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Abstract

Land cover and land use (LCLU) maps are essential for the successful administration

of a nation’s topography, however, conventional on-site data gathering methods are costly

and time-consuming. By contrast, remote sensing data can be used to generate up-to-date

maps regularly with the help of machine learning algorithms, in turn, allowing for the

assessment of a region’s dynamics throughout time.

The present dissertation will focus on the implementation of an automated land

use and land cover classifier based on remote sensing imagery provided by the mod-

ern sentinel-2 satellite constellation. The project, with Portugal at its focus, will expand

on previous approaches by utilizing temporal data as an input variable in order to harvest

the contextual information contained in the vegetation cycles.

The pursued solution investigated the implementation of a 9-class classifier plug-in

for an industry standard, open-source geographic information system. In the course of

the testing procedure, various processing techniques and machine learning algorithms

were evaluated in a multi-temporal approach. Resulting in a final overall accuracy of

65,9% across the targeted classes.

Keywords: Sentinel-2, Machine learning, Land cover and land use
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Resumo

Mapas de uso e ocupação do solo são cruciais para o entendimento e administração

da topografia de uma nação, no entanto, os métodos convencionais de aquisição local de

dados são caros e demorados. Contrariamente, dados provenientes de métodos de senso-

riamento remoto podem ser utilizados para gerar regularmente mapas atualizados com

a ajuda de algoritmos de aprendizagem automática. Permitindo, por sua vez, a avaliação

da dinâmica de uma região ao longo do tempo.

Utilizando como base imagens de sensoriamento remoto fornecidas pela recente cons-

telação de satélites Sentinel-2, a presente dissertação concentra-se na implementação de

um classificador de mapas de uso e ocupação do solo automatizado. O projeto, com foco

em Portugal, irá procurar expandir abordagens anteriores através do aproveitamento de

informação contextual contida nos ciclos vegetativos pela utilização de dados temporais

adicionais.

A solução adotada investigou a produção e implementação de um classificador geral

de 9 classes num plug-in de um sistema de informação geográfico de código aberto.

Durante o processo de teste, diversas técnicas de processamento e múltiplos algoritmos de

aprendizagem automática foram avaliados numa abordagem multi-temporal, culminando

num resultado final de precisão geral de 65,9% nas classes avaliadas.

Palavras-chave: Sentinel-2, Aprendizagem automática, Cartografia de uso e ocupação do

solo
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1
Introduction

Land cover and land use (LCLU) maps are essential for the successful administration

of a nation’s topography, however, the traditional on-site data gathering methods are

expensive and can take considerable amounts of time to produce. By contrast, remote

sensing data can be used to generate up-to-date maps regularly, allowing the accurately

assessment of region dynamics throughout time [1]. In recent years, the increase in the

availability of high-resolution, open-access satellite images has allowed the application of

automatic machine learning methods to the generation of LCLU maps. Machine learning

methods have also benefited from the advances in remote sensing, the capability of these

algorithms to learn complex, non-linear, patterns is improved with the availability of

extensive data, this has led to a considerable amount of attention being given to machine

learning classification over the last decades [2, 3]. Furthermore, with the increase in

feature complexity and uneven statistical distributions in the available data, previous

research show that traditional statistical classifiers(e.g maximum likelihood, minimum

distance) have been surpassed by machine learning algorithms in accuracy and reliabil-

ity, especially in tasks with abundant training data [4], in turn, increasing the use of

these classifiers in land cover and land use mapping[5, 6]. Over the years a large num-

ber of applications have been implemented around such LCLU maps, granting extensive

geographical coverage for: management of natural resources, global change studies [7], ur-

ban planning, conservation [8, 9]. With the recent focus on environmental sustainability,

adaptation the land management in response to climate change is of special importance,

aiming to anticipate the changes in climate conditions and mitigate their potential nega-

tive consequences[10]. Since changes in forest and environmental management are likely

to take part in carbon emissions and sequestration [11], LCLU maps can also help measur-

ing the effects and progress of environmental health restoration by monitoring changes

in vegetation communities [12].
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CHAPTER 1. INTRODUCTION

1.1 Dissertation structure

The present document will be organized in the following structure.

• Chapter 1: Establishes the dissertation’s subject through the introduction of the

thesis motivation, problem and proposed solution.

• Chapter 2: Establishes the knowledge foundation through the introduction of ba-

sic concepts and technology related with remote sensing applications. Previous

work in the field is also presented along with a general comparison of the reviewed

literature.

• Chapter 3: Expands on the proposed solution through the explanation of the strate-

gies and methodologies necessary for the reliable comparison of the employed pro-

cedures.

• Chapter 4: Provides the dissertation’s findings along with the material implemen-

tation of the proposed strategy.

• Chapter 5: Presents the conclusion of the overall thesis motivation, work, and re-

sults, as well as proposed future developments.

1.2 Problem statement

Autonomous land use and land cover classifiers are strong tools to analyse and manage

environmental resources and human expansion across the world in a fast and reliable

way. The performance of these classifiers, however, is highly dependent on the methods

used and the regions used to gather data, usually presenting a dip in accuracy when

applied to different regions. Phenomenon potentially attributed to the possible distinct

characteristics between elements from the same classes across thematic regions, be it

from the dissimilarity between vegetation species or different regional class aggregation.

Additionally, advances in remote sensing sources, such as the deployment of higher res-

olution sensors, and novel machine learning techniques able to fuse and utilize diverse

complementary imagery data, further increase the need of constant experimentation and

refining of these classifiers.

Portugal has been a site for large land cover and land use changes in recent years [13,

14], requiring constant updating of LCLU maps. However, traditional methods such as

visual interpretation of aerial and satellite images, are costly and time-consuming, ham-

pering the feasibility of regular production. Consequently, Portugal is a strong candidate

for autonomous terrain classification technologies, allowing the production of crucial

information for projection and modeling applications [15]. Over the years, academic

research has been done to answer this necessity, however, the abundance of such projects

is still limited. Furthermore, the available work is often times outdated, accomplished

2



1.3. PROPOSED SOLUTION

using primordial machine learning algorithms and low resolution satellite imagery [16].

In addition, studies are commonly implemented in isolated environments, hindering the

possibility of future maintenance and upgradability, reducing the real-world applicability

of such accomplishments.

1.3 Proposed solution

In this dissertation, the creation of a plugin for an open-source geographic information

system (i.e. QGIS), is proposed in order to implement a Portugal focused LCLU classifier

using machine learning algorithms.

The aforementioned classifier will employ multispectral imagery data from the re-

cently deployed sentinel-2 satellite pair from the Copernicus Programme, to study and

investigate the use the of contextual information contained in the vegetation cycles as

input data. Throughout the training procedure, different classifier architectures shall

be tested using open-source python packages, to access the benefits of a multi-temporal

pixel-based approach. Additionally, the project will consider the practical aspect of the

plug-in in order to allow for future development and maintenance, in turn, providing an

additional reliable open-source option for LCLU map generation within Portugal. Future

data and training may then be supplied in order to expand the employment range to

other locations.

1.4 About the project

The present thesis subject is proposed as part of a multi-disciplinary project by the name

IPSentinel Terrestrial Enhanced Recognition System (IPSTERS), created as a Fundação
para a Ciência e a Tecnologia (FCT) project [17] in 2019 by the CA3 Computational intel-

ligence Research Group[18]. The project’s main focus, as a unit of the IPSentinel [19],

is to explore the applications and limitations of artificial intelligence algorithms in the

creation of level-3 products for land applications in environments with large amounts of

remotely sensed data.

3
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2
Review of State-of-art

In this chapter, machine learning concepts will be introduced along with some of the

technologies used in remote sensing applications, in particular, technology related with

the implementation of the QGIS plug-in. Subsequently, a review on the state-of-art along

with previously reported implementations will be presented.

2.1 Basic concept introduction

Machine learning (ML), first coined by Arthur Lee Samuel in 1959 [20], is usually referred

to as an application of Artificial intelligence (AI) that allows a system to perform a specific

task without being explicitly programmed with instructions. The system is designed to

autonomously "learn"and improve from past experiences (i.e. data observations), allowing

for the inference of patterns and rules that generalize the characteristics of the particular

task. Although the term has been used for over 60 years, for some of its history it was

regarded as unfeasible, fluctuating between accomplishments and complications related

with practical and theoretical data acquisition and representation problems [21]. In

recent decades, however, deep learning along with advances in hardware capability and

the explosion of available data world-wide has propelled machine learning technologies

and AI to a driving force in the conception of Industry 4.0 [22].

Machine learning techniques are vast and distinct, the implementation of which is

defined by the available resources and the intended application. In the next sections a

description of the methods associated with the implementation of autonomous learning

algorithms will be presented along with the reported findings from the reviewed academic

literature.

5



CHAPTER 2. REVIEW OF STATE-OF-ART

2.1.1 Supervised and Unsupervised learning

In the scope of remote sensing, learning algorithms may be separated in two categories,

supervised learning and unsupervised learning. Among the learning methods, supervised

learning is the most common technique [23]. The machine is fed training data along with

the correct label, also called a pair, consisting of an input vector and an output value (or

vector). By mapping inputs to outputs based on the provided pairs, the machine infers

a function that can be used for mapping new unseen examples. Back propagation is an

example of supervised learning, represents a widely used algorithm, where a function E,

representing the error between the outputs of the network and a set of target outputs, is

minimized in each iteration [1].

Unsupervised learning refers to a type of machine learning algorithm used to extract

patterns and deduce rules from data without pre-existing labelled responses. Cluster

analysis is the most common method of unsupervised learning, clusters are modeled

to group elements from a data set with shared attributes by measuring the similarity

between them using Euclidean and probabilistic distances [24]. The method reacts to

new data by identifying the absence or presence of the inferred commonalities. Although

the method has seen limited use in land cover and land use applications compared to

supervised learning, studies have used it to identify sub classes, as well as multi-objective

classification with Support vector machines in fuzzy clustering schemes, achieving sat-

isfactory results [25, 26]. It is however, expected that unsupervised learning algorithms

may surpass the use of supervised learning methods in future applications [23], the abil-

ity to perform tasks with fully unprocessed data allows it to be efficiently applied to most

real-world applications, finding increase use in deep learning implementations. Occa-

sionally, when the data set is too small to enforce supervised learning, a hybrid approach

can be implemented, combining small amounts of labeled data with large amounts of

unlabeled data, this technique is referred to as semi-supervised learning. The aforemen-

tioned technique, produces a larger training set by mapping the unlabeled data into

clusters and assuming their respective classes based on the mapping of labeled samples

[27]. The implementation of semi-supervised learning in remote sensing applications

has generated satisfactory results [28], especially in classifiers based on Support vector

machines [29].

2.1.2 General implementation process

In order to apply machine learning classifiers to remote sensing data, four steps are typi-

cally practiced. The first step usually consists in gathering data from images where all the

classes are present, this data is then used to create a training set and a testing set, the data

in these sets should be mutually exclusive to provide a more accurate result, mirroring

the accuracy of the classifier when applied on unseen data [30]. The training data can

later be treated for outliers and balanced across the instances of each class. Although the

necessary amount of data used to train the classifier is dependent on the complexity of the
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system, extensive amounts are desirable in order to train an accurate classifier [5], with

previous studies stating that the size of the training sample should account for 0.25% of

the total study area [31, 32]. In order to generate an error matrix that represents the test-

ing sample accurately we need to diminish the statistical variation present in the testing

sample, this can be achieved by applying different sampling schemes, such as Stratified

random sampling (STRS), Cluster sampling (CS), Simple random sampling (SRS) and

Stratified systematic unaligned sampling (SSUS) [1].

The second step consists in selecting a suitable model. The choice of the classifier is

in itself a decisive factor in the reliability of the generation of land cover and land use

mapping [33].Factors such as, the available resources, the presence of noisy or incomplete

input data, and desirable complexity of the system, should be considered. The chosen

model should then be optimized in order accurately classify all classes while avoiding

over-fitting, this involves feature polynomial exploration and hyper parameter determi-

nation [1]. The choice of hyper parameters impact the learning rate, fitting level and the

structure of the machine learning classifiers [34], usually presenting a trade-off between

the simplicity of the classifier and the achieved accuracy. In order to test different hyper

parameter, researchers split the training set into training and cross-validation subsets. Al-

lowing the classifier to compare the effect of the hyper parameters on the cross-validation

subset, leaving the final test set "out of sight", this is done to prevent indirectly training

the classifier with the test data, maintaining an unbiased result on unseen data.

In the third step, the classifier is presented with an entire image, it classifies every

pixel to the perceived class. Some studies [35], approach the classification method differ-

ently than the regular hard classification, in hard (or crisp) classification, each pixel can

only belong to a restricted class, in soft (or fuzzy) classification, each pixel can partially

belong to multiple classes [36].

Lastly, the generated image is compared against a reference map, as seen in figure

2.1, and accessed classification performance the classifier. The metrics used to access the

classification performance of a given classifier are abundant within the literature, being

the two most commonly used: Overall accuracy (OA) and Cohen’s Kappa coefficient [32].

In recent years however, Kappa statistic has seen a decrease in use in remote sensing

classification [37], for presenting difficulty in interpretation and being considered an

excessively conservative measure of agreement [38]. Overall accuracy, while commonly

used, disregards the specific performance of each class in its final result, leading to a

possibly deceiving result in highly unbalanced data sets [39]. Another accuracy assess-

ment can be gathered by calculating the Area under curve (AUC) of a Receiver operating

characteristic (ROC) curve graph. The aforementioned metric can be used in binary clas-

sification, measuring the quality of the model’s prediction irrespectively of the chosen

classification threshold, accessing the model per class distinguishability instead of their

absolute values.
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Figure 2.1: Reference LCLU map for Portugal (2018) [40].

2.1.3 Data fusion

In order to increase the performance of machine learning classifiers, input data from

multiple sources can also be fused. Conventional, remote sensing data can be fused using

three different levels of data fusion techniques, the pixel/data level, the feature level and

the decision level [41]. The pixel/data level (also referred as low level) refers to the com-

bination of raw data derived from multiple sources into a single resolution, this process

is believed to increase the information over either input data, by revealing correlation
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between data samples [42]. This process, however, has a caveat when re-sampling data

with different original resolution, where information is either lost or presumed depend-

ing on the scale disparity [43]. Feature level fusion (described as high level) operates by

extracting various features (e.g. corners, lines, texture parameters, etc.) from the avail-

able data samples, the features are then combined into one or more features maps to

be used as input data for further processing. Lastly, decision level fusion (i.e. such as

voting, statistical and fuzzy logic based methods), computes the outcome from multiple

algorithms before combining them to produce a final decision. If the algorithms results

are expressed as well defined votes, the method is called hard classification, if the results

are expressed as a confidence parameter the method takes the name of soft classification

[42]. In order to further improve the classification performance of the decision level fu-

sion technique, weighted decisions strategies may be used instead of relying solely in the

majority vote. This method allows for the per-class accuracy of each algorithm to be con-

sidered, increasing the decision leverage of the higher accuracy algorithms. As concluded

by [44], combined data sets produced better accuracy when using Random forest and

Support vector machine classifiers over standalone variations. [45] have also evidenced

that Random forest produces higher overall accuracy when mapping rice paddies using

combined data from Sentiel-1A and Landsat-8.

