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Abstract

Third-generation long-read technologies denote the latest progression in high through-

put DNA and RNA sequence analysis. Complementing the widespread second-

generation short-read platforms, long-read sequencing adds unique application

opportunities by generating previously unattainable read lengths. Despite the

remaining higher error rate compared to short reads, single-molecule real-time

sequencing (SMRT) and nanopore sequencing advanced to be state-of-the-art for

de-novo genome assemblies and identification of structural variants. Continuous

throughput and accuracy improvements lead to development of novel methods and

applications at a fast pace. We identify major application fields and key bioinformatic

software for long-read sequencing data analysis by employing a data driven literature

research. The integration of citations and keywords into a literature graph provides

a scaling approach to analyze an exponentially growing number of third-generation

sequencing related publications. Even though sparking the development of countless

bioinformatics software, the streamlined nanopore data processing into standard-

ized formats is still lacking. As an enabling step for its successful application, we

developed Nanopype, a modular and scalable pipeline. Our approach facilitates the

basic steps of basecalling, alignment, methylation- and structural variant detection

with exchangeable tools in each module. Optimized for the usage on high perfor-

mance compute clusters, we propose a raw data management, capable of handling

multiple sequencing devices placed locally and remotely. Strict version control of

integrated tools and deployment as containerized software, ensure reproducibility

across projects and laboratories. Finally, we analyze disease associated repeat regions

utilizing targeted nanopore sequencing and the Nanopype processing infrastructure.

The expansion of unstable genomic short tandem repeats (STRs) is of particular

interest as it causes more than 30 Mendelian human disorders. Long stretches of

repetitive sequence render these regions inaccessible for short-read sequencing by

synthesis. Furthermore, finding current nanopore basecalling algorithms insufficient

to resolve the repeat length, we developed STRique, a raw nanopore signal based

repeat detection and quantification software. We demonstrate the precise analysis

of repeat lengths on patient-derived samples containing C9orf72 and FMR1 repeat

expansions. The additional integration of repeat- and nearby promoter-methylation

levels reveal a repeat length depending gain, suggesting an epigenetic response to

the expansion. Taken together, this work contributes to further increase the usability

and provides novel insights based on third-generation nanopore sequencing.
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Zusammenfassung

Im Bereich der DNA und RNA-Sequenzierung stellen Nanopore Technologien den

neusten Fortschritt da. Die Sequenzierung von deutlich längeren Fragmenten eröff-

net einzigartige Anwendungsmöglichkeiten im Vergleich zu den weit verbreiteten,

synthese-basierten Systemen von zum Beispiel Illumina. Kommerziell verfügbare

Plattformen werden zur Zeit von Pacific Biosciences (PacBio) und Oxford Nanopore

Technologies (ONT) vertrieben. Ungeachtet der höheren Fehlerrate im Vergleich zu

bisherigen Systemen hat sich die Nanopore-Sequenzierung zum Stand der Tech-

nik für Genom-Assemblierung und zur Identifikation von Strukturvarianten ent-

wickelt. Das direkte Auslesen chemischer Basen-Modifikationen, insbesondere von

5-Methylcytosin, ermöglicht die Untersuchung von bisher schwer zugänglichen Re-

gionen eines Genoms oder die Verknüpfung von entfernten Merkmalen auf einzelnen

Molekülen, was den Einsatz der Nanopore-Sequenzierung in der Epigenetik attraktiv

macht. Eine kontinuierliche Verbesserungen des Durchsatzes und der Genauigkeit

führen derzeit zu einer rasanten Entwicklung neuer Methoden und Anwendungen.

