two metric spaces X,Y . We compare the stability of
the persistence diagrams of both X and Y using standard Vietoris-Rips �ltration and our
method. Despite the abuse of language, for ease of reading, we will denote byWp(Xu ,Yu) the
p−Wasserstein distance between the persistence diagrams of both X and Y after applying the
UDiPH method.

In Fig. 5.1 we have seen that homeomorphic transformations such as scaling have a strong
impact in the persistence diagrams of Y . UDiPH was developed with the following implication
in mind:

X homeomorphic to Y =⇒ Wp(Xu ,Yu) = 0 (5.18)

We will show that in some situations that is actually the case. We will also present situations
where conjecture 5.18 only approximately holds, meaning that:

Wp(Xu ,Yu) , 0 however Wp(Xu ,Yu) ≤Wp(X,Y ) (5.19)

and provide a possible explanation as to why there is not a complete invariance. The author
believes that conjecture 5.18 holds under mild assumptions and an adapted proof can be
achieved. Proving that the neighbour structure of uniformly distributed manifolds is invariant

under homeomorphisms is a ongoing future work direction. Consider the following types of
homeomorphisms.

1. Isometry is a map that preserves all pairwise distances. It preserves the metric of X
in Y . Rotations, re�ections and translations (very common in Neural Networks) are
examples of isometries. Isometries are the isomorphisms of geometry, meaning they
preserve the geometric structure.
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2. Similarity transformations preserve angles and ratio between distances, such as scaling
Fig. 5.1 and Fig. 5.5.

Figure 5.5: Persistence diagrams before and after a similarity transformation, using standard
Vietoris-Rips �ltration (top), and UDiPH (bottom).

3. A�ne transformations preserve parallel vectors. Since we are considering both X and
Y to be embedded in some vector space in Rn and Rm these vectors are well de�ned. A
linear projection to a higher dimensional space using a non-singular matrix is an
example (actually the one that is most common in Neural Networks). (Fig. 5.6).

Figure 5.6: Persistence diagrams before and after an a�ne transformation, using standard
Vietoris-Rips �ltration (top), and UDiPH (bottom).
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Transformation H0 H1
Standard UDiPH Standard UDiPH

Isometry Rotation 0 0 0 0
Translation 0 0 0 0

Scale
(factor)

5 3056.1 5.3 318.4 6.1
25 15174.7 5.3 1579.8 6.1
100 60615.2 5.3 6305.2 6.1

A�ne Random 8642.9±2131.9 220.12±5.2 501.9±174.6 73.5±28.3

Continuous
Bijection

exp 60723.6 26.1 4182.7 7.9
sigmoid 11371.2 218.1 590.5 57.8
tanh 6041.5 202.5 237.8 32.2

Table 5.1: Wasserstein distance between X and Y for di�erent homeomorphic functions f :
X→ Y . We compare the H0 and H1 homology as the functions always had input domain R2.
For a�ne transformations random matrixes were used and such the result is the mean of 20
runs and along is the standard deviation.

4. Continuous bijections are the de�nition of homeomorphisms, with continuous in-
verse of course( e.g. functions such as exp, log etc, Fig. 5.7).

Figure 5.7: Persistence diagrams before and after an continuous transformation (Hyperbolic
Tangent), using standard Vietoris-Rips �ltration (top), and UDiPH (bottom).

5. Compositions. Any composition of the above maps is also a homeomorphism. If f ,g
are homeomorphisms then f ◦ g and g ◦ f are also homeomorphisms.

In Table 5.1, we present di�erent homeomorphic transformations f : X→ Y along with
the p−Wasserstein distance Wp(X,Y ) between the persistence diagrams of the domain (X)
and codomain (Y ). Note that since f is a homeomorphisms, in theory Wp(X,Y ) = 0.
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Invariant to scaling. While both methods achieve complete invariance to isometries, the
standard Vietoris-Rips �ltration still su�ers from resizing. Note that as we increase the scale
factor, the Wasserstein distance between input and output increases proportionally. With
UDiPH, however, even though it is not precisely zero, it is completely invariant to the scale
of the metric space. This is arguably the most important property since it allows us to compare
persistent homology of spaces with very di�erent scales, for example, Euclidean spaces of
di�erent dimensions.

More stable for other transformations. UDiPH shows that it preserves much more
the homology of the data in the presence of other strong transformations, such as exponential
and a�ne transformations. It is, unfortunately, not invariant but much stabler nonetheless.
The reader is pointed to the composition of a�ne transformation, translation and sigmoid or
hyperbolic tangent as it is a very common layer transformation in Neural Networks.

As invariant as it gets. The search for homeomorphism invariance might be a futile
one. Recall the fact that homeomorphisms are impossible for computers to compute. As such
functions such as exponential and sigmoid etc. still display some error when computed even
with UDiPH.

5.2.4.2 Of Hyper-parameters.

UDiPH has one hyper-parameter: the number of neighbours used. This parameter controls
the trade-o� between global and local structure. Lower values favor local structure over global.
It controls the number of nearest neighbours used to approximate the Riemannian metric of
the data manifold, and thus the connectivity of the fuzzy simplicial complex.

We wish to examine the stability of this parameter. Consider the very common layer
transformation: L(x) = tanh(Wx+B) for a non-singular matrixW . We then compute various
Xi for di�erent values of nearest neighbours. In Fig 5.8 we have the p−Wasserstein distance
matrix,Wij =Wp(Xi ,Xj ). The data has a total of 1000 points. We see that even going as far as

Figure 5.8: Wasserstein distance matrix of persistence diagrams computed using UDiPH for
H0 (left) and H1(right).

500 nearest neighbours the homology of the data is still robustly captured. The only suboptimal
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values seem to be below 5 nearest neighbors. Regardless, there is considerable stability for all
values, and although there are some mild �uctuations, the homology is always well described
for values in [5,400]. Even the small �uctuations are irrelevant when comparing di�erent
spaces since one can use the same value of nearest neighbors throughout.

5.3 Disentanglement

Previously (Chapter 4) we developed the idea that a classi�cation problem is presented as an
entanglement of di�erent manifolds. Olah [80] shows that Neural Networks deform these
manifolds in such a way as to make them linearly separable, disentangling them.

Figure 5.9: A (shallow) Neural Network learning a linearly separable embedding of the input
space. Images courtesy of Olah [80].

The architecture of a Neural Network is therefore directly involved in how e�ective it
is in disentangling. His work was then picked up by Brahma et al. [15] who build a rough
framework to test a Neural Networks e�ect on manifold entanglement, yet the concepts of
curvature and entanglement are loosely de�ned, often interchanged and presented as equiv-
alent, measuring �attening as disentanglement.

A topological perspective of this scenario was �rst drafted by Naitzat et al. [78], who
empirically showed that Neural Networks deform these manifolds to simplify their topology
(Fig. 5.10). However, they inevitably encounter two problems:

1. Inadequate de�nition of complexity. They follow Bianchini and Scarselli [11] def-
inition of topological complexity as the sum of the Betti numbers of each dimension.
This is adequate for theoretical environments since the manifold is known. For practical
cases, it is inadequate because the real world manifolds are unknown, and thus the Betti
numbers have to be empirically inferred.