2.1.4 Classification types

In remote sensing applications, two classification methods are usually employed: pixel-

based classification and object-based classification. In pixel-based classification, as seen

in figure 2.2, the spectral information of each individual image pixel is viewed as a single

input vector in the data set. Since the pixel is the basic spatial unit present in optic sen-

sor data, such as satellite imagery used in remote sensing, this has been the traditional

classification approach to machine learning classifiers. However, pixel-based classifica-

tion is oblivious to the surrounding pixel information, which may hold important details

that would otherwise help identify the target pixel’s class. Consequently, high spectral

heterogeneity classes may show incorrectly labeled pixels within them (referred to as

"salt-and-pepper"effect), decreasing the accuracy of the classifier. The inconsistency in

data resolution when fusing data from different sources can also lead to a problem of

mixed pixels, when multiple pixels from one resolution are present in another. Despite

the lack of contextual information provided by the pixel based approach, this approach

is still preferred for multi-temporal applications or when the thematic resolution of the

land is the important criterion [7]. Most studies compare the efficiency and effectiveness

of different machine learning classifiers using pixel-based approaches [46–48], however

the multiple factors related with the visual information such as lighting conditions, en-

vironmental and spectral variability between members of the same class may negatively

impact the classification result when dealing at pixel scale [49].

Other methods such as Object-based image analysis (OBIA) can mitigate some of
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the problems of the pixel-based approach. [50]. The aforementioned method considers

contextual information by incorporating spectral and textural information to identify

the thematic class of a pixel cluster within an image. OBIA segments the image into

homogeneous objects (i.e. cluster of pixels) based on adjustable parameters as shape,

scale and compactness. The classification of the object is subsequently accessed based

on statistical properties of the constituent pixels, thus assigning the same class to every

pixel, in turn, eliminating the spectral variability present when mapping heterogeneous

landscapes with pixel-based methods [51]. Object based approach can also aid in up-

sampling low resolution maps into suitable sizes. This approach, however, may lead to a

decrease in accuracy when applied to irregular classes such as trees and vegetation [52].

Figure 2.2: Comparison between pixel-based and object-based classification using Ran-
dom Forest algorithm. (a) represents the pixel-based reference map, (b) represents the
object-based reference map, (c) represents the RF classification of the pixel-based ap-
proach, (d) represents the RF classification of the object-based approach. In this example,
the "salt-and-pepper"effect is clearly visible in the pixel-based approach [47].
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Recent published research studies [53, 54] have concluded that object based classi-

fiers show improved performances in overall accuracy between classes over pixel based

architectures, especially in studies where high spatial resolution sensors were used [55,

56]. However comparisons of classifiers constructed using multi-sensor remote sensing

images are still limited. In [51] researchers trained an object-based RF algorithm using

multi-sensor data, revealing gains between 3%-10% in performance over pixel-based RF

classification using the same training data indicating the suitability of OBIA for multi-

source applications. Texture extraction has also been reported to be aided by object based

identification for allowing the identification of relatively homogeneous regions within

the image [57].

2.2 Technology introduction

Remote sensing is the most common source of data on land cover and land use applica-

tions [7]. Such data includes information assembled by satellites and aerial photography,

through the gathering of the reflected radiation produced by the Sun on traditional op-

tic sensors, or self-produced radiation in sensors such as Light Detection And Ranging

(LiDAR). Inferences are then made about the earth surface based on the reflectance prop-

erties of the surface materials. The use of automated models in remote sensing allows

to quickly process image data granting high temporal resolution and replication, cru-

cial capabilities for monitoring applications such as deforestation tracking [58]. In the

next sections, a brief introduction to: remote sensing imaging sensors, satellites used

in previous studies, the geographic information system used by the plug-in, as well as

open-source machine learning algorithms, is presented.

2.2.1 Remote sensing imaging sensors

Remote sensing generally refers to the acquisition or measurement of information of an

object or an event, by a recording device that is not present in the near vicinity. Remote

sensing in land cover and land use applications is often done from satellites, using a

variety of different sensors, with different temporal, spatial, spectral, and radiometric

characteristics. Among them, optical sensors, used for over four decades (i.e. Landsat 1

in 1972 [59]), span the range of electromagnetic wavelengths from near, short wave, and

thermal infrared to the visible spectrum, assembling images based on the reflected and

emitted radiation from the Earth’s surface, as illustrated in figure 2.3. The availability

and consistency of optical remote sensing has dominated LCLU mapping when compared

against field-based methods, specially across large areas [60]. Previously, global mapping

programs used mostly coarser spatial resolution (>250 m), however, with advances in

sensor technology and the deployment of new satellites, remote sensing implementation

can currently achieve high spatial resolution (10 m to 60 m) with free and open data pro-

grams [61]. High resolution land cover information has granted the ability to accurately
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depict land use and to predict atmospheric conditions [62], by reducing the Minimum

mapping unit (MMU) (i.e. the minimum size that a land unit must exceed to be able to

be represented in the map). It should be noted, however, that higher resolution data is

not always the most fitting data, thematic resolution or fit of the land classes may prove

to be more important criterion for particular applications [7].

Remote sensing data allows for the monitoring of changes in land cover through time,

however continuous analysis of remote sensing data tends to suffer from the changes

in classification assessments and inconsistencies derived from improved resolutions of

sensors as technology progresses [7]. Therefore, [63] advises for focus on changes in spec-

tral information over time rather than individual interpretations gathered from different

years in order to maintain temporal consistency. Spectral data can also be beneficial in

class distinguishability in machine learning classification, notably in the delineation of

water bodies. Since water absorbs nearly all energy in the near infrared region [64] a

simple threshold can often be used to differentiate water from land [65], consequently

the delineation of water bodies is often viewed as a straight forward task in remote sens-

ing applications when using spectral data [35]. Researchers have further explored the

use of thermal data in classification applications [25, 66], achieving higher identification

performances in non-vegetated urban surfaces. Recently [52], have also concluded on the

suitability of thermal remote sensing data, showing that Long-wave infrared (LWIR) data

is effective as complementary information for land cover/use applications.

Figure 2.3: Simplified remote sensing process [67].

Multispectral sensors, unlike single channel sensors, survey the land in multiple well

defined spectral bands across the electromagnetic spectrum, using filters and instru-

ments that are sensitive to particular wavelengths, this ability allows for the extraction

of additional information, based on the spectral reflectance properties of the objects, un-

noticeable to the human eye. Different combinations of spectral band can be applied
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according to the desired observation (i.g. vegetation detection, water depth perception,

etc.). Thermal infrared sensors, based on the emitted radiation of the earth, are usually

accompanied by poor spatial resolution [68], consequently, they are often reserved for

fire detection applications.

While multispectral sensors collect data in a few (usually 3-15) well defined wave-

lengths, hyperspectral sensors are able to collect exhaustive data across the same range of

the electromagnetic spectrum. Such sensors scans hundreds of contiguous relatively nar-

row spectral bands allowing the assembled data to be analyzed for spectral signatures (i.e.

spectral "fingerprints"that identify the materials of the scanned objects). This capability,

in turn, grants additional radiometric content over traditional multispectral sensors [69].

In regions where the land presents high spectral and spatial heterogeneity with small

well defined communities ,data fusion techniques, such as feature level fusion, which help

integrate data and information from different sources may be used in order to increase

the classification performance. Particularly when the number of available spectral bands

becomes too large to analyze separately. High spatial resolution sensors may also provide

data with high inter-class spectral confusion [70], diminishing the suitability of spectral-

based methods in very high-resolution spatial images [52]. To overcome this limitation,

researchers [71, 72] have resorted to spatial feature extraction methods (i.e. Grey level

co-occurrence matrix (GLCM) textures, Object-based strategies, Markov random field,

etc.) in order to provide discriminate information.

The aforementioned passive optical data sensors are, however, restricted to daylight

acquisition and sensible to atmospheric factors such as clouds [73]. Other techniques such

as radar provide its own source of radiation, Synthetic Aperture Radar (SAR) system, for

instance, can survey the earth regardless of light conditions [74]. [35] also concluded that

SAR data, offers advantages over optical sensor in gathering data during floods and other

major hydrological events where clouds are consistently present.

LiDAR is an active sensor primarily consisting of a laser, a receiver and a dedicated

GPS. LiDAR uses lasers to supply its own source of illumination, the device transmits a

light pulse to the surface, measuring the backscattered and reflected light with sensitive

detectors. The distance to the object is then calculated using the difference in time

between the transmitted and the backscattered pulses in respect to the speed of light

[75]. The resulted data is returned as a point cloud representing the coordinates of

the object, which, in contrast with 2D planimetric remote sensing data, portrays a 3D

topographic profile of the surface. Two techniques can be used with LiDAR: topographic

and bathymetric. Topographic LiDAR is commonly focused on land mapping applications

using near-infrared lasers, while bathymetric LiDAR can operate with green light to

penetrate water bodies, typically focused on measuring underwater elevations [76]. In

land use and land cover applications, LiDAR usually operates in the near-infrared (NIR)

wavelength (typically 1064 nm or 1550 nm), since high distinguishability of natural and

artificialized land features can be observed [77], allowing the generation of Digital terrain

models (DTM) and Digital elevation models (DEM).
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Making general terrain classification tools based only on the reflectance characteristics

of earth is not ideal, for the same classes may have largely different results following the

varied environmental conditions of the different regions of earth [1]. This effect is further

verified, since a lot of information is stored in the three-dimensional characteristics of the

environment, found to be an important factor in the accuracy of land cover classification

[78]. Further studies [1, 79], also concluded that the intrinsic physical attributes such as

elevation and slope, are complementary with the extrinsic visual properties, improving

the algorithm’s performance and complexity with the implementation of geomorpholog-

ical data. By integrating canopy structural information from different sensors, such as,

the previously mentioned SAR system or Light Detection And Ranging (LiDAR), this

problem can be minimized [47, 80, 81].

A more detailed characterization of land management can be achieved by fusing data

from optical images and radar sensors, allowing for an easier interpretability and delin-

eation of land while including detailed geomorphological information. The inclusion of

textural variables in training sets as shown to increase discrimination between classes in

land cover and land use applications [82, 83], increasing map accuracy by providing a

quantitative description of the image visual characteristics (i.e roughness, smoothness,

symmetry, etc),in turn supplying additional information to the classification process [84].

2.2.2 Sentinel-2

Sentinel-2, developed and operated by the European Space Agency (ESA), is an Earth

observation mission from the Copernicus programme. The mission is comprised of a

constellation of two twin polar-orbiting satellites, Sentinel-2A and Sentinel-2B, launched

on 23 June 2015 and 7 March 2017, respectively, phased at 180º to each other in the same

sun-synchronous orbit. The mission aims to systematically provide free and open global

optical imagery at a high spatial resolution, granting continuity of SPOT and LANDSAT-

type image data in monitoring changes in the Earth’s environment. The twin satellites

carry multispectral sensors at a mean altitude of 786 km, surveying the same location

in a 5 day cycle (when employing both satellites). The assigned multispectral sensor

provides an orbital swath width of 290 km, monitoring the planet’s surface in 13 spectral

bands in the near-infrared, short-wave infrared and visible portion of the electromagnetic

spectrum. The gathered data ranges from 10 meters to 60 meters in spatial resolution

[61], as described in table 2.1.

The European Sentinel-2 mission has provided crucial high-resolution, multispectral

data for a broad variety of remote sensing applications, such as rice crop mapping [44],

and water bodies detection [85]. In addition to the significant results in land cover and

land use mapping, where improvements over older technology are clearly noticeable

[86].Nevertheless, since it constitutes a novel technology, a limited number of studies

in LCLU mapping using Sentinel-2 data were conducted, consequently, the scope of

applicability is yet to be fully explored, thus requiring continued research [32].
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Table 2.1: Available Sentinel-2 spectral bands [87].

Bands

Sentinel-2A Sentinel-2B –
Central

Bandwidth
Central

Bandwidth
Spatial

wavelength wavelength resolution
(nm) (nm) (nm) (nm) (m)

1 – Coastal aerosol 442.7 21 442.3 21 60
2 – Blue 492.4 66 492.1 66 10
3 – Green 559.8 36 559.0 36 10
4 – Red 664.6 31 665.0 31 10
5 – Veg. red edge 704.1 15 703.8 16 20
6 – Veg. red edge 740.5 15 739.1 15 20
7 – Veg. red edge 782.8 20 779.7 20 20
8 – NIR 832.8 106 833.0 106 10
8A – Narrow NIR 864.7 21 864.0 22 20
9 – Water vapour 945.1 20 943.2 21 60
10 – SWIR 1373.5 31 1376.9 30 60
11 – SWIR 1613.7 91 1610.4 94 20
12 – SWIR 2202.4 175 2185.7 185 20

2.2.3 Quantum geographic information system (QGIS)

QGIS (formerly known as Quantum GIS) is an open-source and free geographic informa-

tion system, that allows for the creation and analysis of geospatial data. The geospatial

data can contain multiple layers from different sources to characterize a geographic lo-

cation, described using a coordinate system. The accessed information consists of two

elements, spatial features and attribute data, that can be represented using two methods:

vector data, representing geographical objects with geometric elements (e.g. points, lines

and polygons), and raster data, used in satellite imagery, comprised of equal-size cells

within a matrix. Each cell within the matrix represents a unit area of the surface with

attribute information (i.g. elevation, forest cover type, electromagnetic band values, etc.),

as exemplified in figure 2.4. QGIS advanced spatial data is available in coverage and

geodatabase formats, enabling the use of "spatial reference system"to acquire relation-

ships among the diverse feature classes[88], other formats such as shapefiles, dxf, PostGis

and others are also accessible. The system allows for the integration of Python and C++

plug-ins, further extending the QGIS ’s capabilities. QGIS has proven suitability for the

implementation of all the machine learning algorithms mentioned in this study [89], with

several companies supporting and constantly developing new features.
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Figure 2.4: QGIS 3.10 software showing Band 8 (NIR) of Sentinel-2 (in pseudo-color) over
Lisbon.

2.2.4 Open Source packages

With the increase in complexity and variety of machine learning techniques, it is no longer

viable for every research team to manually write all the base code for the algorithms, filled

with specified statistical and mathematical formulas for every application. Consequently,

open-source code emerges has a mechanism to reduce the inefficient and tedious work

surrounding Machine learning tasks, reducing the development time. Over the last two

decades, Python programming language, has surged in popularity [90] as a result of the

extensive collection of libraries along with the concise, object oriented, and easily readable

syntax that it provides to programmers. In addition, since it is also developed under

OSI-approved open source license, it’s freely usable and commercially distributable [91].

