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Abstract: Immobilised dye-decolorizing peroxidases (DyPs) are promising biocatalysts for the de-
velopment of biotechnological devices such as biosensors for the detection of HyO,. To this end,
these enzymes have to preserve native, solution properties upon immobilisation on the electrode
surface. In this work, DyPs from Cellulomonas bogoriensis (CboDyP), Streptomyces coelicolor (ScoDyP)
and Thermobifida fusca (TfuDyP) are immobilised on biocompatible silver electrodes functionalized
with alkanethiols. Their structural, redox and catalytic properties upon immobilisation are evalu-
ated by surface-enhanced resonance Raman (SERR) spectroelectrochemistry and cyclic voltammetry.
Among the studied electrode/DyP constructs, only CboDyP shows preserved native structure upon
attachment to the electrode. However, a comparison of the redox potentials of the enzyme in solution
and immobilised states reveals a large discrepancy, and the enzyme shows no electrocatalytic activity
in the presence of HyO,. While some immobilised DyPs outperform existing peroxidase-based
biosensors, others fail to fulfil the essential requirements that guarantee their applicability in the im-
mobilised state. The capacity of SERR spectroelectrochemistry for fast screening of the performance
of immobilised heme enzymes places it in the front-line of experimental approaches that can advance
the search for promising DyP candidates.

Keywords: DyP; SERR spectroelectrochemistry; immobilised enzymes; 3'¢ generation biosensors

1. Introduction

Dye-decolorizing peroxidases (DyPs) belong to a handful of oxidoreductase enzymes
that can be explored for biotechnological applications. They efficiently oxidise a number
of substrates (commonly referred to as oxidising substrates), such as synthetic azo- and
anthraquinone-based dyes, metals, aromatic sulphides and phenolic and non-phenolic
lignin units, with concomitant reduction of H,O; at the heme b active site [1,2]. Therefore,
they are potentially interesting for the development of H,O, biosensors and devices for
sensing and/or degradation of oxidising substrates of interest. The former are relevant for
the detection of H,O; in biomedical, environmental and food industry fields [3,4], while
the latter can be applied for sensing the level and degradation of persistent dye pollutants
in waste waters [2]. To that end, currently the most attractive platforms for the devel-
opment of biosensors and bioelectrocatalytic devices are 3"d-generation electrochemical
constructs. They rely on enzymes immobilised on biocompatible electrodes that undergo
direct electron transfer (DET) with the electrode (i.e., electrochemical transducer), which
acts as a source or a sink of electrons that drives the catalytic reaction in the presence
of the substrate [5,6]. Crucial parameters that govern a rational design of 3'9-generation
bioelectronic devices are the preservation of the solution structure, redox potential (E°)
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and catalytic parameters of the biocatalyst upon immobilisation, efficient DET between the
enzyme and the electrode, good substrate accessibility to the active site of the enzyme and a
long-term stability of the enzyme/electrode construct [7]. The only experimental approach
that allows for the simultaneous and thorough structural characterization and redox poten-
tial determination of the immobilised enzyme in situ relies on surface-enhanced resonance
Raman (SERR) spectroelectrochemistry. The SERR spectra of heme proteins immobilised
on plasmonic Ag electrodes, obtained by excitation in resonance with the Soret band of
the porphyrin, display core-size marker bands (v4, v3, vo and vyg) of the immobilised
molecules, the frequencies of which are indicative of the redox, spin and coordination state
of the heme iron [8-11]. A comparison of the resonance Raman (RR) spectra of the enzyme,
which disclose equivalent spin/redox properties in solution, with the SERR spectra of the
immobilised enzymes, can sensitively reveal eventual immobilisation-induced structural
changes on the level of the active site [8,10,12-14]. These structural changes that frequently
occur upon attachment of the enzyme to electrodes are actually the most common cause
for the failure of 3"d-generation devices [14]. The catalytic performance of immobilised en-
zymes can be simultaneously monitored by electrochemical methods [7]. This experimental
approach that couples SERR with electrochemistry has been used to evaluate the potential
of several interesting enzymes for the development of biotechnological applications; these
include cytochrome P450, nitrite reductases, microperoxidases and, more recently, DyP
peroxidases [13-20]. In particular, DyP from Pseudomonas putida (PpDyP) has been shown
to be an excellent candidate for the construction of 3rd—generation H,0O, biosensors [21].
PpDyP-based constructs are actually capable of outperforming all commercially available
H,O, biosensors, including the recently developed horseradish peroxidase (HRP)-based
devices that employ advanced nanostructures, such as carbon nanotubes, nano-dots and
ceramic and gold nanostructures [22-24].