Mit Hilfe einer Metadaten basierten Literaturrecherche werden zunächst wichtige

Anwendungsfelder und Softwarelösungen für die Analyse von Nanopore Sequenzier-

daten identifiziert. Die Integration von Zitationen und Schlüsselwörtern in einen

Literaturgraph bietet einen skalierenden Ansatz, um die exponentiell wachsende

Anzahl von Publikationen zu analysieren. Obwohl die Entwicklung unzähliger Analy-

seprogramme vorangetrieben wurde, mangelt es immer noch an einer effizienten

Verarbeitung von Nanopore-Daten mit standardisierten Dateiformaten. Als Voraus-

setzung für eine erfolgreiche Anwendung haben wir daher zunächst Nanopype

entwickelt, eine modulare und skalierbare Pipeline. Unser Ansatz ermöglicht es,

die grundlegenden Schritte Basecalling, Alignment, Methylierungs- und Variations-

detektierung mit austauschbaren Tools in jedem Schritt durchzuführen. Optimiert

für den Einsatz auf Hochleistungs-Rechenclustern, wird zudem ein Rohdatenmana-

gement vorgeschlagen, das in der Lage ist, mehrere lokal und entfernt platzierte

Sequenziergeräte zu verwalten. Eine strikte Versionskontrolle der integrierten Tools

und die Bereitstellung als Softwarecontainer gewährleisten die Reproduzierbarkeit

über Projekte und Labore hinweg. Schließlich analysieren wir krankheitsassoziierte

Variationen genomische Regionen unter Verwendung der Nanopore-Technologie und

der Infrastruktur von Nanopype. Die Ausweitung von instabilen kurzen Tandemwie-

derholungen (Short-Tandem-Repeats, STRs) ist von besonderem Interesse, da sie

mehr als 30 menschliche Erkrankungen verursacht. Lange Abschnitte der repetitiven
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Sequenz machen diese Regionen unzugänglich für kurze Fragmente aus einer Se-

quenzierung durch Synthese. Da die derzeitigen Nanopore-Basecalling-Algorithmen

ebenfalls unzureichend sind, um die exakte Wiederholungsanzahl aufzulösen, haben

wir STRique entwickelt, eine auf dem Nanopore-Rohsignal aufbauende Software

zur Erkennung und Quantifizierung von Wiederholungen. Wir demonstrieren die

präzise Bestimmung von Wiederholungslängen an Patientenproben, die C9orf72-

und FMR1-Expansionen enthalten. Ein Zusammenhang zwischen Wiederholungszahl

und der erhöhten Methylierung des nahegelegenen C9orf72 Promoter deutet auf

eine epigenetische Reaktion auf die Expansion hin. Zusammengefasst trägt diese

Arbeit dazu bei, die generelle Anwendbarkeit der Nanopore-Sequenzierung weiter

zu verbessern und demonstriert eine Analyse von repetitiven genomischen Regionen

auf Basis des Rohsignals, die in dieser Form mit bisherigen Methoden nicht möglich

ist.
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1Introduction

It is astonishing how cells in an organism can differentiate into a variety of spe-

cialized types with a multitude of different tasks despite being based on the same

genetic information coded into the DNA. Beginning with a single cell, a temporal,

spatial and functional coordination determines the growth and body formation of

eukaryotic organisms. Depending on the cell state, only a fraction of genes is actively

transcribed in a given cell while others remain repressed. Acting as an additional

regulatory layer, the epigenome describes a set of chemical modifications made to

the DNA, controlling, among other things, the activation and transcription of genes

into RNA, and ultimately, proteins. Current sequencing technologies and their con-

nected bioinformatics provide researchers with the tools to study DNA sequence and

epigenetic state down to single-cell and single-molecule resolution. Starting in 1990,

and taking over a decade until completion, the human genome project incorporated

an international team of researchers to decipher the first genetic blueprint to build a

human being. Based on first-generation sequencing technology, the outcome was a

nearly complete reference sequence, including gene annotations. Since then, the

development of high-throughput, next-generation sequencing (NGS) technologies

enabled studies of countless organisms, cell types and disease conditions. While

being very reliable in terms of throughput and accuracy, sequenced fragments of a

few hundreds nucleotides in length still limit the readout from repetitive regions or

the resolution of long distance dependencies on a single-molecule.