2. The complexity of the classes is irrelevant. Similarly to Guss and Salakhutdinov
[48], they focus solely on the homology of each class. We have shown that the homology
alone does not re�ect the complexity of the classi�cation problem, which can be better
expressed by the complexity of the decision boundary. As such, they end up associating
disentanglement through the observation of the simpli�cation of the homology of each
class, which by no means implies disentanglement.
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Figure 5.10: The Neural Network learning an embedding that separates two entangled mani-
folds (classes). Image from Naitzat et al. [78]

The reader may have noticed already that the previous chapters have prepared us to tackle
this same problem from a controlled topological perspective. We have shifted the aim to the
decision boundaries, have de�ned topological complexity in terms of persistence homology
(enabling us to apply it to real world data) and have tackled the issue of computing persistent
homology on di�erent metric spaces.

Using our work so far we can support, formalize and enhance the approaches of Olah [80],
Naitzat et al. [78] and Brahma et al. [15]. Take a trained Neural Network f : X0→ Xn:

X0
L0−−→ X1

L1−−→ . . .Xn−1
Ln−1−−−→ Xn (5.20)

Using UDiPH we can now compare the homologies of Xi for all i. This step requires UDiPH
because Xi and Xj are di�erent metric spaces for i , j . Standard Vietoris-Rips �ltrations
that are dependent on ambient metric will generally provide higher persistence values in
high dimensional spaces, such as when a layer has a lot of neurons, and lower values in low
dimensional spaces, when the number of neurons is low (Fig. 5.11 a)). With UDiPH we are
able to compare these spaces regardless of their metric and dimension (Fig 5.12 b)). We train
several Neural Networks on the MNIST and Fashion-MNIST datasets, until they reach 95%

accuracy, and compute the topological complexity of the decision boundary after each layer
using UDiPH. We can see that in trained Neural Networks the complexity of the decision
boundary decreases with depth. This behaviour is displayed regardless of activation function
(Fig. 5.12) and of architecture (Fig. 5.11).

Note that the topological properties of the decision boundary (and classes) are chang-
ing. This can only happen when Li is not a homeomorphism, such as in the case of ReLU
activation function. However, we have seen that this non-homeomorphic behaviour also
happens with functions such as tanh and sigmoid because computers do not compute exact
homeomorphisms.

Naitzat et al. [78] argue that since Neural Networks work by disentangling the classes
then non-homeomorphic transformations, such as ReLUs, are preferable for network training.
They also state it as the reason for their superiority over homeomorphic transformations such
as sigmoids or hyperbolic tangents.

Naitzat et al. [78] also a�rm that a drop in �oating point precision separate tanh and
other homeomorphic transformations further from a homeomorphism. Stating that they
"(. . . ) suspect that this may account for the paradoxical superior performance of lower precision

arithmetic in deep Neural Networks [30, 47, 53]."

54



5.3 . DISENTANGLEMENT

(a) Standard Filtration (b) UDiPH

Figure 5.11: Topological complexity H1 of the decision boundary in di�erent layers of Neu-
ral Networks of di�erent architectures (each row). The number of neurons in each layer is
represented by the grey bars. Each orange line corresponds a Neural Network trained to
95% accuracy on the MNIST dataset, the black line represents the median of 30 runs. Note
that when using standard Vietoris-Rips �ltration, the persistence homology depends on the
metric, as such persistence values are higher in higher dimensional spaces. This explains
why the number of neurons heavily in�uences the persistence values (left). UDiPH creates a
metric-invariant simplicial �ltration allowing us to safely observe the correct trend. (right).
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(a) H0 Topological Complexity (b) H1 Topological Complexity

Figure 5.12: Topological complexity (y-axis) of the decision boundary of two classi�cation
problems: MNIST (circles), Fashion-MNIST (squares). Each color represents one di�erent
activation function.

5.4 Topological Expressiveness of Neural Networks

5.4.1 Previous Measures of Expressive Power

Given a Neural Network, how many di�erent problems can it solve? This important and open
question in deep learning is usually referred to as the problem of the expressive power of a
Neural Network. Former research tackled this issue through either statistical or geometrical
methods. We propose a new method based on a topological perspective.

The earliest research on expressive power has been through the scope of Vapnik–Chervonenkis
dimension (VC-dimension) (Vapnik and Chervonenkis [104]). It is de�ned over a family of
functions F de�ned over some set D → {0,1}. If every function h : D → {0,1} can be
emulated by a function f ∈ F then the VC-dimension of F is equal to the cardinality of D .

(a) (b)

Figure 5.13: A family of functions that can only represent a straight line can solve any permu-
tation of 3 points (a), but fail at 4 points (b). It’s VC-Dimension is equal to 3.

By considering the family F to be the set of Neural Networks of a speci�c architecture,
Karpinski and Macintyre [56] developed the �rst bounds for the VC-Dimension of Neural
Networks. This work was later extended by Bartlett and Maass [8] who developed bounds
for polynomial activated architectures. Since then these bounds have been improved until
recently Bartlett et al. [7] proved that the VC-Dimension of an architecture with W weights
and L layers and piecewise linear activations is O(WL logW ).

More recently, and considering a di�erent approach to neural expressive power, Montúfar
et al. [74] showed that Neural Networks with piecewise linear activation functions, such as

56



5.4 . TOPOLOGICAL EXPRESSIVENESS OF NEURAL NETWORKS

ReLU, describe a piecewise-linear function by dividing the input space into linear regions.
In so doing, they acquire the capacity to build complex decision boundaries (Fig. 5.14). In
particular, the authors showed that the number of linear regions increases exponentially with
the number of layers, leading to a natural measure of network expressive power.

Poole et al. [86] proposed an elegant and –currently the most in�uential– measure of
expressive power. Building on the results of Montúfar et al. [74], they realized that as it
passes through successive layers, the trajectory over a closed curve crosses exponentially
more linear regions. They tracked the trajectory growth of a closed curve through successive
layers of a deep Neural Network, showing that the length of such curve grows exponentially
with network depth (Fig. 5.14). This observation has also some other relevant implications,
for example, based on this, it is possible to predict how a perturbation inserted at a certain
depth will propagate throughout the rest of the network.

Figure 5.14: Illustration of increase of linear regions de�ned by successive layers of a Neural
Network as described by Montúfar et al. [74], along with an illustration of the trajectory
growth on of a circle along successive layers (bottom). Images from Poole et al. [86].

Interestingly, another concept related to expressive power is that of capacity of Neural
Network. This has been studied since the early days of Neural Networks: Cover [31] and
Gardner and Derrida [44] explored the architecture’s capacity to memorize a certain number
of uncorrelated samples; more recently, Collins et al. [29] explored the same capacity-per-
parameter for RNNs, and Baldi and Vershynin [6] approach an architecture’s capacity as the
logarithm of the cardinality of the set of functions that can be generated. However, there is
an important di�erence between expressive power and capacity. The former quanti�es the
number and breadth of di�erent problems that a given architecture could solve. The latter
focuses on predicting what architectures –typically minimal ones– can solve a given problem.
In the �rst the focus is on the network, in the second it is on the problem. Note that all the
approaches described so far are inherently geometrical.

