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Intention 
• Seek First to Understand, Then to be Understood (Habit #5) 
• Begin with the End in Mind (Habit #2) 

 
The 7 Habits of Highly Effective People ~ Stephen Covey 
 
This reference guide was created to provide understanding of basic statistical 
concepts used in clinical research to equip you with the skills necessary to 
succeed in this area including effective collaborations with statisticians. 
 
 
The overall objectives of the reference guide are: 
 

• To introduce or review concepts to consider when designing a clinical trial; 
• To introduce or review the four phases of clinical trials including different 

types of designs for Phase I and Phase II clinical trials; 
• To introduce or review observational studies; 
• To introduce or review analysis of categorical, continuous, and time-to-

event measures as well as Bayesian methodology. 

 
 
 
 
 
 
 
 
Thank you for participating in this clinical research workshop and we wish you 
much success in your careers. 
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I. Protocol Development 
a. Prospective Studies (concepts to think about when designing a clinical trial/writing a 

protocol) 
i. Disease to be treated/trial entry criteria. 
ii. Treatments/doses/schedules/treatment combinations. 
iii. Main goal(s) of the trial (i.e., how trial results may be used for planning future 

studies or changing clinical practice). 
iv. Main clinical outcome(s). 
v. Secondary goals. 
vi. Anticipated accrual rates/sample size. 

b. Observational Studies 
c. Common Efficacy Endpoints - Definitions 
d. Sample Size/Power Determination 

II. Clinical Trial Designs 
a. Phase I Dose Finding 

i. Ruled-based designs 
ii. Model-based designs 
iii. Model-assisted designs 

b. Phase II Single Arm Binary 
i. N-stage group sequential designs 
ii. Model-based designs 

c. Phase III Registration  
d. Phase IV Post Marketing 
e. Pilot Studies  

III. Observational Studies 
a. Cohort Studies 
b. Case-Control Studies 
c. Cross-Sectional Studies 

IV. Data quality 
V. Statistical methodology 

a. Analysis of Categorical Measures 
i. Fisher’s exact test/chi-squared test 
ii. Logistic regression 

b. Analysis of Continuous Measures 
i. Parametric (e.g., t-test)/non-parametric (e.g., Wilcoxon rank-sum test) 
ii. Linear regression 

c. Analysis of Time-to-event/survival Measures 
i. Kaplan-Meier method 
ii. Cox proportional hazards regression 
iii. Competing risks 

d. Bayesian methods (basic concept) 
VI. Miscellaneous (p-values, confidence intervals, multivariate vs. multivariable) 
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PROTOCOL DEVELOPMENT 
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1. Protocol Development 
 
Clinical research provides the foundation for the practice of medicine.  Ideally, the principles of medical 
practice should be based on sound scientific rationale and evidence.  Clinical studies are useful to the extent 
that they yield valid inferences.  The goal of proper study design is to minimize the errors that threaten the 
scientific validity of conclusions based on these inferences. 

 
1.1.     Prospective Studies 

 
Well-conducted randomized controlled trials, with adequate numbers of subjects; blinding of therapies, 
subjects and researchers; and carefully standardized methods of measurement and analysis are the best 
evidence for a cause-and-effect relationship.   
 
The protocol is a document that describes how a clinical trial will be conducted and ensures the safety of the 
trial subjects and integrity of the data collected.  Protocols should be clear, unambiguous and maintain 
scientific integrity. The protocol should describe the background, rationale, objectives, design, methodology, 
statistical considerations, and organization of a clinical study.  
 
Some concepts to think about when designing a clinical trial/writing a protocol: 
 

1. Main Goal(s) of the Trial 
a. How the trial results may be used for planning future studies or changing clinical practice. 
b. What are the primary objective(s) and endpoint(s) (i.e., what is the primary question you 

would like the study to address)? 
 

2. Other Goals of the Trial 
a. What are the secondary and exploratory objectives and endpoints? 

 
3. Study Design  

a. What is the best study design to address the study objectives? 
b. What disease group(s) are of interest (inclusion/exclusion criteria)? 
c. What treatments/doses/schedules/combinations will be investigated (best control group for 

study population)? 
d. How many visits are required? 
e. What assessments will be administered at each visit? 
f. How many subjects are needed to address the primary objective/how many are 

possible based on funding? 
g. How many sites will be participating? 
h. What’s the anticipated accrual rate? 

 
4. How will the data be collected? 

a. Excel, REDCap, Prometheus, DMI, MOCLIP 
 

 
1.2.      Observational Studies 
 

Studies that do not use random assignment to allocate subjects into comparative groups are collectively 
referred to as non-experimental or observational studies. Observational studies are also non-interventional, 
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meaning the treatment and care of the subject are not influenced by the study but are conducted as in usual 
practice. These studies reflect less artificial and more naturalistic circumstances; people’s lives and 
behaviors are not being modified by restrictive rules or specific recommendations, and the natural history of 
disease occurrence and progression can be better observed. As such, observational studies may provide 
opportunities to evaluate the effectiveness of treatment in people who are more like those who are in need 
of treatment in the community (i.e., more generalizable). Similar to clinical trials, protocols for observational 
studies should be clear, unambiguous and maintain scientific integrity. The protocol should describe the 
background, rationale, objectives, methodology, and statistical considerations for the study.   

  
1. Main Question the Study will Address 

a. What disease group(s) are of interest? 
b. How the study results may be used for planning future studies or changing clinical practice. 
c. What are the primary objective(s) and endpoint(s)? 

 
2. Other Goals of the Study 

a. What are the secondary and exploratory objectives and endpoints? 
 

3. Sample Size Determination 
 

4. Statistical Methodology 
a. Addressing potential biases 

 
 
1.3.         Study Objectives vs. Endpoints 

 
The objective of a study is an active statement about how the study will address 
specific research question(s). For example, a primary objective of a study could be to compare the efficacy 
of Drug X to Drug Y in subjects diagnosed with multiple myeloma.  There could be many endpoints for this 
objective, including overall survival, progression-free survival or objective response rate.  An endpoint is not 
an objective but can be included in the objective; the primary objective of the study is to compare overall 
survival of Drug X to Drug Y in subjects diagnosed with multiple myeloma. 
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1.4.         Common Efficacy Endpoints  
 

Endpoints Definition Advantages Limitations 

Overall 
survival (OS) 

Time from 
randomization/start of 
treatment until death 
from any cause 

• Universally 
accepted 
measure of 
direct benefit 

• Easily and 
precisely 
measured 

• May require a 
larger trial 
population and 
longer follow-up to 
show statistical 
difference between 
groups 

• May be affected by 
crossover or 
subsequent 
therapies 

• Includes deaths 
unrelated to cancer 

Progression-
free survival 
(PFS) 

Time from 
randomization/start of 
treatment until disease 
progression or death 

• Requires small 
sample size 
and shorter 
follow-up time 
compared with 
OS 

• Includes 
measurement of 
stable disease 
(SD) 

• Not affected by 
crossover or 
subsequent 
therapies 

• Generally based 
on objective and 
quantitative 
assessment 

• Validation as a 
surrogate for 
survival can be 
difficult in some 
treatment settings 

• Not precisely 
measured (i.e., 
measurement may 
be subject to bias) 

• Definition may vary 
among trials 

• Requires frequent 
radiologic or other 
assessments 

• Requires balanced 
timing of 
assessment 
among treatment 
arms 

Time to 
progression 
(TTP) 

Time from 
randomization/start of 
treatment until objective 
tumor progression; does 
not include deaths 

Recurrence-
free survival 
(RFS) 

Time from date of 
response to the first of 
either recurrence or 
relapse, second cancer, 
or death 

• Similar to PFS; 
may be useful in 
evaluation of 

• Similar to PFS 
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highly toxic 
therapies 

Objective 
response rate 
(ORR) 

Proportion of subjects 
with reduction in tumor 
burden of a predefined 
amount (typically 
includes complete 
remission and partial 
response) 

• Can be 
assessed in 
single-arm trials 

• Requires a 
smaller 
population and 
can be assessed 
earlier, 
compared with 
survival trials 

• Effect is 
attributable 
directly to the 
drug, not the 
natural history of 
the disease 

• Not a 
comprehensive 
measure of drug 
activity 

Duration of 
response 
(DoR) 

Time from 
documentation of tumor 
response to disease 
progression 

 
 
 

1.5.   Sample Size/Power Determination 
 

The field of statistics exists because it is usually impossible to collect data from all individuals of interest 
(population).  Thus, the only solution is to collect data from a subset (sample) of the individuals of interest, 
but the real desire is to know the “truth” about the population.  It is imperative in medical research to ensure 
that reported comparisons are based on a sufficient number of subjects to be statistically valid.  Small 
samples may lack sufficient statistical power to detect important differences or associations.  
 
1.5.1. Hypothesis Testing 

 
Hypothesis testing is a process in statistics whereby an assumption regarding a population parameter is 
tested. Hypothesis testing is used to assess the plausibility of a hypothesis (i.e., assumption) by using 
sample data. In hypothesis testing, there are the null hypothesis (H0) and the alternative hypothesis (H1 
or Ha). The null hypothesis is usually a hypothesis of equality between population parameters (e.g., there 
is no difference in response rate between the experimental treatment and standard of care). The 
alternative hypothesis is effectively the opposite of a null hypothesis (e.g., the response rate in the 
experimental treatment is higher than the standard of care). Thus, they are mutually exclusive, and only 
one can be true.  
 
The following table presents a 2x2 representation of the truth from the population and the decision based 
on the study sample. The significance (α) level is the probability that the decision based on the study 
sample is that there is a difference when in fact there is no difference.  Whereas, the power is the 
probability that the decision based on the sample correctly concludes there is a difference.  
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  DECISION (based on study sample) 
TRUTH (population) There is no difference  There is a difference  
There is no difference  Significance (α) level 
 (H0)   
There is a difference  Power 
 (Ha)   

 
 
A scientific conclusion is always drawn from the statistical testing of hypothesis, in which the chosen 
significance (α) level, is used for decision-making. However, the probability of committing false statistical 
inferences is considerably increased when more than one hypothesis is simultaneously tested, which 
therefore requires proper adjustment of the significance level.  
 
 
Examples 
 
If the primary objective of your study is to test if an experimental drug is superior to the standard of care or 
a historical control, the sample size/power computation required will be based on hypothesis testing. 
 
Information required for sample size/power computations includes: 

a. The number of groups (e.g., one: experimental vs. historical control; two: experimental vs. active 
control [e.g., standard of care]). 

• Obtained from the study design. 
b. Parameter estimates for each group (e.g., response rates, change in tumor size, standard deviation 

of tumor size, effect size [i.e., the absolute value of difference between group means divided by the 
common standard deviation], median survival or survival rates). 

