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Abstract

Insulators of the electrical power grid are usually installed outdoors, so they suffer from
environmental stresses, such as the presence of contamination. Contamination can increase
surface conductivity, which can lead to system failures, reducing the reliability of the net-
work. The identification of insulators that have their properties compromised is impor-
tant so that there are no discharges through its insulating body. To perform the classi-
fication of contaminated insulators, this paper presents computer vision techniques for
the extraction of contamination characteristics, and a neural network (NN) model for the
classification of this condition. Specifically, the Sobel edge detector, Canny edge detec-
tion, binarization with threshold, adaptive binarization with threshold, threshold with Otsu
and Riddler–Calvard techniques will be evaluated. The results show that it is possible to
have an accuracy of up to 97.50% for the classification of contaminated insulators from
the extraction of characteristics with computer vision using the NN for the classification.
The proposed model is more accurate than well-established models such as support-vector
machine (SVM), k-nearest neighbor (k-NN), and ensemble learning methods. This showed
that optimizing the model’s parameters can make it superior to solve the problem in ques-
tion.

1 INTRODUCTION

Electricity distribution and transmission networks are funda-
mental for the supply of electricity to consumers, consider-
ing that consumption centers may be distant from generation
sources [1]. For the supply of electricity to take place reliably,
electrical systems must be fully functioning. The insulators are
fundamental components of the electrical power system consid-
ering that it has the function of insulating the network and sup-
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porting the electrical energy conductors in overhead lines [2].
When an insulator has accumulated contamination on its sur-
face, it can lose its insulating properties and thereby reduce its
reliability in keeping the system running [3].

Contamination in insulators is a problem that has been stud-
ied by some researchers. According to Qiao et al. [4], variations
in the level of contamination can result in different types of elec-
trical arcs. The discharges that occur in these components can
vary in relation to the environmental condition, which makes a
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failure more difficult to predict. To carry out an analysis of the
probability of a failure occurring in relation to the level of con-
tamination, the equivalent salt deposit density (ESDD) and the
non-soluble deposit density (NSDD) must be evaluated. Based
on the knowledge about fault conditions and their characteris-
tics, contamination monitoring can be used to improve reliabil-
ity in the network [5].

The presence of ultraviolet radiation on polymeric insulators,
which are in an external environment, can accelerate its degra-
dation process, and thereby leave these components in a critical
situation [6]. The contamination that accumulates on the surface
of the insulators is non-uniform and uneven, when insulators
in different locations are compared, which makes monitoring of
this condition difficult [7]. Insulators in an external environment
can be exposed to fog, which added to the contamination can
also be harmful to these components. The results presented by
Liu et al. [8] show that with the increase in the duration of the
fog and the artificial conductivity applied to the environment,
in which the insulators are installed, increases the ESDD. As
a result, the voltage required for a disruptive failure decreases,
allowing discharges to occur more frequently.

Some techniques have been used to identify the level of con-
tamination of electrical power network insulators. According to
Salem et al. [9] the contamination can be diagnosed according
to the leakage current that flows in the insulator. ESDD is a
method that is being used extensively by engineers to describe
the severity of pollution in the degradation process of contami-
nated insulators [10].

The increase of the relative humidity of the air with con-
tamination and environmental variations can accelerate the pro-
cess of degradation of the insulator, thus these components
are affected by the flashover voltage, which as a consequence
reduces the reliability of this type of component [11]. The
prediction of the development of a flashover voltage can be
assessed using electric field measurement [12]. The develop-
ment of a fault in a contaminated insulator can be correlated
with the electrical field it has around it. Thus, an alternative to
assess the condition of distribution insulators is to use specific
equipment for system inspection and thus define strategies to
mitigate failures [13].

Classifying the condition of insulators using artificial intelli-
gence techniques is promising, since defects can be identified
automatically through pattern recognition. In chain insulators
of transmission lines, deep learning techniques can be used to
identify the absence of a variable number of disks [14]. One of
the great difficulties in identifying failures in insulators through
computer vision is that failures are rare, so conducting network
training to identify certain conditions is difficult, due to the
small data set. The application of geometric constraints to data
sets recorded during inspections can improve the accuracy of
the model, which can result in an accuracy of up to 92.86% [15].

The use of advanced models to identify defects in insulators
has been studied by several researchers. The convolutional neu-
ral network (CNN) architecture can present results of accuracy
of up to 99.76% for the monitoring of insulators from aerial
images [16]. For the detection of defects in insulators, mod-
ern combined models such as the ResNeSt and region pro-

posal network (RPN) can be used. Wang et al. [17] presented
an application of the combination of RPN models to improve
the ResNeSt’s ability to extract features. For a complete assess-
ment, a large number of controlled experiments were applied
and the results showed that the model is fast, being able to pro-
cess and identify defects with a rate of 12.8 pictures per second,
presenting an accuracy of 98.38%.