5.4.2 Topological Approach

5.4.2.1 Motivation

Informally, we evaluate an architecture’s expressive power by considering how many and
how di�erent, in terms of topology, are the decision boundaries it can generate. Under the
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assumption that more expressive architectures are going to generate more diverse and complex
decision boundaries.

We use the word architecture of a Neural Network in its usual sense, that is, to refer
to the number and type of layers, the number of neurons per layer, the activation functions,
presence of bias etc. An architecture F is a family of Neural Networks of �xed number of
parameters n. Each element in F can be identi�ed uniquely by a vector in Rn, it is trivial
to see that there is a direct mapping φ : Rn → F . Let φ : Rn → F be the function that
maps a vector of parameters to a Neural Network. We denote by fw = φ(w) ∈ F the Neural
Network corresponding to the parameter vector w ∈ Rn. Whenever the parameter vector
is irrelevant or obvious from the context we will denote just by f . Consider the following
example, take two architectures F0 and F1. Let F0 = {σ (w0x+w1y +w2) | (w0,w1,w2) ∈ R3}
where σ is the sigmoid function, and F1 be a more complex network with one hidden layer
of multiple neurons. Obviously, for all w ∈ R3 the decision boundary of φ(w) = fw ∈ F0
is a straight line (Fig.5.15 (top)). While maybe di�erent geometrically, every element of F0
produces a decision boundary with equal topology. The same cannot be said regarding F1
(Fig.5.15 (bottom)).

Figure 5.15: The decision boundaries of two paths in the parameter space of two di�erent
architectures. A very simple one F0 (top row) and one with one hidden layer (bottom row).

5.4.2.2 Construction

Our method starts by building a metric space for a given architecture F . The elements of
this metric space are the persistence diagrams of decision boundaries of elements of F . Each
element of F is a Neural Network obtained by sampling the parameter space (Fig. 5.16). Along
with the p−Wasserstein distance between the persistence diagrams this creates a metric space.
Following the above intuition, where an architecture is not very “versatile” if it can only
produce straight lines, the inverse would be true. A Neural Network’s architecture can be
then characterized by how “topologically diverse” the set of all its decision boundaries is. We
develop a novel pipeline for evaluating the topological expressive power of a Neural Network’s
architecture F , Fig. 5.17.

1. Sample F . Let n be the number of parameters in F . We start by sampling a set of
parameter vectors wi ∈ Rn. Since each parameter vector describes a Neural Network
we consider the set of Neural Networks {fi ∈ F | fi = φ(wi)}.
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2. Compute decision boundary of each Neural Network in the sampled set {fi ∈ F |
fi = φ(wi)}

3. Evaluate Homology of the decision boundary of each sampled element of F . We
denote by P the set of all these persistence diagrams. That is Di ∈ P is the dimension
k persistence diagram of the decision boundary of the Neural Network fi = φ(wi) ∈ F
whose parameter vector is wi ∈ Rn (Fig. 5.16).

Figure 5.16: Illustration of the pipeline to obtain the persistence diagram of the decision
boundary of one element belonging to some architecture F

4. Compute metric space Let P be the set of persistence diagrams and Wp the p-th
order Wasserstein distance, then (P ,Wp) is a metric space. For every Neural Network
architecture we can consider the metric space (P ,Wp) associated with the persistent
diagrams of its decision boundaries (Fig. 5.18 and Fig.5.17). Intuitively, the information
that this metric space encodes is how topologically di�erent are the decision boundaries
of a speci�c architecture, given an uniform sample.

5. Measure the Spread of the metric space (Willerton [109]).

Figure 5.17: Illustration of the pipeline for evaluating the topological expressive power of an
architecture. We sample parameter vectors w,u,v. From the resulting Neural Networks fw, fu
and fv we compute the persistence diagram of their decision boundaries and create a metric
space.
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Figure 5.18: Embedding of the metric space (P ,W2) corresponding to a speci�c architecture.
The metric space is composed of the persistent diagrams of the decision boundaries of a
Neural Network along with the Wasserstein distance. The architecture has two hidden relu-
activated layers of 10 neurons. The spread of this metric space is our measure of the topological
expressive power of this architecture.

We now formalize the idea of “diversity” and “spread” of a metric space, that we have
been using loosely above. Willerton [109] de�nes the notion of spread of a metric space. The
de�nition is based on the idea of diversity on a measure space. It is de�ned as follows,

De�nition 5.4.1 (Spread). Given a (X,d) a metric space we de�ne spread by

E0(tX) =
∑
x∈X

∑
y∈X

e−td(x,y)


−1

(5.21)

Example 11. The measure is aptly named and is intuitive to understand. A sample
of points in a straight line has a lower value of spread E0 than a sample of points
uniformly in a plane. Through spread Willerton [109] manages to convey a sense of
dimension within metric spaces.

Theorem 5.4.2. For a metric space (X,d) where X has N elements, we have the following

properties:

• t0 ≤ t1⇒ E0(t0X) ≤ E(t1X)

• limt→0E0(tX) = 1

• limt→∞E0(tX) =N
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5.5 Results and Discussion

5.5.1 Results

In the following results we restrict ourselves to fully connected dense Neural Networks, with
parameters de�ned in the unitary hypercube in Rn. That is, we uniformly sample a set of
parameter vectors {w0,w1 . . .wk | wi ∈ [−1,1]n} and consider the set of Neural Networks
{fi ∈ F | fi = φ(wi)}.

For each and every architecture, we uniformly sample 2000 vectors wi in the interval
[−1,1]n ⊆ Rn. For each parameter sample vector wi we consider the Neural Network fwi =
φ(wi). With the exception of subsection 5.5.1.5 all architectures have input dimension 2, such
that an analysis of only H0 and H1 homology classes is exhaustive. All architectures have
output dimension 1, since (w.l.g.) we will only explore binary classi�cation. All layers have
ReLU activation except for the output layer which has sigmoid activation function, as per
usual for binary classi�cation problems.

5.5.1.1 Stability of Spread

The �rst step is to make sure that the spread measure is intrinsic to the architecture and not
dependent on the number of points. Meaning that it remains constant no matter how many
points are sampled, or at least converge to a stable value. Fig. 5.19 plots the spread values for
two di�erent architectures: one shallow and wide (79, 59 neurons), another very deep (44, 34,
33, 24, 18, 17,15, 13, 6) for di�erent sample sizes.

Figure 5.19: Spread of two metric spaces corresponding to a shallow and wide architecture
and a deep one. The x-axis represents the number of points sampled and used to calculate the
spread.

Note that the spread remains relatively stable specially when more than 800 points are
sampled. Note that even though both architecture have the same number of parameters1

the wide architecture displays a higher value of spread. Thus con�rming that this architecture
is more topologically expressive than a shallow and wide one.

1The reader is pointed to Appendix B for details.
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5.5.1.2 Depth and Width

To observe the e�ect of depth and width in the topological expressiveness power we measured
the spread of 4 sets of 10 di�erent architectures Fig. (5.20). Each set consists of 10 architectures
with increasing number of layers 1-10. The number of neurons in each layer is constant for
each set. For example the �rst set has Neural Networks with layers 1 to 10 all with 5 neurons:
(2,5,1), (2,5,5,1), (2,5,5,5,1) . . .