• Primary objective endpoint(s) obtained from the primary study objective. Estimates are 
obtained from literature or previous studies. Often, this information is unknown. In those 
cases, use estimates that are considered to be clinically meaningful. 

c. Significance level or α level (one-sided or two-sided).  
• Typically 5%; one-sided or two-sided depends on whether your alternative hypothesis is 

ORRA > ORRB (one-sided), ORRA < ORRB (one-sided), or ORRA ≠ ORRB (two-sided). 
d. Power or sample size (depending on what is being computed) 

• ≥ 80% power is common; although 70% is also acceptable for Phase II trials 
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Example for one group vs. historical control for response rates: 
 

 
 
 
 
 
 
Example for two groups for change in tumor size:  
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Example for two groups for survival: 

 
 

1.5.2  Estimation – Confidence Interval 
 
If the primary objective of your study is to estimate a parameter, perhaps because this is a phase II study 
with small sample sizes, then your sample size justification will be based on precision via a confidence 
interval. 
 
Information required for precision computations includes: 

a. The number of groups (e.g., one: experimental vs. historical control; two: experimental vs. control). 
• Obtained from the study design 

b. Parameter estimates (e.g., proportion for binary, effect size for continuous) 
c. Confidence interval (one-sided or two-sided).  

• 95% is common; one-sided or two-sided  
 

Example for one group for response rate: 
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CLINICAL TRIAL DESIGNS 
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A clinical trial is a planned prospective experiment involving human subjects from a specified population 
designed to evaluate an intervention in order to determine appropriate interventions for future members 
from the same population. 
 

1.  Phase I (Dose Finding) Clinical Trials 
 
The focus in phase I trials is looking at what the drug does to the body and what the body does with the 
drug.  Phase I trials aim to find the best dose of a new drug with the fewest side effects. These studies 
also determine how a drug is absorbed, distributed, metabolized and excreted as well as the duration of 
its action. Very low doses of the drug are given initially to subjects while higher doses are given to 
subsequent subjects until side effects become too severe or the desired effect is seen. The number of 
subjects included in phase I trials are typically small (e.g., 15 to 30). The drug may help subjects, but 
phase I trials are to test a drug’s safety as opposed to efficacy. If a drug is found to be safe enough, it 
can be tested in a phase II clinical trial.  
 
A phase I trial design has many components, including starting dose, dose increment, dose escalation 
method, number of subjects per dose level, specification of dose-limiting toxicities (DLT) and assessment 
period, target toxicity level, definition of the maximum tolerated dose (MTD) and recommended dose for 
phase II trials (RP2D).   
 
Dose escalation methods for phase I cancer clinical trials fall into two broad classes: rule-based designs, 
which include the traditional 3+3 design and its variations, and model-based designs. Rule-based designs 
assign subjects to dose levels according to pre-specified rules based on actual observations of target 
events (e.g., the DLT) from the clinical data. Typically, the MTD or RP2D is determined by the pre-
specified rules as well. On the other hand, the model-based designs assign subjects to dose levels and 
define the RP2D based on the estimation of the target toxicity level by a model depicting the dose–toxicity 
relationship. 
 

1.1. Algorithm (Rule)-Based Designs  
 

Algorithm-based designs are a class of conventional designs that use a set of simple, prespecified rules 
to determine the dose escalation and de-escalation. Examples include the conventional 3+3 design and 
its extensions, such as the accelerated titration design and the rolling 6 design. The conventional 3+3 
design remains the predominant method for conducting phase I cancer clinical trials. It requires no 
modeling of the dose–toxicity curve beyond the classical assumption for cytotoxic drugs that toxicity 
increases with dose. This algorithm-based design proceeds with cohorts of three subjects; the first cohort 
is treated at a starting dose that is considered to be safe based on extrapolation from animal toxicological 
data, and the subsequent cohorts are treated at increasing dose levels that have been fixed in advance.  
The traditional 3+3 algorithm is described below. 
 

• Enroll 3 subjects at the starting dose level  
• If 0 of the 3 subjects experiences a DLT at a given dose level, proceed to the next higher dose 

level with a cohort of 3 subjects 
• If 1 of 3 subjects experiences a DLT at a given dose level, enter 3 additional subjects at the current 

dose level 
• If 1 of 6 subjects experiences a DLT at a given dose level, proceed to the next higher dose level 

with a cohort of 3 subjects 
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• If at least 2 of 3 or 2 of 6 subjects experience a DLT at a given dose level, then the MTD has been 
exceeded 

• Once the MTD has been exceeded, treat another 3 subjects at the previous dose level if there 
were only 3 subjects treated at that dose level 

• The MTD is the highest dose level in which 6 subjects have been treated with at most 1 
experiencing a DLT 
 

The main advantages of algorithm-based methods are that they are easy to implement and do not require 
special software. However, their performance (operating characteristics) is not guaranteed and they have 
some drawbacks. For example, these designs may be inefficient in establishing the dose that meets a 
specific target toxicity level. In addition, the decision of dose allocation for future subjects as well as the 
definition of the RP2D rely on information from the current dose level and do not use all available 
information. As such, the RP2D is then selected from the pre-specified dose levels depending on which 
one best fits the definition of acceptable toxicity set a priori. However, although not ideal, the algorithm-
based methods have been successful in establishing safe recommended doses for phase II trials during 
the past several decades for anticancer agents that were eventually used worldwide in clinical practice. 
 

1.2. Model-Based Designs 
 

An alternative dose escalation method for phase I clinical trials is to use statistical models that actively 
seek a dose level that produces a prespecified probability of dose-limiting toxicity by using toxicity data 
from all enrolled subjects to compute a more precise dose–toxicity curve. This method is typically carried 
out using Bayesian models. Bayesian models require an initial estimation of DLT rate (also called prior 
distribution of θ), which characterizes the shape of the dose–toxicity curve. The occurrence of toxicity (or 
not) in subjects enrolled at each dose level provides additional information for the statistical model and 
results in an adjustment of θ (i.e., posterior distribution of θ) according to Bayes’ theorem. The posterior 
distribution is then evaluated to identify the dose closest to the target toxicity level, and this dose is used 
to treat future subjects and to set the recommended dose for phase II trials. These model-based designs 
use all of the available data to model the dose–toxicity curve, and they provide a confidence interval for 
the RP2D at the end of the trial.  
 
Some model-based designs include continual reassessment method (CRM; O'Quigley, J., Pepe, M., 
Fisher, L. Continual reassessment method: a practical design for phase I clinical trials in cancer. 
Biometrics 1990; 46, 33-48) and EffTox method (Thall, Peter F., Cook, John D. Dose-Finding Based on 
Efficacy-Toxicity Trade-Offs. Biometrics 2004; 60, 684-693). 
 

1.3. Model-Assisted Designs 
 
Model-assisted designs were developed to combine the advantages of algorithm-based designs and 
model-based designs (Yuan, Ying, Lee, Jack J., Hilsenbeck, Susan G. Model-Assisted Designs for 
Early-Phase Clinical Trials: Simplicity Meets Superiority. JCO Precision Oncology 2019;3, 1-12). Similar 
to the model-based design, the model-assisted design uses a statistical model (e.g., the binomial 
model) to derive the design for efficient decision making; however, like the algorithm-based design, its 
dose escalation and de-escalation rule can be predetermined before the onset of the trial and, thus, can 
be implemented in as simple a way as the algorithm-based designs. 
 
Some model-assisted designs include modified toxicity probability interval method (mTPI; Ji Y, Liu P, Li 
Y, Bekele BN. A modified toxicity probability interval method for dose-finding trials. Clinical Trials 2010; 
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7: 653-663) and Bayesian optimal interval (BOIN; Liu S. and Yuan, Y. Bayesian Optimal Interval Designs 
for Phase I Clinical Trials. Journal of the Royal Statistical Society: Series C 2015; 64, 507-523). 
 

1.3.1. Bayesian Optimal Interval (BOIN) Design (Example) 

The BOIN design is implemented in a simple way similar to the traditional 3+3 design, but is more flexible 
and possesses superior operating characteristics. In this example, the phase I trial explores 5 dose levels 
and the maximally accepted DLT rate is 30%.  A total of 15 subjects will be enrolled in cohorts of size 3 
starting at the 2nd dose level.  
 
The target toxicity rate for the MTD is 𝜙 = 0.3 and the maximum sample size is 15. We will enroll and 
treat subjects in cohorts of size 3. To guide dose-escalation decisions, if the observed DLT rate at the 
current dose is ≤ 0.236, the next cohort of subjects will be treated at the next higher dose level; if it is ≥ 
0.359, the next cohort of subjects will be treated at the next lower dose level. For the purpose of 
overdose control, doses 𝑗 and higher levels will be eliminated from further examination if Pr(𝑝! > 0.3 | 
data) > 0.95, where 𝑝! is the true DLT rate of dose level 𝑗, 𝑗 = 1,⋯, 5. When the lowest dose is 
eliminated, stop the trial for safety. Figure 1 presents the dose escalation/de-escalation rules for the 
study. Note that although subjects are enrolled in cohorts of size 3, Figure 1 includes decision rules for 
all subjects (i.e., it is not necessary to wait for all of the subjects in the next cohort to complete the DLT 
assessment period before making decisions for each enrolled subject). For example, if 4 subjects have 
been enrolled in the trial with one subject experiencing a DLT, the decision for the next subject would 
be to remain at the current dose level.  

Figure 1. Dose escalation/de-escalation rules for the BOIN design 
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After the trial is completed, select the MTD based on isotonic regression as specified in Liu and Yuan 
(2015). This computation is implemented by the shiny app “BOIN” available at 
http://www.trialdesign.org. Specifically, select as the MTD the dose for which the isotonic estimate of 
the toxicity rate is closest to the target toxicity rate. If there are ties, select the higher dose level when 
the isotonic estimate is lower than the target toxicity rate and select the lower dose level when the 
isotonic estimate is greater than or equal to the target toxicity rate. 
 
Operating Characteristics 
Table 1 shows the operating characteristics of the trial design based on 1000 simulations of the trial 
using shiny app “BOIN” available at http://www.trialdesign.org. The operating characteristics show that 
the design selects the true MTD, if any, with high probability to the dose levels with the DLT rate closest 
to the target of 0.3. 
 
