
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI)

Vol. 7, No. 2, August 2021, pp. 296-305

ISSN: 2338-3070, DOI: 10.26555/jiteki.v7i2.21169 296

Journal homepage : http://journal.uad.ac.id/index.php/JITEKI Email : jiteki@ee.uad.ac.id

Analysis and Implementation of Microservice Architecture Related

to Patient Drug Schedule Based on FHIR Standard

Ariq Musyaffa Ramadhani, Andrian Rakhmatsyah, Rahmat Yasirandi
School of Computing Telkom University, Bandung, Indonesia

ARTICLE INFO ABSTRACT

Article history:

Received July 20, 2021

Revised August 07, 2021

Accepted September 01, 2021

 In several previous studies, smart devices have been developed to help

improve a patient's medication adherence but have problems, namely data

management that is not centralized and not integrated, so that mitigation is

quite vulnerable. In this study, a platform was built that can manage data

centrally and apply the FHIR (Fast Healthcare Interoperability Resources)

health data standard. The main components used to implement the FHIR

standard are resources and REST APIs. The resource is a data model that

defines the structure and data elements that are exchanged. This data exchange

is carried out on top of the REST API using the HTTP protocol. Platform

testing uses positive/negative testing and stress testing methods to be able to

see the performance of the platform. The test results show that the platform

prototype can provide a response that is in accordance with the request given

and has a very tolerant error value of 0% with a latency value of 3 to 22 seconds

with a total of 100 to 130 users.

Keywords:

Centralized System;

Platform;

Medical Adherence;
FHIR

This work is licensed under a Creative Commons Attribution-Share Alike 4.0

Ariq Musyaffa Ramadhani,

School of Computing, Telkom University, Bandung, Indonesia

Email: ariqramadhan@student.telkomuniversity.ac.id

1. INTRODUCTION

Healing of diseases such as cancer and hypertension does not only depend on skilled medical personnel

but also with adherence to drug therapy but the level of awareness to consume drugs regularly is still low [1].

WHO has reported that patients who are in the long-term therapy have adherence rates of only 50% in

developed countries, even lower rates in developing countries [2]. Research in [3] showed that CML patients

required adherence rates of more than 90% to be able to improve treatment in cases of Imatinib use. According

to a survey conducted in research [4] From 2,546 questionnaires spread across 63 countries, it shows that there

are 32.7% of people whose level of adherence to taking their medication is high, 46.5% is moderate, and 20.7%

is low in cases of Chronic Myelogenous Leukemia (CML). As stated in research [5], poor medication adherence

can lead to a variety of conditions, namely, significant deterioration of the disease, treatment failure, and

increased health care costs. In comparison, study in [6] says that low rates of medication adherence in the

United States lead to an annual expenditure of $290 billion.

According to research in [2], medication adherence problems can be overcome by utilizing technological

developments, especially on smartphones, considering that smartphone users are estimated to reach 2 billion

users. However, relying solely on reminders is not enough to increase drug adherence rates. Research [7] said

that the use of reminders is not enough. Other interventions are needed to increase the level of medication

adherence. According to research [3] and [1], direct monitoring from the pharmacist or doctor greatly affects

the increase in the rate of adherence to taking medication.

In research [8], Smart Medicine Box has been implemented, but both device configuration data and data

from using the device are stored directly on the smartphone. Similar to research [8], research [9] developed a

smart pill dispenser that can be connected to a smartphone as a reminder, but in this study, compliance data is

only stored on smartphones. This can result in data mitigation being quite vulnerable, considering that the data

stored is only on the smartphone. In research [10] has developed an IoT-based smart medicine dispenser. The

developed smart medicine dispenser is connected to the internet network to be able to store medication

http://dx.doi.org/10.26555/jiteki.v7i2.21169
http://journal.uad.ac.id/index.php/JITEKI
jiteki@ee.uad.ac.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
https://creativecommons.org/licenses/by-sa/4.0/deed.id
mailto:ariqramadhan@student.telkomuniversity.ac.id

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 297

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

adherence data in the database. However, in this study, there was no monitoring feature available that could be

used by medical parties.

Therefore, a platform that can accommodate patient medication compliance data and has a monitoring

feature to be used by medical parties is needed. The platform must also have standards to improve system

interoperability so that it has a wider utilization [11]. The research contribution is to analyze and designs a

platform prototype that has standards to manage adherence data centrally and can manage mass use, and also

can provide data services to interested stakeholders authorized.

