Bicnux Kuiscvko20 HauionaabH020 YyHigepcumemy Bulletin of Taras Shevchenko

iment Tapaca Ilesvwerra 2021, 2 National University of Kyiv
Cepia: Pizuro-mamemamusri HOYKY Series: Physics & Mathematics

YK 519.21 https://doi.org/10.17721/1812-5409.2021/2.11
JLM. Caxuo', d.¢p-m.n, c.m.c L.M. Sakhno!, Dr.Sci, Senior Researcher
O.1. Bacuwmk?, 0.¢p.-m.n., douenm O.1. Vasylyk?, Dr.Sci, Associate Professor
HociigkeHHsi po3B’sI3KiB AuCIIepCiiiHUX Investigation of solutions to higher-order
PIBHSIHB CTApPHIOTO MOPSJIKY 3 dispersive equations with p-sub-Gaussian
(p-cybrayccoBUMM IIOYATKOBUMHU YMOBaMU initial conditions

'KuiBchkuit HarioHabHmil yHiBepcuTer ive- ITaras Shevchenko National University of
ui Tapaca IlleBuenka, 01601, Kuis, By;a. Boso- Kyiv, 01601, Kyiv, 64/13 Volodymyrska st., e-
aumupcebka, 64/13, e-mail: Ims@univ.kiev.ua mail: ImsQ@univ.kiev.ua

’Harionasnpuuit  Texmiummii  yHiBepcureT 2National Technical University of Ukraine
Vkpainn “KuiBcbKuil moJliTeXHIYHUI 1HCTUTYT “Igor Sikorsky Kyiv Polytechnic Institute”, 37,
imeni Iropst Cikopcbkoro”, 03056, Kuis, rpocmekt Prosp. Peremohy, Kyiv, Ukraine, 03056,
[Tepemorwm, 37, e-mail: vasylyk@matan.kpi.ua e-mail: vasylyk@matan.kpi.ua

V it pobomi docaidncyromubea 8AaACMUBOCTE MPAEKMOPLT 6UNAJKOBUT NPOUECE8, WO 3a0aI0Mb
P036°A3KYU QUCNEPCIUHUT PIBHAND CMAPWUL NOPAJKIE 3 Y-CYb2aYCCOBUMU 2APMOHIZ08AHUMY GUNAOKO-
BUMU NOUAMKOBUMY YMOGaMU. OCHOBHUT pe3ysvbmam pobomu — ue OUuinKUu O0Af WeUuUdKocmis pocmy
BKA3AGHUT NPOUECIB HA HEOOMENCENUT MHoocunax. Kaac p-cybeayccosur sunadkosuxr npouecie 3 @ym-
Kuiero p(x) = %, a € (1,2], e npupodrum y3a2asoHeHHAM 2aYCCOBUT NPOUECTS. [AA MAKUT NOYAMKO-
UL YMOB OUIHKYU PO3NOJIAIE CYNPEMYMIE PO3E A3KIE MOdICYMb bYmu 0buucseHi 6 documv NPocmomy
su2aadi. Ouinky 0as weudkocmi pocmy po3e’askie JuPepeHUIaAOHUT PIBHAND 3 YACTNKOBUMU NOTi-
OHUMU CIAPWUT NOPAOKIE Y 6uNadky 3a2a4v1020 6u2andy N-pynkuii Opaiva @ ompumano 6 [9], de
suBedeHHA 2PYHMYBaN0CA Ha pesyavmamar pobomu [12]. Tym mu eukopucmosyemo dewo iHwul nio-
10, AKUT 2PYHMYEMDBCA HA GUKOPUCTNAHHT THUL020 EHMPONITHO20 THMEZPAAY | 0GE HAM MONCAUBICMD
y sunadky p(x) = 2 " e (1,2], ompumamu 6upasu 0as OUIHOK Y ABHOMY 6U2AAJL.