The use of CNN to assess defects in insulators in the field
through the processing of aerial images is a challenging subject,
given that the interference of the image background makes clas-
sification difficult. According to Tao et al.’s [18] traditional mod-
els based on shallow learning techniques can only locate specific
faults in insulators under controlled conditions. When it is nec-
essary to classify failure conditions in field photography with
wide variation, more complete models are needed. The use of
advanced artificial intelligence techniques to improve the analy-
sis of specific conditions has been explored, in [19] the adaptive
neural control is applied for the design of non-linear feedback
systems, in [20] the dynamic surface tracking control is used for
non-linear systems.

Environments with a high level of contamination can acceler-
ate the degradation process of insulators that are outdoors. The
process of evaluating the condition of the insulators through
computer vision can improve the safety and operation of sys-
tems that are close to the power grid. The combination of tech-
niques through a deep multitasking neural network can improve
the accuracy of the classification of defects in insulators [21].

Specific assessments of the condition of the surface of insu-
lators are rare. From the use of polymeric insulators, there may
be a loss in hydrophobicity as the insulator ages, leaving it more
vulnerable to dry band arcing and flashover. Chatterjee et al.
[22] performed an assessment of the amount of water accumu-
lated in insulators using a deep learning framework. The results
show that from a pre-trained deep CNN model AlexNet is pos-
sible to classify with high accuracy the wettability class. A model
using deep CNN to insulator surface erosion assessment is pre-
sented by Ibrahim et al. [23]. The evaluation is based on IEC-
60587 standard, which defines the degree of erosion for a failed
sample. The results are proof of concept to outdoor on-field
tests further.

Related to the classification of contamination in insulators
using innovative methods, the work of Liu et al. [24] explores the
support vector machine (SVM) for multi-classifying the sever-
ity of pollution in insulators based on photothermal radiom-
etry (PTR). The PTR pollution severity assessment model is
well established for assessing pollution severity parameters such
as ESDD, and NSDD that will be the focus of this paper.
This method stands out for having the ability to evaluate the
characteristics of transient thermal radiation and the frequency
domain of the contamination layer. The results show that there
are satisfactory efficiency and precision using SVM based on
the PTR, being promising techniques for being quick and non-
destructive.

Based on the need to evaluate the contamination of insula-
tors that are exposed to environmental variations, this paper
aims to carry out the classification of contamination levels using
computer vision methods and the deep learning neural network
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for the multi-classification. As presented in the literature, some
authors have classified the conditions of insulators using mod-
ern artificial intelligence models, however, the use of these mod-
els to assess contamination levels has not been explored and this
will be presented in this paper.

The advantage of using an insulator contamination classifi-
cation model is that, based on its results, predictive measures
can be taken to clean the network or replace components. From
the performance of an automated inspection, it is possible to
define strategies for maintaining the network, aiming at improv-
ing its reliability. The disadvantage in the proposed evaluation
is related to the variations that can be found in the field due to
the different conditions in which the insulators are exposed and
the different types of contamination that can accumulate on the
surface of these components.

The contributions of this paper for classification of contami-
nation levels in the electric distribution power grid are summa-
rized in the following:

∙ The first contribution is related to the improvement in the
inspection of the electrical distribution system. Through a
classification model based on artificial intelligence, it is possi-
ble to automate the inspection of the electrical power system,
thereby improving the speed and comprehensiveness of the
grid inspection.

∙ The second contribution focuses on innovation in the clas-
sification of the level of contamination of insulators. Some
authors have carried out works aimed at the identification
of missing insulators in insulator chains in transmission lines,
specific works for image analysis regarding the condition of
the insulator surface are rare. Specifically, the classification of
the level of contamination is an innovative research.

∙ The third contribution is related to the combination of com-
puter vision and artificial intelligence techniques to create a
model with an acceptable classification accuracy that has the
ability to perform a global assessment of contamination con-
ditions.

The remainder of this paper is organized as follows: In
Section 2, the process of contamination of the insulators is
explained, and it is discussed how the characteristics of the sam-
ples were extracted through computer vision; Section 3 presents
the parameters analyzed in this article in relation to the classifier
model; In Session 4, the results of applying the model for the
classification of contamination are presented and discussed; In
Section 5, the conclusion is presented.

2 INSULATOR’S DATASET

Contamination in insulators is a difficult problem to assess in
inspections of the electrical system, depending on climatic con-
ditions there may be variation in surface conductivity [25]. The
variation in surface conductivity can be caused by a higher rel-
ative humidity of the air [26], which makes the identification of
a critical condition difficult, since the system may not present
faults on days with good climatic conditions [27].