Here, we define a pipeline of requirements that allow for the stepwise evaluation of
the aptness of several DyPs for the rational development of biosensors and/or devices
for bioelectrocatalytic degradation of chemically inert dyes. We use SERR spectroelec-
trochemistry to probe the structural integrity and redox potential of the enzymes upon
immobilisation on biocompatible electrodes and amperometric/voltammetric methods to
monitor the electrocatalytic activity of the constructs that carry enzymes immobilised in
the native state. We discuss the outcomes obtained for DyPs from different bacteria in light
of our previously published work on PpDyP [15,21].

2. Results
2.1. Evaluation of Structural Integrity of DyPs upon Immobilisation

Surface charge distribution analysis. The immobilisation of DyPs from Cellulomonas
bogoriensis (CboDyP), Streptomyces coelicor (ScoDyP) and Thermobifida fusca (TfuDyP) was
attempted on Ag electrodes coated with alkanethiol self-assembled monolayers (SAMs)
to ensure biocompatibility. The choice of a SAM for each studied enzyme followed an
initial consideration of the surface charge distribution of the DyPs (Figure 1). CboDyP
has a predominantly negative surface charge, with several relatively well-defined patches,
intertwined with hydrophobic surface residues. This suggests that a positively charged
surface (e.g., NH;-terminated SAMs) can favour electrostatic interactions with the enzyme.
The TfuDyP surface appears quite polarized, with a region of predominantly negative
surface charges counter-balanced with hydrophobic and positively charged amino acid
residues. In ScoDyD, opposite-charge regions are, together with hydrophobic residues,
more homogeneously distributed over the surface. Accordingly, positively (NH;) as well
as hydrophobic (CH3) and negatively (COO™) charged SAMs (either pure or mixed) were
tested to optimise the immobilisation conditions (vide infra).
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Figure 1. Electrostatic surface potential of (A) Cellulomonas bogoriensis (CboDyP) (dimer; PDB code:
6QZO0), (B) Thermobifida fusca (TfuDyP) (monomer; PDB code: 5FW4) and (C) Streptomyces coelicor
(ScoDyP) (monomer; PDB code: 4GT2). Surface potential: —10 to +10 kT/e; the red colour indicates
negatively charged regions; the blue colour indicates positively charged regions. Figures were
prepared with ChimeraX [25].

DyPs in solution. In order to provide a reference for the studies of immobilised en-
zymes, the RR spectra of as purified, ferric DyPs were measured in solution. The high
frequency region of the RR spectra of CboDyP show oxidation (v4) and oxidation/spin
state (v3 and v,) marker bands at 1371, 1481 and 1561 cm ! at pH 8, which are indicative of
a uniform and homogeneous 6-coordinated high-spin (6¢cHS) population (Figure 2B) [26].

The RR features of TfuDyP at pH 7.5 reveal v4, v3 and v, marker bands at 1378,
1509 and 1585 cm ™!, characteristic of a single ferric 6-coordinated low-spin (6¢LS) popu-
lation [26] (Figure 2D). The RR spectrum of ScoDyP is indicative of a presence of a 6¢cHS
population at pH 8, with vy, v3 and v, bands at 1370, 1481 and 1562 cm?, respectively
(Figure 2F).
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Figure 2. Resonance Raman (RR) and surface-enhanced resonance Raman (SERR) spectra of ferric
dye-decolorizing peroxidases (DyPs): (A) SERR spectrum of CboDyP immobilised on Ag electrodes
coated with 1-undecanethiol:11-amino-1-undecanethiol hydrochloride (M:M, 2:1) self-assembled
monolayer (SAM) at pH 7, recorded at +250 mV electrode poised potential; (B) RR spectrum of
CboDyP in solution at pH 8; (C) SERR spectrum of TfuDyP immobilised on Ag electrodes coated
with 1-undecanethiol: 11-amino-1-undecanethiol hydrochloride SAM (M:M, 2:1) at pH 7, recorded
at +350 mV electrode poised potential; (D) RR spectrum of TfuDyP in solution at pH 7.5; (E) SERR
spectrum of ScoDyP immobilised on a 1-undecanethiol SAM at pH 7, recorded at +250 mV electrode
poised potential; (F) RR spectrum of ScoDyP in solution at pH 8. The RR spectra of CboDyP (at 21 °C)
and ScoDyP (at —50 °C) were acquired with 405 nm excitation, and the RR spectrum of TfuDyP (at
21 °C) was obtained with 413 nm excitation. All SERR spectra were acquired with 405 nm excitation
at 21 °C (vide infra Materials and Methods).
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Immobilised DyPs. In the next step, the immobilisation conditions were tested for the
studied DyPs. The SAM-coated working Ag electrodes were incubated in the enzyme solu-
tion during variable time intervals (vide infra), and the SERR spectrum of each DyP/SAM
Ag construct was measured in a three-electrode spectroelectrochemical cell, equipped with
reference and counter electrodes. The immobilisation of CboDyP, TfuDyP and ScoDyP was
attempted using pure CHz, NH; and COO™-terminated SAMs, as well as CHz mixed with
NH; or COO™-terminated alkanethiols. For CboDyP and ScoDyP, pure OH and mixed
OH/CHjs-terminated SAMs were also employed.