o
Pesyavmamu docaidorcerns donosidarucy na Miokcrnapoonits nayrosit kxongepenyii “Modern Stochasti-

cs: Theory and Applications. V7 (MSTA-V).
Karonosi caosa: p-cybeayccosi npoyecu, ducnepciling pieiants Cmapuus nopakis, eunadkosi no-
YAMKOBL YMOGU, WEUIKICTG POCTIY

In this paper, there are studied sample paths properties of stochastic processes representing solutions
of higher-order dispersive equations with random initial conditions given by p-sub-Gaussian harmoni-
zable processes. The main results are the bounds for the rate of growth of such stochastic processes consi-
dered over unbounded domains. The class of p-sub-Gaussian processes with ¢(x) = %, l<a<?2,
1s a natural generalization of Gaussian processes. For such initial conditions the bounds for the distri-
bution of supremum of solutions can be calculated in rather simple form. The bounds for the rate of
growth of solution to higher-order partial differential equations with random initial conditions in the
case of general ¢ were obtained in [9], the derivation was based on the results stated in [12]. Here we

- (1,2], to present the

use another approach, which allows us, for the particular case p(x) o

expressions for the bounds in the closed form.
Key Words: p-sub-Gaussian processes, higher-order dispersive equations, random initial condition,
rate of growth

1 Introduction harmonizable process

= d , ¢ ER,
Let y(t), t € R, be a real strictly @-sub-Gaussian (@) /RH(ML) y(w), ©

process with ¢(z) = %, 1 < a < 2, determi-
ning constant Cy and its covariance Ey(t)y(s) = where k(v) = cosv or k(v) = sinv. (The

I'y(s,t) has finite variation. Consider the related corresponding definitions are given in Appendix.)
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Let
Utta) = [ 1ee N0,
where
N
I(t,z,\) =k </\x + tZak)\zkH(—l)k) , (1.2)
k=1

t>0,z €R, and {ag}l_, are some constants.
Suppose that the following condition holds

[ e a0, ) < oc, (13)

for some 0 < p < 1.

In [9, 10] it was shown that under the above
settings, the random field U (¢, x) given by (1.1) is
the classical solution to the initial value problem

N

O*HU(t,z)  OU(t,x)
ay e = B ,t>0,zeR,
k=1
(1.4)
U0,x) =n(z), z € R. (1.5)

We refer to [1, 9, 10| for rigorous definition of the
classical solution and for a discussion on the above
equation and more general ones in random and
non-random contexts. Note that the equation (1.4)
belongs to the class of linear dispersive equations
whose study is important from many points of vi-
ew, both in theoretical and practical aspects (see,
e.g., [14]).

Conditions of existence of the classical soluti-
on to the problem (1.4)—(1.5) with random -sub-
Gaussian initial condition for the case of general
¢ are stated in [1, 9], properties of solutions are
investigated in [9, 10], in particular, different esti-
mates for the distribution of supremum of soluti-
on, and in [9] bounds are presented for the rate of
growth of solution.

The solutions of heat equations with sub-
Gaussian random initial conditions were investi-
gated in |7, 8]. In the papers [4, 5|, there were
studied sample paths properties of stochastic
processes representing solutions (in La(€2) sense)
of the heat equation with random initial conditions
given by ¢-sub-Gaussian stationary processes. The
main results were the bounds for the distributions
of the suprema for such stochastic processes consi-
dered over bounded and unbounded domains.

The estimates for the distribution of
supremum of solution to the problem (1.4)—(1.5)
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with random ¢-sub-Gaussian initial conditions for
the particular case of p(z) = ‘%, 1 <a<?2, are
given in [10].

Proposition 1 ([10], Cor.3.1). Let y(u), u € R,
be a real strictly p-sub-Gaussian random process
with o(x) = %, a € (1,2], determining constant

Cy and Ey(t)y(s) = T'y(s,1).

Let U(t,z) = [ I(t,z,\)dy()\), where I(t,z,\)

is given by (1.2), a <t < b, ¢ < x < d, and

€0 = Supa<i<p Tp(U(t, ).
c<x<d

Further, let the constant p € (0,1] be such that
(1.3) holds.