Contamination of insulators can occur in several ways, vary-
ing their concentration and severity in relation to the location
where the insulators are installed. Insulators installed in net-
works close to unpaved streets can have a greater accumulation
of dust and organic residues [28]. Insulators that are in urban
areas may have more contamination due to pollution caused by
industries or due to automobile fuel residues. Insulators close
to coastal regions can have greater saline contamination due to
the proximity to the sea. All of these forms of contamination
can increase the surface conductivity in the insulators and make
these components more vulnerable to disruptive discharge
[29].

A major difficulty in classifying contaminated insulators is
that due to the various forms of contamination and various pro-
files that are installed in the field, using computational models
for fault identification is a challenging work [30]. Another point
that makes classification difficult is that a contaminated insu-
lator does not represent an imminent failure for the system, it
means that an insulator that is contaminated may be working
today and in the future may develop a failure [31].

2.1 Contaminated insulator sample

The insulator samples used in this work are pin type, 15 kV
class porcelain. This insulator profile is widely used in medium
voltage distribution networks in southern Brazil. The artificial
contamination process was carried out based on the IEC 60507
standard [32]. The contaminants used in the experiment were
dissolved in distilled water according to the mass by volume
defined by the standard.

Insulators installed outdoors are exposed to dust, pollution,
salt, among other contaminations. When the contamination is
strongly stuck, and not even the action of rain helps in contam-
inants cleaning, the place becomes more conductive, making it
more vulnerable to electrical discharges. To simulate different
levels of contamination the standard IEC 60507 [32] determines
an artificial contamination procedure to simulate contamination
caused by environmental variations to which the insulators are
exposed [33]. These simulations are based on the increased con-
centration of contaminants ESDD and NSDD in relation to the
analyzed solution.

The contamination process was carried out by submerging
the insulator in a solution of distilled water, with Kaolin and
sodium chloride. The amount of sodium chloride and Kaolin
will be, respectively, responsible for the levels of contamina-
tion by ESDD and NSDD that the polluted insulator will have.
The ESDD is used to measure the density of soluble material in
terms of salinity. The ESDD method consists of dissolving the
contamination layer on the surface of the insulator in distilled
water and measuring the conductivity of this solution. From the
conductivity, it is evaluated how much of the conductive mate-
rial remained on the surface of the insulator.

The NSDD measurement is performed for non-soluble
minerals to a solution containing the non-conductive con-
taminant. The water is filtered and the weight of the con-
taminants is measured, finally, based on the measurement
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difference, the NSDD value is obtained. Kaolin is used for
this analysis as it is non-conductive. Thus, ESDD represents
the conductive contamination and NSDD the non-conductive
contamination.

During the contamination process, the insulators were con-
taminated with variations of the ESDD and the NSDD. The
NSDD contamination is created from the solution of Kaolin
mass dissolved in water. The use of salt in the solution increases
the amount of soluble deposits and consequently increases the
conductivity of the insulator’s pollution layer, but this does
not result in visual variations in the image, so the samples
that were contaminated with salt were not considered in this
work. As ESDD reduces the model’s classification capability by
not generating a visual result, then it was not considered for
model training.

NSDD variations are given by the following equation:

NSDD = (𝜔 f − 𝜔i )∕A. (1)

in this case, 𝜔 f is the final mass, 𝜔i is the initial mass, and A is
the surface area of the insulator. The concentration of Kaolin
used in this paper was 6, 8, 10, 16, 20, and 25 (g/l). The surface
area of the samples is equal to 762 cm2.

2.2 Insulator’s photography

After contamination of the insulator, photographs were taken
from four different perspectives. To perform this procedure,
the insulator was rotated 90◦ in each photograph. In this way,
four photographs were obtained from different perspectives,
these being frontal, lateral (left and right), and back, as seen in
Figure 1.

The registration of photographs from different perspectives
is important because contamination is distributed over the
entire insulator’s surface, in a non-uniform manner. Thus, if
there is more contamination in one of the perspectives of the
insulator, it will be considered.

For comparative purposes, the same photography parame-
ters were used in all samples considered. The exposure time
for each set was 3.3 ms with an ISO 100 light sensitivity, and
a focal length of 4 mm. All photographs were recorded with
an LG H-818 sensor that has a focal aperture of 1.8. For
future comparisons, the data are available at: https://github.
com/SFStefenon/InsulatorsDataSet.

2.3 Computer vision

To perform the analysis in relation to the photographs of the
insulators samples used in this article, the images were initially
converted to grayscale. Then, the blur technique was applied
to reduce the complexity in the analysis of the photograph. To
apply the blur technique, the gaussian smoothing filter was used
on the input source image to smooth and reduce its image noise.
For this purpose, the OpenCV library, which is specific for com-
puter vision, was used in Python.