The aforementioned programming language offers numerous frameworks and libraries,

particularly in artificial intelligence and machine learning, composed of pre-written code

to solve common programming tasks, providing valuable functions with which to build

upon. In the scope of this project, the following libraries are pertinent:

• Pandas : Offers tools for data extraction, analysis and preparation.[92, 93]

• Numpy : Provides functions to deal with complex mathematical operations.[94]

• Scikit-learn : Provides various supervised and unsupervised learning algorithms

(e.g. Random Forest, Support vector machines), designed to work with Numpy and

SciPy scientific libraries.[95, 96]
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• Keras : Leading open-source Python library focused on providing high-level neural

networks API (application programming interface).[97]

• TensorFlow : End-to-end machine learning library designed to conduct high-end

numerical computations involving tensors, widely used in deep learning research.[98]

• Matplotlib : Data visualization focused library, provides 2D plotting and graphs.[99]

• Theano : Popular python library, dedicated to the optimization and evaluation of

mathematical expressions comprising of multi-dimensional arrays.[100]

2.3 Related work

In the next section a description on the most utilized machine learning algorithms within

the reviewed literature is presented. The advantages and sensibilities of such techniques

are also displayed, in line with the researchers’ conclusions. A final comparison is pre-

sented in the last subsection, containing inferences from dedicated machine learning

comparison studies.

2.3.1 K-nearest neighbor

K-Nearest Neighbor (KNN) is a non-parametric approach [101] used in statistical appli-

cations in the early 1970’s [102]. KNN works by mapping a new unseen value onto the

mapping of the training data, the algorithm searches the K nearest training samples from

the new value and calculates the result with the highest representation. The value K

is determinant in the performance of the classifier, in turn, the value should be odd in

binary classification to avoid ambiguous results. Increasing the value K leads to a more

robust classifier against outliers, but reduces the sensibility to small well defined enclaved

regions, for this reason choosing the ideal value of K is not a trivial endeavor [103].

2.3.2 Support vector machine

Support vector machine (SVM) first developed by Vapnik and Chervonenkis 1963 [104]

and later modified in the 1990’s, is a supervised learning classifier represented by its

non-parametric and distribution-free characteristic [105]. Support vector machines sepa-

rate two different classes by establishing the hyper-plane that achieves the widest margin

between the feature spaces of the training sample, this hyper-plane marks the decision

boundaries between the two classes[6]. The width of the margin is determined by the

distance from the two closest training samples of each class, called support vectors, to

each other. In order to classify the probability of a given unseen sample belonging to

a certain class, the algorithm measures the distance of the new sample to the training
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samples taking into account kernel weights, which contain information about the rel-

evance of the input for the discrimination between the two classes. In cases where no

linear hyper-plane can be drawn, a nonlinear kernel function is used in order to perform

a "kernel trick", this method refers to the transformation of the data map into a higher

dimensional feature space, allowing a linear separation to exist and intern describe a

originally nonlinear region, as exemplified in figure 2.5b. From the distinct kernels avail-

able within the literature, the usage of the Radial basis function (RBF) in Support vector

machines has shown to achieve good performances in land cover classification studies

[106]. When applying RBF kernel to SVM classifiers, two parameters must be optimized.

The width of the kernel is reigned by the value of γ and the cost parameter defined by

C [107]. The C parameter adjusts the rigidity of training data, controlling the size of the

allowed misclassification in the training data, the value of C is directly responsible for the

fitting level of the model [47]. The γ parameter controls the shape and the radios of the

hyper-plane, increasing the gamma value leads to a larger and smoother kernel, where a

low value generates a steeper and smaller kernel.

Support vector machines, although designed for binary classification can be used

in multi-class applications by dividing the problem into a set of binary problems. This

method can be achieved with the use of strategies such as one-against-one and one-against-

all [69]. SVM classifiers are suitable for solving generalizations problems not linearly

separable, the method is robust to noisy and imbalanced remote sensing data [32], fur-

thermore, since SVM calculates the class membership probability of a given sample, it is

suitable for soft classification approaches [35]. Additionally, studies have shown that the

intrinsic ability of SVM to project hyper-planes from only two support vectors has led

to the production of higher map accuracy from small training samples than traditional

classifiers [108]. Finding use in a multitude of remote sensing applications, such as rice

crop mapping [109].

Figure 2.5: Separation of linear and non-linear problems using SVM: (a) linear problem
where the support vectors, identified with grey squares, delineate the widest margin
[110]; (b) application of a "kernel trick"to a non-linear problem [111].
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2.3.3 Random forest

Random forest (RF) classifier, first proposed in 1995 by Ho [112], is an assemble learning

method based on Decision tree (DT), the method seeks to avoid the over-fitting tendency

and sensibility in changes in the training set that DT manifest [113] by building and

training a multitude of decision trees with different split parameters, computing the class

with the biggest representation in the output, as seen in figure 2.6. RF classifiers, among

the non parametric methods, are becoming increasingly popular in image classification

studies in recent years [114] as a consequence of addressing the difficulty with the im-

plementation of large amounts of features available in the training data. The excessive

increase of input features may provide additional information to the system, however the

increase in complexity derived from the exponential increase of the feature space volume

may cause the available data to be insufficient, known as "curse of dimensionality"[115].

By considering a random subset of input variables in the division of nodes, RF reduces

the generalization error while allowing the presence of an extensive number of inputs. In

order to increase tree diversity, RF uses boot-strapping or bagging to assemble the sub

training data sets used on each tree [116]. The assembly is done by randomly selecting

samples from the original data set with replacement, meaning, without removing the

selected data from the original data set, allowing the next subset to contain every possible

combination of inputs [84].

Figure 2.6: Underlying structure of Random forest classification [117].

The implementation of Random forest classifiers requires the optimization of two pa-

rameters. The number of trees within the model and the number of features considered in

each split [118]. The tuning of these parameters is determined by the specific application,

however, studies have shown that the default values of commonly used implementations

of the algorithm are satisfactory [119], and while the increase of trees is not detrimental to

the performance of the classifier, it can lead to unnecessary complexity [116, 120]. [121]

also suggested that over-training of the model is not correlated with the increase in trees.

In addition, a restricted number of predictive variables has also shown to improve the

model’s accuracy by reducing the correlation between trees. Previous researchers [122],

have concluded that RF classifiers have the ability to estimate the relevance of variables

in the classification of the data samples, while being less prone to noisy and unbalanced
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data [123]. Furthermore, RF classifiers have shown higher levels of classification accuracy

than parametric classifiers (i.e. Maximum likelihood classifiers) in applications where

the input data does not present a normal distribution, such as geostatistical textures [84].

2.3.4 Artificial Neural Network

Artificial neural network (ANN) is a non-parametric machine learning technique based

on human neural synapses, it’s architecture consist of single processing units, called neu-

rons or nodes, arranged in linked layers to form a network, as seen in figure 2.7. Different

network architectures can be implemented considering the intended application, such as

Recurrent neural networks for speech recognition and Deep neural networks for image

recognition. In remote sensing classification, despite the increase in deep neural network

research in recent years, Multilayer perceptron (MLP) architecture is still present within

the literature. The aforementioned architecture is a class of feedforward ANN consisting

of an input layer, at least one hidden layer, and an output layer [124], where every neu-

ron in each layer is connected, along with an assigned weight, to all the neurons in the

adjacent layers. The network is trained by tuning the interconnection strengths of each

node, creating an internal representation of a defined input pattern in respect to desired

outcome [2], this is achieved with the use of backpropagation techniques on supervised

training sets in each iteration.

In forward propagation, the input of every subsequent neuron is represented by the

weighted sum of the outputs of the neurons in the previous layer, a bias is then added

to allow the function to traverse the y feature space axis, enabling the computation of

every starting value. To prevent the saturation of the network, the output value of each

neuron is then calculated by feeding the input through a non-linear activation function.

Following the acquisition of the final network output, the result is compared against

the intended target and the error between them measured using a variety of techniques,

such as root mean squared error. Subsequently, the error is back propagated through the

network using the chain rule of calculus, tuning the weights and biases accordingly to

the relative error calculated by the partial derivatives of the error function in order to

approximate the classifier to the minimum error. Consequently, the activation function

must be differentiable when applying backpropagation.

With each iteration (i.e. forward and backward passes), the network output function

error converges to a minimal value, in turn, the network "learns"by determining the

most suitable values for the set of weights associated with each neuron that represent

the characteristics of the training samples. The number of iterations controls the fitness

level of the network, consequently, too many iterations can lead to loss of generalization,

potentially harming the performance of the classifier [125]. Neural network classifiers’

non-parametric feature allows them to handle data with varied scales and units effectively

[126, 127], thus solving some of the problems associated with land use and land cover

classification [46].

20



2.3. RELATED WORK

Figure 2.7: Structure of a multilayer perceptron neural network: (a) example a MLP
neural network applied to remote sensing [46], (b) representation of the neuron structure
within a neural network [128].

2.3.5 Deep learning

Traditional machine-learning techniques, being limited in their ability to process raw

data, rely on human intervention in order to interpret features in raw data for further

pattern detection. Conversely, representation learning (or feature learning) is a set of

techniques that allow a machine to automatically discover and extract features from

raw input data. Deep-learning methods are constructed using multiple levels of repre-

sentation learning techniques. Starting with the raw input, each layer transforms the

representation from one level to the next in a more abstract way, progressively extracting

higher level features from prior levels. With enough transformations, very complex func-

tions can be learned [129]. Deep neural networks enrich the level of features by stacking

layers and increasing the depth of the network, this allows the integration of different

levels of features (i.e low level, high level) and classifiers in an end-to-end multi-layer

architecture [130]. This machine learning technique has achieved great results, beating

previous techniques in a variety of applications, especially on tasks that require pattern

reasoning, such as image recognition [131], speech recognition [132, 133], as well as

applied physics [134] and medicine[135]. With the increase in depth of the networks, dif-

ferent methods had to be implemented in order to overcome problems such as vanishing

gradients and over-fitting. Vanishing/exploding gradients have mostly been addressed

by normalized initialization [136, 137] and the presence of intermediate normalization

layers [138], allowing the training of networks through the implementation of Stochastic

gradient descent (SGD) with back-propagation [139]. To prevent deep neural networks

from overfitting, dropout can be used as a regularization technique[140]. Rectified Lin-

ear Unit (ReLU) functions were also found to be typical favored over the most common

smoother activation functions (i.g sigmoid functions), increasing the learning speed of

networks with abundant layers, and removing the need for unsupervised pre-training
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in deep supervised networks [136]. However, some complications still remain, with the

increase in depth of the network, a degradation problem emerges, halting the accuracy at

first and rapidly degrading it afterwards. This phenomenon is not attributed to the (over)

fitness level of the network as reported by researchers [141, 142]. In recent years, studies

[142] explored the use of learning residual functions to mitigate the problem, achieving

exceptional results on residual networks with over 100 layers.

Amidst deep neural networks, Convolutional neural networks (CNN) first proposed

by Fukushima (1980) [143] are designed to process input and output data in the form

of multiple arrays (or matrices) regarded as feature maps, allowing the handling of data

in more than two dimensions, as exemplified in figure 2.8. CNN differ from traditional

neural networks by four key concepts: use of many layers, local connections, shared

weights and polling[23]. CNN architecture is composed of a series of stages, relying on

the use of many layers in order to alternate between convolution, non-linearity, pooling

and fully connected layers. In contrast with fully connected layers where each neuron

receives input from every element in the previous layer (i.e. the receptive field accounts

for the every previous neuron), many CNN layers are constructed using local connections,

restricting the receptive field to a smaller area. In order to reduce the resources needed to

train deep neural nets, in CNN many neurons can share the same filter banks (i.e. weights

and biases considered when computing the output function of a neuron) with multiple

receptive fields. While convolution layers detect and extract features from the input data,

pooling layers merge similar features into one [23], this is achieved by combining the

outputs of neuron clusters in a previous layer to one single neuron in the next layer, in

turn, reducing the spatial dimensions of network model. The significant implementation

of this technique in image analysis applications, has led to an increase in remote sensing

use in recent years [129].

Figure 2.8: Example of an autonomous terrain recognition implementation using Convo-
lutional neural networks within a multi-modal framework [79].
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2.3.6 Comparison

Within the literature, it is clear that the choice classifier is bound to the intended appli-

cation, reigned by factors such as: intended resolution, available data, sensory sources

and temporal dependency. Random forest classifiers which are based on machine learn-

ing theory [118], and Support vector machines introduced in the past decades to remote

sensing [144], have been applied to a variety of applications in recent years, from medical

imaging to environmental and land cover monitoring [117, 145, 146]. These classifiers

have been able to achieve reliable mapping results [47, 147], while outperforming artifi-

cial neural networks, binary hierarchical classifier, decision trees [74, 148, 149]. However,

information on the application of deep artificial neural networks in remote sensing is

still limited. The use of multispectral data in remote sensing applications has indicated

that wavelet transform-based backscatter profiles were able to characterize the seasonal

variations within the studied regions, confirming the validity of RF and SVM as suitable

machine learning classifiers for mapping rice crops [109].The increase in available hyper-

spectral data and the high dimensionality that these data sets generate, suggest Random

forest as suitable algorithm for hyperspectral image classification [150]. Support vector

machines have also shown potential in hyperspectral image classification [6] by exhibit-

ing higher accuracy than traditional classifiers when using smaller data sets, opposing

the relative reduction of training data prompt by the increase in dimensionality of the

feature space. Other articles such as [32] have also shown, that among SVM, RF and KNN,

SVM produced the highest overall accuracy while being the least sensitive to training

sample sizes, in line with [151], training data imbalance reflects less with a large enough

training sample. Consequently, Random forest classifiers and Support vector machines

are generally perceived to achieve the highest overall accuracy results [89].

However, the challenges related with model suitability are still a highly debated topic,

with multiple contradictory results from different research teams. As reported by [7], the

comparison of studies on land cover and land use classifiers from different researches has

been hampered by consistency issues. The studies are often applied to different regions,

using different sources of data and evaluated with a variety of accuracy assessment meth-

ods. The ability to compare classifiers is further hampered with the use of similar class

legends across maps, with different choice of thematic content aggregated to construct

the data sets. The extensive existence of machine learning techniques, tuning parameters,

and differences in pre-processing , also contribute to the lack of a conclusive resolution

[32], with most machine learning routines generating LCLU maps with similar accuracy

when given enough data [5].

23





C
h
a
p
t
e
r

3
Solution strategy

The application of sensory data and machine learning in remote sensing applications is

nothing new, however, applications with Portugal as its focus are limited, in addition, the

introduction of temporal context to the input data further limits the available academic

work. As a result, the following chapter describes the steps taken and the methods

used to develop a QGIS focused implementation of an automatic, multi-temporal, land

cover and land use classifier. The work-plan will broadly follow the steps introduced

in Chapter 2 (i.e. data gathering, algorithm selection, classifier performance test, and

accuracy assessment), along with additional concepts and QGIS related steps.

3.1 Central platform

As previously stated, the platform chosen for the LCLU implementation takes the name

of QGIS, this platform, among other functions, allows its users to interact with a fixed

grid composed of cells, each representing a small portion of the earth surface. Within this

surface, the program allows for the creation and management of different types of layers,

each with their own coordinate system and data types. The availability of such layers

allows for the representation of visual and computational analysis of a variety of data

samples(e.g. visual data, topographic data, etc.), in turn, facilitating the recognition and

establishment of new and old concepts. Within the platform creative functionalities, the

creation of add-on plug-ins is provided, such plug-ins are commonly written in python

programming language in order to access the extensive open-source third-party libraries

available online. Accordingly, the plug-in built for this thesis proposed implementation

will also be constructed on top of the python programming language.

For the purpose of ease of accessibility a basic Graphical user interface (GUI) will

also be created, allowing the user to access the plugin functionalities through interactive
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elements. In order to accomplish this task, an Integrated Development Environment

(IDE), namely "Qt Creator", will be used.