Then
(i) U(t,z) exists, is continuous with probability
one and for its sample paths the Hélder continuity
holds in the form

sup
t,tle[a,b]:|t7t1 |§h
z,x1€[c,d]:|z—z1|<h

Tw(U(t,x)—U(tl,xl)) S QCZCyhp,

where Cy is defined in (1.8);

(i) for all 0 < 0 < 1 such that ey <
2C7Cy(2/2)? with s = max(b—a,d — c), v such
that é + % =1, and u > 0 the following inequality
holds true

P U Y(1 H'y
{ sup | (tvx)|>u}<2€xp{_w}
a<i<b Ve
cZr<d

x (2eC7C,) ¥ P52 (020) VP
(1.6)

In particular, if the process y(u), u € R}, is
Gaussian, then

2 1— 0 2
P{ mq)H7@¢w\>1@>§26Xp{__3l4i7)7}
a<t<b 280

c<z<d

x (2eC7)?/P 3% (02)~2/°
(1.7)

for all 0 < 6 < 1 such that 0T < 2Cz(5/2)P and
u > 0.

In the above proposition the following
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constant is used

= [ LG fgmen
k=1

(4 iamﬂenk\p) i, (\, )|
k=1

< [ 30 (S

< (1 + (i arll01)") dir, (. (18)

k=1

the convergence of the last integral is guaranteed
by the condition (1.3).

Class of ¢-sub-Gaussian processes with
p(r) = |x£'y , 1 < a <2, is a natural generalizati-

on of Gaussian processes. For such initial condi-
tions in (1.5) the bounds for the distribution of
supremum of solution can be calculated in the si-
mple closed form as given in Proposition 1 above.

In the present paper we continue the study
of the behavior of solution in this particular case
and obtain the bounds for the rate of growth of
solution.

Note that bounds for the rate of growth of
solution (1.1) in the case of general ¢ were obtai-
ned in [9], the derivation was based on the results
stated in [12]. Here we use another approach based
on the use of Theorem 1 stated below in Secti-
on 2. This allows us, for the particular case under
consideration, to present in Section 3 the expressi-
ons for bounds in the closed form. Some necessary
definitions and statements are given in Appendix.

2 Estimates for the rate of growth of -
sub-Gaussian processes

In this section we present some general results for
p-sub-Gaussian processes defined over bounded
and unbounded domains.

Let (T,p) be a metric (pseudometric) space
and X(t),t € T, be a p-sub-Gaussian process.
Introduce the following conditions.

Condition 1. Let the space (T, p) be separable,
the process X be separable on this space,
€0 = supset Tp(X(t)) < oo, and there exi-
sts a strictly increasing continuous function

o(h),h >0, such that ¢(0) = 0 and

sup T,(X(t) — X(s)) < o(h).
p(t,s)<h
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Condition 2. The function r(z),z > 1, is
non-negative nondecreasing and such that
r(e¥),y > 0 is a convex function.

Let N(u) = Np(u), v > 0, be the metric massi-
veness of the space (T,p), that is, N(u) is the
number of elements in the minimal u-covering of
(T, p).

Denote

)
I.(8) = /0 r(N(e"Yw))du, 6§ >0.  (2.9)

For a function o(t), t > 0, we denote by
o=V (u),u > 0, the inverse function.

Proposition 2. Let X = {X(t),t € T} be
a p-sub-Gaussian process, conditions 1-2 hold,
p(t,s) = 1,(X(t) — X(s)), t,s € T. Suppose
I.(g9) < 0.

Then for all0 <0 <1 and u>0,A>0

Eexp {)\ sup |X(t)\} <2Q(\,0),
teT

and
P{ sup | X ()| > u} < 2A(0,u),
teT

where

)\60

Q(X,0) = exp {@(m) }74—1) (Iéiio))

ABu) = exp{ — ¢ (M) LD (@)

€0 960

Proposition 2 is a variant of the result stated in |2,
Theorem 4.4, p. 107] (see also [10, Theorem 2.3|).