FIGURE 1 Photographs from different perspectives of the contaminated
insulator sample: (A) front; (B) right side; (C) back; (D) left side

After this pre-processing of the image, for the extraction
of characteristics, the following techniques were used: Sobel
edge detector; Canny edge detection; binarization with thresh-
old; adaptive binarization with threshold; threshold with Otsu
and Riddler–Calvard.

Sobel edge detector is a discrete differentiation operator,
which calculates an approximation of the gradient of an image
intensity function [34]. To use Sobel, it is necessary to carry
out the combination of Gaussian smoothing and differentiation,
which was explained previously. In this algorithm, the deriva-
tives are calculated from the horizontal and vertical changes, the
result is the combination of the results of these variations at each
point in the image [35].

Canny’s algorithm has several stages and is very popular for
edge detection. In the Canny’s filter, the direction of the gradi-
ent is always perpendicular to the edges, being rounded in one
of the four angles that represent the horizontal, vertical, and
two diagonal directions [36]. After obtaining the direction and
magnitude of the gradient, a complete scan of the image is per-
formed to remove unwanted pixels that may not constitute the
edge of the resulting image. In this way, it is checked if each pixel
is a local maximum in its vicinity in the direction of the gradient.
In the last step, it is evaluated if the edges are really correct from
the intensity gradient, the edges that are not within the maxi-
mum and minimum limits are discarded. The result obtained is
a binary image with thin edges [37].

In the Binarization with threshold technique for each pixel
in the image, the same threshold value is applied. Thus, if the
value is less than the image limit, it is set to 0, otherwise, it is
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set to the maximum value. As the objective of this work is to
carry out the classification of the contamination of the insulator,
this method is promising to define the boundaries of the images
[38]. In the binarization process, the first argument is the source
image, which is previously transformed into grayscale. The sec-
ond value is the limit used by the classifier and the third value
is the maximum assigned to each pixel that exceeds the limit
defined in this process [39].

Since the global limit value in the binarization may not be
good for all variations of the image, adaptive binarization with
threshold determines the limit of a pixel-based on a small
region around it. Thus, different limits are obtained for differ-
ent regions of the same image [40]. Through this process, results
can be found that do not have much influence in relation to the
variation of lighting, which helps the classifier to have the spe-
cific objective of classifying the contamination of the insulator
and not variations of the photographs.

In the binarization with Otsu the limit value is determined
based on an analysis of the histogram of the image, two peaks
of the histogram are evaluated and the limit is defined between
these values. Thus, the algorithm finds the ideal limit for output
based on the variation of the image. The Ridler and Calvard
algorithm use an iterative clustering approach, in which an initial
threshold estimate is made [41, 42].

In this paper, this estimate is made from the binarization
with Otsu, then the pixels above and below the limit are
assigned to the object and background classes, and thus the
result of the threshold with Otsu and Riddler–Calvard binariza-
tion is obtained.

To use the threshold with Otsu and Riddler–Calvard, the
Mahotas library was used, which is also a computer vision
library used in Python. Figure 2 shows the result of applying
the filters in relation to the pre-processed image.

3 CLASSIFIER MODEL
ARCHITECTURE

In this section, the model used to carry out the contamina-
tion classification discussed in this paper will be presented. The
model used for the classification is based on the Keras, being
a TensorFlow platform for Python. The result of classification
is based on the desired output in relation to the contamina-
tion of the insulators evaluated in the laboratory. Based on this
approach an embedded system could be applied as an solution
for the classification task during the electrical inspection on the
field [43, 44].

Initially, the data obtained from computer vision processing
was imported as the model input. For the purpose of contami-
nation degree classification the desired output from the network
is obtained by the results of the NSDD. The sequence model
was used, which is a direct model, in which piles of single input
and single output layers are obtained.

The network architecture model used in this paper for clas-
sification is based on the convolution of the resulting images
from the application of specific filters, and followed by a fully

FIGURE 2 Result of the application of filters: (A) pre-processed image;
(B) Sobel edge detector; (C) Canny edge detection; (D) binarization with
threshold; (E) adaptive binarization with threshold; (F) threshold with Otsu
and Riddler–Calvard

connected sequential layer model using the dense class, with a
hidden layer [45]. From a greater number of hidden layers, the
model did not converge for this application. The use of recur-
ring layers, which are currently becoming very popular, pre-
vented the network from converging.