3.2 Data gathering

In order to train a machine learning algorithm, data regarding the application goal needs

to be acquired and fed into the process during the training procedure. In the present case,

in similarity with previous approaches described it the literature, the data required is

based on multi-band satellite imagery. In view of the supervised nature of the classifiers

being used (described later in the report), this data must be gathered in relevance with the

available labeled data. Consequently, this section will be divided into two sub-sections,

each describing the steps employed and respective sources from which the data, raw and

labeled, was collected and assembled as the training data set.

3.2.1 Labeled data

In the interest of making the project viable for country wide use, a comparable or equally

broad labeled data was fundamental. Given the relevance of such data to territory man-

agement activities, a national program launched in 1990 by Direção-geral do Territorio
(DGT), a Portuguese national public organization, had been assembling, compiling and

manually updating a nation wide map every few years (i.e. so far, 1995, 2007, 2010,

2015 and 2018). The aforementioned map takes the name of Carta de Uso e Ocupação
do Solo (COS) [152]. The COS map consists of a polygon mesh, with the minimum area

of one hectare each, describing up to 83 different classes, in which the classification is

granted based on a percentage of over 75% of representation of any single class within

the respective polygon. Given the usefulness of the initiative, the COS map created in

2018 will be chosen as the ground truth for the labeled data used in the training of the

project’s algorithms.

As shown in previous approaches described in the literature [16, 153], given the

overlap of some classes features the difficulty of classification increases in a nonlinear

manner with the increase of the number of classes to classify, consequently it is necessary

to reduce the number of classes to a manageable value in order to maintain acceptable

level of accuracy. Therefore, in line with the number of classes classified in previous

approaches, the 83 available class labels in the COS map will be first condensed into

its nine major classes, with these major classes representing the core constituents of the

thematic map, as illustrated in figure 3.1. In accordance, follows a brief description of

each major class and their respective number used in the final symbol labeling:

1. Artificialized - The artificialized major class consists of the surface area destined for

human interaction. It encompasses, among others: railroads, highways, industrial

areas, urban areas, tourism and service areas, airports, quarries, sport and camping

facilities, as well as parks and open areas in the vicinity of built up spaces.
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2. Agricultural - The agricultural major class consists of the surface area employed

for agricultural activities. It encompasses, among others: permanent and temporary

cultures, vineyards, rice paddies, orchards and olive groves.

3. Pasture - The pasture major class consists of the any surface area, cultivated or

otherwise, composed of at least 25% grass like vegetation where a system of crop

rotation is not employed. It is a fairly restricted class, encompassing mainly pasture

with up to 10% of forest trees coverage.

4. Agroforestry - The agroforestry major class consists of the surface area where inter-

cropping, between pasture fields or permanent cultures and certain forest species,

is present at a minimum of 10% coverage. It encompasses, among others: areas

occupied by different species of oak and pine trees.

5. Forest - The forest major class consists of the surface area reserved to forestal use, ei-

ther occupied by trees or deforested as result of wildfires or authorized clearcutting,

it distinguishes itself from the agroforestry class through the lack of agricultural

plots and the minimum height clearance of 5 meters. It encompasses, among others:

leafy forests, pine tree forests, different species of oak trees and eucalyptus forest.

6. Bushes - The bushes major class consists of the surface area primarily composed of

spontaneous vegetation, in which shrub like vegetation accounts for at least 25% of

the area. It is a relatively restricted class, encompassing mainly bushes and areas

with sparse presence of groves.

7. Uncultured - The uncultured major class consists of any natural surface area in

which vegetation is scarce or nonexistent, in rigorous terms, describing areas with

less than 25% coverage of bushes or grass. It encompasses, among others: beaches,

rock formations and uncovered land.

8. Wetlands - The wetlands major class consists of the surface area describing soils

with considerable prevalence of water, either annually or through rotational cy-

cles. It equally accounts for salt and fresh water, encompassing, among others: wet

ligneous zones, coastline regions, marshland, as well as intertidal zones.

9. Water bodies - The water bodies major class consists of the surface area covering

large natural or artificial bodies of water. It describes both transitioning and still

water surfaces, encompassing, among others: water courses with more than 20

meters of minimum width, water planes, lagoons, dam reservoirs, lakes, salt pans,

rivers, seas and oceans.
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(a) Original COS map. (b) Simplified COS map.

1 Artificialized

2 Agricultural

3 Pasture

4 Agroforestry

5 Forests

6 Bushes

7 Uncultured

8 Wetlands

9 Water bodies
(c) Class labels.

Figure 3.1: Simplification of COS map.

3.2.2 Raw pixel data

With a secure source for the ground truth information collected, follows the acquisition of

the raw ground pixel data from the satellite imagery. As previously indicated in chapter

1, and later clarified in chapter 2, the raw data acquisition process will be conducted

through the use of the relatively new orbital imagery database produced by the Coperni-

cus programme twin-satellites, sentinel-2A and sentinel-2B. Within the aforementioned

database, two sets of products are particularly relevant for the project, level 1-C, provid-

ing top of atmosphere reflectance, and level 2-A, providing atmospherically corrected

bottom of the atmosphere reflectance. Generally, level 2-A products provide greater band

contrast and less weather sensitivity, in exchange of 1 multi-spectral band, specifically

the short wave infrared band number 10, described in table 2.1. Nevertheless, for the

purpose of this project it is expected that the algorithms ought to benefit more from

the higher contrast provided by the Level 2-A products, in spite of one less SWIR band,

consequently these products will be chosen as the source of the raw pixel information.

Following the choice of the acquisition source, the data set creation process starts

with the assignment of the study sites. In order to reduce unexpected conditions during

the normal classification procedure, the training data set must account for thematically

diverse places, consequently, locations from north, center and south of the country must

be gathered to cover the different elements species within each class. In addition, in order

to preserve the accuracy consistency throughout the year, the training data set should be

made of temporal data from each of the four seasons.
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Within the scope of the project, and possibly the distinguish factor, prevails an anal-

ysis and comparison of the training outcome between a single time frame approach(i.e.

with only the most up to date imagery), and a multi temporal approach(i.e. using a

sequence of images, from the recent past, up to the present in a coherent form). Conse-

quently, the training data set should consist of data gathered in groups of multiple seasons

each in a sequential order. For the pursued solution three intervals were considered. As

a result, the training data set requires the span of six seasons, in reference to the yearly

four seasons plus the additional two seasons necessary for the oldest group.

Admittedly, the aforementioned approach is bound to introduce some errors associ-

ated with the temporal variance between the data acquisition and the labeling compo-

sition date, degrading the training accuracy. This complication, however, is intrinsic to

most wide classification procedures, resulting from the temporal and technical discrep-

ancies between the sources, reported, likewise, in the manually-made COS map [152].

At the time of writing, the Winter season for 2018, representing the period from 21

December 2017 through 20 March 2018 was not available in the Copernicus Long Term

Archive (LTA), therefore the decision to push the initial date to Spring 2018 was made, in

an effort to best achieve a balance between the past and the future relative to the labeling

date. Consequently, considering the creation time span of the COS map (i.e. updated

in the later half of the year, from June 2018 through October 2018 [152]), the training

data set shall include multi spectral data from March 2018 through September 2019, as

displayed in figure 3.2.

Winter Spring Summer Autumn Spring 2Winter 2 Summer 2

Start FinishTraining data set
2018 2019

Figure 3.2: Temporal interval of the training data set.

The creation of the seasonal groups follows a decreasing date order, from the most

recent to the oldest acquisition. The creation of these groups will then allow for the

comparison between the single time frame approach, through the use of the first column

bands, and the multi temporal approach, through the use of all three column bands. The

groups can be seen in table 3.1.

Table 3.1: Group seasonal construction.

Group Season progression columns

1. Summer2 - Spring2 - Winter2
2. Spring2 - Winter2 - Autumn
3. Winter2 - Autumn - Summer
4. Autumn - Summer - Spring
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3.3 Data pre-processing

Following the acquisition of reliable data sources, the next step in machine learning

procedures is data pre-processing. The benefits of adjustments and modifications to the

available data carry drastic improvements to the overall outcome of machine learning

algorithms, as such, it is concluded that the gathered data needs to be pre-processed in

order to produce a suitable data set [5]. Therefore, in the coming subsections, techniques

related with: eccentric and missing data correction, matching of spatial characteristics

between the distinct sources, class balance, randomization and data set management, will

be described. Additionally, the introduction of vegetation indices to the data set will be

presented, together with their computation and areas of focus.

3.3.1 Resolution matching

Given the different native resolutions of the various sensors present in the twin satellites,

sentinel-2A and sentinel-2B, the gathered data is not spatially coherent under all of the

available bands, ranging from 10 meters per pixel to 60 meters per pixel, as visible in

table 2.1. As a consequence, the collected data needs to be scaled. At this stage, two

options can be considered, upscaling and downscaling. The upscaling of all the data to

60 meters per pixel based on the average value of the pixels previously situated in the area

will result in the creation of new pixel band values, some of which might not represent

any class, with existence solely in the numerical domain, resulting in the degradation

of the accuracy of the classifiers along with a loss of image granularity. Conversely, the

downscaling of all the data to 10 meters per pixel based on the assumption that the new

pixels generated from the division of the larger pixels hold the same value, won’t create

values of mathematical nature, whilst taking advantage of all the available absolute pixel

information. Consequently, the described downscaling approach will be chosen in order

to match the highest resolution provided across the available bands. The aforementioned

technique will be implemented through the "nearest neighbor"method, as illustrated in

figure 3.3, accordingly with the prevention of calculated pixel values.

Area of
interest

Downscale

60 m

60 m

Figure 3.3: Nearest neighbor downscale method.
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Similarly, acquired as a polygon layer with infinite resolution, the provided labeled

COS map, facilitated by the native dimensional format, will be converted to a raster

layer with cell width of 10 meters in accordance with the resolution of the processed

multi-spectral bands. Ultimately creating a spatially coherent data set.

3.3.2 Index creation

In order to improve the overall accuracy of machine learning algorithms that lack the ca-

pability to correlate the division of input information (e.g. Neural Networks), additional

index data, based on calculations previously described in the literature, ought to be used

as input in the training and classification procedures.

Vegetation indices can be described as spectral transformations between multiple

electromagnetic wave bands that enhance the different land properties based on the di-

verse reflectance characteristics of its compounding elements (i.e. different species of

vegetation, rock formations, water bodies, among others). The aforementioned vegeta-

tion indices, although copious in number and limited to its intended application, have

shown results in land cover classifications, with particular interest in high spatial reso-

lution satellite imagery [154], where continuous time series allow for comparable and

consistent data. Consequently, seven vegetation indices will be used as input data for

each season across every data set group, the vegetation indices chosen will target areas

prone to overlap, easing the classification between the respective classes and reducing

the corresponding errors.

Follows a brief description of every vegetation index used, the targeted area and

respective equation:

1. Normalized difference vegetation index (NDVI) is a widely used index focused

on the reflective properties of the chlorophyll pigment present in plants, the index

utilizes the red and near-infrared bands, band 4 and band 8 in the sentinel-2 data

set, respectively, to enhance the relative biomass of the area. The selection of the

NDVI is targeted at improving the differentiation between the Bushes and Forest
major classes.

NDV I =
NIR−Red
NIR+Red

(3.1)

2. Modified Normalized Difference Water Index (MNDWI), based on the reflective

properties of water, utilizes the green and short wave infra-red bands of the spec-

trum, band 3 and band 11 in the sentinel-2 data set, respectively, to strengthen the

characteristics of ample water bodies. Although the classification of water bodies

apart from land is often considered to be of trivial nature [65], the distinction of

open water bodies from swamp like areas represents an additional challenge. There-

fore, the selection of the MNDWI is targeted at improving the distinction between

the Water bodies and Wetlands major classes.
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MNDWI =
Green− SWIR
Green+ SWIR

(3.2)

3. In consideration of the two short wave infra-red bands provided in the Level 2-

A products gathered from the sentinel-2 database, an alternative version of the

MNDWI previously described, will be used as the third index. The referred imple-

mentation utilizes the green and the second SWIR bands, band 3 and band 12 of

the sentinel-2 data set, respectively. Similarly, this implementation aims to improve

the differentiation of water-filled areas.

4. Normalized Difference Moisture Index (NDMI), attempts to estimate the mois-

ture levels present in both soil and vegetation, the index employs the the NIR and

SWIR bands, band 8 and band 11 of the sentinel-2 data set, respectively, in order

to describe the area’s water stress level. The selection of the NDMI is targeted im-

proving the categorization of the Agricultural, Pasture and Uncultured major classes,

each containing zones of overlap.

NDMI =
NIR− SWIR
NIR+ SWIR

(3.3)

5. Normalized Difference Built-up Index (NDBI), supported by the higher SWIR

reflectively observed in man-made structures [155], utilizes the NIR and SWIR

bands, band 8 and band 11 in the sentinel-2 data set, respectively, to emphasize

built-up areas. The selection of the NDBI is targeted at increasing the confidence

level of the Artificialized major class, in turn, reducing the tendency, occasionally

present in the manually made labeled map, of ignoring roads.

NDBI =
SWIR−NIR
SWIR+NIR

(3.4)

6. Bare Soil Index (BSI), carrying the ability to highlight non-agricultural from agri-

cultural areas [156], utilizes the Blue, Red, NIR and SWIR bands, band 2, 4, 8 and

11 in the sentinel-2 data set, respectively, to discern bare soil from farming land.

The selection of BSI is targeted at strengthening the difference between Agricultural,
Bushes and Uncultured major classes.

BSI =
(Red + SWIR)− (NIR+Blue)
(Red + SWIR) + (NIR+Blue)

(3.5)

7. Normalized Difference Greenness Index (NDGI), based on the reflective proper-

ties of different pigments, utilizes the Green and Red bands, band 3 and 4 in the

sentinel-2 data set, respectively, to evaluate the variation and quantity of various

pigments throughout the vegetation season [157], allowing for better distinction of

flora-based classes in continuous time series. The selection of NDGI is targeted at

improving the categorization of the Agricultural and Pasture major classes.
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NDGI =
Green−Red
Green+Red

(3.6)

3.3.3 Learning quirks

In addition to the aforementioned required functional steps (e.g. resolution matching),

some additional data manipulation can be done in order to increase machine learning al-

gorithm’s effectiveness, particularly in backpropagation approaches [139]. In the present

subsection follows a brief introduction of the prospective methods, provided as suitable

techniques as per the available literature.

The first technique can be described as "class balancing", this technique can be applied

to prevent the under or over representation of some class in the training data set. The

aforementioned method allows for a more balanced classification procedure when applied

in real world applications, in turn, reducing bias and derived errors. Considering the

high variance of abundance of each major class within Portugal, the technique manifests

itself in the acquisition of multiple small determined zones in contrast with fewer large

zones, thereby providing a bigger control over the tuning of each class samples.