1.1 Motivation

In the past five years, a third-generation of sequencing techniques is introducing new

perspectives to the field of genome analysis by generating previously unattainable

read lengths with averages in the tens of thousands of nucleotides. Under active

development with frequent improvements, long-read sequencing provides new op-

portunities by, visually speaking, increasing the size of the puzzle pieces. Moreover,

direct sequencing of DNA and RNA molecules using the nanopore technology facili-

tates the detection of different base modifications. Nanopore sequencing can be used

to produce large, multifaceted data sets within a few days, and therefore provides
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the opportunity for a new field of long read sequencing research at the intersection

of genomics, computer science and engineering. New data types, formats and error

characteristics demand here the adaptation of existing, or even the development of

new, algorithms for bioinformatic software.

1.2 Genome Regulation

Most cell types of an eukaryotic organism contain a copy of the genetic code in

form of folded DNA in the nucleus. Virtually all mammals have diploid cells with

homologous maternal and paternal copies, organized into chromosome pairs with

the same genes at the same genomic locations. While the entire human genome is

comprised of about three billion nucleotides in total, the longest continuous stretch

of DNA is the first of 23 chromosome pairs with 247 million base pairs. To maintain

its integrity and to support the chromatin structure formation, chromosomal DNA

is wrapped around octamers of histone proteins (H2A, H2B, H3 and H4) called

nucleosomes (Fig. 1.1).

Chromosome

Chromatin

Nucleosomes

Histone 
Modificaitons

DNA Methylation

Fig. 1.1.: The DNA of each chromosome is wrapped around histones, forming nucleosomes
and the chromatin structure. Chemical modifications to histone tails and individual base
pairs impact properties and cellular function (Adapted from [1]).

The ~147bp of DNA directly wrapped around each nucleosome is protected against

physical access from, for instance, transcription factors (TFs). The dynamic posi-

tioning of nucleosomes is therefore part of the epigenetic regulation process during

transcription and replication. Accordingly, nucleosomes are enriched at compacted

heterochromatin in mostly inactive genomic regions, while being thinned out at

regulatory elements such as enhancers, insulators and transcribed genes [2]. A

growing number of chemical modifications to histone tails is reported to impact

inter-nucleosomal interactions, and also leads to recruitment of proteins and com-

plexes involved in transcription, replication and DNA repair [3]. A well-characterized

example is the methylation of lysine 79 on the H3 tail (H3K79me3) found at the tran-
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scription start sites (TSS) of active genes [4]. In addition, the modification H3K4me3

marks active euchromatin, while H3K9me3 marks repressive heterochromatin. Gene

expression is influenced by nearby active enhancer sites that are typically enriched

with H3K27ac (acetylation). Finally, repressed and bivalent promoters are modified

with H3K27me3 and the combination of H3K4me4 and H3K27me3, respectively.

For embryonic development in mammals, the methylation of cytosine in the CpG-

context (5-methylcytosine, 5mC) is a vital epigenetic modification. Prominent

examples of its importance include the X-chromosome inactivation in females and

genomic imprinting. Furthermore, DNA methylation is associated with the silencing

of transposable elements, shows high levels over actively transcribed gene bodies and

correlates with gene repression at promoters [5]. In general, de-novo methylation of

the DNA is primarily established by the DNMT3A and DNMT3B enzymes. During

cell division, the methylation state on the nascent strand in the symmetric CpG-

context is restored by the maintenance methyltransferase DNMT1. In the absence

of DNMT1, the 5mC modification is therefore passively lost during each round

of replication. However, can also be actively removed by oxidation through the

TET methylcytosine dioxygenases. There is a side-effect of cytosine methylation

in the form of potential spontaneous deamination of 5mC, resulting in inherited

C to T transitions and ultimately, a depletion of CpG sites in mammalian genomes

[6]. The human haploid genome for example, contains only around 29M CpGs

instead of 188M as anticipated from the genome size. Thus, the conservation under

evolutionary pressure underlines the importance of DNA methylation for mammals,

while its diverse functions are still not fully understood.