Table 1. Operating characteristics of the BOIN design 
 

 
Dose 

1 
Dose 

2 
Dose 

3 
Dose 

4 
Dose 

5 
Number of 
Subjects 

% Early 
Stopping 

Scenario 1        
True DLT 
rate 

0.01 0.05 0.1 0.2 0.3   

Selection % 0 0.7 12.8 41.4 45.1  0 
% Pts treated 0 24.1 30.0 29.4 16.5 15  
Scenario 2        
True DLT 
rate 

0.05 0.1 0.2 0.3 0.4   

Selection % 0.4 10.8 30.4 39.6 18.8  0 
% Pts treated 1.0 31.8 36.2 23.7 7.3 15  
Scenario 3        
True DLT 
rate 

0.1 0.2 0.3 0.4 0.5   

Selection % 6.3 31.1 36.1 22.9 3.6  0 
% Pts treated 6.4 44.5 33.8 13.6 1.8 15  
Scenario 4        
True DLT 
rate 

0.2 0.3 0.4 0.5 0.6   

Selection % 23.6 45.8 21.7 7.7 0.6  0.6 
% Pts treated 17.3 52.0 24.5 5.6 0.6 15  
Scenario 5        
True DLT 
rate 

0.3 0.4 0.5 0.6 0.7   

Selection % 46.0 35.8 9.6 1.7 0  6.9 
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% Pts treated 33.1 50.4 14.6 1.8 0.01 14.7  
Scenario 6        
True DLT 
rate 

0.5 0.6 0.7 0.8 0.9   

Selection % 41.8 8.1 0.3 0 0  49.8 
% Pts treated 55.7 40.8 3.4 0.1 0 12.7  

 
 
Simulations have shown that model-based and model-assisted methods, which use all toxicity 
information accumulated during the trial, achieve good estimations of the target probability of dose-
limiting toxicity at the RP2D without treating too many subjects at suboptimal doses. Some of the 
challenges presented by some model-based designs include the need for biostatistical expertise and 
available software on site to perform model fitting in real time, as well as an expedited collection of data 
from each cohort of subjects to fit the model. As such, implementation of these designs may not be 
straightforward. In addition, the model may fail to reach the RP2D if the prior distributions for the 
parameters of the dose–toxicity curve are inadequate, or conversely, if the prior assumptions are 
overbearing. 
 

2. Phase II Clinical Trials 

Phase II trials further assess safety as well as if a drug works. The drug is often tested among subjects 
with a specific type of cancer. Phase II trials are done in larger groups of subjects compared to phase I 
trials. Subjects are closely watched to see if the drug works. If a drug is found to work, it can be tested 
and compared to the current (standard-of-care) drug in a phase III clinical trial.   
 
Since the number of subjects included in phase I trials is typically small (e.g., 15 to 30) and the safety 
profile of the drug is limited to a few subjects evaluated at the MTD/RP2D, many phase II trials include 
formal toxicity and/or futility monitoring which will stop the trial early (i.e., before all subjects have been 
enrolled) if the accumulated data indicate the likelihood of excessive toxicity is high and the likelihood of 
acceptable efficacy is low, respectively.   
 

2.1. N-stage Group Sequential Designs 

In an N-stage design, the subjects are enrolled in N stages with a binary endpoint. For a two-stage design, 
at the completion of the first stage, an interim analysis is performed to determine if the second stage 
should be conducted. The endpoint typically evaluated is response rate (responders vs. non-responders). 
If the number of subjects responding is greater than a certain amount, the second stage is conducted. 
Otherwise, it is not. 
 

2.1.1. Simon’s Two-Stage Design (Example) 
 
The primary objective of this example study is to assess the efficacy of Drug X in subjects with melanoma 
and brain metastases. The primary endpoint is the ORR to this regimen defined as the percentage of 
number of complete response or partial response in total number of subjects treated. The trial will be 
conducted by the Simon's optimal two-stage design and the ORR will be estimated accordingly. 
 
It is assumed that Drug X will have a target ORR of 35%. An ORR of 19% or lower is considered a failure 
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and Drug X will be rejected under this circumstance. When the probability of accepting a 'bad' regimen 
(i.e. ORR ≤ 19%) is 0.10 and the probability of rejecting a 'good' regimen (i.e. ORR ≥ 35%) is also 0.10, 
Simon's design requires 23 subjects to enter in the first stage. If 4 or fewer subjects respond to the 
treatment, the trial will be stopped and the regimen will be declared as ineffective. If there are 5 or more 
responses, 34 more subjects will be entered in the study to reach a total of 57 subjects. At the end of the 
study, Drug X will be rejected if ORR is less than or equal to 14/57 and will be accepted otherwise. The 
operating characteristics of the trial are given as follows: When the true ORR is 0.19 the probability of 
stopping the trial early is 55%. On the other hand, if the true ORR is 0.35, the probability to stop the trial 
early is 6%. The expected sample sizes are 38.3 and 55.1 when the true ORRs are 0.19 and 0.35, 
respectively.  
 
This design has the optimal property of minimizing the expected sample size under the null hypothesis 
that the new regimen is ineffective.  
 

2.2. Model-Based Designs 

As in phase I designs, an alternative monitoring method for phase II clinical trials is to use statistical 
models. Some model-based designs include methods by Thall et. al. (Thall PF, Simon RM, Estey EH. 
Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. Statistics in 
Medicine 1995; 14:357-79 and Thall, PF and Sung, H-G. Some extensions and applications of a Bayesian 
strategy for monitoring multiple outcomes in clinical trials. Statistics in Medicine 1998; 17:1563-1580), 
Bayesian predictive probability method (Lee JJ, Liu DD. A predictive probability design for phase II cancer 
clinical trials. Clinical Trials 2008; 5(2):93-106), and Bayesian optimal phase 2 (BOP2; Zhou, H., Lee, J. 
J., & Yuan, Y. BOP2: Bayesian optimal design for phase II clinical trials with simple and complex 
endpoints. Statistics in Medicine 2017; 36(21):3302-3314). 

2.2.1. Bayesian Optimal Phase 2 (BOP2) Design (Example) 

In this example study, formal monitoring of safety and efficacy will be performed simultaneously after the 
first 9 subjects in cohorts of size 3 using the Bayesian optimal phase 2 (BOP2) design (Zhou, Lee and 
Yuan, 2017).  A maximum of 30 subjects will be enrolled and the efficacy endpoint is the ORR and safety 
endpoint is DLT rate:  

We will simultaneously monitor efficacy and safety endpoints. Specifically, let 𝑛 denote the interim sample 
size and 𝑁 denote the maximum sample size. Let 𝑌"## and 𝑌$%& respectively denote the efficacy and toxic 
endpoints, with 𝑌"## = 1 and 𝑌$%& = 1 respectively indicating that subjects experience efficacy and 
toxicity. Let 𝑝"## = 𝑃𝑟(𝑌' = 1), 𝑝$%& = 𝑃𝑟(𝑌( = 1) and define the null hypothesis 𝐻): 𝑝"## ≤ 0.1 and 𝑝$%& >
0.25, representing that the treatment is inefficacious or overly toxic. We will stop enrolling subjects and 
claim that the treatment combination is not promising if 

𝑃𝑟(𝑝"## > 0.1|𝑑𝑎𝑡𝑎) < 𝜆(
𝑛
𝑁
)* , 

or 

𝑃𝑟(𝑝$%& ≤ 0.25|𝑑𝑎𝑡𝑎) < 𝜆(
𝑛
𝑁
)* , 

where 𝜆=0.65 and 𝛼=0.9 are design parameters optimized to minimize the chance of incorrectly claiming 
that an efficacious and safe treatment is unacceptable (i.e., type II error) under the alternative hypothesis 
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𝐻': 𝑝"## = 0.25 and 𝑝$%& = 0.1, while controlling the type I error rate at 0.05 (i.e., the chance of incorrectly 
claiming that an inefficacious or overly toxic treatment is acceptable is no more than 5%). Assuming a 
Dirichlet prior distribution 𝐷𝑖𝑟(0.05,0.05,0.2,0.7) for the treatment effect, the above decision rule 
corresponds to the following stopping boundaries and yields a statistical power of 0.8354 under 𝐻': 

Table 2: Optimized stopping boundaries 

# Subjects treated Stop if # response ≤ OR # toxicity ≥ 
12 0 5 
15 1 5 
18 1 6 
21 2 6 
24 2 6 
27 3 7 
30 3 7 

 
Based on Table 2, we will perform the interim analysis when the number of enrolled subjects reaches 12, 
15, 18, 21, 24, 27. When the total number of subjects reaches the maximum sample size of 30, we will 
reject the null hypothesis and conclude that the treatment combination is acceptable if the number of 
responses in the efficacy endpoint are greater than 3, and the number of toxicities are less than 7; 
otherwise we will conclude that the treatment combination is unacceptable. 

 
Below are the operating characteristics of the design based on 10000 simulations using the BOP2 web 
application, which is available at http://www.trialdesign.org. 

 
Table 3: Operating characteristics 

Pr(Eff) Pr(Tox) Pr(Eff & Tox) Early stopping (%) Claim acceptable (%) Sample size 
0.10 0.10 0.05 80.60 18.92 18.9 
0.10 0.25 0.05 93.87 4.90 16.3 
0.10 0.40 0.05 99.56 0.24 13.5 
0.25 0.10 0.05 15.76 83.54 27.9 
0.25 0.25 0.05 65.70 27.69 21.7 
0.25 0.40 0.05 97.45 1.22 14.8 
0.40 0.10 0.05 4.12 95.09 29.5 
0.40 0.25 0.05 62.23 30.45 22.5 
0.40 0.40 0.05 97.03 1.54 14.9 

 
 

3. Phase III Clinical Trials 

Phase III trials compare a new drug to the standard-of-care drug. These trials assess the side effects of 
each drug and which drug works better. Phase III trials enroll 100 or more subjects. Often, these trials 
are randomized. This means that subjects are put into a treatment group, by chance. Randomization is 
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needed to make sure that the people in all trial arms are alike. This ensures that the results of the clinical 
trial are due to the treatment and not differences between the groups. In the US, when phase III clinical 
trials (or sometimes phase II studies) show a new drug is more effective and/or safer than the current 
standard-of-care drug, a new drug application (NDA) is submitted to the Food and Drug Administration 
(FDA) for approval.  The FDA then reviews the results from the clinical trials and other relevant 
information.  Based on the review, the FDA decides whether to approve the treatment for use in subjects 
with the type of illness on which the drug was tested.  If approved, the new treatment often becomes a 
standard of care, and newer drugs must often be tested against it before being approved. 

In many instances, some routine monitoring of trial progress, usually blinded to treatment allocation, is 
often undertaken as part of a phase III trial. Such monitoring may be undertaken in conjunction with a 
data and safety monitoring board (DSMB), established to review the information collected. It would 
therefore appear that assessment of interim treatment differences is a logical and worthwhile extension. 
However, the handling of treatment comparisons while a trial is still in progress poses problems in medical 
ethics, statistical analysis and practical organization.  

The most appealing reason for monitoring trial data for treatment differences is that, ethically, it is 
desirable to terminate or change a trial when evidence has emerged that one treatment is clearly superior 
to the other. This is particularly important when life-threatening diseases are involved. Alternatively, the 
data may support the conclusion that the experimental treatment and the control do not differ by some 
predetermined clinically relevant magnitude, in which case it would be desirable, both ethically and 
economically, to stop the study and divert resources elsewhere. Finally, if information in a trial is accruing 
more slowly than expected, perhaps because of a low event rate, then extension of recruitment until a 
large enough sample has been recruited may be appropriate. 

However, multiple analyses of accumulating data lead to problems in the interpretation of results. The 
main problem occurs when significance testing is undertaken at the various interim looks. Even if the 
treatments are really equally effective, the more often one analyzes the accumulating data, the greater 
the chance of eventually and wrongly detecting a difference, thereby drawing incorrect conclusions from 
the trial.  