The second prospective technique consists in "data shuffling", in essence, the method

describes the creation of a supplementary data set based on the random selection, without

replacement, of data points from the original data set. The creation of a statistically

consistent data set allows for the reduction of bias development in the early stages of the

training procedure. In addition, it reduces chance-related precision variance observable

in distinct data assortments, therefore diminishing the need for cross-validation in large

data sets. Given the sequential nature of the data gathering process in the present project,

whereby every data point, or pixel value, is gathered from the vicinity of the previous

pixel, the employment of the data shuffling method is of utmost importance in order to

prevent long sections of identical data points.

The third technique, normalization, is related with algorithm convergence. Normaliza-

tion within the scope on the project data is accomplished through the use of two methods,

centering and scaling. Shifting and centering the data around the value zero has direct

impact in certain ML algorithms’ learning rate, in particular, where progressive updates

are made based on an error function (e.g. backpropagation neural networks) [139]. Scal-

ing the data to nearly identical covariance also has impact in the algorithms convergence,

however, with careful adjustment it can further address outlier related inconveniences.

Consequently, normalization is likely to reduce the effect of eccentric values during the

classification procedure, in turn, reducing the "salt and pepper"effect occasionally found

in satellite image based recognition.

The fourth and final technique is associated with modular classification. In view

of the per-class classification architecture, the existing nine major labels ought to be

decomposed into nine binary problems, consequently, "one-hot encoding"method shall

be attached to the data set with the values -1, 1.
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In conclusion of all the data pre-processing and manipulation, the final data set struc-

ture is complete as seen in figure 3.4. Each data row of the data set relates to a single

unit of the map and is comprised of the three required seasons for the multi-temporal

approach, each containing the 12 available spectral bands and the 7 derived vegetation

indices. Subsequently, the labeled class and the specified encoding value is added for

training purposes.

Spectral inputs (12)

Current season Latest seasonIntermediate season Training labels

One-hot encoding (9)Indices (7)

L

True label (1)

Figure 3.4: Training data set structure.

3.3.4 Data set management

Following the completion of the data set, constructed with shuffled data from the four

groups described in table 3.1 and respective indices, succeeds the division of the data set

into three categories. A training subset comprised of the majority of the data gathered,

used in the learning procedure of the algorithms. A cross validation subset composed of

separate data, used every iteration for comparison and optimization of varied algorithms’

hyperparameters. And a test subset created from unique, out-of-sight data, used solely

in the final accuracy assessment in order to achieve an unbiased result, comparable with

real world performance.

3.4 Classifier construction

The next step in the plugin development corresponds to the architecture and framework

selection. Being the core of the implementation, this stage is of utmost importance to the

overall success of the application. For this reason, some restrictions have to be considered

from the early stages of development, such as software requirements and resources feasi-

bility. Consequently, while the extensive training procedure will be presented in chapter

4, the choice of architecture along with the framework selection will be described in the

following subsections.

3.4.1 Classifier architecture

In light of the dynamic nature of the specifications of major class labels, a modular

approach was chosen in order to create some degree of scalability. The input data shall

be fed into nine binary classifiers, each representing a degree of confidence for each of

the nine major classes. The aforementioned classifiers outputs shall then be fed into a
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multi-class classifier in order to obtain the final predicted class, as seen in figure 3.5.

This approach allows for an easier integration of additional classes to the classification

procedure, as well as decomposition of previous classes, requiring solely the retraining

of the altered binary classifiers along with the the final stage classifier. Considering the

higher dimensions of the feature space associated with the initial fifty-seven inputs of the

first stage in contrast to the nine inputs of the second, the selected architecture composes

algorithms of lower orders of complexity, in turn, allowing for faster training and hyper

parameter testing.

Class 1 classifier
Class 2 classifier

Class 3 classifier
Class 4 classifier

Class 5 classifier
Class 6 classifier

Class 7 classifier
Class 8 classifier

Class 9 classifier

Multi-class
classifier

Input
57 x 1

First stage Second stage

Output & Input
9 x 1

Output
1 x 1

Figure 3.5: Classifier architecture overview.

3.4.2 Framework selection

Given the implementation overhead implications and auxiliary software package require-

ments, simplicity should be the driven principle when choosing the tools required to

operate the plugin. Consequently, despite the high supply of open-source python pack-

ages, the use of packages from outside the original QGIS repository (i.e. OSGeo4W)

should be kept to a minimum. Considering the previously described software packages

in section 2.2.4, problems related with data and feature extraction should be handled by

Pandas and Gdal, a translator library for raster and vector layers focused on geospatial

data formats. Numpy will facilitate data manipulation and required mathematical com-

putations. Although the aforementioned packages exist pre-installed in the OSGeo4W

environment, the basic repository lacks machine learning related libraries, for this rea-

son, it is necessary to choose a suitable external framework. Thus, two options were

considered, Scikit-learn and Tensorflow plus Keras. The first option, Scikit-learn, describes

a high-level library offering off-the-shelf machine learning algorithms such as support

vector machines, Random Forests, and Regression Neural Nets, it is the less complex and

lighter option. The second option, Tensorflow, describes a lower-level library, comprised

of comprehensive tools focused on the creation of ML algorithms from the foundation

up. Tensorflow is particularly appealing for deep learning implementation, due to the

advantageous GPU integration available throughout the training procedure. Despite the
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integration, in recent years, of Keras API into the Tensorflow framework, providing higher-

level, more accessible, ML creation tools comparable with Scikit-learn, the incorporation

process is still relatively complex in comparison with the installation process of Scikit-
learn. In addition, considering the per-pixel classification nature of the project, a deep

learning approach, traditionally focused on object classification, is not included in initial

work plan. In view of the intended implementation, the classification procedure of the

plug-in will be constructed as a stand-alone module, as such, Scikit-learn shall be chosen

for a first implementation for its simplicity and smaller memory requirements. If neces-

sary in future work, the algorithms’ framework can be changed. Lastly, the Matplotlib
package, although not included in the plug-in, shall be used during training for hyperpa-

rameter test and accuracy assessment, this library will be responsible for the creation of

the graphs displayed in chapter 4.

Succeeding the choice of framework, follows the selection of the machine learning

algorithms to be used in the classification procedure. In accordance with the methods

reviewed in chapter 2, three ML techniques were chosen in consideration of their key

characteristics.

1. Support Vector Machines, based on the division of the feature space through the

use of an hyper-plane, will be tested as a contender for the first stage of classifi-

cation in consideration of the binary nature of the categorization. The algorithm,

as reviewed in the literature, has demonstrated resiliency to noisy and unbalanced

data, such characteristic, despite the attempts to reduce the impact of eccentric data

present in the data set (i.e. through pre-processing), is of particular interest given

the notably diverse data being fed into the training procedure.

2. Random Forest, based on the representation characteristics of smaller diverse deci-

sion trees, will be tested as a contender for the first and second stage of classification

in consideration of the large initial feature space derived from the large number

of inputs. Through the selection of subsets of inputs for each decision tree, the

algorithm has been reported to address and reduce the "curse of dimensionality",

in turn, diminishing the conceivable detrimental effects of the increase in input

count as a result of the included auxiliary index values. Furthermore, throughout

the studied literature, random forest algorithms have been increasingly present as

a solution for land use and land cover implementations.

3. Feed forward neural networks, based on consecutive layers of interlinked neurons,

will be tested as contenders for the first and second stage of classification in con-

sideration of the multi-temporal aspect of the sought approach. In contrast with

the other previously mentioned algorithms, the capability of neural networks to

employ information from every input at every step of the classification procedure is

expected to utilize the contextual information present in the continuous temporal

data more efficiently, in turn, achieving higher classification performances. In order
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to test the most suitable interface between the first stage outputs and second stage

inputs, two architectures will be tested. Firstly, a multi-layer perceptron classifier

will be employed has form of an hard classification interface, the algorithm will

feed the second stage with a well defined binary value. Secondly, a multi-layer

perceptron regressor will be utilized has form of a soft classification interface, the

algorithm shall feed the second stage with a value representative of the probability

of the output class. In addition to the expected greater usage of contextual informa-

tion, neural networks, as per the literature, have also demonstrated the ability to

handle data with varied scales and units effectively [126, 127]. Such characteristic

is crucial given the different nature of the inputs (i.g. integer values from spectral

band, and ratios from the calculated indices).

3.5 Accuracy assessment

Within the universe of data analysis and algorithm optimization, many metrics exist with

the purpose of accessing a solution’s performance. These metrics aim to complement

the traditional accuracy evaluation by emphasizing different aspects of the achieved out-

come, aspects often sensible to the structure of the used data and concealed in a universal

method. For the purpose of the project, these methods are of significant importance con-

sidering the modular architecture and resulting binary sub-classification of the intended

multi-class implementation. In which the data is roughly divided in a 1:8 ratio of posi-

tive instances (i.e. the classifier evaluates its own class) and negative instances (i.e. the

classifier evaluates every other class), resulting in a highly unbalanced subset where any

classifier that continuously checked every data point as negative would wield a traditional

overall accuracy close to 89% despite not doing any classification. Consequently, in this

section, supplementary metrics of accuracy assessment will be described along with the

implemented formulas.

The base structure, from which all the other metrics are derived, is known as confu-

sion matrix, described in figure 3.6. The structure presents a contingency table displaying

the outcome of the classifier through the use of rows and columns containing the true

and the predicted values, respectively.

True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)Negative

Positive

Positive Negative

Predicted Class

Actual Class

Figure 3.6: Confusion matrix.
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Consequently, four groups are established, True positive (TP) representing the cor-

rectly identified positive instances, True negative (TN) representing the correctly iden-

tified negative instances, False positive (FP) representing the incorrectly identified neg-

ative instances, and False negative (FN) representing the incorrectly identified positive

instances. Constructed from the aforementioned groups, four metrics will be used in

order to access the algorithms’ performances.

1. Accuracy score, mainly considered in the second stage of classification, computes

the traditional ratio between the correct identified values, both positive and nega-

tive, and the total number of samples. The range extends over [0, 1].

Accuracy score =
T P + TN

T P +FP +FN + TN
(3.7)

2. Recall score or True positive rate (TPR), computes the ratio between the num-

ber of correctly identified positive instances, and all the actual positive instances,

in essence, describing the proportion of positive identified values among all the

positive values present in the data set. The range extends over [0, 1].

Recall score =
T P

T P +FN
(3.8)

3. Precision score or Positive predictive value (PPV), computes the ratio between

the number of correctly identified positive instances, and all the positive classified

values, in essence, describing the proportion of true positive values among all the

predicted positive values. The range extends over [0, 1].

P recision score =
T P

T P +FP
(3.9)

4. F1 - score, computes the harmonic mean of precision and recall, in essence, combin-

ing the properties of precision and recall to derive a metric capable of representing

the robustness and exactness of a particular classifier irrespectively of data imbal-

ance. The range extends over ]0, 1].

F1− score = 2 ∗
precision · recall
precision+ recall

(3.10)

Accordingly, F1 - score should be the deciding factor when choosing between algo-

rithms and hyperparameters during the first stage classification testing. For regression

methods in which these techniques cannot be applied without the introduction of a thresh-

old, an error or loss function will be used to analyse the algorithms performance.
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3.6 Strategy overview

With the major steps of the proposed work-plan outlined, the strategy is expected to pro-

duce a sufficiently robust implementation, capable of addressing problems related with

the integration and manipulation of data from distinct software systems. Additionally,

the strategy aims to improve the overall application performance by encompassing the

employment of a variety of optimization techniques.

In summary, follows the depiction of the strategy diagram, as seen in figure 3.7.

Sentinel-2 
   Multispectral   
 Sentinel-2 Data 

Resampling of 60m & 20m
bands to 10m

Pre-processing

Class aggregation Data set

Cross validation subset

Test subset

Training subset

Band selection

Thematic reference
maps

Per-class classifier

Full classifier

Accuracy assessmentFull map prediction

Index creation

Figure 3.7: Strategy diagram.
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4
Implementation & findings

Given the interconnected relationship between the implementation decisions and the

training results, the present chapter will supplement the steps described in chapter 3,

coarsely following and reporting, through logical order, the development processes along

with the achieved findings.

Although a substantial amount of work was done to create the QGIS plugin from

the ground up, work related with all the connections between the plug-in and the QGIS

interface. The ability to draw polygons and extract geographic information from the work

canvas, transformations of coordinate systems, extraction of information from the Coper-

nicus database, manipulation of data layers and user interface objects, among others,

will not be described as code review is not the focus of the report. Further information

regarding the plug-in can be found in Appendix 1.

4.1 Initial data set creation

With the base plugin created and capable of handling, selecting and extracting meaning-

ful data, the implementation starts with the creation of the data set used for the training

procedure. As previously designated in chapter 3, COS2018 map was used as the source

for all the employed labeled data. The COS map, initially retrieved as a polygon layer con-

taining 83 different classes, was condensed into a nine major class raster layer spanning

the whole Portugal’s continental land area. The raster layer now described a 10 meter

resolution grid containing all of Portugal’s land cover classification.

The next step in the creation of the data set, relied on the acquisition of multispectral

data from defined regions within Portugal. Through the use of Copernicus sentinel-2

long term archives, 18 image set tiles containing bottom of atmosphere level-2A data
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were retrieved from three distinct zones, six sets from the northmost portion of the coun-

try, six from the center, and six from the southmost section. Each set was gathered in

chronological order and together represented the six season group depicted in figure 3.2.

The conclusive step regarding concrete data acquisition comes in the form of the cre-

ation of the four seasonal groups described in table 3.1 and ensuing assembly. Given the

aforementioned resolution disparity between each spectral band, the bands underwent a

process of spatial matching throughout each acquisition action, in which, all bands’ tiles

were trimmed, downscaled, and aligned with the previously created 10 meter labeled

raster layer. In total, 40 areas were selected from across the three major chosen zones,

totalling 160 acquisition actions. Each area was chosen based on class representation

and with the aim of including, to the limits of feasibility, the biggest range of diversity

described by each major class. During the data acquisition process, some adjustments had

to be made to prevent extreme class unbalance. The selection process for the sub-zones

was adjusted in order to better approximate each class representation to 8% of the total

population, with the exception of the reasonable bigger classes (i.g. Agricultural and For-
est). These adjustments, despite leading to the unrealistic representation of some classes

(i.g. Wetlands major class finds close representation to the Artificialized major class, which

is clearly not conceivable in a country such as Portugal), were necessary to prevent the

classifier from neglecting under-represented classes.

With the data collected from the 160 acquisition actions, the first rudimentary data set

was compiled, however, in order create a statistically consistent data set, a new shuffled

data set was created through the random selection without replacement of the data points

from the original rudimentary data set. The newly created data set containing 6.425.998

data points was then tested for statistical consistency through the creation of two subsets,

data set A containing the first 450.000 data points and data set B containing the last

300.000 data points of the complete set, the results can be seen in table 4.1.

Table 4.1: Class representation in each data set.

– Complete set Subset A Subset B
Major
classes

Number of
data points

%
Number of
data points

%
Number of
data points

%

Artificialized 487.073 7,58 34.017 7,56 22.546 7,52
Agricultural 1.453.305 22,62 101.754 22,61 68.141 22,71
Pasture 584.412 9,09 40.789 9,06 27.500 9,17
Agroforestry 619.831 9,65 43.430 9,65 28.530 9,51
Forest 1.307.660 20,35 91.548 20,34 61.127 20,38
Bushes 795.077 12,37 55.814 12,40 37.015 12,34
Uncultured 357.926 5,57 25.025 5,56 16.838 5,61
Wetlands 289.279 4,50 20.242 4,50 13.508 4,50
Water bodies 531.435 8,27 37.381 8,31 24.795 8,27
Total 6.425.998 100,00 450.000 100,00 300.000 100,00
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Through the comparison of the classes’ representation between the complete set and

the derived subsets, as seen in table 4.1, it is possible to calculate an average deviation

and max deviation of 0,017% and 0,04% for subset A, and 0,05% and 0,14% for subset

B, respectively. In turn, validating the applied shuffle method as a suitable technique to

reduce subset related accuracy discrepancies.