Condition 3. Let f(t), t > 0, be a continuous
strictly increasing function such that f(¢) >
0 and f(t) — oo as t — oo. Introduce the
sequence by = 0, bg1 > by, by — 00,k — o0,
brr1 — by > 2A. Denote Vi, = [bk, bgy1] X
[—A,A],k‘ = 0,1,..., fk = f(bk), &k =
SUP(¢,z)ev;, To(€(t,2)), and suppose that 0 <
€ < 00.

Denote v, = ok(bgy1 — bg), where o are
introduced in the next theorem, 6 = inf} z—:

Theorem 1. Let &(t,z), (t,z) € V, V =
[0,4+00) X [—A, A], be a p-sub-Gaussian separable
random field and Conditions 2 and 8 hold. Suppose
futher that:
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(1) there exist the increasing continuous functi-
ons oi(h),h > 0, such that ox(h) — 0 as

h — 0,
sup  7p(§(t, 11) —E(t2, 22)) < o (h)
(ti,mi)GVk,’iZLQ
|t1_t2‘§h7
|z1—z2|<h
and for k=0,1,...

Ir,k(’)’k) = /O’Yk T(va (o',(c_l)(u)))du < 00;

(it) C'=35lg 7 < oo
(tit) for any 0 € (0, 1)
k=
Then
(i) for any 6 € (0,min(1,6)) and any X > 0

Eexp{)\ sup £, x)’}

(t, x)EV f(t (2.10)

)
2o o(25) e {507}

(i) for any 6 € (0,min(1,0)) and any u > 0

1£(t, x)|
P
{ s S >

2o { - (22 o (242}

Proof. For the proof we use the same arguments as
in [5], extended for the case of the domain of the
form [0, +00) x [-A, A]. Let 7, > 0,k =0,1,...
and Y 7, i = 1. Then for any A >0

(2.11)

B )
I0) =Eexp A sup =]

< Eexp{/\i sup M}

— o)y, Tk

< H (Eexp{)\rk sup |§(t’x)|}>rl’€

(ta)evi Tk

By using Proposition 2 we obtain

)\rksk

<] QI/Tk(eXp{du - e)fk)})a

k=0
1
IT”;(Eekgk) ) ) h

(0
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—on{ o) )
()

1
T

X H21/"’“<
:2exp{icp((
k=0

)
X exp { i le log (T(*l) (Ir”;(isk) )) }

k=0
C—f’“. Then we obtain the estimate

Let . =
(2.10):

I\ < 26XP{‘P(%>}

1 o= &k _1 (Ir i (Oer)
<o {3 s (M (F 7))}
The estimate (2.11) follows then by

Chebyshev’s inequality.

Corollary 1. Let conditions of Theorem 1 hold
with op(h) = cxh®, ¢, > 0,0 < B < 1, and
|bkr1 — bg| > 2A, but condition (iii) is replaced
by the following one

(iv) There exists 0 < v <1 such that

_2y

by

1 =
L F (b — b)PeS
S1=Z€k (H}k k)% Cr

< 0.
k=0

Then

(i) for any 6 € (0,min(1,0)) and any X > 0

(¢, 2)]
Eexpq A
S o iy

4 AC
< 2hexp {o(1=5) i)
(i5) for any 0 € (0,min(1,0)) and any u > 0

£6t,2))]
P{@SSEV O
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Proof. Under the conditions of Theorem 1 we can
write the estimate

Lx(er) < Lop(ep)

ek
[ ) e
0 20, 7 (u) o (u)
Therefore, we can apply conditions of
Theorem 1 using the integral fr’k.
We choose r(z) =z -1,z > 1,0 < a < fin
Theorem 1, then using similar calculations as in
[5] (see Corollary 7 therein), we obtain

1) <fr7k(65k))

95k

)QCE 22(%*1)

22—1((bk+1 — by,

< >
(9816)5

+1).

Applying the inequality log(l 4+ z) < %, for
0 <~v<1and x>0, we can write the estimate:

S(0,r) < Clog(25 1)
o] 17% % 3
1 €} oy [ Cr 27

+-5 Drst — by)?T
P (brg1 — ) (

k

from which we obtain the expression for A;(0).
Statement (i) follows from (i) in view of
Chebyshev’s inequality.