Human somatic cells typically have a genome-wide mean methylation of approxi-

mately 70-80% [7]. In bulk methylation sequencing, millions of cells are measured

at once, resulting in an averaging of the binary 5mC state of individual cells and

yielding mean methylation levels per genomic position. The underlying distribution

of methylation levels is not random, but follows a bimodal distribution, with CpG

dense regions, also referred to as CpG islands (CGIs), being mostly unmethylated,

while the genomic background of more isolated CpGs is mostly methylated [7]. Many

CGIs in mammals act as promoters, however the majority remain unmethylated

during differentiation even as gene silencing is driven by H3K27 methylation [5, 8].

In contrast, a well-studied example where DNA methylation is sufficient to repress

transcription are imprinted genes, where either the maternal or paternal allele is

transcribed, while the other allele remains silenced and methylated.

1.2 Genome Regulation 3



In general, the DNA methylation levels remain stable across cell divisions but show

distinct patterns among different cell types. Aberrant DNA-methylation levels have

been observed in different disease contexts, in particular with a heavy deregulation

in cancer. While sharing a trend towards global hypomethylation and CGI hyperme-

thylation compared to normal tissues (Fig. 1.2), different tumor types can still be

identified, based only on their methylation footprint [9].

Normal tissue

Cancer tissue

Gene TE CGI

HypermethylationGlobal hypomethylation

demethylated methylated (5mC) transcribed repressed

Fig. 1.2.: Deregulation of DNA methylation patterns in cancer tissues. A global loss across
genes and transposable elements (TE) and local gain of methylation levels across CGIs is
characteristic across cancer tissue types.

While several epigenetic regulators have been discovered and sequencing data for

transcriptomes, histone modifications and methylation are available in abundance,

the unknown function of high gene body methylation or similarities between ex-

traembryonic tissue and altered methylation in cancer are only two examples of

epigenetically regulated processes under active investigation [10].

1.3 Sequencing Technologies

"For their contributions concerning the determination of base sequences in nucleic acids",

Walter Gilbert and Frederick Sanger received the 1980 Nobel Prize in Chemistry.

Referred to as first-generation or Sanger sequencing, their ’dideoxy method’ allowed

the nucleotide sequence of an entire organism to be determined for the first time

and with high accuracy [11]. While eventually superseded by second- and third-

generation technologies, Sanger sequencing is still widely used as a method of

verifying plasmid sequences or determining genotypes and sites of genome editing.

The development and commercialization of sequencing by synthesis approaches

started in 2005 with the 454 Genome Sequencer and expanded from there to increase

throughput and availability. These technologies are collectively referred to as next-

generation sequencing (NGS) technologies. Different NGS platforms such as 454,

Illumina, SOLiD and Ion torrent all rely on short reads of around a few hundred

nucleotides in length. Illumina has long been an industry leader and was the first
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company to reach the milestone of sequencing the human genome for only $1,000

USD with their HiSeq X Ten platform. Today, Illumina serves as the gold standard

for second-generation sequencing [12].

1.3.1 Next Generation Sequencing

Illumina dye sequencing is a high throughput technology, reading millions of short

DNA fragments in parallel and with high accuracy (>99.9%). As illustrated in Fig.

1.3, the process can be divided into library preparation, cluster amplification and the

sequencing itself.

Genomic DNA

Library Preparation

Fragmentation

Adapters

Ligation

Sequencing
Library

Cluster Amplification

Flow Cell

Clusters

Bridge 
Amplification
Cycles

Sequencing

Sequencing
Cycles

Digital
Image

Output 
Text File

Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...
...

A
TG
C

AT

G C

1 2 43

1 2 43

Laser

Fig. 1.3.: Next generation sequencing: The input DNA is fragmented and amplified into
clusters of identical reads on a flow cell. Sequencing by synthesis determines the nucleotide
sequence of all clusters simultaneously by measuring fluorescence of incorporated bases
(Adapted from [13]).

In brief: Genomic input DNA is first sheared into fragments and ligated to distinct

5’ and 3’ end adapters. A polymerase chain reaction (PCR) amplification purifies

the library for fragments with sequencing adapters on both ends. Subsequently, the

double-stranded DNA is denatured and washed over a flow cell coated with short

oligonucleotides, complementary to the sequencing adapters. The ends of single-

stranded fragments ligate in sparse density with both, 5’ and 3’ adapter to the flow

cell. During bridge amplification, the free adapters of single-stranded fragments are

repeatedly bent to the flow cell surface and the complementary strand is synthesized.