We compare our observations with the previous measures of expressive power of Neural
Network architectures Fig. 5.23, the VC-Dimension [7] and the number of linear regions [74,
86] on the same architectures.

(a) H0 Spread (b) H1 Spread

Figure 5.20: Spread values for Neural Networks as a function of their width (number of neurons)
and depth (number of layers).

(a) VC-Dimension (b) Number of linear regions

Figure 5.21: Comparison with previous measures of expressive power. a) The VC-Dimension
of the previous architectures as computed by Bartlett et al. [7]. b) The upper bound of the
number of linear regions expressed by the same architectures as computed by Montúfar et al.
[74] and Poole et al. [86], note the logarithm scale on the y-axis

It should come as no surprise to see that the spread increases with both depth and width
(Fig. 5.20). We observe a linear growth with respect to the number of layers in accordance
with the VC-Dimension bounds by Bartlett et al. [7] (Fig. 5.23 (a)) and in contrast with the
exponential increase in the upper bound of linear regions as found Poole et al. [86] and
Montúfar et al. [74] (Fig. 5.23 (b)).
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5.5.1.3 Spread and Complexity

In Chapter 4 we introduced Topological Complexity as a summary of a persistence diagram.
In Fig. 5.22 instead of considering the spread we take the average Topological Complexity of
each of the 2000 sampled decision boundaries of each architecture. Note that for the spread
we require the pairwise Wasserstein distance between each diagram but for the Topological
complexity we do not, making the latter much faster to compute.

(a) H0 (b) H1

Figure 5.22: Average topological complexity over the 2000 sampled decision boundaries for
each architecture. Notice the correlation with the spread values in Fig. 5.20

(a) H0 (b) H1

Figure 5.23: Average topological complexity versus spread. (Pearson’s correlation value in the
legend)

Intuitively, the average topological complexity represent the expected topological com-
plexity that a decision boundary sampled from an architecture will have. According to Fig.
5.22, Neural Networks of more complex and expressive architecture also tend to describe more
topologically complex decision boundaries.

Note the similarities between average topological complexity and the spread values in Fig.
5.20. Given the strong correlation between spread and the average topological complexity
(Fig. 5.23) it would be interesting to study if Topological Complexity could be computed as a
proxy for spread given its lighter computational complexity.
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5.5.1.4 Fixed Number of Parameters

So far we have seen that the spread (our measure of topological expressive power) increases
with depth and width. However, increasing depth and width also increases the number of
parameters of an architecture. In Fig. 5.20 architectures have all di�erent architectures but
also di�erent number of parameters.

(a) H0 (b) H1

Figure 5.24: How the spread (y-axis) changes with respect to the total number of parameters
(x-axis). Each line represents architectures of 2 - 10 layers of 10, 20, 50 and 100 neurons each
(colors). Note the logarithm scale on the x-axis. The grey line highlights the fact that there
are Neural Networks with the same spread but vastly di�erent number of parameters.

Note the gray line in the Fig. 5.24 and how architectures of di�erent number of parameters
have the same spread. The correlation between the number of parameters (weights and biases)
with the number of layers and neurons is explored in Appendix B along with a method to
sample all possible architectures given a �xed number of parameters. Following such method
we sampled 200 di�erent architectures all with the same �xed number of parameters
(5000).

Figure 5.25: Spread values for 200 architectures with the same number of parameters (5000)
along with their depth (color of each point) and width (size of each point).
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(a) Depth (b) Width

Figure 5.26: Pearson correlation values between the depth of a network (a) and width (b) with
both H0 and H1 spread, where total spread is equal to

√
H2

0 +H
2
1 .

Combining spread in both homology dimensions, in Fig. 5.25 the most expressive archi-
tectures would be on the upper right. One could try to condense this information by taking
the norm of each point (Fig. 5.26). The weaker correlation between width and spread can be
justi�ed by realizing that increasing the number of neurons directly increases the number of
parameters in the network, which is not necessarily true with regarding the number of layers.
Figure 5.25 and Fig. 5.26 (a) further cement the importance of depth as the strongest factor
for expressive power of neural architectures, even when the number of parameters is �xed.

5.5.1.5 Input Dimension

With respect to the input dimension one has to take into consideration its e�ect on two speci�c
aspects. First, it is on homology itself: for higher dimensions, the dimension of each homology
class also tends to increase as also observed in Giusti et al. [46] (Fig. 5.27). This means that
concepts like the topological complexity which depend on the number of homology groups
(as explained in Chapter 4) will follow the upwards trend caused by the increase of input
dimensions (Fig 5.28 (a)).

(a) (b)

Figure 5.27: E�ect of input dimension on the total number of homology classes H1 and H2.
For each dimension we generated 100 samples of 1000 randomly generated points. (b) show
the number for each value of the �ltration parameter, while (a) shows the sum over all values.
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Secondly, as already discussed in the previous section, using the ambient metric as a
�ltration parameter yields persistence diagrams that are not comparable between spaces of
di�erent dimensions. An extensive study on the behavior of metrics in high dimensional
spaces can be found in Aggarwal et al. [2]. This in turn makes spread not comparable since
it is computed using the Wasserstein Distance between persistence diagrams (Fig 5.28 (b)).
Contrary to the �rst, issue we can solve this problem by using UDiPH to create a �ltration
(Fig. 5.29).

(a) (b)

Figure 5.28: (a) In�uence of number of homology classes on topological complexity. (b) How
the behaviour of the Euclidean metric in�uences the spread for di�erent dimensions.

In their paper, Aggarwal et al. [2], describe a method to visualize the behaviour of di�erent
metrics on higher dimensional spaces. Given a set of points {wi} in Rn we measure the
di�erence of Dmax = maxi ‖wi‖ and Dmin = mini ‖wi‖, that is the di�erence between the
closest point to the origin and the farthest. In Fig. 5.28 (b) we use this very same approach
to measure the behaviour of the Euclidean metric. In our case the set {wi} is the set of points
sampled from the decision boundary, which is described by the input space.

Based on Fig. 5.28, topological complexity does not serve as an accurate proxy for spread
and the use of UDiPH becomes imperative.

(a) H0 Spread (b) H1 Spread

Figure 5.29: Spread values for Neural Networks with di�erent input dimensions. Both Neural
Networks have 5 layers of 5 and 10 neurons each. The persistence diagrams were computed
using UDiPH so that the spread values are comparable.
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It is fundamental to realize that, as a corollary of Fig. 5.27, increasing input dimensions
results in an increase in cardinality of all homology groups, in particular higher dimensional
ones. For example, data coming from R2 normally does not display relevantH2 classes, while
data say in R5 not only might have a sizeable H2 class but also H3 and H4. Note that in
Fig. 5.29 we are only taking into account H0 and H1. Although we observe a decrease the
spread in H0 and H1 with respect to an increase in input dimensions, it is reasonable to
assume that architectures with higher input dimension will present greater spread in higher
dimensional homology groups such as H2 and H3, as discussed above, but are not present
in the graph. Meaning that, as the input dimensions increase, spread will be lower in each
homology dimension but will be present in more dimensions.