Following the strategy plan, the next step in the creation of the data set would be

the normalization of the data point values, however, given the active nature of the scaler

(i.e. being a functional and configurable element of the training process), its implementa-

tion shall be described in greater detail in the next subsection along with the algorithms’

training procedures. Consequently, the creation of the data set concludes with the com-

putation and addition of the vegetation indices along with the one-hot encoding data to

the complete data set, conversely recreating the structure visible in figure 3.4.

Lastly, in order to reserve data for the final out-of-sight accuracy assessment, the

data set is divided into one training data set containing 70% of the data points and

one test data set containing the remaining 30% of the data points. Given the statistical

consistency observed in table 4.1, the training data set will be further divided into smaller

sets during the training procedure in order to facilitate testing and tuning of the different

hyperparameters.

4.2 Training procedure

In this section the steps taken throughout the training procedure will be described along

with the achieved results. The procedure will encompass the training of the first and sec-

ond stage of classification, with the algorithm progression being multi-layer perceptron

classifier, multi-layer perceptron regressor, random forest and support vector machine.

For the first stage of classification, given the identical characteristics of each binary classi-

fier, the hyperparameter tuning will be based on the first class classifier, with the results

for every other binary classifier being presented at the end of each section. The second

stage of classification will evaluate the impact of each type of input, along with its own

hyperparameters.

As described in chapter 3, F1-score will be used in the assessment of each technique’s

impact to the overall performance of the algorithms. Given the vast possible combina-

tion of hyperparameters and architectures, the search for the best combination will be

conducted in sequential manner, where the best performing parameter is chosen in each

step of the procedure. While this method does not account for the possible interactions

between different hyperparameters and it is likely to lead to a local maximum, it is the

only feasible method within the time and computational constraint.

While the effects of the training procedure will only be visible through tables and

graphs in the course of the next subsections, real world applications of the chosen archi-

tecture will be displayed at the end of the chapter along with an overall analysis.

In consideration of the section guideline follows the first algorithm test.
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4.2.1 Multi-layer perceptron classifier

The first tested algorithm, multi-layer perceptron classifier, is a type of feed forward

neural network capable of producing well defined outputs. For the purpose of the first

stage of classification, the algorithm will be used in the binary classifiers as a first stage

approach to hard classification.

Given the algorithm’s possible architecture structures, the construction of the base

classifier will start with only one season of inputs with the exclusion of the auxiliary

indices, in turn, establishing a base input/output configuration of 12 to 1, respectively.

The architecture, which will function as a base for all the subsequent alterations, will

then feature a 12 node input layer, two hidden layers with 20 and 10 hidden nodes,

respectively, and one node output layer, as seen in figure 4.1.

Figure 4.1: Starting multi-layer perceptron classifier architecture.

Through the aforementioned base architecture it will be possible to follow the first

class classifier (i.e. Artificialized) progress and evaluate the impact of the prospective

techniques. For this purpose, follows the initial results gathered from feeding the un-

processed data from a training subset containing 750.000 data points to the classifier,

with the default hyperparameters: "relu"activation function, "adam"solver, "0.001"initial

learning rate and "constant"learning rate. The presented values in each test were derived

from the average values of 5 runs.

Table 4.2: Initial artificialized binary classifier scores in MLP classifier.

Classifier
Scores

Recall Precision F1

Artificialized 0,512 0,818 0,630
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With the base values for the classifier defined in table 4.1, the testing and optimization

procedure can begin. The first technique tested was the regularization of the input values.

This technique centers and scales the input values around the value of 0, aiming to

prevent values from different input sources to disproportionately affect the algorithm’s

computations, as such, a scaler entity (i.e. a scaling matrix) is necessary in order to to

correctly access each input interval of operation. As previously mentioned in chapter 3,

the regularization technique mainly focus on helping the convergence of the algorithm,

however, with additional tuning it can help reduce the impact of eccentric values present

in the data set. Given the high variance of values present in each spectral band, derived

from the vastly different radiation absorption properties of each class, the delineation

of eccentric values from regular ones represents an harder problem. Consequently, a

tunable scaler capable of defining the desired quantile range was necessary, thus, the

module "RobustScaler"acquired from the scikit-learn package was used.

(a) F1 - scores by scaler quantile range. (b) Loss convergence comparison.

Figure 4.2: Regularization test in MLP classifier.

The test featured the training of the algorithm with increasing scaler ranges, as seen

in figure 4.2a. From the acquired results it is possible to confirm the effect of the regu-

larization technique on the algorithm peak F1 - score, with increase of up to 10% peak

score in comparison with the no scaler approach. In addition, as its primary function, the

use of a scaler revealed drastic improvements in the convergence rate of the algorithm,

observable in figure 4.2b. Consequently, a scaler with quantile range of 60% (i.e. [20, 80]

interval) was chosen for subsequent implementations.

Following the implementation of the scaler, the selection of targeted spectral bands

per classifier was tested. The technique aimed to reduce unnecessary complexity, by

removing neutral or damaging spectral bands from each binary classifier. Given the vast

amount of possible band combinations, the test started with the visual selection of the
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seemingly least useful band for a certain classifier.

(a) Spectral band number 5. (b) Spectral band number 6. (c) Zone simplified COS label.

Figure 4.3: Band utility visual evaluation.

The search concluded with the selection of the spectral band number 5, represented

in figure 4.3a, to be excluded from the original training data set of the Forest binary

classifier, for the seemingly unrecognizable difference between the Forest major class and

Bushes major class, represented by dark green and light green in figure 4.3c, respectively.

Difference recognizable, as an example, in the spectral band number 6, figure 4.3b.

With the band selected and the classifier architecture adjusted for 11 inputs follows

the acquired confusion matrices for the altered and control group test.

(a) Control 12 input classifier confusion matrix.

(b) Altered 11 input classifier confusion matrix.

Figure 4.4: Confusion matrices comparison in MLP classifier.

The analysis of the confusion matrices, depicted in figure 4.4, reveal, in accordance

with the visual assessment, no significant difference in the miss classification of the Bushes
major class as Forest major class, class 5 and 6, respectively. However, a slight decrease

in the correct classification of the Forest major class (i.e. class 5) can be observed. Conse-

quently, given the unpredictable overall negative effects of band removal, it was agreed
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to preserve every available band for subsequent implementations.

The next step in the training procedure involves the addition of auxiliary vegetation

indices to the training data set. As previously described in chapter 3, the method aims

to increase the algorithm’s performance by mitigating the inability to derive information

from all possible data transformations (i.g. division of input data). Consequently, follows

the result of the implementation of each vegetation index to each classifier along with

the result of the addition of all vegetation indices in an adjusted architecture with 19

nodes in the input layer, 30 hidden nodes in the first hidden layer, 15 hidden nodes in

the second hidden layer and 1 node in the output layer.

Table 4.3: Vegetation Index impact analysis on MLP classifier.

Classifier
Control

F1 - Scores
F1 - score improvements by index addition

Index 1
(NDVI)

Index 2
(MNDWI)

Index 3
(MNDWI2)

Index 4
(NDMI)

Index 5
(NDBI)

1. Artificialized 0,68 0 0 0 + 0,01 0
2. Agricultural 0,57 - 0,01 0 - 0,03 0 0
3. Pasture 0,36 - 0,02 0 0 - 0,02 - 0,02
4. Agroforestry 0,43 0 + 0,01 - 0,03 - 0,02 - 0,02
5. Forest 0,41 + 0,04 + 0,02 + 0,03 + 0,02 + 0,03
6. Bushes 0,24 + 0,04 0 + 0,03 + 0,03 - 0,03
7. Uncultured 0,41 - 0,02 - 0,01 + 0,01 - 0,04 0
8. Wetlands 0,68 0 0 0 0 0
9. Water bodies 0,72 0 0 0 + 0,01 + 0,01

Table 4.4: Vegetation Index impact analysis on MLP classifier. (continuation)

F1 - score improvements by
index addition

Index 6
(BSI)

Index 7
(NDGI)

Combined
Indices

0 + 0,01 + 0,02
- 0,02 - 0,01 + 0,02
+ 0,02 + 0,02 - 0,02
+ 0,01 - 0,01 + 0,02
0 0 + 0,03
+ 0,04 - 0,03 + 0,06
- 0,03 - 0,01 + 0,01
0 0 0
+ 0,01 0 + 0,01

The obtained results, visible in table 4.3 and 4.4, suggest little impact to each classifier

performance across every individual index addition, with the obtained values within the

range of the characteristic variation derived from the random initiation of ANN weights.

In contrast, the addition of every index to input layer appears to lead to a small increase in
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performance across most major class classifiers. Considering the negligible impact of the

increase of input features to the actual classification execution time, the addition of vege-

tation indices, despite not demonstrating substantial impact in the achieved performance,

shall be used in subsequent implementations.

Following the integration of the vegetation indices to the input layer, the next step

in the training procedure is the analysis of a multi-temporal classification approach. To

this end, three sets of tests were conducted in increasing number of encompassed seasons,

each with equivalent algorithm architecture sizes, as seen in figure 4.5.

Figure 4.5: F1 - score assessment of multi-temporal approach in a MLP classifier.

Table 4.5: Multi-temporal approach analysis in a MLP classifier.

Classifier
F1 - score improvements relative
to single temporal approach (%)

F1 - score variation
from index addition

Two seasons Three seasons

1. Artificialized + 7,1 + 10,0 0
2. Agricultural + 22,4 + 29.3 + 0,01
3. Pasture + 47,1 + 64,7 + 0,01
4. Agroforestry + 40,0 + 51,1 + 0,04
5. Forest + 34,1 + 43,2 0
6. Bushes + 83,3 + 100,0 + 0,02
7. Uncultured + 50,0 + 64,3 + 0,02
8. Wetlands + 1,5 + 1,5 0
9. Water bodies + 2,7 + 4,1 0

The analysis of the achieved multi-temporal results, as described in table 4.5, reveal

vast improvements in the classification performance across every major classifier, with

special impact in flora based classifiers (i.e. Agricultural, Pasture, Agroforestry, Forest,
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and Bushes), where improvements of up to 100% are observed. In turn, validating the

multi-temporal approach as a suitable technique for land cover classification. Conversely,

the addition of auxiliary vegetation indices in a multi-temporal approach, in accordance

with the results gathered from the initial approach, appears to have limited impact in

the distinction of most major classes. Nevertheless, the effect of the additional selected

vegetation indices, when combined, have never been registered as detrimental to the

overall performance of the classifier, thus, justifying its use in the final implementation.

The training procedure of the Multi-layer perceptron classifier concludes with the

tuning of the inner architecture and respective hyperparameters. Consequently, the

output of the Artificialized binary classifier is evaluated using various hidden layer sizes,

activation functions, and solvers.

(a) Loss convergence per activation function. (b) Loss convergence per solver.

Figure 4.6: Hyper parameter test in MLP classifier.

Table 4.6: Classifier architecture testing in MLP classifier.

Classifier
Architecture

F1 - score

(40, 20) 0,770
(50, 30) 0,769
(70, 30) 0,773
(90, 45) 0,771

(100, 55) 0,778
(70, 70) 0,777
(80, 80) 0,779
(90, 90) 0,776

The tuning procedure started with the investigation of different inner architecture
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sizes from which the values present in table 4.6 were gathered. The values in the classi-

fier architecture column represent the number of nodes present in the first and second

hidden layers, with the test conducted exploring symmetrical and asymmetrical designs

in ascending order. The analysis of the achieved results reveal little F1 - score variance

between each architecture, with the small variance attributable to the increased num-

ber of nodes. The increase in F1 - score with the size of the artificial neural network,

however, is accompanied by an increase in complexity, training time and likelihood of

overfitting. As such, the architecture (70, 30) was selected for the final implementation

for its balance between size and F1 - score. The second step in the tuning procedure

was related with the selection of the activation function and solver. From the available

options within the scikit-learn package, the most commonly used hyperparameters were

selected and the resulting loss curves compared. As visible in figure 4.6, the rectified

linear unit function "ReLU", and "Adam", a stochastic gradient-based optimizer proposed

by Kingma, Diederik, and Jimmy Ba [158], produced the fastest convergent loss curves

in their respective areas, consequently, ReLU activation function and Adam solver were

selected for the final algorithm implementation.

Finalized the training procedure for the first stage of classification of the Multi-layer

perceptron classifier, the algorithm was able to achieve a balanced overall F1 - score of

68% across the employed data set. The acquired accuracy values, as seen in table 4.7,

shall now be used as the benchmark for the efforts of the second stage of classification.

Table 4.7: Final multi-layer perceptron classifier results

Classifier F1 - score Recall Precision

1. Artificialized 0,772 0,698 0,862
2. Agricultural 0,750 0,715 0,787
3. Pasture 0,560 0,462 0,711
4. Agroforestry 0,676 0,650 0,704
5. Forest 0,634 0,558 0,735
6. Bushes 0,598 0,518 0,709
7. Uncultured 0,686 0,622 0,766
8. Wetlands 0,694 0,982 0,536
9. Water bodies 0,765 0,634 0,965

4.2.2 Multi-layer perceptron regressor

The second tested algorithm, multi-layer perceptron regressor, is type of feed forward

network capable of producing continuous outputs. For the purpose of the first stage

of classification, the algorithm will be tested in the binary classifiers as a first stage

approach to soft classification with the aim of providing additional information about the

likelihood, or confidence level, of each binary classifier decision as a non-integral input

for the second stage of classification. Within the sci-kit learn package, the algorithm

is of identical structure to the previously tested algorithm, differing in comparison to
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the MLP classifier by the absence of an activation function in the output layer and, as

a result, a distinct loss function (i.e. from a logistic loss function in the MLP classifier

algorithm to a square error loss function in the MLP regressor). Consequently, given the

interchangeable hyperparameters employed by both algorithms, the training procedure

of the MLP regressor can be excluded as the obtained values will be equivalent.

Given the continuous output format of the aforementioned algorithm, the previously

applied performance assessment methods (i.g. F1 - score) can not be computed without

the presence of a threshold to define the output labels. Although the defined threshold

may not describe the optimal interpretation of the predicted values and will be not be

present in the final implementation, it is necessary to provide comparing values. As

such, for the purpose of the training assessment procedure, follows the final F1 - scores

acquired through the application of a standard decision threshold of 0 to the output

layer,as described in table 4.8.

Table 4.8: Final multi-layer perceptron regressor results.