2. RESEARCH METHOD

There are two types of user roles in the system built, namely doctor users and patient users (Fig. 1). Users

can only view statistics on drug compliance data and laboratory report data from their patients in the doctor's

role. In the role of the patient, the user becomes a source of input for data on drug compliance and laboratory

results report data. Laboratory result report data is obtained from patient-user input manually through an

Android-based application. Data on drug compliance is obtained through user interaction with an external

entity that can monitor the user's medication's timeliness. External entities here can be in the form of Smart

Medicine Box, Smart Pill Dispenser, and other similar devices. Research [8] used Bluetooth Low Energy

(BLE) as a connection medium between the Smart Medicine Box and the user's smartphone. In this study, the

external entity was simulated using an Android-based application installed on a smartphone. This application

simulates triggers obtained from user interactions with external entities when taking drugs. The trigger is then

sent to another smartphone with the main application installed via a Bluetooth connection, and then the

adherence data is forwarded to the platform.

Fig. 1. Platform Design in general

2.1. Platform Prototype Design

The prototype platform uses the FHIR (Fast Healthcare Interoperability Resources) standard. The use of

the FHIR standard aims to improve platform interoperability so that it can be interconnected with platforms

that apply the same standard so that it has the potential to reach a broader range of users [12]. FHIR was chosen

because it has been recognized by several large companies such as Amazon, IBM, Google, and Apple as the

standard for exchanging health data [13]. The role of a platform is to provide the services required by the client.

These services result from data processing, so data is the main thing in the services provided by the platform.

As stated in the System Design section, the platform prototype provides services for doctors to monitor their

patients, so that this platform prototype requires patient and doctor data models. Doctor users require data on

drug compliance, and laboratory test results data are also needed as supporting data. The fields used in the

patient and doctor data model can be seen in Table 1. The fields used in each data model are Table 1 [14].

Fields used in the schedule/adherence data model taking medication and the laboratory test results are

based on an application called CML Today, which is available in the Play Store for Android Smartphones.

Mapping models data into the FHIR Resource form is carried out to be able to apply the FHIR standard to the

prototype platform built. Platform prototype using FHIR (Fast Healthcare Interoperability Resources). Four

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

298 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

FHIR Resource models are used, namely, Resource Practitioner to represent doctor user data, Resource Patient

to represent patient-user data, Resource DiagnosticReport to represent data on patient laboratory test results,

and MedicationStatement to represent drug schedule data. Platforms using the JSON data format. The JSON

format is used because it has a level of popularity and effectiveness is quite high [15] and because of its simple

structure [16].

Table 1. Fields used in each data model

Data Model Field
Patients a) Name

b) Gender

c) Photo

d) Contact

e) Doctor in charge

f) Schedule/Adherence data

g) Laboratory result data

Doctor a) Name

b) Gender

c) Photo

d) Contact

e) Patients

Medication schedule/adherence a) Data owner(patient)

b) Schedule

c) Time drug taken

d) Medication name

e) Dosage

f) Note

Laboratory Results a) Data owner(patient)

b) Laboratory results validity period

c) BCR_ABL value

d) White blood cell value

e) Hemoglobin value

f) Trombosit value

g) Hematocrit value

h) Eritrosit value

i) Note

2.2. REST Server Design

To be able to apply the FHIR standard also requires a REST Server that uses the HTTP (Hypertext

Transfer Protocol) protocol as according to research [17] and [12]. REST Server is built using NodeJS and

with the help of ExpressJS as a back-end framework. NodeJS is a tool that serves to make the JavaScript

language run on the server-side. According to research [18], NodeJS and ExpressJS are an ideal combination

for REST Server development because they can handle multiple requests simultaneously. Platform prototype

using MongoDB as DBMS (Database Management System) to accommodate FHIR Resources. MongoDB is

a NoSQL DBMS. NoSQL has advantages over other DBMSs, including high performance and high scalability

[19].

Rest Server is built using the ExpressJS framework starting with the implementation of the data model

(Fig. 2). The implementation of the data model is assisted by the Mongoose library. Mongoose is used to create

data objects and to connect the REST Server to the database. Then proceed with making a Controller for each

data model. The controller function is to handle the CRUD (Create, Read, Update, Delete) process on each

data. Each type of controller can use the functions of other controllers if needed. Finally, create routes. Routes

are used to create endpoint URIs. The endpoint itself is a URI (Uniform Resource Identifier) which is used to

access the resource(data) [20].