The denaturation of these double-stranded bridges results in a duplication of each

template strand into its reverse complement. Lastly, one adapter type is cut away to

unify the fragment orientation, resulting in dense clusters of identical single-stranded

DNA fragments.

The actual sequencing process is divided into cycles, each detecting the respec-

tive next nucleotide of all clusters in parallel. During sequencing by synthesis, a

polymerase assembles the complementary strand of each fragment from a mix of

reversible terminating fluorescent nucleotides. A blocking group on every nucleotide

1.3 Sequencing Technologies 5



forces the polymerase to stop after each incorporation, allowing a camera to capture

laser-excited fluorescence of all clusters. Different colors per nucleotide are recog-

nized by the basecalling algorithm and concatenated into a sequence per cluster,

referred to as a read. After unblocking and removal of the fluorophore, the process

is repeated until the terminal read length is reached.

Limitations

Amplification during library preparation and the synthesis during sequencing are

virtually error-free. However, the sequence quality, is affected by clusters running out

of phase. Sporadic dropouts of the polymerase result in missing nucleotide incorpo-

ration within single fragments, leading to an increasing number of fragments lagging

behind the cluster’s synchronization. The resulting signal overlap is monitored by the

basecaller and translated into a quality score per nucleotide and cluster. De-phsing

of clusters currently limits the maximum sequencing length of NGS platforms to

~250nt.

With the exception of de-novo assemblies, a shared first processing step after genome

wide sequencing is the alignment. After fragmentation and sequencing, the genomic

origin of each read is initially unknown. An alignment algorithm determines all

possible mappings of a read, commonly allowing for a certain degree of mismatches,

insertions and deletions. Dissimilarities in read and reference sequence can result

from either sequencing errors or differences between reference and the individual

genome. At repetitive elements short reads may align to multiple genomic positions

with the same edit distance. Depending on the application, filtering for unique

alignments can therefore be necessary.

Sequencing the Epigenome High throughput second-generation sequencing has

enabled a variety of protocols to be developed to extend their application beyond the

readout of solely genomic sequence. The methods to detect histone modifications

and DNA methylation by NGS are briefly outlined below.

Chromatin immunoprecipitation sequencing (ChIP-Seq) is a versatile genome-wide

method to identify binding sites of DNA-associated proteins. Crosslinking of DNA-

protein complexes fixes the current position of histones, for instance. First, a

fragmentation step separates the DNA in protein-bound and unbound sections. Then,

a modification specific magnetic antibody is used to immunoprecipitate the complex

and pull down only the sequence fragments directly adjacent to a histone carrying
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the epigenetic modification of interest. Sequencing and data analysis reveal histone

modifications as peaks from local accumulations of reads.

Whole genome bisulfite sequencing (WGBS) is the state-of-the-art method to de-

tect methylation at single base resolution on individual molecules [14]. A reac-

tion with sodium bisulfite converts any unmethylated cytosine to uracil, while

5-methylcytosine remains unchanged and consequently encodes the methylation

state into the sequence. Uracil and thymine are both amplified and sequenced as

thymine (T), while only methylated cytosine is read as C. At genomic C positions,

a read alignment containing a C indicates, therefore, a previously methylated site,

while a mismatching T indicates an unmethylated site. The methylation state of

individual reads is then summarized to a methylation rate per genomic position.

A minimum coverage of 5X to 10X has been shown to be robust against inter-cell

variability and allows the comparison across samples [15].

1.3.2 Third Generation Sequencing

In contrast to high-throughput short-read sequencing, third generation long-read

technologies do not necessarily require amplification and yield read lengths in the

range of tens of thousands of nucleotides. Single-molecule real-time sequencing

(SMRT), introduced by Pacific Biosciences (PacBio) in 2011, is considered the first

commercially available long-read technology [16]. While the idea of nanopore

sequencing goes back to the 1980s, it took until 2014 to release the pocket sized

MinION as the first device by Oxford Nanopore Technologies (ONT) [17].