The decrease of spread observed in Fig. 5.29 might be a consequence of an analysis lim-
ited to just H0 and H1. One could conjecture that each architecture has a “constant spread”
summed over all dimension and, the more dimensions it has available, the smaller is the spread
allocated for each one. A further analysis for H2 and H3 would be relevant, however, given
the sizeable number of persistence diagrams we calculate per architecture (2000) it would
require a tremendous computational e�ort.

5.5.2 Discussion

Spread grows with network depth and width. We �rst investigated how the spread de-
pended on the structural properties of F . We studied architectures with two input neurons, a
�xed number of neurons per layers (width, 5,7,9,10) and increasing number of layers (depth).
For each architecture, we sampled 2000 points from the corresponding Rn, where n is the
number of parameters of F . We �nd that spreads for both H0 and H1 grow monotonically
with the number of layers, with the slope monotonically increasing with the number of neu-
rons per layer too (Fig. 5.20). It seems to follow the behaviour of VC-Dimension rather than
the exponential growth observed in other geometric properties.

Spread is summarised by complexity. For the same type of architectures, we also ask
how the average topological complexities for H0 and H1 grow with depth and width (total
number of neurons) (Fig. 5.22). We �nd that complexity too increases with both quantities,
similarly to spread (Fig. 5.22). In addition, we also �nd that complexity and spread correlate
strongly with each other (Fig. 5.23). This might perhaps appear unsurprising, but we believe
it to be interesting, because it implies that architectures producing richer topological can
produce many di�erent types of richer topologies. That is, it is not only that more complex
topologies have more ways in which to be di�erent, but that they actually take all these ways,
increasing the spread. As a �nal comment, complexity is computationally much lighter to
compute than spread. In fact, computing the spread is quadratic to the number of persistence
diagrams while computing the average complexity is linear. The latter therefore constitutes a
promising proxy observable in cases where computing spread becomes prohibitive.

Spread depends weakly on the total number of parameters. We found that the to-
tal number of parameters in networks with �xed number of neurons (width) and increasing
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number of layers (depth) is indeed correlated with the topological measures (spread and com-
plexity), but surprisingly the correlation is weaker than with other architectural quantities,
like nw and l. This is surprising because it implies that the expressive power of a network can
be increased more by choosing its structure carefully than just by adding more degrees of free-
dom. For instance, the architectures (10,10,10,10,10), (20,20,20), (50,50) and (100,100)

all display the same H1 Spread (Fig. 5.24). To investigate further this point, we sampled 200
arbitrary architectures with the only constrain: that the total number of parameters was �xed
to n = 5000. Note that in this case we also allowed networks with variable number of neurons,
which also included autoencoder-like bottlenecks and other complex architectures. Appendix
B explores and explains how the architecture is related to the number of parameters. We
�nd again that depth correlates with spread and complexity and so does –more weakly but
signi�cantly– the total number of neurons, showing that even at �xed number of parameters,
di�erent architectures can have very di�erent expressive power.

More input dimensions, less low-dimensional spread. Using UDiPH we were able
to compare spread from di�erent input dimensions. We observed that H0 and H1 drastically
decrease with the increase in input dimensions (Fig. 5.29). In accordance with the literature
(Fig.5.27) we also observed an increase in the number of homology classes as the input di-
mension increases. Together these observations suggest that the topology of the decision
boundaries is getting more complex but also more similar, as the input dimension rises. This,
joined by the fact that higher input dimensions also provide higher-dimensional homology
groups, points us to the possibility that while the spread lowers for low dimensional homolo-
gies groups, it also spreads over more homology dimensions.

5.5.3 Open problems and future directions.

The results reported here are interesting but leave many questions open. Mainly regarding:

1. Classi�cation Problems and Decision Boundaries: It would be interesting to relate
the topological complexity of a problem’s decision boundary with the average accuracy
achieved through di�erent machine learning algorithms. More speci�cally, to expand
the experiment described in Fig. 4.10 for more problems (preferably real world exam-
ples) and di�erent state-of-the-art classi�cation methods such as Gradient Boosting.
The objective would be to con�rm topological complexity of decision boundaries as a
fundamental measure of intrinsic di�culty of a classi�cation problem.

2. VoronoiDiagramsamplingmethod:A methods for fast calculation of high-dimensional
Voronoi Diagrams opens the possibility for new insights in areas where the Voronoi Di-
agram plays a fundamental role, not just in Topology (Edelsbrunner et al. [38]) but also
in Computational Geometry (Wolfram and Media [110]), Machine Learning (Mitchell
[72]), Material Science (Mulheran and Blackman [75]), Biology (Bock et al. [13]) and
even Urban Planning (Lopez et al. [63]) among many others.

68



5.5 . RESULTS AND DISCUSSION

3. Neural Networks: The proposed measure of topological expressiveness has theoretical
understanding in mind but further practical applications should follow. More speci�cally
for architecture selection. Furthermore a future direction would be understand how does
spread relate with accuracy and how do other architecture aspects (such as activation
function and the presence of a bottleneck) a�ects spread.

4. Uniform Distributed Persistent Homology: UDiPH provides an early approach to-
wards �nding a topological summary that is invariant under homeomorphisms. In its
current iteration it requires a bit more work in the theory as well as the implementation.
More precisely it requires the proof of a result equivalent to: “The neighbour structure
of a uniformly distributed set of points in a Riemannian Manifold is a Topological invari-

ant”. Nevertheless, the preliminary results show promise and enable us to study the
Topological impact of not only Neural Networks but of arbitrary functions in general.

5. Topological Expressive Power: The metric space created by taking the persistence
diagrams of decision boundaries along with the Wasserstein distance between them,
seems to capture intrinsic properties of Neural Architecture that are cannot described
by just the spread. For example notice the rich topology visible in Fig. 5.18. Further
work would be on extracting other descriptors from these spaces (such as persistent
homology) aside from only the spread.

The main limitation of this work is the computational cost of calculating higher di-
mensional homology dimensions. A more thorough understanding could have been
achieved if we had considered homology groups beyondH0 andH1. This is an ongoing
research direction in Topological Data Analysis.

6. Broader implementations: Our proposed pipeline for evaluating the topological ex-
pressive power is not bound to Neural Networks. It could be adapted to explore other
models such as Random Forests or Decision Trees. It requires only a map f : F → Rn

from a family of models to a space of parameters. Finally, it would be interesting to
investigate how this construction could be generalized to other types of problems that
are not strictly classi�cations.
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Conclusion

I don’t exactly know what I mean by that, but I mean it.

-J. D. Salinger (The Catcher in the Rye)

This thesis provides a novel pipeline for the topological understanding of the expressive power
of Neural Networks. Being a convoluted task, several other novel tools and approaches had
to be crafted to accommodate this thesis’s objective. Namely the creation of an e�cient
way to sample subsets of the Voronoi Diagram (the decision boundaries) in arbitrarily high
dimensions, an adequate measure of topological complexity and an original simplicial �ltration
for �nite metric spaces along with a general new perspective.

This work’s primary objective was to bridge the areas of Topological Data Analysis (TDA)
and Neural Networks. The tools provided and results therein obtained not only achieve that
goal but further cement Topological insight as an unalienable step in Machine Learning and
Data Analysis.