CboDyP and TfuDyP can be successfully immobilised on mixed hydrophobic and
positively charged surfaces, with CH3; and NH,-terminated SAMs in a 2:1 concentration
ratio, as indicated by the presence of marker bands in the high frequency region of the
respective SERR spectra (Figure 2A,C). Under all other tested conditions either residual
or no SERR signals are observed (Figure 2E and Figure S1), which could be due to un-
favourable interactions and/or low enzyme loading. Mixed CH3/NHj,-terminated SAMs
were, therefore, selected for further studies of TfuDyP and CboDyP, while no suitable
platform for attachment of ScoDyP could be identified. The optimal SAM composition for
the immobilisation of TfuDyP and CboDyP suggests that an interplay of hydrophobic and
electrostatic interactions is required, which is in agreement with the presence of negatively
charged patches and hydrophobic residues at the surface of these enzymes (cf. Figure 1).

The SERR spectra of CboDyP attached to the electrode at a positive poised potential of
+250 mV vs. normal hydrogen electrode (NHE; all potential values in this work are quoted
vs. NHE) show subtle differences in comparison with the RR spectra of ferric CboDyP.
The component analysis of the SERR spectra, in which the individual heme species are
fitted to the experimental spectra, reveals that multiple heme populations co-exist at the
electrode surface (Figure 3A), while a uniform 6cHS species is observed in solution. The
major population is assigned to the native 6¢HS heme species, with spectral parameters
comparable to those found in the RR spectra (v4, v3 and v, bands at 1372, 1483 and
1562 cm ™1, respectively). The widths of the SERR component bands are ca. 1-2 cm ™! larger
than those observed in the RR spectra, which could suggest the orientational distribution of
the enzyme molecules on the electrode. The v4, v3, and v, bands of the second population,
found at 1370, 1492 and 1572 cm ™!, respectively (representing ca. 35% of the area of the v,
band) are characteristic of 5cHS heme species, in which the 6th axial heme Fe position is
vacant. The third minor species comprising ca. 10% of v4 mode is centred at 1358 cm !,
which is indicative of reduced protein; owing to a low amount of the ferrous population,
v3 and v, bands could not be identified in the spectra.

The SERR spectra of TfuDyP, obtained at electrode potential poised at +350 mV, are
clearly different from the RR spectra of the ferric enzyme in solution (Figure 2C,D). The
v3 region has a major component centred at 1484 cm ™!, consistent with a presence of
a HS heme species, which in solution has only been identified at acidic pH values. At
pH 3.5, TfuDyP in solution undergoes a complete transition to HS species. This becomes
evident from the presence of vz modes at 1481 cm ™! (6cHS) and 1493 cm ! (5cHS) and
downshifted v4 (1373 cm™1) [26]. This conformational change from 6cLS to HS species
coincides with the transition from a catalytically impaired state at pH 7 to a catalytically
active enzyme at pH 3.5 in solution [26,27]. However, the frequencies, bandwidths and
relative intensities of the heme marker bands observed in the SERR spectra are distinct from
the HS species previously identified in solution. Furthermore, a significant amount of the
enzyme appears to be in a ferrous state, as indicated by the presence of a v4 mode centred at
1355 cm ™!, even at a positive poised electrode potential (+350 mV). These findings indicate
that TfuDyP undergoes alterations at the level of the heme environment upon attachment
to the employed SAM/Ag surfaces.

Taken together, these results show that among the studied DyPs, CboDyP appears to
be the best candidate for further studies, as a large amount of the enzyme retains its native
properties upon immobilisation.
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Figure 3. SERR spectra of CboDyP immobilised on Ag electrodes coated with 1-undecanethiol: 11-
amino-1-undecanethiol hydrochloride SAM (M:M, 2:1) recorded at potentials poised at (A) +250 mV
and (B) —200 mV. The component spectra represent the overall fit (dark red), ferric 6cHS (blue),
redox-inactive ferric 5cHS (magenta), ferrous 6¢HS (red) and redox-inactive ferrous (green) species
and non-assigned bands (grey). Inset: SERR spectra acquired at the electrode potential poised of
+250 mV before and after the electrode was poised at four different potentials. All spectra were
obtained with 405 nm excitation at pH 7 and 21 °C.