2.3. Android Application Design

Research [21] developed an android application to track the Trans Semarang BRT, the application that

was built also has two roles, but the researcher separates the two roles into two different applications. Research

[22] has developed a platform for health monitoring named Mooble. The platform developed in this study has

a patient role and a doctor/health staff role, but each role is also separated into two different applications. Even

the application for the doctor/health staff role is only available in web form.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 299

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

Fig. 2. REST Server design

Unlike the research of [21] and [22], in this study, both roles remain in the same Android-based

application. There are two types of user roles that have their respective functions, namely patient and doctor

roles. Users with patient roles are useful as medication adherence data entry, drug scheduling, and lab test

result report data entry. Users with patient roles can also view statistics from medication adherence and lab test

result reports. Meanwhile, users with a doctor role have features for monitoring medication adherence data and

lab test result reports from their patients. Users with the doctor role cannot make changes or delete patient data.

The application is built using the Android Studio IDE and using the Kotlin language. Android Studio IDE

is Google's official Integrated Development Environment and is specifically designed for Android application

development [23], while Kotlin is a modern programming language that can run on the Java Virtual Machine

and has interoperability with the Java programming language and other programming languages [24][25].

Kotlin is used because it is the recommended language by Google for Android application development [24].

The applications must be connected to the internet network to be able to connect and make requests to

the prototype platform. To be able to make requests to the platform prototype, the application uses the URI

endpoint that is already available on the platform prototype.

3. RESULTS AND DISCUSSION

In [8], [10], and [9] research, a platform that can manage compliance data has not been developed and

does not yet have a monitoring feature for medical parties/doctors to be able to monitor patient compliance.

Therefore, the testing in this study is quite different from previous studies.

Tests are carried out on the platform prototype to see whether the platform prototype can provide services

according to user needs and tolerant response time. Positive/negative testing is used to check whether the

response obtained is following what the platform should give if the request given is correct and provides a

warning response if the request given is not appropriate. Stress testing is done to test whether the prototype

platform can handle many requests within a particular time. The following are the results of testing with

positive/negative methods of testing and stress testing.

3.1. Posittive/Negative Testing

3.1.1.Posittive Test

A positive test is carried out on the platform prototype to see whether the response given is as needed or

not if the request issued by the client is valid (Table 2). A positive test is done by requesting the platform

prototype. Positive tests will be carried out on five different endpoints where two endpoints belong to doctor

users, and the other three belong to patient users. In this test, the request is said to be valid if the parameter

contains the registered id.

Each id used as a parameter is a registered id, and the response given is detailed data that matches the id

provided through the client request. The correct response is also marked with a response message code 200,

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

300 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

which means success. In this test, it can be said that the platform prototype can respond according to the client's

needs if the request given is valid.

Table 2. The testing result with a positive test method

No Endpoint Feature
Response

Message
Response

1 /patients/:patientId Get one

patient

data using
patient id

200

2 /patients/reports/:patientId

Get all

laboratory

data using
patient id

200

3 /patients/medicationState

/:patientId
Get all

medication

adherence
data using

patient id

200

4 /doctors/:doctorId Get one

doctor data

using

doctor id

200

5 /doctors/patient/reports

/:patientId
Get all

laboratory

data using
patient id

200

3.1.2.Negative Test

Negative tests are carried out on the platform prototype to see whether the response given is as needed or

not if the request issued by the client is invalid (Table 3). A negative test is done by requesting the platform

prototype with invalid parameters. Negative tests will be carried out on five different endpoints where two

endpoints belong to doctor users, and the other three belong to patient users. In this test, the request is said to

be invalid if the parameter contains an unregistered id.

Each id used as a parameter is an unregistered id, and the response given is a warning message and is

marked with a response message code 500, which means an error has occurred. In this test, it can be said that

the platform prototype can provide a response warning message to the client if the request given is invalid.

3.2. Stress Testing

Stress testing is a test carried out to determine the limit of request and response numbers that the system

can handle [26]. Stress testing is done to test the performance of the platform prototype when handling many

requests at a particular time and checks the upper limits of the requests can the system can handle. Stress testing

is done with the help of Apache JMeter software. Apache JMeter is open-source Java-based software designed

as a tool to perform performance tests [27]. JMeter was chosen because research by [28] shows that JMeter is

a tool that is widely used and has proven to have better performance compared to other tools such as Siege,

LoadRunner, and Microsoft Visual Studio (TFS).