Taken as a whole, this project builds its path on an ongoing migration to stronger broader
methodologies, such as Topological Data Analysis and Di�erential Geometry, to accommodate
an increase in complexity of implementations such as Neuroscience and Complex Systems
analysis. In practice this insight can be bene�cial in certain applications such as:

1. Situations where the increase in model complexity has escalated the opportunity cost
of training. To avoid the cost of suboptimal models, in these scenarios it is critical to
know beforehand which architectures are more expressive given a �xed allocation of
computational resources.

2. Combat task-speci�c models and aim for the development of architectures and networks
that are adaptive for multiple tasks. Models that can, with minimal training, be shifted
towards a di�erent problems without requiring a complete redesign.
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Taken in parts, the impact of this thesis on the ongoing research areas of Machine Learning,
Neural Networks and Topological Data Analysis is not reserved to the �nal pipeline. The ability
to e�ciently sample subsets of Voronoi-Diagram can enable many new insights in areas where
the Voronoi Diagram plays a fundamental role: not just in Topology (Edelsbrunner et al. [38])
but also in Computational Geometry (Wolfram and Media [110]), Machine Learning (Mitchell
[72]), Material Science (Mulheran and Blackman [75]), Biology (Bock et al. [13]) and even
Urban Planning (Lopez et al. [63]) among many others . Along the same lines UDiPH enables
topological insight of functions without requiring multi-parameter simplicial �ltrations.

Chapter 4 introduces an original method to sample and further study the decision bound-
ary of any classi�cation problem and formalizes the idea of entanglement: topologically com-
plex decision boundaries. Chapter 5 develops an essential tool that enables the transition of
standard TDA methods from data points to functions. It further provides new results and con-
�rmation of previous attempts at formalizing topological understanding of Neural Networks.

The developed tools enable the formalization and analysis of topological expressiveness
of Neural Networks. In the end of Chapter 5 this work provides a pipeline along with results.
The impact of this thesis on the past work and future directions of the scienti�c community
can be summarised as follows:

Opens-up the door for using standard Topological Data Analysis (TDA) methods such
as persistent homology to evaluate functions in general and Neural Networks in particular.
Although it is an active research �eld in Discrete Morse Theory (Ghrist [45]), this thesis
provides a strong approach without demanding multi-parameter �ltrations (Cohen-Steiner
et al. [27], Edelsbrunner and Harer [37]).

Provides an outlook into Neural Networks study at an architecture level. An analysis
that is inherent to the architecture and completely agnostic of a given application or problem
instance. The vast majority of studies rely on speci�c instances such as Rieck et al. [90] and
even though works such as Bianchini and Scarselli [11] and Baldi and Vershynin [6] also work
under this perspective, this thesis is the �rst to provide an empirical work�ow.

Corrects previous approaches namely Ramamurthy et al. [87]’s work on the persistent
homology of decision boundaries by introducing a new de�nition along with a faster and
scalable algorithm. It also amends Brahma et al. [15] concept of disentanglement.

Validates Olah [80] perspective and Naitzat et al. [78] experiments on neural networks
e�ect in manifold disentanglement, whose shortcomings in methodology prevented the vali-
dation of their statements.

Challenges the most prevalent perspective that the complexity of classi�cation problems
being based on data complexity. By taking the topological complexity of decision boundary
this work disputes results such as Guss and Salakhutdinov [48] regarding classi�cation of data
complexity.

Translates the perspective of many previous geometric results regarding expressiveness
of Neural Networks such as Montúfar et al. [74] and Poole et al. [86] to Topological.
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ix A

Proofs

It is my experience that proofs involving matrices can be shortened by 50% if one

throws the matrices out.

-Emil Artin (Geometric Algebra)

Proof of theorem 2.1.3.

Theorem. The following de�nitions are equivalent

1. Let X and Y be topological spaces. Let f : X → Y be such that if for each open set
U ⊆ Y then f −1(U ) is also an open set in X

2. ∀ε > 0, ∃δ > 0 such that ‖p − x‖ < δ =⇒ ‖f (p)− f (x)‖ < ε

Proof. We prove (1) =⇒ (2). Let f : X → Y be such that if for each open set U ⊆ Y then
f −1(U ) is also an open set in X. We want to show that for every ε > 0 it is possible to �nd
δ > 0 such that ‖p−x‖ < δ =⇒ ‖f (p)−f (x)‖ < ε. For a �xed x ∈ X and ε > 0 let V be the set

V = Bε(f (p)) = {y ∈ Y | ‖y − f (p)‖ < ε} (A.1)

which is by de�nition an open set. By assumption if V is open, f −1(V ) is also an open set,
hence there exists a δ > 0 such that x ∈ f −1(V ) if ‖x − f (p)‖ ≤ δ which implies

x ∈= Bδ(p) =⇒ f (x) ∈ Bε(f (p)) (A.2)

We prove (2) =⇒ (1).
Let f : X→ Y such that ∀ε > 0, ∃δ > 0 such that ‖p − x‖ < δ =⇒ ‖f (p)− f (x)‖ < ε. Let

V be an open set in Y . Suppose p ∈ X and f (p) ∈ V since V is open there exists a ε > 0 such
that

Bε(f (p)) = {y ∈ Y | ‖y − f (p)‖ < ε} ⊆ V (A.3)
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. By assumption there exists a δ > 0 such that

Bδ(p) = {x ∈ X | ‖x − p‖ < ε} ⊆ f −1(V ) (A.4)

which is an open set in X.

Proof of theorem 2.2.3

Theorem. The image of a compact space under a continuous map is compact.

Proof. Let f : X→ Y be a continuous map and X be compact. Let U be a cover of f (X) ⊆ Y .
The collection:

{f −1(U ) |U ∈ U} (A.5)

is a collection of sets covering X and are open since f is continuous.If there is a �nte number
of sets f −1(Ui) i ∈ {1,2, . . . ,n} that cover X then Ui i ∈ {1,2, . . . ,n} also cover f (X).

Proof of theorem 2.2.6

Theorem. The image of a connected space under a continuous map is connected

Proof adapted from Munkres [77]. Let f : X→ Y be a continuous map, letX be connected. We
wish to proof the image space Z = f (X) is connected. Consider g : X→ Z the map obtained
from f by restricting its range, obviously it is also continuous. Suppose that Z = A

⊔
B is a

separation of Z into disjoint nonempty open sets in Z . Then g−1(A) and g−1(B) are disjoints
sets whose union is X. They are open because g is continuous and nonempty because g
is surjective. Therefore they are a separation of X, contradicting the assumption that X is
connected.

Proof of theorem 2.2.7

Theorem. LetX,Y be topological spaces andX =
⊔
Xi and Y =

⊔
Yi its connected

components, if f : X→ Y is a homeomorphism then for all i there exists j such that
f (Xi) = Yj

Proof. Let f : X → Y be a homeomorphism. From theorem 2.2.6 we have that f (Xi) is
connected for all i since f is continuous. Then there exists j such that f (Xi) ⊆ Yj . Since f is
a homeomorphism we have that f −1(Yj ) ⊆ Xi and thus Yj ⊆ f (Xi).