A second problem concerns the final analysis. When data are inspected at interim looks, the analysis 
appropriate for fixed sample size studies is no longer valid. Quantities such as P values, point estimates 
and confidence intervals are still well defined, but new methods of calculation are required. If a traditional 
analysis is performed at the end of a trial that stops because the experimental treatment is found better 
than control, the P value will be too small (too significant), the point estimate too large and the confidence 
interval too narrow. To remedy these problems, special techniques are required. These can be broadly 
termed sequential methods.  

A sequential test monitors a statistic summarizing the current difference between the experimental 
treatment and control at a series of times during the trial. If the value of this statistic crosses some 
specified critical value (i.e., stopping rule or boundary), the trial is stopped and an appropriate conclusion 
drawn. It is possible to look after every subject or to have just one or two interim analyses. If the statistic 
stays within the test boundary then there is not enough evidence to come to a conclusion at present and 
a further interim look should be taken. It is the details of the derivation of the stopping rule that introduces 
much of the variety of sequential methodology. Key early work in the area includes the tests of Pocock 
and O'Brien & Fleming. A more flexible approach, referred to as the alpha-spending method was 
proposed by Lan & DeMets and extended by Kim & DeMets.  
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3.1. Sequential Design – Example 

A sample size of 40 subjects will be randomized 1:1 to Drug A or control.  Assume the control arm’s true 
median PFS will be approximately 4 months. Assume median PFS in the Drug A arm will be 8.5 months, 
corresponding to a hazard ratio of 0.471 (Drug A vs. control).  The study is anticipated to finish accrual 
at 36 months with an additional 6 months follow up for a total study duration of 42 months. Under these 
conditions, we will have 80% power using a 1-sided log rank test with type I error of 0.10. Uniform accrual 
and exponential PFS distributions are assumed and the expected total PFS event count is 34. We will 
have an interim look for futility once half the expected events (17 events) are observed.  A Lan-Demets 
spending function using an Obrien-Flemming boundary will be used for futility stopping boundaries.   We 
will stop for futility at our interim look if our p-value is greater than 0.470.   

 
 

4. Phase IV Clinical Trials (Post Marketing)  

Drugs approved by the FDA are often watched over a long period of time in phase IV studies. Even after 
testing a new medicine on thousands of people, the full effects of the treatment may not be known. Some 
questions may still need to be answered. For example, a drug may get FDA approval because it was 
shown to reduce the risk of cancer coming back after treatment. But does this mean that those who get 
it are more likely to live longer? Are there rare side effects that haven’t been seen yet, or side effects that 
only show up after a person has taken the drug for a long time? These types of questions may take many 
more years to answer, and are often addressed in phase IV clinical trials. These studies may also look 
at other aspects of the treatment, such as quality of life or cost effectiveness. 
 

5. Pilot Studies   

Pilot studies represent a fundamental phase of the research process. The purpose of conducting a pilot 
study is to examine the feasibility of an approach that is intended to be used in a larger scale/main study. 
A pilot study can be used to evaluate the feasibility of recruitment, randomization, retention, assessment 
procedures, new methods, and implementation of the novel intervention.  
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Conducting a pilot study prior to the main study can enhance the likelihood of success of the larger scale 
study and potentially help to avoid doomed main studies. Pilot studies should be well designed with clear 
feasibility objectives, clear analytic plans, and explicit criteria for determining success of feasibility. They 
should be used cautiously for determining treatment effects and variance estimates for power or sample 
size calculations. Finally, they should be scrutinized the same way as full-scale studies.  
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1. Cohort Studies 
 
In cohort studies, participants that have a particular common exposure (the cohort) are identified and 
outcomes are observed over time. In these studies, information about the risk factor or exposure is 
determined prior to the observation of the outcomes. Cohort studies can either be prospective or 
retrospective.  

1.1. Prospective Cohort Studies 

In prospective cohort studies, the risk factor or exposure and subsequent outcomes are observed after 
the beginning of the study. This is also known as a longitudinal study. The selection of participants is 
influenced by a variety of factors, including the type of exposure being investigated, the frequency of the 
exposure in the population, and the accessibility of participants, as well as the likelihood of their 
continuing participation. Unexposed participants should be sampled from the same (or comparable) 
source population as the exposed group. Both exposed and unexposed groups should not have the 
outcome being investigated and be equally susceptible to development of the outcome at the beginning 
of the study. The baseline characteristics of the exposed group should not differ systematically from those 
in the unexposed group for the exposure of interest. Equivalent information should be available on 
exposure and outcomes in both groups. Both groups should be accessible and available for follow-up. 

1.2. Retrospective Cohort Studies 

Retrospective cohort studies, sometimes called “chart reviews”, are carried out at the present time and 
look to the past to examine medical events or outcomes. Specifically, a cohort of participants selected 
based on exposure status is chosen at the present time, and outcome data (e.g. disease status, event 
status), which was measured in the past, are reconstructed for analysis. The primary disadvantage of 
this study design is the limited control the investigator has over data collection. The existing data may be 
incomplete, inaccurate, or inconsistently measured between participants. However, because of the 
immediate availability of the data, this study design is comparatively less costly and shorter than 
prospective studies and can provide valuable results to address important clinical research questions.  
 
Comparing effectiveness of interventions in retrospective studies is difficult because usually there are 
baseline differences between interventions.  In randomized controlled trials (RCTs), treatment influences on 
outcomes are usually considered as causal because the participants taking different treatments are 
supposed to be exchangeable (i.e., their characteristics, except the intervention that is evaluated, are 
expected to be the same).  However, in retrospective studies the assumption of exchangeability is not valid 
because participants are prescribed different medications precisely because they differ in prognostic factors. 
Hence, applying sound statistical methods to reduce confounding – a systematic error in a study that results 
from confusing the effect of the exposure of interest with other associated correlates of the outcome – is 
needed when analyzing retrospective studies. Propensity scores are a suitable methodology for adjusting 
for such differences and, therefore, for obtaining unbiased effectiveness estimates.  The goal of propensity 
scores is to balance observed covariates between participants from the treatment groups in order to mimic 
what happens in an RCT. 
 
In a balanced two-arm randomized trial, the propensity score of each subject is equal to 1/2 for every 
covariate (i.e., subjects with different observed covariates have the same probability of receiving treatment, 
and reversibly each possible value of the observed covariates is as likely to occur in either of the two groups.)  
Typically, in retrospective studies there are participants that are more likely to receive an aggressive 



Page 25 of  58 

 

treatment because of some of the pre-treatment characteristics included in the observed covariates.  
Analogously, other participants are more likely to receive a less aggressive treatment given their covariates. 
However, suppose that we compare two participants who have the same propensity score.  These 
participants could be different in terms of their observed covariates.  What is important is that these 
differences cannot predict which participant has more chance of receiving the aggressive treatment.  Given 
their observed covariates, both have the same probability to be treated despite being quite different in terms 
of their covariates.  Hence, if participants with the same propensity scores are grouped, both aggressively 
treated and less aggressively treated participants in these groups will have on average covariate patterns 
similar to those that would occur in a randomized trial.  
 

2. Case-Control Studies 
 
In case-control designs, participants are identified by whether or not they have the outcome of interest. 
Then a comparison of the groups with respect to exposures or some other attribute is made. These 
studies begin with case and control participants (i.e., the outcome of interest is known) and look back 
retrospectively at the participants’ exposures to find an association. One of the first steps in this design 
is to identify and select cases. Case identification should be very specific and the source population 
should be well defined. The criteria for a case should minimize the likelihood that true cases are missed, 
while simultaneously avoiding falsely classifying a nonaffected  participant as a case. The next key step 
is to identify and select controls. Ideally, controls are chosen at random from the source population. The 
selected control group must be at similar risk of developing the outcome.  
 
In addition to confounding being an issue in observational studies, selection bias is also a danger to the 
internal validity of observational studies; and this bias poses a particular threat to case-control studies. 
Selection bias occurs when there is a different probability of an participant being chosen to participate in 
a study or assigned to an intervention, and the characteristics of that participant are confounded with 
outcomes. Removing biases are central methodological issues in observational studies, therefore, 
applying sound statistical techniques to address these issues is essential. Ignoring these biases often 
results in incorrect estimates of the association or effect of the intervention. Of note, selection bias and 
confounding are not affected by sample size. While large sample sizes provide real advantages in the 
accurate and powerful detection of associations, their ability to identify causality is not as strong. Indeed, 
with a very large sample size, a small effect estimate can yield a very low p-value, making many claim 
cause and effect. Study design can be much more important than p-values in this context. No amount of 
elaborate statistical analysis can help an experiment that was conducted without attention to key issues 
such as study design, potential sources of variation, and confounding. Thus, study design and statistical 
analysis should go hand in hand. 

3. Cross-Sectional Studies 
 
In cross-sectional studies, the exposure and outcome information is assessed simultaneously at a single 
point in time. Unlike in cohort studies (participants selected based on exposure) or case-control studies 
(participants selected based on outcome), the participants in a cross-sectional study are merely selected 
based on the inclusion and exclusion criteria set for the study. These designs are often used for 
population-based surveys and to assess the prevalence of diseases in clinic-based samples.  Since 
cross-sectional studies are a one-time measurement of exposure and outcome, it is difficult to derive 
causal relationships from the analysis. However, the investigator can study the association between 
these measures. Cross-sectional studies can typically be conducted relatively fast and are inexpensive. 
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They may be useful for public health planning, monitoring, and evaluation. For example, the National 
AIDS Programme may conduct cross-sectional sentinel surveys among high-risk groups and ante-natal 
mothers every year to monitor the prevalence of HIV in these groups. 
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Investigators seeking statistical analyses for their research should meet with the statistician 
prior to any data collection.   
 
The following are the four approved MDACC databases: REDCap (Research Electronic Data 
Capture), Prometheus, DMI, MOCLIP 
 
Excel Spreadsheets 
 
Data that require relabeling or editing may prolong the time required to complete the statistical analyses.  
If data are not correctly entered or coded, inaccurate or incomplete analyses may result.  The following 
is a list of suggested data considerations that may minimize the time required to organize and prepare 
data for statistical analysis. 
 
1. Each row should have a unique identifier to keep track of which data correspond with a given subject 

or other experimental unit.  Preferably, this identifier will be recorded in the first column.  This identifier 
will typically be a medical record number (MRN) or accession number but may be another identifier.  
A unique identifier is required so that data queries can be resolved and also so that data may be 
merged between different datasets, if necessary. 

 
2. Each column should contain only one type of data.  Dates, text, and numbers are different types of 

data. 
 

For example, if a column contains lab values, as well as entries such as “N/A”, “<0.1”, “could not be 
determined”, “undetectable”, or “>1000000”, the data may be more difficult to process.  For example, 
including the “>” symbol in one cell of the column will cause a statistical analysis program to read in 
an entire column as text rather than as numeric values. 

 
3. Each column should contain only one piece of data (i.e., one variable).   

 
For example, systolic and diastolic blood pressure should be recorded in two separate columns.  
Instead of entering “144/88” in one column, the systolic pressure of 144 should be recorded in one 
column and the diastolic pressure of 88 in another. 