SMRT is based on individual DNA fragments fixed into zero-mode waveguides

(ZMW). For the library preparation, genomic input DNA is fragmented to typically 8-

15kb and ligated to hairpin adapters. Termed SMRTbell, each molecule is denatured

and as circular single stranded DNA fixed into the ZMWs on the flow cell. During

the sequencing process, a polymerase located at the transparent bottom of each well

synthesizes the complementary strand from nucleotides labeled with a fluorescent

dye. At a speed of 10nt/s, light impulses from laser-excited fluorescence are the

primary measurement to determine the nucleotide sequence of each read (Fig. 1.4,

left box). According to the manufacturer, a Sequel IIe flow cell with 8M ZMWs can

generate up to 4M reads during 30h of sequencing. 1 More recently, PacBio advanced

to high-fidelity (HiFi) reads, which are generated as consensus sequence from

multiple passes of the polymerase around the template strand. HiFi reads increase

the single read accuracy to >99% at the cost of the overall read length. Without

1https://www.pacb.com/products-and-services/sequel-system, accessed 12/2020
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PCR amplification of the input material, epigenetic base modifications remain on

the sample DNA and impact the output signal as extended pauses between light

impulses. The most prominent example is the detection of bacterial 6-methyladenine

(6mA). However, the sensitivity to 5mC remains a proof of concept and studies

reporting its successful application are lacking.

Genomic DNA

PacBio SMRT Sequencing ONT Nanopore Sequencing

Genomic DNA

1D

Tethering adapter

Motor protein
Adapter

Polymerase

8M ZMWs

5mC

Membrane

2048 Nanopores

dNTPs

450Bp/s

10Bp/s

SMRTbell

Native

6mA

Native

5mC

A T A C A G G T A C C T G A C C G T G A T G A

Pulse
intensity Ionic-

current

Fig. 1.4.: PacBio SMRT and ONT nanopore sequencing: Single-molecule real-time sequenc-
ing by circular synthesis of secondary strands measured as laser-excited fluorescence pulses.
Nanopore sequencing of DNA and RNA strands measured as changes in ionic currents while
traversing through the pore. Base modifications can be directly detected as either extended
pulse pauses or characteristic current level differences.

Both NGS and SMRT sequencing technologies utilize the fluorescence signal of nu-

cleotides synthesized into a complementary strand of the sequenced DNA fragment.

Nanopore sequencing follows a fundamentally different principle. The sequencing

is no longer based on the synthesis of a second strand, as individual pores asyn-

chronously read multiple molecules one after the other, in contrast to the previous

parallel approaches. Additionally, nanopore sequencing is not limited to process-

ing only double stranded DNA, but also directly reads single stranded RNA. The

nanopore flow cell is built of pores embedded into a membrane separating two

chambers. After loading the flow cell with a running buffer, a voltage applied over

the membrane causes a constant ionic current through each pore. With impact in

the range of pico ampere, any molecule passing through the pore reduces the level

of the ionic current depending on its physical and chemical properties.

Initial steps of the library preparation like fragmentation, end-repair and size selec-

tion are shared across long-read technologies. For nanopore sequencing, a motor

protein and a tethering adapter are ligated to both ends of the input DNA. The

tethering adapter helps to guide the reads to pores on the flow-cell, where the motor

protein is attaching to the pore and controlling the sequencing speed to ~450nt/s for
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DNA or ~70nt/s for RNA. During the sequencing process, the double strand is split

in front of the pore and only one strand is read. The ionic current per pore serves as a

proxy signal for the molecule passing through, is recorded and finally translated into

a nucleotide sequence by the basecalling algorithm (Fig. 1.4, right box). Without

amplification of the input, the nanopore is sensitive to different base modifications

including 5-methylcytosine, 6-methyladenine and even synthetic base analogues.

Among other devices distributed by Oxford Nanopore Technologies, the MinION in

particular is gaining prominence. The portability and very low acquisition costs open

new perspectives of real-time sequencing in the field or in clinical settings.