Tests are carried out on two endpoints with two different methods. Tests were carried out at two endpoints

with two different methods. The number of requests starts at 100 requests in one second and will continue to

increase until one of the endpoints reaches an error value of 100%

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 301

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

Table 3. The testing result with negative test method
No

.
Endpoint Feature

Response

Message

Response

1 /patients/:patientId Get one

patient data

using
patient id

500

2 /patients/reports/:patien

tId
Get all
laboratory

data using

patient id

500

3 /patients/medicationState

/:patientId
Get all
medication

adherence

data using
patient id

500

4 /doctors/:doctorId Get one

doctor data

using
doctor id

500

5 /doctors/patient/reports

/:patientId
Get all

laboratory
data using

patient id

500

The test environment on the server-side can be seen in Table 4. The server used is a virtual container

provided by Heroku in which the platform prototype program has been installed while the client uses a physical

computer that has the specifications as shown in Table 5. The client accesses the server via the internet. Heroku

is a PaaS (Platform as a Service) based on containers. These containers are called "dynos," which contain

applications and all necessary dependencies and run on a shared host [29].

Table 4. Server specification

Server Specification

Processor Dual Core

Memory 512MB

Table 5. Client specification

Client Specification

Processor Intel Core i5-4210U Quad Core 1.7Ghz

Memory 8GB

Internet Bandwidth 5 Mbps

Internet Speed 4 Mbps Upload/Download

The test produces three values, namely the average latency (Avg. Latency), error, and the average total

bytes of data received from the platform prototype (Avg. Bytes). Latency is the total time from a request sent

until a response is given [30], while the error indicates the percentage of the number of requests that the

platform prototype failed to process. The results of testing with the stress testing method can be seen in Table

6.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

302 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

Table 6. Stress testing result

No. Endpoint Method Client Avg. Latency(ms) Error% Avg. Bytes

1

/patients GET

100 15065.90 0.00% 424440

2 130 22855.68 0.00% 369310

3 150 23672.13 8.67% 465400

4 300 28299.85 33.33% 383110

5 500 31451.33 85.60% 325680

6 1000 24070.64 78.90% 380130

7

/patients/report POST

100 3555.18 0.00% 24810

8 130 8448.15 0.00% 13610

9 150 12387.08 0.00% 11080

10 300 20453.81 94.33% 32390

11 500 12309.52 99.80% 25290

12 1000 16552.89 100.00% 82810

3.1. Test Analysis

The test results with the positive/negative testing method show that the platform prototype can respond

according to the conditions of the request given. All test results using the positive test method produce a

response containing data in JSON and accompanied by a status code 200 as shown in Table 2, while all test

results using the negative test method provide a warning message accompanied by a status code 500 as shown

in Table 3. This indicates that no warning message appears during testing with a positive test and no data

provided by the prototype platform when testing with a negative test.

Testing using stress testing (Fig. 3 and Fig. 4) on the number of clients 100 and 130 produces a good

error value of 0%, which means that all requests provided have been successfully processed by the platform

prototype even though the latency value is intolerant, especially at endpoints with the GET method, which

reaches 15 to 22.8 seconds. In testing with 150 clients, the endpoint with the GET method showed an increase

in the error value but was still classified as tolerant. In testing with 150 clients, both endpoints experienced an

increase in latency values, but for endpoints with the POST method, they were still relatively tolerant, unlike

endpoints with the GET method, which had reached 23 seconds. Testing with 300 clients gave a significant

change in the error value, especially at the endpoint with the POST method, as well as the latency value, which

was classified as intolerant at both endpoints. Then in testing with 500 clients, there was an increase in the

error value, which was quite large at the endpoint with the GET method, while at the endpoint with the POST

method, the change in the error value was not too large but was getting closer to 100%. In testing with 500

clients, the latency value at the endpoint with the GET method has increased, while the endpoint with the POST

method has decreased by 8 seconds. In testing with 1000 clients, the endpoint with the POST method shows

an error value of 100%, which means that all requests failed to be processed by the platform prototype. At the

endpoint with the GET method, there is a slight decrease in the error and latency values, but both values are

still classified as intolerant values.