 
4. Columns of data should not include units. If units are necessary, the units should be recorded in a 

separate column or in the column header.  For example, if some weights are measured in kilograms 
and some in pounds, the units of measurement should be entered into the next column.  If all entries 
in the same column are based on the same unit, the unit of measure may be noted in the column 
header. 
 

5. Coding should be consistent. Multiple spellings and variable lengths must be reconciled prior to 
analysis.   

 
For instance, “male”, “Male”, “m”, “     M” and “M” are all different to the computer software and must 
be coded consistently prior to analysis. 

 
6. The use of Protected Health Information (PHI) should be kept to a minimum and on a need-to-know 

basis.  PHI includes the following information: 
1. Subject names 



Page 29 of  58 

 

2. All geographical subdivisions smaller than a State, including street address, city, county, 
precinct, zip code, and their equivalent geocodes, except for the initial three digits of a zip 
code, if according to the current publicly available data from the Bureau of the Census: (1) 
The geographic unit formed by combining all zip codes with the same three initial digits 
contains more than 20,000 people; and (2) The initial three digits of a zip code for all such 
geographic units containing 20,000 or fewer people is changed to 000. 

3. All elements of dates (except year) for dates directly related to an individual, including birth 
date, admission date, discharge date, date of death; and all ages over 89 and all elements of 
dates (including year) indicative of such age, except that such ages and elements may be 
aggregated into a single category of age 90 or old 

4. Phone numbers 
5. Fax numbers 
6. Electronic mail addresses 
7. Social Security numbers 
8. Medical record numbers 
9. Health plan beneficiary numbers 
10. Account numbers 
11. Certificate/license numbers 
12. Vehicle identifiers and serial numbers, including license plate numbers 
13. Device identifiers and serial numbers 
14. Web Universal Resource Locators (URLs) 
15. Internet Protocol (IP) address numbers 
16. Biometric identifiers, including finger and voice prints 
17. Full face photographic images and any comparable images 
18. Any other unique identifying number, characteristic, or code (note this does not mean the 

unique code assigned by the investigator to code the data) 

Per institutional policy ADM0335 Information Security Office Policy for the Use and Protection of 
Information Resources, PHI should NOT be sent outside MD Anderson (i.e., PHI should not be sent 
to/from non-MDACC email accounts).  In general, DO NOT SEND SUBJECT NAMES to the statistician. 
 
7. Records should be sorted carefully or not sorted at all.  
 

Excel has the capability of sorting a column independent of other columns.  This means that it is 
extremely easy to completely scramble the data in a spreadsheet. 

 
8. A key or “Data Dictionary” to define variables and describe possible values for variables should be 

provided. 
 

For example, a separate coding sheet should be provided detailing that the column named “N” 
indicates “Nodal status”, where value 0 corresponds to “negative” status and values 1-3 correspond 
to “positive” status.  

 
9. Colored cells or colored text should not be used to convey information. Separate columns should be 

used instead.  
 
For example, to denote different subject groups, use a separate column with a number or letter to 
identify each group and include this information in the data dictionary (A=group 1, B=group 2, etc.). 
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10. Empty cells should not be used to convey meaningful information, such as the lack of a condition.  In 

general, if data are missing for only one possible reason, empty cells can be used to indicate missing 
data.  However, if it’s desirable or necessary to distinguish between different reasons for a missing 
data value, separate codes or database fields should be used to distinguish between these types.  
For example,  
 

• Unknown values 
• Values that are not applicable 
• Not done 
• Not recorded 

 
11. Values below the limit of detection for an assay should not be listed as missing/unknown.  Instead, 

the statistician should be consulted as to the appropriate manner to record these data. 
 
12. Data field or variable names should be short, meaningful and unique.  Names exceeding two words 

should be avoided.  The length of the name should be within 12 characters.  Symbols such as ‘/’, ‘&’ 
‘( )’, ‘?’, etc. should be avoided.  Variable names may include numbers but cannot begin with a 
number. 

 
13. The variable names should be presented in the first row of the spreadsheet as the header for each 

column.  The other rows, beginning with row number 2 should contain the data values for each 
experimental unit (i.e., one row per subject). 
 

14. Cells should not be merged.    
 

15. Cells should not be hidden.   
 

16. The header row should not be duplicated down in the spreadsheet. 
 

17. Summary statistics should not be included in the same spreadsheet as the raw data. Summary 
statistics or results of preliminary statistical testing may be useful for reference, but these should not 
be placed in the same spreadsheet as the raw data.  Such results should be located in a separate 
spreadsheet or document, if necessary. 

 
18. For time intervals, start and end dates must be provided rather than a computed interval.   

For example, for survival calculations, the start date as well as the death date or last follow-up date 
are required, not simply a calculation of time. 
 

Examples of a less than ideal dataset and a better version of the same dataset are displayed below: 
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“Bad” Example Data Set: 
 

 
 
 
 
The above example violates data considerations #3, 4, 5, 6, 10, 17 and 18. 
 
 
 
 
“Better” Example Data Set: 
 

ID Group DOB Sex Race Status 
Death 
Date Creatinine SBP 

1 1 08/19/1955 M 1 0   123 
2 1 04/23/1953 F 1 1 06/12/2008 0.4 125 
3 1 10/31/1942 M 2 0  0.8 127 
4 0 05/06/1970 M 2 0   116 
5 0 11/12/1932 F 3 1 01/12/2009 2 115 
6 0 08/09/1952 F  1 09/25/2007 1.8 114 

 
Key       
Group 1 = Treatment DOB = Date of Birth  
Group 0 = Control SBP = Systolic Blood Pressure 
Status 1 = Dead     
Status 0 = Alive     
Creatinine units = mg/dL     
Race 1 = Black     
Race 2 = White     
Race 3 = Arab     
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STATISTICAL METHODOLOGY 
CATEGORICAL MEASURES 
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1. Analysis of Categorical Measures 
 

Categorical data analysis is concerned with the analysis of categorical measures (e.g., response), regardless 
of whether any accompanying explanatory variables are also categorical or are continuous.  An important 
consideration in determining the appropriate analysis of categorical variables is their scale of measurement.  
The scale of measurement of a categorical variable is a key element in choosing an appropriate analysis 
strategy.  By taking advantage of the methodologies available for the particular scale of measurement, a 
well-targeted strategy can be chosen.  If the scale of measurement is not taken into account, an inappropriate 
strategy may be chosen that could lead to erroneous conclusions. Categorical variables can be a) nominal; 
b) dichotomous; and c) ordinal. 
 

• Nominal variables are variables that have two or more categories, but which do not have an 
intrinsic order (e.g., red, blue, green, yellow). Of note, the different categories of a nominal 
variable can also be referred to as groups or levels of the nominal variable.  

• Dichotomous variables are nominal variables which have only two categories or levels (e.g., 
male, female)  

• Ordinal variables are variables that have two or more categories just like nominal variables only 
the categories can also be ordered or ranked (e.g., low, medium, high). 

 

1.1.  Dichotomous Variables 

Dichotomous variables are those that have two possible outcomes (e.g., response vs. no response).  The 2 
x 2 contingency table (see Table 1) is one of the most common ways to summarize categorical data. 
Generally, interest lies in whether there is an association between the row variable (Response at Day 90) 
and the column variable (Treatment).  The question of interest in this example is whether the PR or better 
response rates for Bu-Mel treatment (102/104; 98%) and Mel treatment (95/98; 97%) are the same. 

Table 1. Association between Treatment and Response 

 Treatment Total 

Response at Day 90 Bu-Mel Mel  

PR or better 102 95 197 

SD/PD 2 3 5 

Total 104 98 202 

 

The null hypothesis (i.e., H0) for this illustration is: There is no association between treatment and response 
at Day 90.  If the sample size in each cell is large enough, the statistic that is used to test the hypothesis is 
based on the chi-square statistic. However, if the counts in the table are too small to meet the sample size 
requirements necessary for the chi-square distribution to apply (rule of thumb: < 5 in any cell), exact methods 
are used to test the hypothesis of no association. Since the number of subjects with SD/PD is < 5 is in two 
cells in our example, an exact method should be employed. 
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Fisher’s Exact Test 

If we assume the margins of the 2 x 2 contingency table are fixed (i.e., 104, 98, 197, 5) then the significance 
level (i.e., p-value) is the probability of the observed data or more extreme data occurring under the null 
hypothesis. The two-sided Fisher’s exact p-value in our example is 0.675.   

 

Measures of Association 

Measures of association are used to assess the strength of an association.  For the 2 x 2 contingency table, 
one measure of association is the odds ratio (OR). 

For Table 1, the OR compares the odds of the Bu-Mel subjects having PR or better response to the odds of 
the Mel subjects having PR or better response.  It is computed as: 

          OR = 102/95 = 1.6 
                                                                                 2/3 
 
The OR ranges from 0 to infinity.  When the OR is 1, there is no association between the two variables.  If 
the OR is greater than 1, the Bu-Mel group is more likely than the Mel group to have PR or better response.  
If the OR is less than 1, then Bu-Mel is less likely than the Mel group to have PR or better response. 

 

Another measure of association is relative risk, which is the risk of developing a particular condition (e.g., 
cancer) for one group compared with another group.  In our example, the relative risk is computed as: 

  RR = 102/197 = 0.518 = 1.3 
               2/5           0.4 
 
 
1.2.  Logistic Regression Modeling 

In general, the overall idea of regression modeling is to examine two things: (1) does a set of 
predictor (explanatory) variables do a good job in predicting an outcome (dependent) variable?  (2) 
Which variables in particular are significant predictors of the outcome variable, and in what way do 
they–indicated by the magnitude and sign of the beta estimates–impact the outcome 
variable?  These regression estimates are used to explain the relationship between one dependent 
variable and one or more independent variables.   
 
Logistic regression is a form of statistical modeling that describes the relationship between a categorical 
variable and a set of explanatory variables.  The explanatory variables can be categorical or continuous. 
One of the advantages of logistic regression modeling is that model interpretation is possible through odds 
ratios, which are functions of model parameters. 
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Example: Is there an association between treatment and progression/death adjusting for age (65 years; > 
65 years), cytogenetic risk (high; standard), and R-ISS stage (I-II; III)? 

 

 

Measure Odds Ratio (95% CI) p-value 

Bu-Mel vs. Mel 0.77 (0.37, 1.59) 0.48 

> 65 years vs. 65 years 0.97 (0.39, 2.38) 0.94 

High vs. standard 0.73 (0.29, 1.82) 0.50 

III vs. I-II 1.85 (0.73, 4.71) 0.20 

 

 

Interpretation: In addition to the p-values being large, the odds ratios for each measure is close to 1 and the 
95% confidence interval contains 1, indicating that none of the measures were significantly associated with 
progression and/or death.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reference 
Stokes, M.E., Davis, C.S., and Koch, G.G., Categorical Data Analysis Using the SAS System, Cary, 
NC: SAS Institute Inc., 1995. 
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1. Continuous Measures 
 
Continuous variables are also known as quantitative variables and can be categorized as either interval 
or ratio variables. 
 