Classifier F1 - score Recall Precision

1. Artificialized 0,775 0,706 0,857
2. Agricultural 0,734 0,672 0,808
3. Pasture 0,560 0,458 0,723
4. Agroforestry 0,658 0,601 0,726
5. Forest 0,636 0,546 0,761
6. Bushes 0,581 0,480 0,735
7. Uncultured 0,650 0,552 0,790
8. Wetlands 0,694 0,981 0,536
9. Water bodies 0,763 0,630 0,967

4.2.3 Random forest classifier

The third tested algorithm, Random forest classifier, is an increasingly popular ensem-

ble learning method based on the construction of a large number of different decision

trees. For the purpose of the first stage of classification, the algorithm, similarly to the

multi-layer perceptron classifier, will be employed as a first stage approach to hard clas-

sification.

In accordance with the with the previously followed training procedure, the random

forest algorithm will initially use the base 12 inputs of a single season with default hy-

perparameters. From the defined base architecture, each technique will be applied and

subsequent results analysed. Given the higher sensibility displayed by other major classes

in previous tests in comparison with the previously targeted major class (i.e. Artificial-
ized class), the assessment of each technique impact in subsequent tests will follow the

progress of the Bushes major class (i.e. class 6). Thus, follows the initial results gathered

from feeding the unprocessed data from the previously employed training subset contain-

ing 750.000 data points to the classifier, with the default hyperparameters: "gini"criterion,
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"100"n_estimators (i.e. number of trees), "2"min_samples_split with no maximum depth.

The presented values in each test were derived from the average values of 5 runs.

Table 4.9: Initial Bushes binary classifier scores in RF classifier.

Classifier
Scores

Recall Precision F1

Bushes 0.185 0.713 0.294

Similarly to the values obtained in the first run of the MLP classifier, observable in

the left most bar cluster in figure 4.5, the Bushes major class classifier is incredibly weak

when provided with only the raw data and no further adjustments, correctly classifying

only 18,5% of the existing positive instances. Consequently, considering the base values

displayed in table 4.9, follows the achieved results from the implementation of the first 2

techniques, scaler and index addition.

Table 4.10: Scaler and vegetation indices impact analysis on Random forest classifier.

Classifier
Control

F1 - Scores

Relative F1 - score change
by technique addition

Scaler ([80, 20]) Combined indices

1. Artificialized 0,66 0 0
2. Agricultural 0,58 - 0,02 - 0,02
3. Pasture 0,38 0 - 0,01
4. Agroforestry 0,36 0 + 0,01
5. Forest 0,44 0 - 0,01
6. Bushes 0,29 + 0,01 0
7. Uncultured 0,35 + 0,01 + 0,03
8. Wetlands 0,69 0 0
9. Water bodies 0,73 0 0

In contrast with the increase in performance of up to 10% observed in the imple-

mentation of the scaler technique to the MLP classifier first class, verified in figure 4.2a,

the implementation of a scaler to the input data of the random forest algorithm has

demonstrated no tangible improvement in any of the reviewed major classes. Likewise,

in contrast with the MLP test, the addition of the vegetation indices to the classifier has

led to an overall decrease in the classifier performance, as seen in table 4.10, in turn,

challenging the usefulness of vegetation indices in random forest classifiers. As a result,

while the implementation of vegetation indices for multi-temporal impact assessment

continues, the use of a scaler will be absent in subsequent implementations.

Following the incorporation of the vegetation indices and scaler to the input layer,

the next step in the training procedure is the analysis of the multi-temporal classification

approach. In accordance with the previously applied testing procedure, three sets of test

were conducted with increasing number of encompassed seasons and vegetation indices.
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Figure 4.7: F1 - score assessment of multi-temporal approach in a RF classifier.

Table 4.11: Multi-temporal approach analysis in a RF classifier.

Classifier
F1 - score improvements relative
to single temporal approach (%)

F1 - score variation
from index addition

Two seasons Three seasons

1. Artificialized + 7,6 + 10,1 0
2. Agricultural + 21,4 + 26.8 - 0,01
3. Pasture + 35,1 + 48,6 0
4. Agroforestry + 48,6 + 62,2 - 0,02
5. Forest + 27,3 + 36,4 - 0,01
6. Bushes + 51,7 + 69,0 - 0,01
7. Uncultured + 29,0 + 39,5 0
8. Wetlands 0 0 0
9. Water bodies + 2,7 + 4,1 0

With exception of the Wetlands and Water bodies major classes which remain relatively

unaffected, the study of the multi-temporal method shows, in accordance with the pre-

viously tested algorithms, significant improvements in the performance of each binary

classifier across the number of encompassed seasons, as seen in figure 4.7 and table 4.11.

The acquired results however, despite validating the use of multi-temporal approaches

with random forest algorithms, exhibit lower absolute values when compared to the MLP

classifier approach. Furthermore, in contrast with the aforementioned algorithm, the

inclusion of auxiliary vegetation indices appears to be detrimental to the performance of

the RF classifier. As a result, future implementations of the RF algorithm will not employ

auxiliary vegetation indices.

The training procedure of the random forest classifier concludes with the tuning of

some of its respective hyperparameters. Consequently, the output of the Bushes binary
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classifier is evaluated using varying number of estimators, criterion and max depth levels.

(a) F1 - score by number of estimators. (b) F1 - score by maximum tree depth.

Figure 4.8: Hyper parameter test in RF classifier.

Table 4.12: Criterion testing.

Criterion F1 - score

Gini 0,501
Entropy 0,507

Table 4.13: Maximum number of features
per split testing.

Maximum number
of features per split

F1 - score

Square root 0,503
Binary logarithm 0,494

All features 0,555

The tuning procedure started with the exploration of the optimal number of estima-

tors (i.e. number of decision trees from which the classifier is assembled), the test started

with the default value of 100, and proceeded in increments of 50 estimators. In accor-

dance with previous applications described in the literature [119], the test of the optimal

number of estimators, visible in figure 4.8a, has shown no improvements in the perfor-

mance of the classifier with the increase in the number of estimators. The following test

explored the optimal maximum tree depth, the test aimed to identify a limited depth

level in order to reduce the potential of overfitting, however, as displayed in figure 4.8b,

every attempt at limiting the maximum level was detrimental in the classification of the

new, unseen data of the testing data set. As such, in light of the aforementioned tests, the

standard number of estimators "100"was selected along with an uncapped maximum tree

depth for the final RF implementation. The tuning procedure concluded with the analysis

of the best function to measure the quality of a split (i.e. Criterion) and the maximum

number of features to consider in each split. As visible in table 4.12, the criterion test
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revealed a slight increase in performance when the criterion "Entropy"was employed in

place of the criterion "Gini". Similarly, the availability of all features as split parameters

in each tree node has resulted in an increase of up to 10% in the Bushes classifier per-

formance when compared with the square root or binary logarithm of the total number

of features, findings displayed in table 4.13. Consequently, the "Entropy"criterion and

the total number of features per split will be selected as the optimal hyperparameters for

their respective categories for the final RF implementation.

Finalized the training procedure for the first stage of classification of the Random

forest classifier, with the values described in table 4.14, the algorithm was able to achieve

a balanced overall F1 - score of 66,4% across the employed data set, result slightly lower

than the 68% overall F1 - score achieved by the Multi-layer perceptron classifier.

Table 4.14: Final random forest classifier results.

Classifier F1 - score Recall Precision

1. Artificialized 0,745 0,647 0,878
2. Agricultural 0,735 0,666 0,821
3. Pasture 0,575 0,452 0,790
4. Agroforestry 0,662 0,585 0,761
5. Forest 0,633 0,528 0,792
6. Bushes 0,562 0,430 0,807
7. Uncultured 0,594 0,463 0,827
8. Wetlands 0,695 0,981 0,538
9. Water bodies 0,760 0,622 0,978

4.2.4 Support vector machine classifier

The fourth and last tested algorithm, Support vector machine classifier, is a supervised

learning model based on the division of the feature space through the use of an hyper-

plane. For the purpose of the first stage of classification, the algorithm, similarly to the

multi-layer perceptron and random forest classifiers previously tested, will be employed

as a first stage approach to hard classification.

Following the previously applied training procedure, the algorithm will be initialized

with 12 inputs of a single season, the default hyperparameters however, displayed the

inability to successfully create a base from which the classification procedure for most

major classes would be possible. For the present case, the default package value for the

regularization parameter C (i.e. default value of 1), failed to successfully categorize most

classes, consequently an arbitrary higher value of 25 was initially selected. Furthermore,

given the quadratic increase in computation time with the addition of data samples, the

SVM algorithm, in similarity with the random forest classifier, was trained through the

use of the ensemble bagging technique. Method in which multiple smaller SVM algo-

rithms are trained using smaller random data subsets, with subsequent results defined

via a voting system. In addition, in order to prevent certain features from dominating the
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feature space and ease the kernel calculations, the implementation of a scaler is essential

from the beginning.

In accordance with the previously tested algorithms, each technique will be applied

to the defined base architecture and respective results analysed through the impact on

the Bushes major class binary classifier (i.e. class 6).

Thus, follows the initial results gathered from feeding the SVM classifier with data

from a training subset containing 500.000 data points with a bagging ration of 1:8 and

hyperparameters: "radial basis function"kernel, "25"regularization parameter C, and

"scale"kernel coefficient γ . The presented values in each test were derived from the

average values of 5 runs.

Table 4.15: Initial Bushes binary classifier scores in SVM classifier.

Classifier
Scores

Recall Precision F1

Bushes 0.031 0.723 0.059

When given only the scaled data from one season, the Bushes SVM classifier, despite

similarities in the trend demonstrated by the previously tested algorithms, has shown

remarkably bad results, correctly classifying only 3,1% of the existing positive instances.

Consequently, considering the base values displayed in table 4.15, follows the achieved

results from the implementation of the first technique, index addition.

Table 4.16: Vegetation indices impact analysis on SVM classifier.

Classifier
Control

F1 - Scores

Relative F1 - score change
by technique addition

Combined indices

1. Artificialized 0,61 + 0,02
2. Agricultural 0,47 0
3. Pasture 0,12 - 0,01
4. Agroforestry 0 0
5. Forest 0,27 + 0,01
6. Bushes 0,06 0
7. Uncultured 0,19 + 0,01
8. Wetlands 0,66 + 0,01
9. Water bodies 0,70 + 0,01

The analysis of the values gathered in table 4.16, describe the SVM classifier as the

lowest performing classifier among all tested algorithms in single temporal approaches.

The algorithm was unable to derive an hyper-plane capable of classifying the Agroforestry
major class and failed to achieve the 0,30 F1 - score threshold in the majority of the binary

classifiers. Furthermore, despite positive, the impact of the auxiliary vegetation indices

was not sufficient to increase the performance of each classifier to comparable levels with
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the previously tested algorithms. In turn, challenging the application of SVM algorithms

in single temporal land use and land cover implementations based on spectral reflectance.

In accordance with the previously applied testing procedure, follows the analysis

of the multi-temporal classification approach through the creation of three sets of test

composed by increasing numbers of encompassed seasons and vegetation indices.

Figure 4.9: F1 - score assessment of multi-temporal approach in a SVM classifier.

Table 4.17: Multi-temporal approach analysis in a SVM classifier.

Classifier
F1 - score improvements relative
to single temporal approach (%)

F1 - score variation
from index addition

Two seasons Three seasons

1. Artificialized + 11,1 + 14,2 0
2. Agricultural + 34,0 + 44,7 + 0,01
3. Pasture + 136,4 + 263,6 + 0,02
4. Agroforestry NaN NaN + 0,02
5. Forest + 50,0 + 71,4 + 0,02
6. Bushes + 150,0 + 400,0 + 0,09
7. Uncultured + 95,0 + 130,0 + 0,02
8. Wetlands + 1,4 + 1,4 0
9. Water bodies + 2,8 + 4,2 0

In line with the previously tested algorithms, the SVM classifier shows enormous im-

provements in every flora based classifier with the increase in the number of encompassed

seasons. Ultimately allowing the classification of the previously indistinguishable Agro-
forestry major class, as seen in figure 4.9. Furthermore, the addition of auxiliary vegetation

indices to the multi-temporal approach resulted in the largest absolute performance in-

crease across the reviewed classifiers, as described in table 4.17, in turn, validating the
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use of vegetation indices in subsequent implementations. The training procedure of the

support vector machine classifier concludes with the tuning of the two primary hyper-

parameters in implementations based on the radial basis function. Accordingly, follows

the evaluation of the C regularization parameter in the Pasture and Agroforestry binary

classifiers and the impact of the gamma hyperparameter in the Bushes major class.

Figure 4.10: F1 - score progression through regularization parameter C value.

Table 4.18: Classifier gamma testing in SVM classifier.

Gamma F1 - score

1
number of f eatures · f eature variance

0,510

1
number of f eatures

0,482

The tuning procedure began with an assessment of the optimal regularization param-

eter C for different SVM binary classifiers. The study looked at the progression of F1 -

scores for the Pasture and Agroforestry binary classifiers as C values increased, revealing,

as observable in figure 4.10, high variance in the performance of each classifier until a

threshold is hit, highlighting the importance of an appropriate regularization parameter.

Furthermore, the test demonstrated a direct relationship between the magnitude of the

required C value and the relative difficulty (i.e. overlap between multiple classes, defined

by small nuances) of the targeted class. As an example, the Agroforestry classifier is ob-

served to plateau around the C value of 300, whereas the Pasture classifier continues to

increase until the C value of 3000 is reached. As a result, the optimization of the regu-

larization parameter C differs for each classifier, revealing the standard package value of

1 and then selected arbitrary value of 25 as insufficient for an appropriate classification.
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Consequently, for the final SVM classifier implementation, each regularization parameter

C was tuned separately.

The tuning procedure concluded with the analysis of the best kernel coefficient γ

value. The test employed the available standard γ modes "scale"and "auto", computed

by the equations in the top and bottom rows of table 4.18, respectively, in the training

procedure of the Bushes classifier. The analysis of the achieved results reveal a decrease

in the performance of the classifier of 5,5% when the "auto"γ was employed, in turn,

consolidating the standard value as the selected value for the final SVM implementation.

Finalized the training procedure for the first stage of classification of the Support

vector machine classifier, with the results described in table 4.19, the algorithm was

able to achieve a balanced overall F1 - score of 62,7% across the employed data set with

optimized regularization parameter C. The acquired result were slightly lower than the

66,4% and 68% overall F1 - scores achieved by the Random forest classifier and Multi-

layer perceptron classifier, respectively.

Table 4.19: Final support vector machine classifier results.

Classifier F1 - score Recall Precision Optimized C

1. Artificialized 0,727 0,639 0,845 300
2. Agricultural 0,704 0,627 0,804 600
3. Pasture 0,509 0,410 0,671 3000
4. Agroforestry 0,601 0,515 0,721 900
5. Forest 0,593 0,500 0,728 5000
6. Bushes 0,513 0,411 0,680 3000
7. Uncultured 0,582 0,490 0,717 3000
8. Wetlands 0,681 0,970 0,524 300
9. Water bodies 0,745 0,606 0,967 80

4.2.5 First stage conclusion

With the completion of the training procedure for each of the selected algorithms it

was possible to extract information about the impact and potential benefits of a multi-

temporal approach to the creation LCLU maps based on satellite multi-spectral imagery.