Proof of corollary 2.3.2

Theorem. If V is a subcover of U then V is a re�nement of U .

Proof. Trivial

Proof of theorem 2.3.4

Theorem. Homeomorphic spaces have the same covering dimension.
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Proof. Let X,Y be spaces such that dim(X) = n and dim(Y ) =m and f : X→ Y be a home-
omorphism. Since dim(Y ) = m there exists m+ 1 open sets Ui and an element y ∈ Y such
that

y ∈
m+1⋂
i

Ui (A.6)

since f is a continuous bijection there exists f −1(y) ∈ X and open m open sets f −1(Ui) ⊆ X
such that

f −1(y) ∈
m+1⋂
i

f −1(Ui) (A.7)

which proves that dim(X) ≥ dim(Y ). Since f is an homeomorphism f −1 is also a continuous
bijection and a reversed reasoning would provide us with dim(Y ) ≥ dim(X), concluding that
dim(X) = dim(Y ).

Proof of theorem 2.4.2

Theorem. The dimension of an n-manifold is equal to n.

Proof. This statement might appear harmless but the proof is far beyond the scope of this
thesis. The proof is however accessible and rather elegant if the reader is interested. A sketch
of the proof follows: Mill [71] proves that the Lebesgue covering dimension of a manifold is
equal to a concept called small inductive dimension. The proof is completed by understanding
that the small inductive dimension is the same as the dimension of the manifold.

Proof of theorem 2.4.3

Theorem. Homeomorphic manifolds have the same dimension.

Proof. The proof is obvious considering theorem 2.3.4 and 2.4.3. Below is another proof directly
from the de�nition. It is an interesting exercise to familiarize oneself with the concepts of
manifold and local homeomorphisms.

Let M and N be manifolds of dimension m and n respectively. It is su�cient1 to show
that if M and N are homeomorphic then there exists a homeomorphism between any two
open sets U ⊆ Rm, V ⊆ Rn and that implies m = n. Let θ :M → N a homeomorphism. Let
x ∈M there exists A ⊂M open and homeomorphism φ1 : A ⊂M→ Rm.

x ∈ A ⊂M

Rm
φ1 (A.8)

The homeomorphism maps to an open set of Rm, by abuse of language we will denote
it just like this. Consider θ(x) ∈ N , then there exists a B ⊂ N open and homeomorphism
φ2 : B ⊂N → Rn

1Consequence of the Domain Invariance Theorem
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x ∈ A ⊂M θ(x) ∈ B ⊂N

Rm Rn
φ1

θ

φ2
(A.9)

Note thatφ2(θ(A)∩B) is an open set inRn. By restricting the domain ofφ2 toθ(A)∩B) and the
range ofφ1 to θ−1(θ(A)∩B)) we get that the composition φ2◦θ◦φ−11 is an homeomorphism
between an open set of Rm to an open set in Rn.

x ∈ A ⊂M θ(x) ∈ B ⊂N

Rm Rn

θ

φ1 φ2

φ2◦θ◦φ−11

(A.10)

Proof of Lemma 5.2.3[McInnes et al. [67]]

Theorem. Let (M,g) be a Riemannian manifold in Rn, and let p ∈M be a point. If
g is locally constant about p in an open neighbourhood U such that g is a constant
diagonal matrix in ambient coordinates, then in a ball B ⊆ U centered at p with
volume πn/2

2Γ (n/2n+1)with respect to g , the geodesic distance from p to any point q ∈ B
is 1

r dRn(p,q), where r is the radius of the ball in the ambient space and dRn is the
existing metric on the ambient space.

Proof from McInnes et al. [67]. Let x1, . . . ,xn be the coordinate system for the ambient space.
A ball B in M under Riemmannian metric g has volume given by∫

B

√
det(g)dx1 ∧ · · · ∧ dxn. (A.11)

If B is contained in U , then g is constant in B and hence
√

det(g) is constant and can be
brought outside the integral. Thus the volume of B is

√
det(g)

∫
B
dx1 ∧ · · · ∧ dxn =

√
det(g) πn/2

2Γ (n/2n+1)
, (A.12)

where r is the radius o f the call in the ambient Rn. If we �x the volume of the ball to be
πn/2

2Γ (n/2n+1) we arrive at the requirement that

det(g) = 1
r2n

(A.13)

Now since g is assumed to be diagonal with constant entries we can solve for g itself as

gij =


1
r2 if i = j

0 otherwise
(A.14)
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The geodesic distance on M under g from p to q (where p,q ∈ B) is de�ned as

inf
c∈C

∫ b

a

√
g(c′(t), c′(t))dt, (A.15)

where C is the class of smooth curves c on M such that c(a) = p and c(b) = q and c′ denotes
the �rst derivative of c on M . We can now simply g to

1
r
inf
c∈C

∫ b

a

√
〈c′(t), c′(t)〉dt

=
1
r
inf
c∈C

∫ b

a
‖c′(t), c′(t)‖dt

=
1
r
dRn(p,q)

Proof of proposition 5.1.1

Theorem. Let Wi be a m×n matrix such that m ≥ n and rank(Wi) = n, and let a
be a continuous bijection with continuous inverse. The transformation:

Li(x) = a(Wix+Bi) ∀x ∈ Xi (A.16)

de�nes a homeomorphism between Xi and Xi+1 = Li(Xi).

Proof. Let us �rst consider the case when m = n. In these conditions Wi is a linear function
with a linear inverse. Since linear functions are continuous Wi is a homeomorphism. If a is a
continuous bijection with a continuous inverse then Li is a composition of homeomorphisms
which is also a homeomorphism.

Let us take nowm > n. Without loss of generality we only need to �nd a homeomorphism
between Xi and WiXi

Since rank(Wi) = n, dim(Wix) = n. Since Wix ⊂ Rm there exist m− n linearly indepen-
dent vectors {e1, . . . em−n} such that the matrix W ′i =

[
Wi | e1 ... em−n

]
has rank(W ′i ) = m. We

have then that:

Wix =W
′
i x
′ =


e11 . . . e1m−n

Wi
...

em1 . . . emm−n





x1
...

xn

0
...

0



n

m-n

(A.17)

By construction W ′i is a linear function with a linear inverse such that

Li(Xi) = a(Wix+Bi) = a(W
′
i x
′ +Bi) ∀x ∈ X (A.18)

Along with the �rst case we conclude that Xi and Xi+1 = Li(X) are homeomorphic.
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Proof of proposition 5.4.2

Theorem. For a metric space (X,d)whereX hasN elements, we have the following
properties:

1. t0 ≤ t1⇒ E0(t0X) ≤ E(t1X)

2. limt→0E0(tX) = 1

3. limt→∞E0(tX) =N

Proof. Statement 1:

t0 ≤ t1⇒ e−t0d(x,y) ≥ e−t1d(x,y)

⇒
∑
y∈X

e−t0d(x,y) ≥
∑
y∈X

e−t1d(x,y)

⇒

∑
y∈X

e−t0d(x,y)


−1

≤

∑
y∈X

e−t1d(x,y)


−1

⇒
∑
x∈X

∑
y∈X

e−t0d(x,y)


−1

≤
∑
x∈X

∑
y∈X

e−t1d(x,y)


−1

⇒ E0(t0X) ≤ E(t1X)

Statement 2:

lim
t→0

E0(tX) =
∑
x∈X

∑
y∈X

lim
t→0

e−td(x,y)


−1

=
∑
x∈X

(N )−1

=
N
N

= 1

Statement 3:

lim
t→∞

E0(tX) = lim
t→∞

∑
x∈X

∑
y∈X

e−t1d(x,y)


−1

= lim
t→∞

∑
x∈X

1+∑
y,x

e−t1d(x,y)


−1

=
∑
x∈X

1 =N
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On The Combinatoria of Neural
Architectures

What, you’re still here? Go home.