• Interval variables are variables for which their central characteristic is that they can be measured 
along a continuum and they have a numerical value (e.g., temperature). So the difference 
between 20°C and 30°C is the same as 30°C to 40°C.  

• Ratio variables are interval variables, but with the added condition that 0 (zero) of the 
measurement indicates that there is none of that variable. So, temperature measured in degrees 
Celsius is not a ratio variable because 0°C does not mean there is no temperature. However, 
temperature measured in Kelvin is a ratio variable as 0° Kelvin (often called absolute zero) 
indicates that there is no temperature whatsoever.  

 
It has been observed that the natural variation of many continuous variables tends to follow a bell-shaped 
distribution, with most values clustered symmetrically near the mean and a few values falling out on the tails. 
The bell-shaped distribution is also known as the normal (or Gaussian).  The shape and location of a normal 
distribution are completely determined by its mean and standard deviation (SD).  In a normal distribution, 
68% of the data fall within 1 SD of the mean (34% above, 34% below); 95% within 2 SD and 99.7% within 3 
SD of the mean (see figure).  For non-Gaussian distributions, the SD does not describe a known proportion 
of the observations. 
 

 
 
 

2. Analysis of Continuous Measures 
 
Analyses of continuous measures fall into two broad classifications of statistical procedures; parametric 
and non-parametric. Parametric analyses have the following assumptions about the underlying data: i.) the 
data were derived from a population in which the characteristic to be studied is normally distributed; ii.) 
the variances within the groups to be studied must be homogeneous; and iii.) the data are independent.  
These assumptions should be confirmed or assumed with good reason when using these tests.  If these 
assumptions are violated, the resulting statistics and conclusions will not be valid, and the tests may lack 
power relative to alternative tests. Non-parametric tests are sometimes called distribution-free 
tests because they are based on fewer assumptions (e.g., they do not assume that the outcome is 
approximately normally distributed). These tests assume that the underlying distributions have the same 
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shape and spread.  The cost of fewer assumptions is that non-parametric tests are generally less powerful 
than their parametric counterparts (i.e., when the alternative is true, they may be less likely to reject H0). 
 
The following table presents parametric tests and their non-parametric counterparts for specific types of 
analyses of continuous variable. For example: Say you were interested in evaluating whether a particular 
diet was effective, you could test the change in a person’s weight from baseline to 6 months to determine if 
it was significantly different from 0 (i.e., no change) using either a paired t-test or Wilcoxon signed-rank test. 
 
 

 
Analysis Type Parametric Test Non-parametric Test 
Compare quantitative measure between 
two distinct/independent groups 

 
Two-sample t-test 

 
Wilcoxon rank-sum test 

Compare two quantitative 
measurements taken from the same 
individual 

 
Paired t-test 

 
Wilcoxon signed-rank 
test 

Compare quantitative measurements 
between three or more 
distinct/independent groups 

 
Analysis of variance (ANOVA) 

 
Kruskal-Wallis test 

Estimate the degree of association 
between two quantitative variables 

Pearson coefficient of correlation Spearman’s rank 
correlation 

 
 
 
 

2.1. Linear Regression 
 
In linear regression, both the dependent and independent measures are continuous. Linear regression 
attempts to model the relationship between the dependent and independent measures by fitting a linear 
equation to observed data. A linear regression line has an equation of the form Y = α + β X, where X is 
the independent variable and Y is the dependent variable. The slope of the line is β and α is the intercept 
(the value of y when x = 0). 

 
 

Linear Regression Example: Is there an association between total number of radium doses and prostate 
specific antigen (PSA), hemoglobin, and alkaline phosphatase (ALK)? 

Measure β SE of β 95% LCI 95% UCI p-value 
Intercept 4.972 1.296 2.403 7.542 < 0.001 

PSA  -0.000 0.000 -0.001 0.001 0.56 

Hemoglobin  0.002 0.106 -0.208 0.212 0.99 
ALK  -0.001 0.001 -0.002 0.001 0.45 

 

Interpretation: In addition to the p-values being large, the slope, β, values are close to 0, indicating that 
there’s no association between total number of radium doses and the independent factors. 
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ANOVA Example: Is there an association between total number of radium doses and subjects with PSA > 
10 ng/mL, hemoglobin < 10 g/dL, and ALK ≥ 146 U/I? 

 
Measure β SE of β 95% LCI 95% UCI p-value 
Intercept 5.187 0.286 4.620 5.754 < 0.001 
PSA > 10 ng/mL 0.047 0.331 -0.610 0.704 0.89 

Hemoglobin < 10 g/dL 0.001 0.423 -0.837 0.840 1.00 

ALK ≥ 146 U/I -0.973 0.317 -1.601 -0.345 0.003 
 
 
 

Measure LS Means SE 
PSA   
   > 10 ng/mL 4.75 0.21 
   ≤ 10 ng/mL 4.70 0.32 

Hemoglobin    
   < 10 g/dL 4.73 0.38 
   ≥ 10 g/dL 4.72 0.19 

ALK    
   ≥ 146 U/I 4.24 0.26 
   < 146 U/I 5.21 0.27 

 
 

Interpretation: When the ALK measure is divided into two clinically meaning groups, a significant association 
between total number of radium doses and ALK is observed.  Subjects with ALK values ≥ 146 U/I received 
significantly fewer radium doses (least square [LS] means: 4.24) compared with those with ALK values 
< 146 U/I (LS means: 5.21). It may be more clinically meaningful to interpret these results using LS means 
(adjusted means) as opposed to slopes.  
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1. Analysis of Time-to-Event/Survival Measures 
 
In many medical studies the outcome of interest is the length of time until an event occurs, i.e., the time 
elapsed from one well-defined event, for example, start of treatment, to another well-defined event, for 
example, death.  For convenience, we will refer to this time as “survival time” and to the outcome as “death”, 
even though the outcome may be some other, possibly favorable, event such as disease remission.  The 
distribution of survival times is most often described in terms of the survival function, S(t).  This function is 
defined for each time t as the probability that an individual survives longer than time t.  The graph of S(t) 
against time is called the survival curve.  The distribution of survival times is also described in terms of the 
hazard function, h(t).  This function is defined as the probability that an individual dies during a short interval 
of time given that the individual survived up to that interval.   
 
Although survival time is a continuous variable, one cannot, in general, use standard analysis techniques for 
continuous measures with survival data because of the presence of censored observations.  Censored 
observations arise in subjects for whom the critical event has not yet occurred at the time of the analysis.  
Censored observations can arise if a subject is known to be alive when the analysis is carried out or is lost 
to follow-up during the course of a study.  The time to the last date the live subject was examined is known 
as the censored survival time.  Thus, the relevant response data for a survival analysis consists of two 
components:  (1)  the subject’s status at the last follow-up observation (e.g., dead or alive) and (2)  the length 
of time the subject was followed.  Special techniques have been developed to deal with censored survival 
data which take in account the information provided by censored observations.   
 

1.1.             Survival Function Estimation 
 
The two most common methods for estimating the survival function in the presence of censored data are 
the Kaplan-Meier product-limit method and the Cutler-Ederer (actuarial) life-table method.  These are both 
non-parametric methods which do not require specification of the functional form of the survival time 
distribution (which is often unknown).   
 
In the life-table method, survival times are grouped into convenient intervals.  The probability of dying during 
an interval is computed for each interval and the survival function is taken as the product of the survival 
probabilities for succeeding intervals.  This method assumes that censored observations are uniformly 
distributed within each interval and that the risk of death is fairly constant within each interval.  The product-
limit can be considered as a special case of the life-table estimate where each interval contains only one 
observation.  In the Kaplan-Meier approach, the intervals are determined by the data and thus the results 
are not dependent on the user’s choice of time intervals.   
 

1.2. Comparing Survival Distributions 
 
If subjects are divided into groups according to treatment or prognosis, then the survival function can be 
estimated for each group, and a test of equality of the survival functions across groups may be performed.  
Because survival times are positively valued and often highly skewed, nonparametric tests are most often 
used to make comparisons.  In the absence of censoring, standard nonparametric tests could be used to 
compare survival distributions, however, for censored data, special tests are needed.  The tests most often 
encountered are nonparametric linear rank tests:  typically, the Mantel-Cox log-rank test, and the Breslow-
Gehan generalized Kruskal-Wallis test.  These tests accumulate weighted differences over time between 
what is observed and what would have been expected under the null hypothesis of equivalence.  Different 
weights lead to different test statistics.  Each test is sensitive to a characteristic pattern of difference between 
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survival distributions being compared.  Hence one should decide beforehand what pattern of difference is 
most important clinically and select a significance test that has good statistical power for detecting differences 
of that type.  The Mantel-Cox test gives equal weight to all observations.  The Breslow-Gehan test gives 
greater weight to early observations, thus it is less sensitive than the Mantel-Cox test to late events when 
few subjects remain in the study.   
 
When interpreting the results of the statistical tests for comparing survival time distributions, consideration 
should be given to the sample size of subjects used, and the pattern and amount of censoring.  The number 
of subjects is important, since the distribution of the test statistics and reported p-values are based on 
asymptotic (large sample) statistical theory.  Thus, ideally the test statistics are calculated using a large 
sample of subjects.  When only a small sample of subjects is used, the test results should be interpreted 
with care. 
 
 
 
Example: Is there a difference in progression-free survival between Bu-Mel and Mel subjects? 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

median 

Number at risk 
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Stratum 1: Bu-Mel 

 
Product-Limit Survival Estimates 

pfsmnths   Survival Failure Survival Standard 
Error 

Number 
Failed 

Number 
Left 

0.0000   1.0000 0 0 0 104 

0.6571   0.9904 0.00962 0.00957 1 103 

0.9528 * . . . 1 102 

2.1355 * . . . 1 101 

2.9569 * . . . 1 100 

2.9897 * . . . 1 99 

4.0411 * . . . 1 98 

4.1068 * . . . 1 97 

5.5524   0.9802 0.0198 0.0139 2 96 

7.8522   0.9700 0.0300 0.0171 3 95 

9.0349 * . . . 3 94 

10.2834   0.9596 0.0404 0.0198 4 93 

11.0390   0.9493 0.0507 0.0221 5 92 

11.0390 * . . . 5 91 

11.1704 * . . . 5 90 

11.4990   0.9388 0.0612 0.0242 6 89 

11.7618   0.9282 0.0718 0.0262 7 88 

11.7618 * . . . 7 87 

11.9261 * . . . 7 86 

12.0246 * . . . 7 85 

12.0246 * . . . 7 84 

12.1889   0.9172 0.0828 0.0281 8 83 

12.2218 * . . . 8 82 

12.4517 * . . . 8 81 

12.5503 * . . . 8 80 

12.6817 * . . . 8 79 

13.0431 * . . . 8 78 
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Product-Limit Survival Estimates 