The output of the network is dense class resulting in the
response that defines whether the concentration of contami-
nants is above an acceptable limit, and a failure prevention mea-
sure must be carried out. The first definition for the model is the
configuration of the layers to be added, which it will explained
in the next section. The output of each neuron y is given by the
following equation:

y j = f
(
net j

)
= f

(∑
i

xi .wi j + 𝜃i

)
(2)

where f is the used activation function, w is a vector of the real
weight of each input, x.w is a scalar product of the sum of the
w with the weights, and 𝜃 is the inclination, that is, the bias that
does not depends on the input value. Then, the sum is the linear
combination of the inputs weighted [46].
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3.1 Model parameters

In the construction of the model, the network input and out-
put layers are included, for each layer, the number of neurons
and the activation function, are defined. The activation func-
tions sigmoid (3), hyperbolic tangent (TanH) (4), softsign (5),
exponential (Exp) (6), rectified linear unit (ReLU) (7), expo-
nential linear unit (ELU) (8), and softplus (9) were evaluated in
this paper.

The sigmoid activation function is widely used, considering
that it is a smooth and continuously differentiable function,
given by

f (x ) =
1

1 + e−x
. (3)

The TanH activation function has similar characteristics to
sigmoid [47]. The difference between these functions is that the
hyperbolic tangent has a range of variation from –1 to 1 as an
output, while the sigmoid results only in positive values, calcu-
lated from the equation:

f (x ) =
ex − e−x

ex + e−x
. (4)

The softsign activation function has similar characteristics to
the TanH activation function, however, the TanH converges
exponentially, while the softsign converges polynomially, given
by

f (x ) =
x|x| + 1

. (5)

The exponential activation function is given by

f (x ) = ex . (6)

The ReLU activation function has been widely used by
researchers mainly in deep networks [48]. The ReLU is non-
linear, so you can copy errors back and have multiple layers of
neurons activated. The ReLU activation function is given by

f (x ) = max(x, 0). (7)

One of the advantages of using the ReLU function is that it
does not activate all neurons at the same time. With this, if the
input is negative, it will be converted to zero and the neuron will
not be activated, so only a few neurons are activated, which can
make the network more efficient.

The ELU activation function has characteristics similar to the
ReLU function. having non-linearity and saturating in the nega-
tive part of its domain, being expressed by

f (𝛼, x ) =

{
𝛼(ex − 1) for x ≤ 0

x for x > 0
. (8)

The softplus activation function is a variation of ReLU. How-
ever, softplus is smoother and its derivative gives rise to a logistic
function, given by

f (x ) = ln(1 + ex ). (9)

A summary of the structure of the algorithm used is shown
in Figure 3. For the training of the network, 600 input images
are used, which are convulsed to the completely connected clas-
sifier. The images are obtained from the 30 samples, resulting
from the use of five insulators with six levels of Kaolin con-
centration. For each sample, four photos are taken in different
views around the insulator, for each of the photos five computer
vision techniques are used.

After defining the number of neurons and the activation
function of the model, the optimizer is defined. In this paper,
we evaluated the optimizers, stochastic gradient descent (SGD),
RMSprop, adaptive moment estimation (ADAM), AdaMAX,
nesterov accelerated adaptive moment estimate (NADAM),
AdaGRAD, and AdaDELTA.

The SGD, updates the network parameters to minimize the
loss function [49], taking steps in each iteration (i) towards the
negative loss gradient, given by the equation:

xi+1 = xi − 𝛼∇E (𝜃i ), (10)

wherein, E (𝜃i ) is the loss function, 𝛼 is the learning rate, and 𝜃
is the vector of the parameters.

RMSProp maintains a moving average of the squares of the
elements of the parameter gradients and can be calculated as
follows:

𝜈i = 𝛽2vi−1 + (1 − 𝛽2)
[
∇ f (xi )

]2
, (11)

where 𝛽2 is the decay rate of the moving average [50]. So the
algorithm uses the moving average to normalize the updates for
each parameter individually, according to

xi+1 = xi −
𝛼∇ f (xi )√
𝜈i + 𝜀

. (12)

The ADAM calculates adaptive learning rates for each param-
eter [51]. The descending averages of the past mi and the
squared gradients of the past vi are calculated as follows:

mi = 𝛽1mi−1 + (1 − 𝛽1)∇ f (xi ), (13)

vi = 𝛽2mi−1 + (1 − 𝛽2)
[
∇ f (xi )

]2
. (14)

Based on the mi and vi parameters, the ADAM optimizer uses
moving averages to update the neural network, given by

xi+1 = xi −
𝛼m1√
vi + 𝜀

. (15)
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FIGURE 3 Summary of the structure of the proposed algorithm

The AdaMAX is an optimizer that can be promising espe-
cially in embedded models, being a variant of ADAM based
on the infinite standard. A combination of the ADAM opti-
mizer and the Nesterov accelerated gradient result in the
NADAM.