2.2. Probing Redox Activity, Reversibility and Electronic Coupling of the Immobilised CboDyP

In order to evaluate the efficiency of the DET of the immobilised enzyme, the electrode
potential was switched from a positive to a negative value, at which CboDyP was expected
to be fully reduced. At the most negative potential applicable to the SAM-coated Ag
electrode, i.e., —400 mV, which is defined by the reductive desorption of the alkanethiol
monolayer, the immobilised CboDyP appears to be reduced. The redox transition is fast
and reversible for several redox steps, as concluded from identical SERR spectra measured
at e.g., +250 mV before and after the application of up to four different poised potentials
to the electrode (Figure 3, inset). All further measurements were performed by taking
this finding into consideration (i.e., up to four SERR spectra were recorded from a single
electrode at different potentials). However, the immobilised CboDyP is not fully reduced at
—200 mV electrode poised potential, which is evident from an asymmetric redox sensitive
v4 band, indicating the presence of oxidised species (Figure 3B). In fact, no further reduction
is observed at potentials poised below —150 mV. The component analysis of the SERR
spectra reveals the presence of two populations with v4 bands at 1359 and 1370 cm ™!
characteristic of ferrous and ferric species, respectively (Figure 3B). The marker bands of
the major 6¢cHS species (v4 and v3 at 1359 and 1475 cm ™!, respectively) are ca. 10 cm ™!
upshifted in comparison to the SERR spectra at +250 mV electrode poised potential, as
expected for the ferrous heme. The spectral parameters of the minor ferric population are
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identical to those observed for the 5cHS species at +250 mV, leading us to conclude that
it represents a non-native, redox-inactive species that is formed upon the attachment of
CboDyP to the electrode.

2.3. Assessement of the Redox Potential and Catalytic Efficiency of the Immobilised CboDyP

In the next step, SERR spectroelectrochemical titrations were employed to determine
the EY of the Fe3* /Fe?* redox couple of the immobilised CboDyP. The spectra were mea-
sured at a series of poised potentials, and the contributions of the native 6¢HS ferric and
ferrous species were determined from the component analysis of the potential-dependent
SERR spectra (Figure 4). Note that the component analysis took into account the presence
of the redox-inactive ferric (5cHS, v4 1370 cm 1) and ferrous (v4 1358 cm™1) species (des-
ignated by magenta and green traces in Figure 4), which remain constant upon variation
of the electrode potential. Due to the presence of multiple species (i.e., high complexity)
and the poor S/N ratio of the spectra, only the v4 mode was fitted. A similar approach
was earlier successfully adopted for the analysis of the redox behaviour of multiple heme
and/or multiple spin species containing proteins [15,17].

T T T
1345 1370 1395 1420

Raman Shift (cm™)

Figure 4. The v4 band region of the SERR spectra of CboDyP immobilised on Ag electrodes coated
with 1-undecanethiol and 11-amino-1-undecanethiol hydrochloride SAM (M:M, 2:1), recorded at
several selected electrode potentials. The component spectra represent the overall fit (black) and
ferric 6¢HS (blue), ferric redox-inactive 5cHS (magenta), ferrous 6¢HS (red) and ferrous redox-inactive
(green) species. Spectra were obtained with 405 nm excitation at pH 7 and 21 °C (vide infra Materials
and Methods).
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The potential dependence of relative spectral contributions of the native 6¢HS ferrous
species follows a sigmoid shape. The fit of the Nernst equation to the data reveals the
redox potential of the immobilised CboDyP (E%mm = 15 + 14 mV) and the number of
exchanged electrons (1 = 0.6) (Figure 5, right trace). The redox potential is, nevertheless,
distinctively different from that in solution (E’, = —320 4+ 12 mV; n = 0.9), estimated
from potentiometric titrations using sodium dithionite as reducing agent (Figure 5, left
trace). The redox reaction is fully reversible in solution, as demonstrated by the titration
undertaken in the opposite direction, in which the fully sodium dithionite-reduced CboDyP
was oxidised in a stepwise manner by potassium ferricyanide, which is revealed by the
same E0; (Fe3* /Fe?*).