pfsmnths   Survival Failure Survival Standard 
Error 

Number 
Failed 

Number 
Left 

13.1088   0.9054 0.0946 0.0301 9 77 

13.4374 * . . . 9 76 

13.7988 * . . . 9 75 

13.7988 * . . . 9 74 

13.9959   0.8932 0.1068 0.0321 10 73 

14.2916 * . . . 10 72 

14.3573 * . . . 10 71 

15.6057 * . . . 10 70 

15.8029 * . . . 10 69 

16.1314 * . . . 10 68 

16.4600   0.8801 0.1199 0.0342 11 67 

16.6242 * . . . 11 66 

17.3470 * . . . 11 65 

17.4456 * . . . 11 64 

17.5441 * . . . 11 63 

17.8398 * . . . 11 62 

17.9713 * . . . 11 61 

18.0370   0.8656 0.1344 0.0365 12 60 

18.0370 * . . . 12 59 

18.1684 * . . . 12 58 

18.3984 * . . . 12 57 

18.4641 * . . . 12 56 

18.5955 * . . . 12 55 

18.7269 * . . . 12 54 

18.9240 * . . . 12 53 

19.3511 * . . . 12 52 

20.0411 * . . . 12 51 

21.1253 * . . . 12 50 

21.2238 * . . . 12 49 
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Product-Limit Survival Estimates 

pfsmnths   Survival Failure Survival Standard 
Error 

Number 
Failed 

Number 
Left 

21.8809 * . . . 12 48 

22.4066   0.8476 0.1524 0.0400 13 47 

22.8008 * . . . 13 46 

23.0308 * . . . 13 45 

23.4908 * . . . 13 44 

23.4908 * . . . 13 43 

24.1150 * . . . 13 42 

25.9548   0.8274 0.1726 0.0438 14 41 

26.4805   0.8072 0.1928 0.0472 15 40 

26.6776 * . . . 15 39 

29.8973   0.7865 0.2135 0.0503 16 38 

31.6386   0.7658 0.2342 0.0531 17 37 

32.9199   0.7451 0.2549 0.0555 18 36 

35.1211   0.7244 0.2756 0.0577 19 35 

38.3737 * . . . 19 34 

39.2936   0.7031 0.2969 0.0598 20 33 

39.3265 * . . . 20 32 

39.9179 * . . . 20 31 

40.3450   0.6804 0.3196 0.0620 21 30 

41.0678 * . . . 21 29 

41.7906 * . . . 21 28 

41.8563 * . . . 21 27 

41.9877 * . . . 21 26 

42.0534 * . . . 21 25 

43.1704   0.6532 0.3468 0.0653 22 24 

43.9589 * . . . 22 23 

44.1232 * . . . 22 22 

44.7146   0.6235 0.3765 0.0687 23 21 

45.3060 * . . . 23 20 
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Product-Limit Survival Estimates 

pfsmnths   Survival Failure Survival Standard 
Error 

Number 
Failed 

Number 
Left 

45.5359 * . . . 23 19 

45.6016 * . . . 23 18 

46.0287 * . . . 23 17 

47.1129 * . . . 23 16 

47.1129 * . . . 23 15 

47.6715 * . . . 23 14 

48.0000 * . . . 23 13 

48.1643 * . . . 23 12 

48.3943 * . . . 23 11 

48.5914 * . . . 23 10 

48.7228 * . . . 23 9 

49.2156 * . . . 23 8 

50.1027 * . . . 23 7 

50.5298 * . . . 23 6 

56.6407 * . . . 23 5 

56.8378 * . . . 23 4 

57.2977 * . . . 23 3 

59.2690 * . . . 23 2 

63.9671 * . . . 23 1 

64.6899   0 1.0000 . 24 0 
 

Note: The marked survival times are censored observations. 
 

Quartile Estimates 

Percent Point 
Estimate 

95% Confidence Interval 

Transform [Lower Upper) 

75 64.6899 LOGLOG . . 

50 64.6899 LOGLOG 44.7146 64.6899 

25 32.9199 LOGLOG 22.4066 44.7146 
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Stratum 2: Mel 
 

 
Quartile Estimates 

Percent Point 
Estimate 

95% Confidence Interval 

Transform [Lower Upper) 

75 . LOGLOG 48.1971 . 

50 43.5318 LOGLOG 25.7248 . 

25 19.8768 LOGLOG 13.4374 25.7248 
 
 
Interpretation: Bu-Mel subjects experience significantly longer PFS median [95% CI] compared with their 
Mel counterparts (64.7 [44.7, 64.7] vs. 43.5 [25.7, not estimated]; p=0.014). 
 
 
Note: The difference between the median follow-up time and median OS results from subjects who were 
alive at their last follow-up visit and how censoring is handled in computing Kaplan-Meier estimates. For 
example, the median follow-up time for the Bu-Mel group was 22.6 months and for the Mel group was 
20.2 months.  If all subjects had died, then the median OS times would be the same as the median follow-
up times. 
 
 

1.3.     Cox Proportional Hazards Regression Modeling 

Survival analysis methods can also be extended to assess several risk factors simultaneously, similar to 
multiple linear and multiple logistic regression analysis. One of the most popular regression techniques 
for survival analysis is Cox proportional hazards regression, which is used to relate one or several 
independent factors, considered simultaneously, to survival time. In a Cox proportional hazards 
regression model, the measure of effect is the hazard rate, which is the risk of failure (i.e., the risk or 
probability of suffering the event of interest), given that the participant has survived up to a specific time. 
There are several important assumptions for appropriate use of the Cox proportional hazards regression 
model, including: i.) independence of survival times between distinct individuals in the sample; ii.) a 
multiplicative relationship between the independent factors and the hazard (as opposed to a linear one 
as was the case with multiple linear regression analysis); and iii.) a constant hazard ratio over time (i.e., 
proportional hazards). There are many advantages to the Cox model, one is its ability to include time-
dependent covariates, specifically those factors that can change after the start time (e.g., experiencing 
acute GVHD after transplantation). 

 
 
 
Example: Is there an association between treatment group and progression-free survival adjusting for age, 
ethnicity, cytogenetic risk, ISS, response to induction therapy, and randomization algorithm?  
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Measure Hazard Ratio (95% CI) p-value 
Bu-Mel vs. Mel 0.57 (0.30, 1.10) 0.09 

> 65 vs. ≤ 65 years of age 1.06 (0.48, 2.32) 0.89 

High vs. Standard Cytogenetic Risk 1.29 (0.60, 2.78) 0.52 

R-ISS Stage III vs. other  1.24 (0.58, 2.64) 0.58 

PR or better to induction therapy vs. 
worse than PR 

 
0.58 (0.18, 1.91) 

                      
0.37 

2nd vs. 1st Randomization Algorithm  2.33 (0.45, 12.19) 0.32 
 
 
 
Interpretation: Adjusting for covariates, Bu-Mel subjects experienced a decreased risk of progression/death 
compared with Mel subjects, however, this difference was not statistically significant at the 5% α-level. 

 
 
 

1.4. Competing Risks Analysis 
 
Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose 
occurrence precludes the occurrence of the primary event of interest. For instance, in a study in which 
the primary outcome is time to disease progression, death without disease progression would serve as 
a competing event. A subject who dies is no longer at risk of progression. Regardless of how long the 
duration of follow-up is extended, a subject will not be observed to progress once he or she has died. 
Conventional statistical methods for the analysis of survival data assume that competing risks are absent. 
Estimating the incidence of an event as a function of follow-up time provides important information on the 
absolute risk of an event. In the absence of competing risks, the Kaplan-Meier estimate of the survival 
function is frequently used for estimating the incidence function. One minus the Kaplan-Meier estimate 
of the survival function provides an estimate of the cumulative incidence of events over time. However, 
using the Kaplan-Meier estimate of the survival function to estimate the incidence function in the presence 
of competing risks generally results in upward biases in the estimation of the incidence function. The 
problem here is that the Kaplan-Meier estimator estimates the probability of the event of interest in the 
absence of competing risks, which is generally larger than that in the presence of competing risks.  
 
The Cumulative Incidence Function (CIF), as distinct from 1 – S(t), allows for estimation of the incidence 
of the occurrence of an event while taking competing risks into account. This allows one to estimate 
incidence in a population where all competing events must be accounted for in clinical decision making. 
The cumulative incidence function for the kth cause is defined as: CIFk(t) = Pr(T ≤ t,D = k), where D is a 
variable denoting the type of event that occurred. A key point is that, in the competing risks setting, only 
1 event type can occur, such that the occurrence of 1 event precludes the subsequent occurrence of 
other event types. The function CIFk(t) denotes the probability of experiencing the kth event before time 
t and before the occurrence of a different type of event.  
 
The CIF has the desirable property that the sum of the CIF estimates of the incidence of each of the 
individual outcomes will equal the CIF estimates of the incidence of the composite outcome consisting of 
all of the competing events. Unlike the survival function in the absence of competing risks, CIFk(t) will not 
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necessarily approach unity as time becomes large, because of the occurrence of competing events that 
preclude the occurrence of events of type k.  
Example: Is there a difference in cumulative incidence of relapse, where death is a competing risk, 
between Bu-Mel and Mel subjects? 
 

 
 
 
 
 
Interpretation: The cumulative incidence relapse rate was significantly lower for Bu-Mel subjects compared 
with Mel subjects (34% vs. 63%; p=0.003).  
 
 
 
 
 
References 

1. Allison, Paul D., Survival Analysis Using the SAS® System: A Practical Guide, Cary, NC: SAS 
Institute Inc., 1995, 292 pp. 

2. Austin, PC, Lee, DS, and Fine, JP. Introduction to the Analysis of Survival Data in the Presence 
of Competing Risks. Circulation. 2016 Feb 9; 133(6): 601-609. 
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1. Bayesian Methods 
 
The field of statistics exists because it is usually impossible to collect data from all individuals of interest 
(population). Our only solution is to collect data from a subset (sample) of the individuals of interest, but 
our real desire is to know the “truth” about the population. Quantities such as means, standard deviations 
and proportions are all important values and are called “parameters” when we are talking about a 
population. Since we usually cannot get data from the whole population, we cannot know the values of 
the parameters for that population. We can, however, calculate estimates of these quantities for our 
sample. When they are calculated from sample data, these quantities are called “statistics.” A statistic 
estimates a parameter. 

There are two schools of thought when it comes to statistical methodology; i.) frequentist view and ii.) 
Bayesian view.  The analysis methods described thus far represent the frequentist approach. When carrying 
out statistical inference, that is, inferring statistical information from probabilistic systems, the two 
approaches have very different philosophies. 

Frequentist statistics assumes that probabilities are the frequency of particular random events occurring 
in a long run of repeated trials. For example, as we roll a fair (i.e. unweighted) six-sided die repeatedly, 
we would see that each number on the die tends to come up 1/6 of the time. Whereas, Bayesian inference 
interprets probability as a measure of believability or confidence that an individual may possess about 
the occurrence of a particular event. For example, we may have a prior belief about an event, but our 
beliefs are likely to change when new evidence is brought to light. Bayesian statistics gives us a solid 
mathematical means of incorporating our prior beliefs, and evidence, to produce new posterior beliefs. 
Frequentist statistics tries to eliminate uncertainty by providing estimates. Bayesian statistics tries 
to preserve and refine uncertainty by adjusting individual beliefs in light of new evidence. 