The AdaGRAD makes minor updates to parameters associ-
ated with very frequent resources and makes important updates
to parameters associated with infrequent resources. AdaGRAD
optimization can be calculated by

xi+1 = xi −
𝛼√

Gi + 𝜀
⋅ ∇E (𝜃i ), (16)

the G ∈ Rd×d is a diagonal matrix, where each element is the
sum of the squares of the gradients. In these optimizers the 𝜀
term is used to avoid division by zero.

Finally, AdaDELTA is a variation of AdaGRAD that aims
to reduce its decreasing learning rate. In the AdaDELTA opti-
mizer, the previous square gradients are restricted to the gradi-
ent window to a fixed size, so the current average depends only
on the current gradient and the previous average.

3.2 Classifier

After the complete definition of the model parameters, the clas-
sifier is evaluated. For the evaluation of this paper, 1000 epochs
were defined, based on k-fold cross-validation. The Scikit-Learn
was used for the classifier, which is applied to numerical com-
putation for the development of deep learning models for
machine learning.

Cross-validation consists of assessing the generalizability of
a model, based on a set of data. Based on this technique, it
seeks an estimate how accurate this model is, based on its per-
formance for a new set of data. In cross-validation, the data set
partitioning is performed in mutually exclusive subsets, so that
part of the subsets are used to train the network and the remain-
ing data is used for testing [52].

The k-fold cross-validation method consists of dividing the
total data set into k subsets of the same size and using these
for testing and the remaining k-1 for those used to estimate the
parameters, calculating the model’s accuracy. The process is per-
formed k times alternating the test subset in a circular way, in
this article the parameter k was evaluated [53].

In this paper, the classification were evaluated on an Intel
Core I5-7400, 20 GB of Random-Access Memory, with Python
programming language on a Windows 10 operating system. For
the neural network the Numpy, Keras, and Sklearn libraries
were used. For the computer vision analysis CV2 and Maho-
tas libraries were used. For a comparative analysis, the results
of the application of well-established models such as support-
vector machine (SVM) [54], k-nearest neighbor (k-NN) [55],
and ensemble learning methods (Ens) [56] are presented.

To perform the comparisons through benchmarking, the
parameters used to configure the network of the other mod-
els were the same as the proposed method. The specific opti-
mization of each model could result in better performance in
each analysis. This optimization was not performed, the objec-
tive of the analysis is to compare the proposed method with
standard networks.

A flowchart of the proposed method is presented in Fig-
ure 4. The work is divided in three analysis, which are labo-
ratory analysis, computer vision processing, and evaluation of
the classification model. In laboratory analyses, the insulators
are artificially contaminated, NSDD measurements are made
and photographs are taken to record their conditions. In com-
puter vision processing, some image processing techniques are
applied to extract contamination characteristics. The evaluation
of the classification model is based on the model configuration,
on statistical analysis, and finally, on benchmarking.

4 RESULTS AND DISCUSSION

The first result to be analyzed is the NSDD from the labora-
tory, based on the Kaolin contamination. For this evaluation,
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FIGURE 4 Flowchart of the proposed method

TABLE 1 NSDD variation according to Kaolin concentration

NSDD by sample (mg/cm2)

Kaolin (g/l) # 1 # 2 # 3 # 4 # 5

6 0.8682 0.7752 0.5549 0.4264 0.3769

8 1.5031 0.9857 0.7873 0.5927 0.3927

10 1.6882 1.4432 0.9079 0.9819 0.6331

16 2.6182 2.0084 1.6652 1.8386 1.0911

20 2.6370 2.1383 2.1446 1.8802 1.5677

25 2.3034 2.5105 2.6563 2.2175 1.6606

TABLE 2 Results of statistical analysis for the NSDD

Optimizer Result

Minimum 0.3769 (mg/cm2)

Maximum 2.6563 (mg/cm2)

Mean 1.4618 (mg/cm2)

Standard deviation 0.7438

Variance 0.5533

Covariance 0.3154

Distortion 0.0972

the six contamination levels of insulators with five insulators
each, resulted in a total of 30 samples. The NSDD results are
shown in Table 1.

The statistical results of the NSDD are shown in Table 2.
These results are used as the basis for conducting the contami-
nation classification. After defining the data to be used for train-
ing the network, the process of evaluating the proposed algo-
rithm begins in relation to the characteristics extracted from the
processed images.