Most of the errors were caused by two things. Namely, the request processing time that exceeded the

Response timeout limit, which in this study was set for 20 seconds, and the platform prototype crashed during

request processing which was marked with an error code 503 as seen in Fig. 5. Crashes occur due to insufficient

memory capacity and processor capability on the prototype platform to handle many requests—crash message

as seen in Fig. 6. From the testing results using the stress testing method, it can be concluded that the prototype

platform can only take up to 130 requests in one second.

4. CONCLUSION

After testing with positive/negative testing and stress testing methods, the results show that the prototype

platform can provide data management services. The test results with the positive/negative testing method

show that the platform prototype can store and deliver the data needed according to the request given to provide

centralized data management services. The stress testing test shows that the latency value is quite good, which

is around 3 to 15 seconds, so that it can provide services for mass usage with the number of users up to 130

users. The author's suggestion for further research is to develop and test the prototype platform from the security

side because this research only focuses on the functionality of the platform prototype.

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 303

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

Fig. 3. Error value graph

Fig. 4. Latency value graph

Fig. 5. Details Errors that occurred during stress testing with 1000 client schemes on endpoints with the

POST method

0.00% 0.00%
8.67%

33.33%

85.60% 78.90%

0.00% 0.00% 0.00%

94.33% 99.80% 100.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

100 Client 130 Client 150 Client 300 Client 500 Client 1000 Client

E
rr

o
r

Client

Error

GET POST

15.00

22.80 23.00

28.00
31.00

24.00

3.50

8.40
12.00

20.00

12.00

16.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

100 Client 130 Client 150 Client 300 Client 500 Client 1000 Client

L
at

en
cy

(m
s)

Client

Latency

GET POST

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&

304 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ISSN 2338-3070

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

Fig. 6. The prototype platform crashes while testing with 1000 clients on the endpoint with the POST method

REFERENCES
[1] T. R. Zijp, P. G. M. Mol, D. J. Touw, and J. F. M. van Boven, “Smart Medication Adherence Monitoring in Clinical

Drug Trials: A Prerequisite for Personalised Medicine?,” EClinicalMedicine, vol. 15, pp. 3–4, 2019.

https://doi.org/10.1016/j.eclinm.2019.08.013

[2] I. Ahmed et al., “Medication adherence apps: Review and content analysis,” JMIR mHealth uHealth, vol. 6, no. 3,

2018. https://doi.org/10.2196/mhealth.6432

[3] F. Santoleri, R. Lasala, A. Logreco, E. Ranucci, and A. Costantini, “Using a treatment diary to improve the

medication adherence in patients with chronic myeloid leukaemia,” J. Oncol. Pharm. Pract., vol. 25, no. 5, pp. 1035–

1041, 2019. https://doi.org/10.1177/1078155218759184

[4] J. Geissler et al., “Factors influencing adherence in CML and ways to improvement: Results of a patient-driven

survey of 2546 patients in 63 countries,” J. Cancer Res. Clin. Oncol., vol. 143, no. 7, pp. 1167–1176, 2017.

https://doi.org/10.1007/s00432-017-2372-z

[5] W. Shahin, G. A. Kennedy, and I. Stupans, “The impact of personal and cultural beliefs on medication adherence of

patients with chronic illnesses: A systematic review,” Patient Prefer. Adherence, vol. 13, pp. 1019–1035, 2019.

https://doi.org/10.2147/PPA.S212046

[6] E. Wiecek, F. S. Tonin, A. Torres-Robles, S. I. Benrimoj, F. Fernandez-Llimos, and V. Garcia-Cardenas, “Temporal

effectiveness of interventions to improve medication adherence: A network meta-analysis,” PLoS One, vol. 14, no.

3, pp. 7–9, 2019. https://doi.org/10.1371/journal.pone.0213432

[7] N. K. Choudhry et al., “Effect of reminder devices on medication adherence: The REMIND randomized clinical

trial,” JAMA Intern. Med., vol. 177, no. 5, pp. 624–631, 2017. https://doi.org/10.1001/jamainternmed.2016.9627

[8] F. A. Ramadhan, A. Rakhmatsyah, and R. Yasirandi, “Schedule Control System for Wearable Medicine Box Using

Bluetooth Low Energy,” 2019 Int. Conf. Comput. Sci. Inf. Technol. ICoSNIKOM 2019, pp. 3–8, 2019.

https://doi.org/10.1109/ICoSNIKOM48755.2019.9111618

[9] D. Mohanapriya, V. Deepika, M. ShanmughaPriya, and C. Sivasankari Yogeswari, “A Real Time Support System

to Impart Medicine using Smart Dispenser,” 2020 Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2020, pp.