-Deadpool (Post-credits scene)

This section is motivated by the following combinatorial problem: how many di�erent neural
network architectures have p parameters? We will only consider architectures that are dense
and fully connected and disregard the choice of activation functions.

Let’s start, for simplicity, by not considering bias now. The only parameters are then
the weights between connections. Take a neural network with 3 layers of 3,4,5 neurons
respectively. The number of weights, and therefore parameters, is equal to 3× 4+4× 5 = 32.
In the general case, for an architecture we can associate the ordered set (n0,n1,n2...nk) where
ni is the number of neurons in the i-th layer, the number of parameters p is given by:

p = n0n1 +n1n2 + · · ·+nk−1nk =
k−1∑
i=0

nini+1 (B.1)

Let us consider the sequence (l0, l1, l2, . . . lk−1) such that li = nini+1. One can think of it
as something like the number of parameters per layer. And so now we have that:

p =
k−1∑
i=0

li (B.2)

Assuming we are given a value of p and we want to �nd all possible neural network
architectures. We start by considering only all the integer partitions of p, i.e all the possible
sequence of integers such that their sum is equal to p. The integer partitions of p are the only
possible combinations of li .
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Therefore for each possible partition (l0, l1, l2 . . . ln) of p we consider the system:

n0n1 = l0

n1n2 = l1
...

nk−1nk = lk−1

This system is underdetermined since we have k variables and k − 1 equations. Yet the total
number of solutions is still �nite since we have the restriction that each ni has to be an integer.
Therefore let α be a divisor of l0. By setting n0 = α we get a determined system:

n0 = α

ni+1 =
li
ni
∀i > 0

(B.3)

And the ordered set (n0,n1,n2, . . .nk) is a valid architecture of p parameters if each ni is an
integer. Note that each ni+1 only exists if it is a common divisor of both li and li+1.

B.1 Adding bias to the mix.

The addition of bias changes minimally the system of equations described above, because
the e�ect of biases on the number of parameters is also uniquely dependent on the number
of neurons in each layer. For an architecture (n0,n1,n2 . . .nk) the number of parameters p,
including bias is given by:

p = n0n1 +n1 +n1n2 +n2 . . .nk−1nk +nk

p =
k−1∑
i=0

nini+1 +ni+1 =
k−1∑
i=0

ni+1(ni +1)

In an analogous way, for a (l0, . . . lk − 1) partition of p we have that li = ni+1(ni +1) And for
each divisor α of l0 we get the determined system:

n0 = α

ni+1 =
li

ni +1
∀i > 0

(B.4)

B.2 A computational view.

Note that we have a possible architecture for every partition of p, times every divisor of the
�rst element of each partition. If Np is the number of neural network architectures with p
parameters then we have that:

Np ≤ C(p)
∑
i,j

αij (B.5)
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Where αij is the i-th divisor of the �rst element of the j-partition of p and C(p) is number of
ways to partition p. Note that the maximum value in each any partition is p − 1 and the sum
of all the divisors of p − 1 , denoted by σ (p − 1) is bounded by:

σ (p − 1) < eγ (p − 1)loglog(p − 1) +
0.6483(p − 1)
loglog(p − 1)

(B.6)

Where γ = 0.577215... is the Euler’s constant. We also have that the an upper bound for
the di�erent partitions of p:

C(p) < eπ
√

2
3
√
p (B.7)

Proposition B.2.1. LetNp be the number of di�erent architectures with p parameters, we
have that:

Np < eπ
√

2
3
√
p

(
eγ (p − 1)loglog(p − 1) +

0.6483(p − 1)
loglog(p − 1)

)
(B.8)

ON the practical side, the biggest hurdle is de�nitely the number of partitions which
exponentially increases the number of possible architectures, while the number of divisors
has a constant e�ect on the number of possibilities. This is mainly because there are a lot of
partitions that have no practical value in our study such as the trivial ones p =

∑p 1. We will
touch on this point later.

Based on the analysis done above we can create and algorithm to �nd all possible ar-
chitectures given a parameter value p. Such an algorithm obviously runs on exponential
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time.
Algorithm 2: Find all architectures of p parameters
input : Integer p number of parameters
input :b = 1 if bias, b = 0 otherwise
output :List of lists A = (N0,N1...Nm)

where each Ni is a list of integers (n0,n1, . . .nl)

A← initialize empty list;
for each partition q of p do

for each factor f of q0 do
N ← initialize empty list;
z← f ;
add z to N ;
i← 0;
while z is an integer do

z←
qi
z+ b

;

add z to N ;
i ++;
if i = size of q then

add N to A;
end

end

end

end

(a) Upper bound for the number of possible
architectures

(b) Upper bound compared with the architec-
tures computed using Algo. 2

Figure B.1: Logarithm of total number of possible architectures (y-axis logNp) of p-parameters
(x-axis) compared with the upper bound (red)

Proposition B.2.2. LetNp be the number of possible architectures of p parameters without
considering bias andN b

p be the number of architectures with bias. We have that

N b
p ≤Np ∀p ∈ N (B.9)
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Proof. ConsiderNp as the set of all architectures of p parameters with no bias. ThenNp = |Np|.
equivalently for the set of architectures with biasN b

p = |N b
p |. We will prove the proposition

by showing that:

• ∀n ∈N b
p ∃q < p such that n ∈Nq

• thus justifying that
∑p
i N

b
i ≤

∑p
i Ni

• which along with the implication q ≤ p⇒Nq ≤Np concludes the proof.

Let (n0,n1, . . .nk) be a p-parameter architecture with bias, meaning that:

p =
k−1∑
i=0

nini+1 +ni+1

=
k−1∑
i=0

nini+1 +
k∑
i=1

ni

Which is equivalent to

p −
k∑
i=1

ni =
k−1∑
i=0

nini+1 (B.10)

Let q = p −
∑k
i=1ni and since every ni is a positive integer then q is also a positive integer.

Thus we have that:

q =
k−1∑
i=0

nini+1 (B.11)

Which an acceptable q parameter neural network architecture with no bias. Thus if a sequence
(n0,n1, . . .nk) ∈N b

p then it also belongs to Nq for some q < p. Hence, we now have that

p∑
i

N b
i ≤

p∑
i

Ni (B.12)

By noting that q ≤ p⇒Nq ≤Np we have that:

N b
p ≤Np ∀p ∈ N (B.13)

The proof hangs on the (small) assumption that there is a valid architecture for every
p ∈ N. We leave this unproven, albeit being a interesting problem all by itself.
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