1.4 Results

The submitted work is structured into four major parts and moving from a zoomed

out view into the literature to the development of a universal nanopore data pro-

cessing pipeline. Further on, a set of nanopore signal processing methods forms

the baseline for the subsequent application development for human genetics. This

section provides a brief overview of the contribution of this work to the field of

long-read nanopore sequencing.

Chapter 2 - State of the Art

Entitled as the third revolution in sequencing technology, Van Dijk et al. [16] outline

the potentials within an innovative and rapidly developing field of research using

third generation sequencing. It is indispensable to keep track of the latest develop-

ments in the nanopore field, for instance highlighted by the single read accuracy

improvements from 87% to 95% modal, solely by enhanced basecalling algorithms

applicable to existing data. This chapter aims to provide a comprehensive overview

of the use cases for nanopore sequencing, backed by the computational analysis

of millions of publications forming a literature graph of keywords and citations.

Lastly, based on in-house data, throughput and accuracy summaries for sequence

and methylation detection complete the assessment of the current status of the

technology.

Chapter 3 - Nanopype

The widespread availability of the nanopore sequencing platform is sparking the

development of novel bioinformatics software. Nonetheless, the streamlined raw

data handling and processing of more complex workflows lacked consistent pipelines,
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impeding the reproducibility across projects and labs. This chapter covers the

development of the modular Snakemake pipeline Nanopype. A set of nanopore

specific workflows cover the most common use cases such as basecalling, alignment,

methylation and structural variant detection. Deployed as python module with

automatically build and tested software containers, the pipeline maintains all of its

internal dependencies, including the version control of integrated tools. Nanopype is

the baseline for subsequent projects and facilitates the rapid development of custom

and integration of third party software. Nanopype is published in Bioinformatics:

Nanopype: a modular and scalable nanopore data processing pipeline.

Chapter 4 - Signal Processing

The interplay of a protein nanopore and molecules passing through it causes a

characteristic ionic current signal. In the past, advancing algorithms led to improved

single read accuracy, detection of epigenetic base modifications and efficient bar-

code de-multiplexing based on raw nanopore reads. For the development of novel

applications, the raw signal may be the input of choice, allowing to bypass basecaller

induced errors. This chapter covers basic raw signal processing methods including

simulation, normalization and signal alignment. A flexible raw signal framework

enables the seamless integration of signal and sequence space information. The

signal processing methods form the algorithmic basis for the repeat quantification

method developed in the next chapter.

Chapter 5 - STRique

Sequencing of genomic regions, previously inaccessible for short read technologies,

is a key advantage of long reads. Stretches of repetitive DNA with low sequence

complexity are difficult to investigate once they become longer than the read length.

Short tandem repeats (STR) are an example of repeat elements being expanded to

multiple thousand nucleotides in length in disease cases. Enabled by our processing

framework and signal analysis methods, STRique facilitates the precise analysis of

STRs in synthetic and patient samples. STRique solves the problem of counting

repeats on individual read-level based on noisy long-read sequencing data. Our

method allows for the first time to exactly quantify the length of STRs and inte-

grate repeat count and methylation state on a single-molecule level. STRique is

published in Nature Biotechnology: Analysis of short tandem repeat expansions and

their methylation state with nanopore sequencing.
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This thesis concludes with a summary and discussion of the results. An outlook

includes the assessment, where third generation sequencing technologies in general

and nanopore sequencing in particular are presumably replacing short reads, where

they are appropriate to supplement and where short reads are likely to stay state

of the art. Taken together, this work aims to provide an overview of the nanopore

field in general, propose streamlined processing and novel signal analysis methods

and contrast opportunities against challenges within a technology driven research

branch.
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2
State of the Art

Single-molecule real-time- and nanopore sequencing are commonly referred to as

third generation sequencing technologies. Continuous improvements on platform,

library preparation and analysis software still lead to throughput and accuracy

enhancements. Following latest developments in third generation sequencing is

therefore equally important for both, users and developers. The availability of

significantly longer reads enables novel insights, published in a rapidly growing