 
 
The following table summarizes the differences between the frequentist and Bayesian approaches: 
 

Frequentist Bayesian 
Parameters are fixed, but unknown Parameters are unknown; therefore they 

have a subjective probability distribution 
Data are random, until collected Data are fixed once they are observed 
After data are collected, the only 
thing that is random is potential 
future data based on repeated 
sampling 

 
Parameters are random 

Inferences are made conditional on 
future, unobserved data 

Inference are made conditional on the 
current data and come from the posterior 
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Bayes Theorem: 
 

Pr(A | B) = Pr(B | A) Pr(A) 
              Pr(B) 

 
 

Bayes Theorem: Fun Example 
 
Scenario: You go to a friend’s party.  30% of his friends are Statisticians.  You know that 70% of 
Statisticians are Geeks and 10% of Non-Statisticians are Geeks.  You meet a person who is clearly a 
Geek.  What is the probability s/he is a Statistician? 
 

Pr(Statistician|Geek) = Pr(Geek|Statistician) x Pr(Statistician) 
                                         Pr (Geek) 

 
                Pr(S|G)    =    ______  Pr(G|S) x Pr(S)___________ 

Pr(G|S) x Pr(S) + Pr(G|¬ S) x Pr(¬ S) 
 

                                                         =     ____.70 x .30____ 
                                                               .70 x .30 + .10 x .70 
 
                                                         =            .75  
 
 
 
 

1.1. Bayesian Survival Analysis Example 

Is there an association between treatment group and progression-free survival adjusting for age, ethnicity, 
cytogenetic risk, ISS, response to induction therapy, and randomization algorithm?  
 
Fitted Bayesian piecewise exponential survival time regression model for progression-free 
survival time (N=157, number of events=39) 
 

 Posterior Quantities 
 

Measure Comparison 
 

Mean of β 
 

SD of β 
Posterior 95% 

Credible Interval 
 

Pr(β > 0 | Data) 
Bu-Mel vs. Mel -0.572 0.342 -1.258 0.077 0.045 

> 65 vs. ≤ 65 years of age -0.007 0.418 -0.826 0.795 0.513 

High vs. Standard Cytogenetic Risk 0.200 0.395 -0.555 0.983 0.697 

R-ISS Stage III vs. other  0.235 0.389 -0.563 0.957 0.730 

PR or better to induction therapy vs. 
worse than PR 

-0.375 0.639 -1.552 0.893 0.256                                                     

2nd vs. 1st Randomization Algorithm  -0.296 0.862 -2.055 1.289 0.397 
Bu-Mel vs. Mel Mean HR (95% HPD Interval) = 0.60 (0.25, 1.01). 
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Interpretation: The posterior probability that Bu-Mel is superior to Mel was 0.95 for PFS, adjusting for age, 
ethnicity, cytogenetic risk, ISS, response to induction therapy, and randomization algorithm.  The mean 
hazard ratio (95% credible interval) was 0.60 (0.25, 1.01). [Reminder: The HR (95% CI) for Bu-Mel vs. 
Mel from Cox model was 0.57 (0.30, 1.10).] 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reference 
Bayesian Statistics: A Beginner’s Guide. QuantStart.Tutorial. 

Posterior Probability = 
0.955 that Busulfan + 
Melphalan is Superior 
to Melphalan Alone 
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1. What exactly is a p-value? 
 
The p-value, or calculated probability, is the probability of finding the observed, or more extreme, results 
when the null hypothesis (H0) of a study question is true – the definition of ‘extreme’ depends on how 
the hypothesis is being tested. The null hypothesis is usually a hypothesis of "no difference" e.g. no 
difference between two treatment groups. The null hypothesis for each study question should be clearly 
defined before the start of your study. The alternative hypothesis (H1) is the opposite of the null 
hypothesis; this is the hypothesis you set out to investigate. For example, question is "is there a significant 
(not due to chance) difference in response between Bu-Mel and Mel alone?" and alternative hypothesis 
is "there is a difference in response between Bu-Mel and Mel alone.” 

 
 
The p-value computed can be from either a one-tailed statistical test (one-sided p-value) or a two-tailed 
statistical test (two-sided p-value). If you are using a significance level of 0.05, a one-tailed test allots all 
of the alpha to testing the statistical significance in the one direction of interest.  This means that 0.05 is 
in one tail of the distribution of your test statistic (see figure). When using a one-tailed test, you are testing 
for the possibility of the relationship in one direction and completely disregarding the possibility of a 
relationship in the other direction.  Using the same significance level of 0.05, a two-tailed test allots half 
of your alpha to testing the statistical significance in one direction and half of your alpha to testing 
statistical significance in the other direction.  This means that 0.025 is in each tail of the distribution of 
your test statistic. When using a two-tailed test, regardless of the direction of the relationship you 
hypothesize, you are testing for the possibility of the relationship in both directions.  The only situation in 
which you should use a one-sided p-value is when a large change in an unexpected direction would have 
absolutely no relevance to your study. This situation is unusual; if you are in any doubt then use a two-
sided p-value. 
 
The significance level (alpha [α]) is the probability of incorrectly rejecting the null hypothesis (type I error 
or “false positive”) (see table below). The significance level (α) is used to refer to a pre-chosen probability 
and the term "p-value" is used to indicate a probability that is computed after a given study. If the pre-
specified p-value is less than the chosen significance level (α), then you reject the null hypothesis (i.e. 
accept that your sample gives reasonable evidence to support the alternative hypothesis). It does NOT 
imply a "meaningful" or "important" difference; that is for you to decide when considering the real-world 
relevance of your result. The choice of significance level at which you reject H0 is arbitrary. 
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Conventionally, significance levels (α) of 5% (less than 1 in 20 chance of being wrong), 10% and 1% 
have been used.  
 
 

  DECISION 
TRUTH Do Not Reject H0:  Reject H0:  
H0 is true: correct decision P “false positive” 
  1- α α (significance) 
H0 is false: “false negative” correct decision P 
  β 1- β (power) 
P = probability 

 
 
The American Statistical Association’s statement on statistical significance and p-values: 

1. P-values can indicate how incompatible the data are with a specified statistical model. 
2. P-values do not measure the probability that the studied hypothesis is true, or the probability 

that the data were produced by random chance alone. 
3. Scientific conclusions and business or policy decisions should not be based only on whether 

a p-value passes a specific threshold. 
4. Proper inference requires full reporting and transparency. 
5. A p-value, or statistical significance, does not measure the size of an effect or the importance of 

a result. 
6. By itself, a p-value does not provide a good measure of evidence regarding a model or 

hypothesis. 
 
Good statistical practice, as an essential component of good scientific practice, emphasizes principles 
of good study design and conduct, a variety of numerical and graphical summaries of data, 
understanding of the phenomenon under study, interpretation of results in context, complete reporting 
and proper logical and quantitative understanding of what data summaries mean. No single index 
should substitute for scientific reasoning.  
 

1.1. Multiple Comparisons 
 

A scientific conclusion is always drawn from the statistical testing of hypothesis, in which the chosen 
significance level (α), is used for decision-making. However, the probability of committing false statistical 
inferences is considerably increased when more than one hypothesis is simultaneously tested (namely 
the multiple comparisons), which therefore requires proper adjustment. In statistical inference, a p-value 
is directly or indirectly computed for each hypothesis and then compared with the pre-specified 
significance level (α) for determining if the H0 should be rejected or not. Therefore, there are two ways 
for adjusting the statistical inference of multiple comparisons. First, it could directly adjust the observed 
p-value for each hypothesis and keep the pre-specified significance level (α) unchanging; and this is 
referred to as the adjusted p-value (e.g., analysis). Second, an adjusted cut-off corresponding to the 
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initially pre-specified (α) could be computationally determined and then compared with the observed p-
value for statistical inference (e.g., sample size/power computation).  
 
In the ideal world, we would be able to define a "perfectly" random sample, the most appropriate test and 
one definitive conclusion. We simply cannot. What we can do is try to optimize all stages of our research 
to minimize sources of uncertainty.  
  
2. Confidence Intervals 

 
The p-value, which is the final common pathway for nearly all statistical tests, conveys no information about 
the extent to which two groups differ or two variables are associated.  P-values, therefore, are not good 
measures of the strength of the relation between study variables. By choosing a measure that quantifies the 
degree of association or effect in the data and then calculating a confidence interval, researchers can 
summarize the strength of association in their data and allow for random variation in a simple and 
unambiguous way. 
 
The statement that "the difference between treatments is not statistically significant (p>0.05)” amounts to a 
statement that the trial results are consistent with there being no difference between treatments and is not 
at all the same as saying that there is actually no difference. Confidence limits can advance our 
understanding; the width of the interval is a guide to how precisely or sensitively a parameter of interest can 
be estimated. 
 
In statistical terms, the confidence interval means that if a series of identical studies were carried out 
repeatedly on different samples from the same populations and a 95% confidence interval was calculated in 
each study, then, in the long run, 95% of these confidence intervals would include the population value, thus, 
(in simpler and less exact terms) "there is a 95% chance that the indicated range includes the true population 
value”]. 
 
The general form for a confidence interval is: 
 
 estimate + (factor related to confidence level) x (standard error of the estimate). 
 
A single study usually gives an imprecise sample estimate of the overall population value of interest.  This 
imprecision is indicated by the width of the confidence interval:  the wider the interval the less precision.  The 
width depends essentially on three factors.  Firstly, the sample size:  large sample sizes will give more 
precise results with narrower confidence intervals.  In particular, wide confidence intervals emphasize the 
unreliability of conclusions based on small samples.  Secondly, the variability of the characteristic being 
studied:  the less variable it is, the more precise the sample estimate and the narrower the confidence 
interval.  Thirdly, the degree of confidence required:  the more confidence the wider the interval. 
 
It should clearly be understood that a difference which is statistically significant may or may not be 
clinically relevant and a difference which is statistically non-significant does not necessarily imply 
a clinically unimportant finding.  Calculating confidence intervals is an effective tool in providing 
information which can readily be interpreted clinically since it quantifies the magnitude of the differences 
directly on the scale in which the data were measured or determined. 
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3. Univariate vs. Multivariate vs. Multivariable 
 
Univariate analysis refers to statistical methods that explore the relationship between one dependent 
variable and one independent variable: 
 
Example Model:                                   Response      =      Treatment 
                      (dependent variable)    (independent variable) 
 
 
Multivariable analysis (or multiple regression) refers to statistical methods that explore the relationship 
between one dependent variable and more than one independent variable:  
 
Example Model:   Response      =      Treatment + Gender + Age + Disease Status 
                                    (dependent variable)                        (independent variables) 
 
 
Multivariate analysis refers to a broad category of statistical methods used when more than one dependent 
variable at a time is analyzed for a subject. In multivariate analysis, models that predict a vector of responses 
for each observation can be fit simultaneously. 
 
Example Model:                    Response, Toxicity     =      Treatment + Gender + Age + Disease Status 
                                            (dependent variables)                          (independent variables) 
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