1.07

0.51

I'norm (Red)

0.01
-450 -300 -150 0 150 300

Potential (mV) vs. NHE

Figure 5. Redox titrations of CboDyP in solution and immobilised states. Left curve: potentiometric
titration in solution monitored by UV-VIS spectroscopy. The circles represent the normalized
absorption of the reduced population at 430 nm as a function of the solution potential for three
independent experiments. Solid (and empty) symbols represent titrations by stepwise reduction (and
oxidation) of the ferric (and ferrous) enzyme. Right curve: SERR spectroelectrochemical titration
of CboDyP immobilised on electrodes coated with 1-undecanethiol and 11-amino-1-undecanethiol
hydrochloride SAM (M:M, 2:1). The squares represent the relative contribution of the ferrous
6cHS population estimated from the v4 band (1359 cm ™) at variable electrode potentials for seven
independent experiments. Solid lines represent fits of the Nernst equation to the experimental data
points, yielding for solution enzyme, EOSOI =—320mV, n=0.9, R? = 0.9698 (blue), and for immobilised
enzyme, E'im = +15 mV, 7 = 0.6 and R? = 0.9797 (red).

The electrocatalytic reduction of H,O, by the immobilised CboDyP was evaluated
by cyclic voltammetry (CV) and amperometry at pHopt 5 [28] and pH 7, directly in the
SERR cell. A broad range of substrate concentrations was tested (8 uM to 1.7 mM final
concentration of HyO,) in a number of independent measurements. No catalytic signal is
detected in CV experiments in any of the employed conditions, since the measured currents
do not differ significantly from the control, i.e., in the presence/absence of HyO, with the
working electrode carrying attached CboDyP (Figure S2A) or in the presence/absence of
the immobilised enzyme on the working electrode and H,O; in the solution. In the next
step, more sensitive, amperometric assays were performed, in which the response of the
immobilised enzyme to HyO, was evaluated by stepwise injections of the deoxygenated
stock solution of the substrate. The amperometric response of CboDyP immobilised
on electrodes poised at —100 mV potential is comparable to that of the control assay
(Figure S2B), in which the working electrode carries no enzyme. Therefore, we have
concluded that the immobilised CboDyP displays no electrocatalytic activity under the
employed experimental conditions. These results indicate that despite being immobilised
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in an apparently native-like state, CboDyP does not retain its catalytic and redox properties
upon attachment to the modified electrodes.

3. Discussion

Heme-containing peroxidases, including the best studied HRP, as well as cytochrome
c peroxidase (CcP), chloroperoxidase and lactoperoxidase, show a significant potential as
biocatalysts for the development of 3"d-generation biotechnological devices [29,30]. Bacte-
rial DyPs are also regarded as promising candidates, since they possess broad substrate
specificity, they can easily be heterologously overexpressed in non-glycosylated form, and
their properties improved by protein engineering [1,2,31-34]. However, the progress in the
development of peroxidase-based applications is lagging behind the expectations, due to
the difficulties in transferring the enzyme catalytic efficiency in solution to the immobilised
state and the lack of experimental approaches for fast screening of enzyme/electrode con-
structs in situ [30]. The enzyme structural integrity, its redox properties and reversibility of
the redox reaction, catalytic efficiency and stability need to be preserved upon immobilisa-
tion, and the efficient electronic communication with the electrode has to be ensured [7,30].
Therefore, sensitive methods that can probe these features to allow for a rational design of
peroxidase-based devices with optimised performance, are highly required [21,29].

3.1. Structural Integrity upon Immobilisation

Due to a flexible distal heme cavity, peroxidases are capable of adopting distinct heme
configurations in the resting ferric state. These include catalytically competent 5cHS and
6¢cHS and quantum mechanically mixed-spin (QS) states, which frequently co-exist in
solution [35,36]. Unlike classical peroxidases, DyPs often possess a significant amount of
6¢LS population [16,26], which, due to the occupied 6th axial iron position, cannot bind
H,0; at the heme active site and is therefore catalytically incompetent [16]. Probing of the
heme configurations of an enzyme upon attachment to solid supports exclusively relies on
SERR spectroscopy that can sensitively identify different spin populations and eventual
immobilisation-induced alterations. Previously, SERR spectroscopy has been used to
monitor the structural integrity of the heme active site(s) in immobilised cytochrome P450,
nitrite reductases, heme oxidases, microperoxidases, as well as DyPs from Pseudomonas
putida and Bacillus subtilis (PpDyP and BsDyP) among others, offering molecular details
that help rationalise the functional failure of some of these enzymes in the immobilised
state [13-20]. For instance, BsDyP that contains a mixture of HS and LS populations in
solution reveals an increase of catalytically inactive 6¢LS species upon immobilisation [16].
On the other hand, the structural integrity of the heme pocket is preserved upon the
immobilisation of PpDyP, as the frequencies, bandwidths and relative ratios of bands
characteristic of 5cHS and 5cQS species are equal in solution RR and in SERR spectra [15].
Here, we show that CboDyP, which is characterized by uniform 6cHS population in
solution, adopts multiple conformations upon immobilisation. The most representative
are the native 6¢HS species (with a spectral contribution of approximately 55%), which
does not undergo apparent structural alterations, and the non-native ferric redox-inactive
5cHS species (ca. 35%). TfuDyP could not be immobilised in the native state, while ScoDyP
could not be attached to any of the tested SAMs.