1–10, 2020. https://doi.org/10.1109/ICSCAN49426.2020.9262424

[10] V. Doshi, N. Mehta, S. Dey, and R. Prasad, “An IoT based smart medicine box,” International Journal of Advance

Research, Ideas and Innovations in Technology, vol. 5, no. 1, pp. 205–207, 2019.

https://www.ijariit.com/manuscript/an-iot-based-smart-medicine-box/

[11] C. Gulden et al., “Prototypical clinical trial registry based on fast healthcare interoperability resources (FHIR):

Design and implementation study,” JMIR Med. Informatics, vol. 9, no. 1, pp. 1–13, 2021.

https://doi.org/10.2196/20470

[12] S. El-Sappagh, F. Ali, A. Hendawi, J. H. Jang, and K. S. Kwak, “A mobile health monitoring-and-treatment system

based on integration of the SSN sensor ontology and the HL7 FHIR standard,” BMC Med. Inform. Decis. Mak., vol.

19, no. 1, pp. 1–36, 2019. https://doi.org/10.1186/s12911-019-0806-z

[13] M. Lehne, S. Luijten, P. V. F. G. Imbusch, S. Thun, and others, “The Use of FHIR in Digital Health-A Review of

the Scientific Literature.,” GMDS, no. September, pp. 52–58, 2019. https://doi.org/10.3233/shti190805

[14] I. A. Sawaneh, A. Kamara, and J. H. Koroma, “A Computerized Patient’s Database Management System,” Int. J.

Comput. Sci. Inf. Technol. Res., vol. 6, no. 2, pp. 6–10, 2018. http://dx.doi.org/10.13140/RG.2.2.12642.22728

[15] T. Lv, P. Yan, and W. He, “Survey on JSON Data Modelling,” J. Phys. Conf. Ser., vol. 1069, no. 1, 2018.

https://doi.org/10.1088/1742-6596/1069/1/012101

[16] A. R. Breje, R. Gyorödi, C. Gyorödi, D. Zmaranda, and G. Pecherle, “Comparative study of data sending methods

for XML and JSON models,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 12, pp. 198–204, 2018.

https://doi.org/10.14569/IJACSA.2018.091229

[17] M. Ayaz Sr, M. F. Pasha 2nd, M. Y. Alzahrani 3rd, R. Budiarto 4th, and D. Stiawan 5th, “Fast Health Interoperability

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.1016/j.eclinm.2019.08.013
https://doi.org/10.2196/mhealth.6432
https://doi.org/10.1177/1078155218759184
https://doi.org/10.1007/s00432-017-2372-z
https://doi.org/10.2147/PPA.S212046
https://doi.org/10.1371/journal.pone.0213432
https://doi.org/10.1001/jamainternmed.2016.9627
https://doi.org/10.1109/ICoSNIKOM48755.2019.9111618
https://doi.org/10.1109/ICSCAN49426.2020.9262424
https://www.ijariit.com/manuscript/an-iot-based-smart-medicine-box/
https://doi.org/10.2196/20470
https://doi.org/10.1186/s12911-019-0806-z
https://doi.org/10.3233/shti190805
http://dx.doi.org/10.13140/RG.2.2.12642.22728
https://doi.org/10.1088/1742-6596/1069/1/012101
https://doi.org/10.14569/IJACSA.2018.091229

ISSN 2338-3070 Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) 305

 Vol. 7, No. 2, August 2021, pp. 296-305

Analysis and Implementation of Microservice Architecture Related to Patient Drug Schedule Based on FHIR Standard

(A. M. Ramadhani)

Resources Standard: A Systematic Literature Review (Preprint),” JMIR Med. Informatics, vol. 9, pp. 1–21, 2020.

https://doi.org/10.2196/21929

[18] G. William, R. Anthony, and J. Purnama, “Development of NodeJS based Backend System with Multiple Storefronts

for Batik Online Store,” ACM Int. Conf. Proceeding Ser., 2020. https://doi.org/10.1145/3429789.3429830

[19] J. Kumar and V. Garg, “Security analysis of unstructured data in NOSQL MongoDB database,” 2017 Int. Conf.