In this first assessment, the techniques are used separately
to carry out the training of the network. The purpose of this
assessment is to identify whether all techniques result in an

TABLE 3 Variation of neurons using different computer vision techniques

Accuracy by neurons number (%)

Computer vision technique 10 15 20 25 30

Pre-processed image 38.33 25.11 41.67 42.50 34.27

Sobel edge detector 55.83 65.01 59.17 67.50 64.17

Canny edge detector 84.27 85.83 89.17 81.67 80.83

Binarization with Thr. 55.02 63.33 43.33 65.03 59.17

Adapt. Binar. with Thr. 86.67 77.50 88.33 84.17 70.01

Thr. Otsu and Rid.-Calv. 35.83 50.01 56.67 59.17 59.07

TABLE 4 Results of folds variation using different activation functions

Accuracy by k-folds variation (%)

Activation function 2 4 6 8 10 12

Sigmoid 75.92 84.72 87.22 90.62 86.67 86.11

TanH 70.22 61.11 76.11 84.38 73.33 76.39

Softsign 88.05 85.07 88.33 91.25 90.83 80.56

Exp 57.54 48.26 33.33 35.63 64.17 44.44

ReLU 84.93 78.82 85.56 88.75 82.50 73.61

ELU 52.02 84.38 83.89 81.25 76.67 76.39

Softplus 70.22 85.76 84.44 90.62 87.50 88.89

improvement in the accuracy of the algorithm. The results of
this assessment are shown in Table 3. For the initial analysis, the
SGD optimizer was used, with the ReLU activation function in
the intermediate layer, using 10-folds for cross-validation.

The accuracy found from the image processing techniques,
resulted in satisfactory values, reaching up to 89.17%, using the
Canny edge detector. In most of the analysis performed with
image processing techniques, the best results were found using
25 neurons, so this number of neurons was defined as the stan-
dard in this paper.

The accuracy for the classification using the pre-processed
image, without the application of specific techniques for extract-
ing characteristics, was less than 50% in all variations in the
number of neurons. Image pre-processing was applied by con-
verting the RGB photo to grayscale and applying blur. As it
results in a low accuracy for classification, these data were not
considered in the network training.

Considering that the activation function has an influence on
the calculation method of the algorithm and thus there may
be variation in accuracy. Table 4 shows the evaluation of the
variation in the activation function. Another parameter that
is also evaluated is the number of folds used in the cross-
validation process.

The exponential activation function had the worst accuracy
results from all variations in the number of folds. The activation
function that had the best accuracy was softsign with 91.25%
accuracy using eight-folds. This activation function was used for
the following simulations. The optimizers were also evaluated,
and the parameters that resulted in the best accuracy were used
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TABLE 5 Results of folds variation using different optimizers

Accuracy by k-folds variation (%)

Optimizer 2 4 6 8 10 12

SGD 88.05 85.07 88.33 91.25 90.83 80.56

RMSprop 84.74 93.75 93.89 90.62 91.67 90.28

ADAM 90.99 93.75 91.11 91.88 90.83 94.44

AdaMAX 87.87 94.10 96.67 93.75 93.33 95.83

NADAM 88.05 93.75 93.33 97.50 96.67 95.83

AdaGRAD 63.79 78.82 79.44 81.25 86.67 80.56

AdaDELTA 51.47 39.58 51.11 47.50 44.17 38.89

TABLE 6 Results of statistical analysis for the classification

Metric Result

Minimum 84.38%

Maximum 97.50%

Mean 93.10%

Standard deviation 3.39×10−2

Variance 1.15×10−3

Covariance 2.93×10−4

Distortion 7.09×10−1

to compare the optimizers. In Table 5, the results of this eval-
uation are presented from the variation in the number of folds.
As can be seen, the variation in the optimizer has a great impact
on the model’s accuracy. The AdaDELTA optimizer had unsat-
isfactory results in all variations in the number of folds, with
accuracy less than 51.47. The optimizer ADAM had promising
results, being the most stable in relation to the variation of your
number of folds, with accuracy greater than 90.83%.

The best result was obtained from the use of the NADAM
optimizer with eight-folds reaching an accuracy of 97.5%, from
this result this configuration was used to evaluate the robust-
ness of the algorithm in relation to the number of simulations.
It were performed 50 simulations using the same configuration
for statistical analysis.

4.1 Statistical analysis

For a complete analysis of the capacity of the proposed algo-
rithm, it is necessary to evaluate the variation of its parameters
in relation to several simulations, thus it is possible to deter-
mine whether the model maintains its accuracy. Table 6 presents
the values of the statistical analysis of 50 simulations from the
same configuration.

Statistical analysis shows that there is a high variance in the
results when 50 simulations are performed. This is because in
some of the simulations the resulting accuracy values are low,
increasing the variance and standard deviation in the set of
responses. Although there is no fully normal distribution of

FIGURE 5 Assessment of the normal distribution of results

TABLE 7 Benchmarking results

Accuracy by k-folds variation (%)

Model Type 2 4 6 8 10

SVM Linear 87.89 84.85 84.85 84.85 81.82

Quadratic 87.89 84.85 90.91 90.91 90.91

Cubic 84.85 84.85 84.85 90.91 90.91

Fine Gaus. 87.88 87.88 78.79 87.88 87.88

k-NN Fine 87.88 81.82 87.88 87.88 87.88

Medium 84.85 87.88 87.88 87.88 87.88

Coarse 51.51 51.51 51.51 51.51 51.51

Cosine 84.85 84.85 87.88 87.88 84.85

Ens Boosted Tree 51.52 51.52 51.52 51.52 51.52

Bagged Tree 87.88 87.88 87.88 81.82 81.82

Subsp. Disc. 81.82 69.70 78.79 81.82 87.88

Rusb. Trees 51.52 57.57 51.52 57.57 57.57

results, using the proposed algorithm most of the analysis results
has high accuracy, as can be seen in Figure 5.