3.2. Redox Properties upon Immobilisation and Electronic Communication

Heme-containing peroxidases typically have a negative redox potential of the Fe* /Fe?*
couple, which guarantees that the ferric form, that is required for HyO,-mediated two-
electron oxidation of ferric peroxidases to Compound I, is stable under physiological
conditions [37]. Although not directly involved in the catalytic cycle, the E? (Fe>* /Fe?*) is
considered to be a good indicator of the redox properties of catalytically relevant redox
couples (i.e., Fe** /Compound I, Compound I/Compound IT and Compound I1/Fe®*),
which govern the catalytic activity of peroxidases [37]. Moreover, the molecular factors that
impact E® (Fe>* /Fe?*) in heme proteins in general, i.e., the electron donor properties of the
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axial Fe ligands, the polarity of the protein environment and the electrostatic interactions
between the heme Fe and polar and charged amino acid residues and the solvent [37], have
been suggested to influence the catalytically relevant redox couples in the same manner.

Here, we demonstrate that the value of E? (Fe3* /Fe?*) of CboDyP in solution (—320 mV)
is among the lowest reported for DyPs. This is not an advantage for potential applications.
Namely, as judged by considerations of Gibbs free energy only, a more positive redox
potential implies a broader range of oxidisable substrates and consequently higher enzyme
applicability in biotechnology. So far, the reported E° (Fe>* /Fe?*) of DyPs span over a broad
range: BsDyP (—40 mV) [16] and variants (—70 to —120 mV) [33], PpDyP (—260 mV) [15],
DyP 2 from Amycolatopsis sp. 75iv2 (—85 mV) [38], Thermomonospora curvata DyP (TcDyP)
(—136 mV) and variants (—130 to —210 mV) [39], Klebsiella pneumoniae DyP (KpDyP) (—350
mV) [40] and variants (—300 to —350 mV) [41]. It is tempting to relate different values of
EY (Fe3+ / Fe2+) with distinct physiological functions of DyPs, with higher B0 reflecting a
physiological requirement for more versatile enzymes. However, so far, there have been nei-
ther enough data nor sufficient evidence to support subfamily-related correlation between
the two.

The immobilisation of enzymes can cause large shifts in their redox potentials. The
reported E¥ (Fe** /Fe?*) values of immobilised HRP vary significantly, ranging between
—450 and +110 mV, and are strongly affected by the choice of electrode material and
immobilisation strategies [13]. Here, we show that in the case of CboDyP, a significant
amount of the enzyme is immobilised in a non-native state. The portion of the enzyme
that shows no apparent structural alterations, nevertheless, does not preserve its solution
redox properties, with the E%. vs. E%mm differing about 300 mV. Previously, the E°
(Fe>* /Fe?*) of the catalytically competent 6¢cHS population in BsDyP was determined by
SERR redox titration, revealing a relatively insignificant modulation of the redox potential
in comparison with the solution value (B0 vs. E%mm differ approximately £50 mV) [16].
In the case of PpDyP, E0, (—260 mV) is, within the error of determination, the same as
the E%pm (—300 mV), with the latter being comparable between the two redox active
species, i.e., 5cHS and 5cQS [15]. We attribute the large discrepancy in E% vs. E%
of 6cHS population in CboDyP to a non-uniform orientation of the enzyme molecules
on the electrode surface, revealed by the enlarged width of SERR bands and also the
broad redox transition with n < 1. This heterogeneous orientation may be related with
the non-specificity of hydrophobic interactions between the enzyme and the modified
electrode, as the CHj3-terminated SAM constitutes the major portion of the immobilisation
surface. Another factor that likely contributes to the large upshift of E%;yp, is the lowering
of polarity in the heme cavity upon immobilisation. As predicted by the Kassner relation, a
decreased hydration of the heme environment lowers the local dielectric constant and can
account for up to 200 mV upshift of redox potential in heme proteins [42]. One can envisage
subtle immobilisation-induced conformational changes that propagate to the active site
and further increase the hydrophobicity of CboDyP heme cavity, which is not necessarily
accompanied by the exchange of heme ligands that can be detected spectroscopically;
however, at this point, no evidence can be provided to support this hypothesis.