Comput. Commun. Technol. Smart Nation, IC3TSN 2017, vol. 2017-Octob, pp. 300–305, 2018.

https://doi.org/10.1109/IC3TSN.2017.8284495

[20] F. S. Alshraiedeh and N. Katuk, “A URI parsing technique and algorithm for anti-pattern detection in RESTful Web

services,” Int. J. Web Inf. Syst., vol. 17, no. 1, pp. 1–17, 2021. https://doi.org/10.1108/IJWIS-08-2020-0052

[21] A. R. Wiratno and K. Hastuti, “Implementation of Firebase Realtime Database to Track BRT Trans Semarang,” Sci.

J. Informatics, vol. 4, no. 2, pp. 95–103, 2017. https://doi.org/10.15294/sji.v4i2.10829

[22] A. N. A. Yusuf, F. Y. Zulkifli, and I. W. Mustika, “Development of Monitoring and Health Service Information

System to Support Smart Health on Android Platform,” 4th Int. Conf. Nano Electron. Res. Educ. Towar. Adv.

Imaging Sci. Creat. ICNERE 2018, pp. 3–8, 2019. https://doi.org/10.1109/ICNERE.2018.8642592

[23] T. Hagos, “Android Studio,” in Learn Android Studio 3, Apress, Berkeley, CA, 2018, pp. 5–17.

https://doi.org/10.1007/978-1-4842-3156-2_2

[24] S. Bose, “a Comparative Study: Java Vs Kotlin Programming in Android Application Development,” Int. J. Adv.

Res. Comput. Sci., vol. 9, no. 3, pp. 41–45, 2018. https://doi.org/10.26483/ijarcs.v9i3.5978

[25] V. Oliveira, L. Teixeira, and F. Ebert, “On the Adoption of Kotlin on Android Development: A Triangulation Study,”

SANER 2020 - Proc. 2020 IEEE 27th Int. Conf. Softw. Anal. Evol. Reengineering, pp. 206–216, 2020.

https://doi.org/10.1109/SANER48275.2020.9054859

[26] B. De, “API Testing Strategy,” in API Management, Apress, Berkeley, CA, 2017, pp. 153–164.

https://doi.org/10.1007/978-1-4842-1305-6_9

[27] J. Agnihotri and R. Phalnikar, “Development of performance testing suite using apache JMeter,” Adv. Intell. Syst.

Comput., vol. 673, pp. 317–326, 2018. https://doi.org/10.1007/978-981-10-7245-1_32

[28] R. Abbas, Z. Sultan, and S. Nazir B, “Comparative Analysis of Single-Core and,” Int. Conf. Commun. Technol., vol.

7, no. 6, pp. 117–130, 2017. https://doi.org/10.5121/ijcsit.2015.7610

[29] P. Danielsson, T. Postema, and H. Munir, “Heroku-based innovative platform for web-based deployment in product

development at axis,” IEEE Access, vol. 9, pp. 10805–10819, 2021. https://doi.org/10.1109/ACCESS.2021.3050255

[30] A. Khasawneh, H. Rogers, J. Bertrand, K. C. Madathil, and A. Gramopadhye, “Human adaptation to latency in

teleoperated multi-robot human-agent search and rescue teams,” Autom. Constr., vol. 99, no. January 2018, pp. 265–

277, 2019. https://doi.org/10.1016/j.autcon.2018.12.012

http://issn.lipi.go.id/issn.cgi?daftar&1368096553&1&&
https://doi.org/10.2196/21929
https://doi.org/10.1145/3429789.3429830
https://doi.org/10.1109/IC3TSN.2017.8284495
https://doi.org/10.1108/IJWIS-08-2020-0052
https://doi.org/10.15294/sji.v4i2.10829
https://doi.org/10.1109/ICNERE.2018.8642592
https://doi.org/10.1007/978-1-4842-3156-2_2
https://doi.org/10.26483/ijarcs.v9i3.5978
https://doi.org/10.1109/SANER48275.2020.9054859
https://doi.org/10.1007/978-1-4842-1305-6_9
https://doi.org/10.1007/978-981-10-7245-1_32
https://doi.org/10.5121/ijcsit.2015.7610
https://doi.org/10.1109/ACCESS.2021.3050255
https://doi.org/10.1016/j.autcon.2018.12.012