In this case, 38% of the analysis performed resulted in accu-
racy closer to 95%, showing that in most cases the algorithm
achieves the objective of classification. More broadly, 80% of
the simulations resulted in accuracy between 92.5% and 97.5%,
which means that in most analyses the results are satisfactory
for a contamination classification. To finalize the evaluation of
the algorithm, a benchmarking is presented in relation to well-
established classification techniques based on artificial intelli-
gence.

4.2 Benchmarking

In this subsection, the results of a benchmarking based on
three well-consolidated models are presented. Table 7 shows
the results for the compared models. As can be seen in some
configurations of this model, the number of folds has no influ-
ence on the accuracy results, in some situations, the calculation
formula also does not generate large variations in the model’s
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accuracy. This demonstrates that the models are stable for the
classification of the problem in question.

The best results are found from the models in ensemble sub-
space discriminant and SVM using the quadratic and cubic func-
tions with 90.91% accuracy for classification. These results are
inferior when compared to the proposed method, which has an
average accuracy of 93.1% and can reach up to 97.5% in the
best case.

4.3 Comparisons to other state-of-the-art
approaches

Although there are advantages to using specific equipment such
as ultrasound, advanced training is usually required for opera-
tors [7]. Because the detection of audio is carried out in a direc-
tional way, it is difficult to be automated, being performed from
the ground, making inspection slower.

One of the great difficulties in deep learning approaches for
image-based classification is the possibility of incorrect classi-
fication due to models consider the background of the image
to perform the classification [3]. Some authors have carried out
specific works to improve this ability, identifying the insulator
before carrying out the classification.

Tao et al. [18] achieved a F-score of 0.933 to classify missing
insulators. Chen et al. [57] using a modified version of YOLOv3
achieved a F-score of 0.938 and Li et al. [58] reached 0.944
using their method for the equivalent tasks. Despite promising
results, these models are used to identify specific failures, such
as missing insulators or broken insulators. The contamination
issue addressed in this paper requires a more specific model as
the visual differences between contamination levels are minor.

5 CONCLUSION

The techniques of separate computer vision applied in the
model result in a satisfactory accuracy for the classification,
however, the combination of all the techniques presented in
this work results in higher accuracy, in this way the use of
more techniques for extraction of characteristics is promising
for the classification. The evaluation of the activation function
and the optimizer are extremely important for a better classi-
fication considering that some optimizers result in low accu-
racy in the model. The optimizers NADAM and ADAM had
the best accuracy results for the classification discussed in this
work.

Statistical analysis shows that the model can have a high vari-
ance, however, the average result remains high and even in the
worst case, the accuracy is acceptable for the classification in
question. The average accuracy found from 50 simulations is
93.10%, with 86% of the results being higher than 92.5%, when
the normal distribution is evaluated. This result occurs because
in the normal distribution, the values are distributed according
to their greater proximity to the values defined for each class,
which in this case the classes were generated from a variation of
2.5%.

The comparison with other models shows that the proposed
algorithm is superior to well-consolidated models like SVM, k-
NN, and ensemble learning methods. For the compared models,
the best result was 90.91% accurate. The variation in the number
of folds did not result in a variation in accuracy in some models
evaluated in this comparison. In the future, the classification of
the insulator’s conditions may be evaluated in the field, consid-
ering that the models presented can be used successfully for the
classification of contamination.

The use of the proposed model results in a satisfactory accu-
racy for classification of contamination in insulators, applica-
tion of this model can be carried out in insulators installed in
an external environment. Based on these results, it is possible to
perform predictive maintenance of the electrical network and
thus improve the reliability of the electricity supply. The NSDD
results are grouped according to the concentration of Kaolin
used for the analysis. This demonstrates that even with different
insulators the result of contamination depends on the concen-
tration of contaminants to which the insulators are exposed.

The analysis presented in this paper can be extended to
other insulators profiles. In addition, an evaluation of com-
posite insulators is promising, considering that these materials
are being increasingly used in distribution power systems. For
future work, analyzes that combine audio signals can be used to
improve the ability to identify faults. Thus, the ultrasonic signal
can be combined with computer vision techniques, presented in
this work, to obtain an improved model.
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