3.3. Probing Electrocatalytic Activity upon Immobilisation

A comparable electrocatalytic activity of an immobilised DyP with its catalytic ac-
tivity in solution is the ultimate requirement that the enzyme needs to satisfy in order to
be considered for applications. The electrocatalytic activity, substrate affinity (Kys) and
substrate inhibition (Kj) can be readily obtained by CV and amperometry. In the case of
immobilised PpDyP and variants, apparent Michaelis—-Menten constant values, Ky, are
2-5 times higher than in solution [15,21,31,32,34]. This is common for enzymes immobilised
on electrode surfaces, due to frequently limited diffusion of the substrate to the enzyme’s
active site [30]. The catalytic efficiency, measured by catalytic currents in the presence
of substrate, is also typically reduced in the immobilised state. Surprisingly, substrate
inhibition in some cases can actually be improved upon the attachment of the enzyme to a
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biocompatible electrode, as demonstrated for PpDyP and its variant carrying E188K and
H125Y mutations. Substrate inhibition between 0.7 and 0.9 mM H,O, characterize the
solution state of both PpDyP and its variant, while no inhibition is detected upon their
immobilisation [21]. The immobilised BsDyP shows only residual catalytic currents in the
presence of HyO, [16]. Similarly, for CboDyP, no catalytic activity could be measured in the
immobilised state. Most likely, the altered redox properties, together with an orientation
that is unfavourable for H,O, binding, are responsible for the lack of catalytic activity of
the immobilised enzyme. This is actually not uncommon; among a number of studied
DyPs, e.g., DrDyP, BsDyP [16], TfuDyP and ScoDyP, only immobilised PpDyP and one
of its variants fulfil all necessary criteria to be considered excellent candidates for the
development of 3"d-generation biotechnological devices [15,21].

Taken together, our findings emphasize the importance of the fast and straightforward
evaluation of the potential of an enzyme for the development of 3'9-generation bioelec-
tronic devices. We demonstrate that the coupling of SERR spectroelectrochemistry and
electrochemistry can indeed provide a complete picture about the structure and activity of
immobilised enzymes; there is no matching alternative in other experimental approaches.
As such, SERR spectroelectrochemistry has the capacity to ensure faster advances in the ra-
tional design of DyP-based devices by pinpointing the best candidates and/or parameters
that need to be improved in the process of their construction, which is clearly a step forward
in comparison with the commonly employed empirical strategies for the development of
3'd_generation bioelectronic devices.

4. Materials and Methods
4.1. Enzymes and Reagents

The overexpression of the recombinant enzymes, Cellulomonas bogoriensis DyP (CboDyP),
Thermobifida fusca DyP (TfuDyP) and Streptomyces coelicolor (ScoDyP), was performed using
Escherichia coli as the expression host and following previously optimised procedures. En-
zyme purification was performed as previously described [27,28]. The purified enzymes
were stored at —80 °C in 50 mM KPi and 150 mM NaCl buffer solution at pH 8.

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were of
the highest purity grade available. Solutions were prepared using deionized water from a
Milli-Q® Water System (Merck Millipore, Burlington, MA, USA).

4.2. Enzyme Immobilisation

Silver electrodes were electrochemically roughened as previously described [9] and
subsequently immersed for 16-24 h in 1 mM ethanolic solutions of alkanethiols to form
a SAM. For pure SAMs, the respective alkanethiol was dissolved in ethanol to yield a
1 mM solution. For mixed SAMs, 1 mM of one alkanethiol was mixed with 1-3 mM
of another one. The following SAMs were tested: pure 1-undecanethiol, 11-amino-
1-undecanethiol hydrochloride, 11-mercaptoundecanoic and 11-mercapto-1-undecanol;
and mixed 1-undecanethiol /11-mercaptoundecanoic acid (M:M, 1:1), 1-undecanethiol /11-
mercapto-1-undecanol (M:M, 3:1), 1-undecanethiol /11-amino-1-undecanethiol hydrochlo-
ride (M:M, 1:1; M:M, 2:1; and M:M, 3:1). Prior to SERR experiments, the DyPs were
immobilised on the SAM-coated Ag electrodes, either by immersion into 12.5 mM KPi and
12.5 mM K50y, pH 7, containing DyP (final concentration: ca. 0.3-0.5 uM) for 15-30 min
or by injecting the enzyme into the SERR cell containing the same buffer (10 mL) and with
the electrode poised at +250 mV vs. NHE. All potentials in this work were referenced to
the NHE.

4.3. RR Spectroscopy

RR and SERR spectra were acquired with a Raman spectrometer (Jobin Yvon U1000,
Edison, NJ, USA), equipped with a 1200 lines/mm grating and a liquid-nitrogen-cooled
CCD detector, which was coupled to a confocal microscope. An Olympus 20 x objective
was used for laser focusing onto the sample and light collection in the backscattering
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geometry. Spectra were measured using a 405 nm diode laser (Toptica Photonics AG,
Munich, Germany).