The procedure explored the affinity of each algorithm to the addition of contextual in-

formation, along with the impact of the ever increasing vegetation indices. In summary,

the incorporation of additional temporal data improved the performance, to varying de-

grees, of all of the reviewed algorithms. By contrast, the inclusion of vegetation indices

in the input data revealed more erratic results, as evidenced by small increases in per-

formance displayed by the MLP and SVM classifiers in contrast with small decreases

in performance observed in the RF classifier. Lastly, while the RF classifier achieves the

highest classification F-1 scores in the single-temporal implementation, the MLP classifier

and MLP regressor achieve the overall highest classification scores in the multi-temporal

implementation, comparison visible in tables 4.20 and 4.21.
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4.2.6 Second stage algorithm selection

With the conclusion of the first stage of classification, the second stage aims to aggregate

each binary output from the first set of classifiers into one fully multi-class classifier.

The separation of the aforementioned procedure into two stages allows for a modular

increment of new classes or the dissolution of previous major classes in future imple-

mentations. Retraining of which, requires only the training of the added classes’ binary

classifiers along with the smaller and less computation demanding second stage classifier

(i.e. 57 inputs in the first stage versus nº of classes as inputs in the second stage).

The selection and training of the algorithm for the second stage is relatively simple,

thanks to the knowledge of the algorithms’ hyperparameters gained in the first stage

training procedure. As previously analysed, the MLP algorithm achieved the highest

overall F1 - scores in both of its respective categories, hard and soft classification (i.e.

classifier and regressor), with the RF algorithm achieving the highest results with limited

data (i.e. in the single-temporal approach). As such, both MLP classifier and RF classifier

will be tested for the second stage of classification, where each algorithm will be fed binary

and continuous data from the previous per class classifiers, gathered through the use of

the MLP classifier and MLP regressor, respectively. Both algorithms will employ the

best combination of hyperparameters devised in previous tests, with the MLP classifier

using the configuration of 12-15-7-1 (i.e, 12 nodes in the input layer, 15 nodes in the first

hidden layer, 7 nodes in the second hidden layer and 1 output node) as the neural network

architecture. For the final implementation, all first stage classifiers were retrained with a

data subset containing 3.000.000 data points.

Table 4.22: Second stage MLP clas-
sifier testing.

Input data
Overall

accuracy score

MLP classifier 0.686
MLP regressor 0.726

Table 4.23: Second stage RF classi-
fier testing.

Input data
Overall

accuracy score

MLP classifier 0.687
MLP regressor 0.727

An examination of the values in tables 4.22 and 4.23 reveal nearly identical results

for each classifier in both types of input data. Conversely, while both algorithms struggle

to improve the overall accuracy above the MLP classifier’s previously calculated overall

balanced F1 - score of 68 percent when using binary data, the ability to work with con-

tinuous data capable of supplying the second stage algorithm with information about

the relative confidence level of each first stage classifier’s decision has led to a noticeable

increase in the final classification performance. Ultimately, despite the RF classifier’s

marginally better performance when compared to the MLP classifier, the extreme dispar-

ity in algorithm’s storage requirements (i.e. 15KB for the MLP classifier and 5,7GB for the

RF classifier), uphold the MLP classifier as the most suitable algorithm for the intended

application.
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In conclusion, follows the achieved overall accuracy and respective confusion matrix

of the "out of sight"test executed with an unique data set containing 1.000.000 data points,

described in table 4.24 and figure 4.11, respectively.

Table 4.24: Final out of sight overall accuracy.

Out of sight
overall accuracy

0,659

Figure 4.11: Final out of sight confusion matrix.

4.2.7 Performance analysis

After assessing the final implementation accuracy, some conclusions can be drawn about

the employed strategies.

• The number of classifiable classes has a significant impact on LCLU classifiers:

as previously observed in the multiple per class F1 - score assessment tables, the

difficulty of each class categorization task varies considerably with the targeted

domain. Even in the final implementation results, visible in figure 4.11, the overlap

between class 5 and class 6, Forest and Bushes respectively, is still prominent. As a

result, it is common to see these classes aggregated into a single class in order to

reduce complexity at the cost of functionality.

• A multi temporal approach to LCLU mapping is advantageous: the inclusion of

additional temporally shifted spectral information to machine learning techniques,

as previously documented throughout the training procedure, has resulted in the

leverage of the classifiers’ performance across all of the reviewed algorithms.
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• The effects of auxiliary vegetation indices were unremarkable: numerous vegeta-

tion indices exist throughout the literature with varying applicability, and although

certain indices help emphasise and improve the visual clarity of maps, the addition

of the reviewed auxiliary vegetation indices to the tested algorithms in the partic-

ular implementation has failed to deliver on the improvements often described in

the literature.

• The volume of acquired data was insufficient: given the computational limitation

of individual testing and the absence of servers/supercomputers infrastructure, the

acquired 6.425.998 land data points, although diverse, represent a mere 0,0072% of

Portugal’s 89.015 km² continental land area. Value drastically lower than the value

of 0,25% advised in the reviewed literature as the optimal study area.

• The implementation ground truth (i.e. the utilized COS map) and respective per-

formance benchmark (i.e. accuracy assessment method) possess inherent errors:

given the scale of the intended application, many parasitic errors were accumulated

throughout the required classification steps. Firstly, the expected human error fac-

tor in the creation of a nation wide LCLU map (i.e. original COS map) derived from

distinct data sources, time zones, and human individual criteria. Secondly, tempo-

ral inconsistencies derived from the distinct time frame between the completion

of the utilized COS map and the gathered raw satellite data, challenge inevitable

in the intended year-round implementation. Lastly, and perhaps most importantly,

the distinct classification approaches between the intended implementation and the

used COS map. Which, given the minimum area requirement for classification of

one hectare, is ultimately not a per-pixel approach, but rather object-based classifi-

cation. All of the aforementioned factors have a significant impact on the developed

classifier’s perceived, portrayed, and actual performance.

4.3 In-plugin implementation

With the training procedure completed, the best performing algorithm can now be im-

plemented in the QGIS plug-in. Since all of the data collection and pre-processing was

codded on top of the QGIS framework from the beginning, little work was required to

integrate the classification procedure. Given the square coordinates of the desired area,

the plug-in automatically downloads, extracts and compiles all the relevant data from

the sentinel-2 data base into a pandas dataframe where all subsequent vegetation indices

are computed and attached. Next, all nine of the trained algorithms from the first clas-

sification stage are called to predict each class based on the assembled dataframe, the

aforementioned procedure creates a new dataframe with all the per-class classifiers re-

sults. The new dataframe is then fed into the second stage algorithm to create the final

classification vector with multi-class values (i.e. from 1 to 9). Finally, the multi-class

vector is reconstructed as a matrix to create the final classification raster layer.
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After completing the integration of the classification procedure, the developed per-

pixel automatic classifier can now be visually compared with the traditional one on con-

crete images.

(a) Generated COS map.

(b) Traditional simplified COS map.

1 Artificialized

2 Agricultural

3 Pasture

4 Agroforestry

5 Forests

6 Bushes

7 Uncultured

8 Wetlands

9 Water bodies
(c) Class labels.

Figure 4.12: COS map comparison.

Despite the likely time difference between the creation of both images, derived from

the multiple data sources of the traditional method [152] in comparison with the temporal

consistent image set from which the generated COS map was assembled, the analysis of
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the provided images in figure 4.12 reveals many of the same features. In contrast, and

as a result of differences in classification approach (i.e. Minimum mapping unit of one

hectare in the conventional COS map as opposed to the per-pixel classification of the

generated COS map), a lot more granularity can be observed in the generated COS map.

In order to reduce undesirable complexity and diminish the "salt and pepper"effect

often present in per-pixel approaches, a final mask is applied to the generated image in

order to remove singular encompassed pixels. The developed mask iterates once through

every pixel and, with the exception of Artificialized pixels, replaces every encircled pixel

with the class that has the majority of representation in the surrounding area, as exem-

plified in figure 4.13. The aforementioned technique contributes with an average of 1%

increase in the classification accuracy across the reviewed images.

1 1 1

1 10

1 11

(a) Mask region. (b) Example of encompassed pixels (light blue).

Figure 4.13: Region and application example of the constructed mask.

With all procedures in place, follows a direct comparison between the generated and

the traditional simplified COS map.

(a) Land area. (b) Generated COS map. (c) Traditional COS map.

Figure 4.14: Direct comparison between traditional simplified and generated COS map.

The generated COS map achieved an accuracy of 53.8% in the specific land area shown

in figure 4.14a, however, as previously stated, differences in classification approach be-

tween both maps may reveal an accuracy number that is pessimistic and may not be

representative of the realistic (i.e. physical ground truth) accuracy.
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In conclusion, follows plug-in created examples of Portugal, displayed in figure 4.15.

(a) Example 1 land area. (b) Example 1 generated COS map.

(c) Example 2 land area. (d) Example 2 generated COS map.

(e) Example 3 land area. (f) Example 3 generated COS map.

Figure 4.15: Plug-in created Portugal examples.
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Given the unrestricted working area of the plug-in, the application can be utilised,

with varying degrees of accuracy, in other countries. As an example, follows additional

plug-in created examples of Angola, displayed in figure 4.16.

(a) Example 4 land area. (b) Example 4 generated COS map.

(c) Example 5 land area. (d) Example 5 generated COS map.

Figure 4.16: Plug-in created Angola examples.
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5
Conclusion

Over the last two decades, machine learning algorithms have been at the focus of land use

and land cover applications, benefiting yearly from advances in algorithm optimization,

new methods, hardware upgrades, software refining and additional data sources. Each

year multiple papers are published world-wide on the topic, comprising of different

techniques, distinct satellite data sources and diverse data fusion procedures. The present

dissertation focused on implementing an automatic LCLU classification procedure on

a widely used geographic information system using modern remote sensing satellite

imagery. The project, with Portugal as its focus, aimed to test, integrate and build on

previous approaches by utilizing temporal data as additional input variables in order to

harvest the contextual information contained in the vegetation cycles.

Throughout the algorithm selection process, three commonly used machine learning

algorithms were tested in identical environments along with the progressive integration

of multiple techniques in both single and multi temporal approaches. The training pro-

cedure, submitted in chapter 4, highlighted the initial unsuitability of every tested algo-

rithm for the required application magnitude when only one season of data was provided.

The subsequent addition of vegetation indices also revealed underwhelming results in

light of the proclaimed improvements described in the reviewed literature, displaying

limited impact in the single temporal implementation. The implementation of the multi

temporal approach, on the other hand, revealed significant improvements in the classifi-

cation of flora-based classes across all trained algorithms, as well as the amplification of

the effects of vegetation indices. In turn, validating the multi temporal technique as the

optimal approach in the automatic creation of LCLU maps.

The choice of the best algorithm for the intended implementation was critical to the ap-

plication’s success. Among the three tested algorithms, the Support vector machine-based

classifier, despite demonstrating the highest affinity for vegetation indices, consistently
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produced the lowest scores across the testing procedure. Ultimately, the extremely slow

training procedure derived from the quadratic increase in training time with the amount

of input data render the SVM classifier method unfit for the required implementation’s

constraints. The Random forest-based classifier achieved the best results in the single

temporal approach and second highest in the multi temporal approach, the addition of

vegetation indices, however, proved to be detrimental to the classifiers performance. In

the end, while the acquired results validate the use of RF classifiers in LCLU map creation,

the excessive storage requirements of the algorithm render it as unfit for the intended

application. Lastly, the Artificial neural network-based classifier achieved the best results

in the multi-temporal approach, while also demonstrating adequate utilization of vegeta-

tion indices. In light of the algorithm’s speed, scalability and low storage foot print, the

ANN classifier was selected as the optimal algorithm for the application.

By exploring the implementation and impact of commonly used techniques and algo-

rithms in a multi temporal approach, the completion of the present dissertation enabled

the creation of a proof-of-concept lightweight QGIS plug-in capable of acquiring, pro-

cessing and automatically classifying any land region of Portugal and, to varying degrees

of accuracy, other countries. In turn, achieving the dissertation’s goal, but not without its

shortcomings. The acquired nine-class out of sight overall accuracy of 65,9% is not yet

within the interval of usability, numerous issues still prevent the application from fully

replacing the traditional method. The comparable values achieved by all the algorithms,

however, appear to indicate that the employed ML method is not the bottleneck of the

implementation, rather, the ground truth data used to train the algorithm is plagued with

parasitic errors that prevent clearer distinction between the targeted classes. As such,

future work in the field will undoubtedly benefit from the increase in the abundance of

overall satellite data and updated traditional land cover and land use maps.

5.1 Future work

Despite the positive development of a proof-of-concept automatic LCLU plugin, the im-

plementation still possesses many areas that could be improved and developed further.

In the following section, some ideas for future implementations will be introduced along

with the targeted challenge.

• Fusion of additional data sources: In addition to multi-spectral data, topographic

data such as LiDAR might help ease the classification hurdle of inclined surfaces

where the employed method occasionally miss classifies the lack of reflection cre-

ated by scattered light from overlapping foliage as water. Furthermore, the addition

of relative land height might help differentiate between the multiple flora-based

classes and help analyse water levels.

• Distinct algorithm architectures: In opposition to the chosen sub type of artificial

neural network, further work could employ the additional temporal data by means
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of "memory"nodes present in deep learning methods, akin to speech recognition

algorithms. Further implementations could also explore the use of Encoder-Decoder

recurrent neural network models in order to predict future seasons based on cyclical

data.

• Distinct classification approach: In contrast with the per-pixel approach pursued

in the present dissertation, an object based classification could be explored and the

fractal dimension (i.e. roughness) of each drawn object fed as an input variable.

The aforementioned approach, despite losing granularity, might help differentiate

anthropogenic structures such as crop fields from other vegetation filed areas.

• Updated per-pixel traditional maps: As previously noted, the use of adequate

ground truth maps is of paramount importance to the general performance of any

classifier. Future implementation would benefit greatly from updated and rigorous

per-pixel LCLU maps. Such work could initially be accomplished using average

automatic classifiers and subsequently refined with human intervention.
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Appendix 1 - Plug-in showcase

Throughout the body of the document, the creation of a QGIS plug-in was regularly

mentioned. The aforementioned software, in line with the document title, takes the

name of "Automatic Terrain Classification". The creation of the plug-in was paramount

in the study of the proposed solution, allowing for gathering of all the employed satellite

data and the creation of the data sets. Most of the code used in order to accomplish the

various steps described in the document is still present, although inactive, in the form of

functions in the plug-in files, as represented in figure A.2b. The code was preserved in

order to provide a solid framework from which future attempts and novel methods may

be applied in a repeatable environment, allowing for the accurate comparison between

novel and previous approaches. In addition, as one of the major focuses of the solution,

the plug-in offers the ability to employ the pursued approach to automatically classify

any terrain area surveyed by the sentinel-2 mission, as seen in figure A.2a. Further

information regarding the software setup guide, instructions and download links, can

be found in the following GitHub repository URL: https://github.com/jmsassuncao/

auto_terrain_classification

Figure A.1: Automatic Terrain Classification plug-in logo.

89

https://github.com/jmsassuncao/auto_terrain_classification
https://github.com/jmsassuncao/auto_terrain_classification


APPENDIX A. APPENDIX 1 - PLUG-IN SHOWCASE

(a) Plug-in classification tab.

(b) Plug-in data set creation tab.

Figure A.2: Automatic Terrain Classification plug-in GUI.
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