3 Estimates for the rate of growth of the
fields U(t,z) over unbounded domains

We apply now the results of the previous section
for the filed U(t,z) given by (1.1) with (¢,z) €
V =[0,+00) x [—A, A].

Theorem 2. Let y(u), u € R, be a real stri-
ctly p-sub-Gaussian random process with o(x) =

%, a € (1,2], determining constant Cy and

Ey(t)y(s) = Ty(s,1).
Let U(t,x) = [ I(t,z,\)dy(\), where I(t,z,\)
is given by (1.2), (t,z) € V =[0,+00) x [—A4, A].
Further, let the constant p € (0,1] be such that
(1.3) holds.
Suppose that:
(i) Condition 2 is satisfied and Condition 3 holds
with €, = sup( ey Tp(U(t, x)) < 005

(i) C = 3 % < oo;
k=0 "F
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(iit) There exists 0 < v <1 such that

_ 2y

1—=L
& e (or = be)®
S1 = Z k < oQ.
— i
Then for any 6 € (0,min(1,6)) and any u > 0
U(t,z))|
Py sup —————>u
{ (t,x)eV f(t) }
4 uP(1—6)% ~
< 2¢ exp{—iﬁcﬁ }A1(9),
where
o §1(2(jzcy)2v/p 94/p=2 ~
Ao =ew (== (T )

B is such that é + % =1, Cyz is given by (1.8).

Proof. We apply Corollary 1. Conditions of
Theorem 1 hold with oy (h) = 2C7C,h*, p € (0,1],
therefore ¢, = 2CzCy. All other conditions are
modified correspondingly and lead to the result.

Remark. The bounds for the rate of grows of the
random field U(t,z), (t,x) € V = [0,+00) X
[—A, A], which represents the solution to the
problem (1.4)—(1.5), were studied in [9] for the case
of a general . The approach in the present paper
is based (following [10]) on consideration of the di-
fferent entropy integral given by (2.9), which leads
to the presentation of bounds in the explicit form,
for p(z) = %, a € (1,2]. The case of general ¢
should be further investigated.

Appendix

Definition 1. |2, 13] A continuous even convex
function ¢ is an Orlicz N-function if ¢(0) = 0,
o(z) >0,z #0,and lim 22 =0, lim £

z—0 7 £—00

—— = Q.
x

Condition Q. Let ¢ be an N-function which sati-

sfies lim inf0 “Ogg) = ¢ > 0, where the case ¢ = 0o
T—r

is possible.

Definition 2. |2, 3, 11] Let ¢ be an N-function
satisfying condition @ and {2, L, P} be a standard
probability space. The random variable ¢ is ¢-
sub-Gaussian, or belongs to the space Sub,(£2),
if EC = 0, Eexp{A(} exists for all A € R and there
exists a constant a > 0 such that the following
inequality holds for all A € R

Eexp{A(} < exp{p(Aa)}.

The random process ¢ = {((t),t € T'} is called ¢-
sub-Gaussian if the random variables {((t),t € T'}
are @-sub-Gaussian.
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The space Suby(§2) is a Banach space with
respect to the norm (see [2, 11]):

Tgo(g)
Definition 3. [2, 13| The function ¢* defined by

= inf{a > 0 : Eexp{A(} < exp{p(al)}.

©"(x) = sup(zy — ¢(y))
yeR
is called the Young-Fenchel transform (or convex
conjugate) of the function .

Definition 4. [3, 6] A family A of random
variables ( € Sub, () is called strictly ¢-sub-
Gaussian if there exists a constant Ca such that
for all countable sets I of random variables (; € A,
i € I, the following inequality holds:
) 2
(3.12)

is called the determining

The constant Ca
constant of the family A.

1/2

ppYe

i€l

> NG

i€l

The linear closure of a strictly ¢-sub-Gaussian
family A in Ly () is strictly ¢-sub-Gaussian with
the same determining constant ([6]).
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