The RR spectra of CboDyP and TfuDyP were measured as previously described [26].
ScoDyP spectra were acquired at low temperature using ca. 2 uL of the enzyme sample
placed in a microscope stage (Linkham THMS 600, Tadworth, UK) cooled to the desired
temperature with liquid N».

RR experiments were performed with a 1.8 mW laser power and a 120 s accumula-
tion time. SERR experiments were performed with a 1.3 mW laser power and 3040 s
accumulation time. Up to 16 spectra were co-added in each measurement to improve the
signal-to-noise ratio (S/N). All spectra were subjected to polynomial baseline subtraction;
the positions and widths of Raman bands were determined by component analysis as
described previously [43].

4.4. Redox Potential Determination in the Immobilised State

Potential-controlled SERR experiments were performed using a home-built spec-
troelectrochemical cell equipped with a Ag/AgCl (3 M, KCl) reference electrode and a
platinum wire counter electrode. The electrodes were poised to potentials between +350
and —400 mV vs. NHE. The electrode potentials were controlled using a Princeton Applied
Research 263A potentiostat (Oak Ridge, TN, USA). The experiments were carried out in
argon-purged supporting electrolyte, 12.5 mM KPi and 12.5 mM K;,SOy, pH 7, to avoid
the formation of O; reduction products that might interact with the immobilised enzyme.
The enzyme-loaded working electrodes were kept under constant rotation (1500 rpm) to
prevent the prolonged exposure of individual enzyme molecules to laser irradiation. To
prevent enzyme degradation during the titration assays, up to four spectra at different
potentials were acquired per each electrode. Enzyme reduction was monitored by the
evolution of the ferrous 6¢cHS population determined by the component analysis. The
redox parameters were obtained by fitting the Nernst equation to the potential-dependent
normalized area of v4 (6cHS) at 1359 cm ™.

4.5. Redox Potential Determination in Solution

The potentiometric titration of CboDyP was performed in solution inside an anaer-
obic chamber (Coy Laboratory Products, Grass Lake, MI, USA) in an atmosphere of
95% Argon and 5% Hjy. The titration was monitored by UV-VIS spectroscopy using a
UV-VIS Shimadzu 1800 spectrophotometer (Shimadzu, Kyoto, Japan). The solution po-
tential was measured using a combined platinum-Ag/AgCl (3 M) reference electrode
(Hamilton, Reno, NV, USA). CboDyP (10 uM) was in a de-aerated buffer (50 mM KPi and
75 mM NaCl, pH 7) containing each of the following mediators: duraquinone, menadione,
indigo tetrasulphonate, indigo trisulphonate, phenazine, 2-hydroxy-1,4-naptoquinone,
anthraquinone-2-sulphonate, safranine, benzyl viologen and methyl viologen. The concen-
tration ratio between the enzyme and mediators was 2:1. The potential inside the cuvette
was decreased by the stepwise addition of a buffered sodium dithionite solution, resulting
in a change of the solution potential. Enzyme reduction was monitored by the evolution of
the ferrous Soret absorption band at 430 nm, and the redox parameters were obtained by
fitting the Nernst equation to the potential-dependent normalized absorption at 430 nm.
The reversibility of the potentiometric titration was monitored by the stepwise oxidation of
fully sodium dithionite-reduced CboDyP in the presence of mediators (vide supra) using
potassium ferricyanide as the oxidant.

4.6. Electrochemistry Assays

CV and chronoamperometry experiments were performed in a SERR spectroelectro-
chemical cell. Prior to measurements, the supporting electrolyte (either 40 mM Britton—
Robinson buffer and 50 mM KCl, pH 5 or 12.5 mM KPi and 12.5 mM K,SOy4, pH 7) was
deoxygenated by bubbling argon for 15 min; the cell was also maintained under argon
atmosphere during the experiments. Cyclic voltammograms were recorded in the range
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of +300 to —200 mV at a scan rate of 50 mV s~ !. Chronoamperometry experiments were
performed at an applied potential of —100 mV with the Ag electrode rotating at 1500 rpm.
To evaluate the response of the enzyme electrodes to HyO,, previously deoxygenated
stock solutions (10 and 100 mM) were successively injected in the cell (final concentrations
of HyOy,: 8 uM to 1.7 mM). The catalytic currents (Icat) were corrected by subtracting
the current measured in the absence of substrate. The concentrations of H,O, in stock
solutions were determined spectrophotometrically using a molar absorption coefficient of
43.6 M~ ecm™1 at 240 nm.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/1jms22157998 /1, Figure S1: SERR spectra of ferric ScoDyP, TfuDyP and CboDyP, Figure S2:
Electrochemical response of CboDyP.
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