number of studies, making a systematic and unbiased manual literature research

increasingly complex. The following review is therefore backed by the computa-

tional evaluation of meta data from publications in scientific journals. Combining

title, abstract and citations into a literature graph opens a unique perspective and

provides a scalable approach to sweep any number of publications. In addition to

the major application fields of assembly, structural variant and isoform detection,

we find a largely separated landscape, either relying on Pacific Biosciences or Ox-

ford Nanopore Technologies. Supplementary code for this chapter is available at

https://github.com/giesselmann/scholar.
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The chapter starts with a background in 2.1 followed by the setup and usage of a

literature database containing scientific publication meta data in 2.2. A big picture

overview of third generation sequencing technologies in 2.3, is followed by a focus

on nanopore sequencing in 2.4. Finally, most recent throughput and accuracy

benchmarks on in-house data close the state-of-the-art evaluation.
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2.1 Background

The number of studies published per year in scientific journals is exponentially

growing (Fig. 2.1). Including only records with a digital object identifier (DOI)

tracked by CrossRef and Semantic Scholar, results in a conservative estimation

of 100k journals and a total of 5M paper being published only in 2020. While

the targeted discovery of specific studies remains feasible by indexing in search

engines, the extensive and continuous tracking of an entire field of research becomes

increasingly difficult. Especially for the fast evolving field of nanopore sequencing, a

zoomed out perspective is equally valuable for the orientation of newcomers and

adaptation to latest developments in experienced groups. A data driven literature

scan facilitates the clustering of results and identification of key publications in an

unbiased way.

1960 1980 2000 2020
Year

1960 1980 2000 2020
Year

0

20

40

60

80

100

Jo
ur

na
ls

 p
er

 y
ea

r x
10

³

0

1

2

3

4

5

N
ew

 p
ap

er
 p

er
 y

ea
r x

10
⁶

total

>= 5 year history

total

>= 10 citations

a b

Fig. 2.1.: Journals and new publications per year: a, Actively publishing scientific journals
per year and journals with a publication history of at least five years. b, New publications per
year and publications with at least 10 citations. (Semantic Scholar and CrossRef combined,
only records with DOI)

The following computer aided literature analysis is inspired by the Open Syllabus

Galaxy1 project. Based on co-assignments of books in North American university

courses, their literature graph of 160k books visualizes the linkage between research

fields. Applied to scientific journal publications, the success of the method is limited

by the availability and quality of large scale meta data such as title, abstract and

citations. A number of platforms like Google Scholar, Web of Science, Dimensions

or Microsoft Academic operate online literature databases, though without access

to larger data chunks for systematic offline analysis. Additional full text for ad-

vanced text mining is commonly only available through paid access from individual

journals.

1https://galaxy.opensyllabus.org/, accessed 01/2021
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2.2 Literature Database

For the purpose of tracing citations and clustering larger numbers of publications, we

first setup a custom literature database. The Semantic Scholar open research corpus

(S2ORC) provides the largest available collection of scientific paper meta data and

serves as starting point in this work [18]. Collected 07/2020, the data contains

77M papers linked by 333M citations. Provided as compressed JSON files, the

records are re-organized into a SQLite database with two main tables for records and

citations. Each record is uniquely identified by it’s DOI and can additionally contain

year, journal, title and abstract. Citations are unique pairs of citing and cited DOI,

referencing rows in the records table. To further improve completeness of records

and citations, we incrementally query the CrossRef REST API2 for novel entries,

most recently in January 2021. Citations are part of CrossRef but not provided

through the API. The CrossRef Open Citations Index (COCI) however, is regularly

parsing and dumping citations and therefore integrated as well [19]. Metrics of the

final database used for this work are summarized in table 2.1. For comparison, the

Dimensions3 online platform lists 114M records and 1.3G citations.

Tab. 2.1.: Literature database metrics

citations (edges) 901 M
paper (nodes) 116 M
with title 115 M
with title & abstract 57 M
connected nodes 68.4 M
> 0 citations 56.6 M
> 5 citations 27.5 M
largest connected component 67.9 M

The network of publications and citations can also be interpreted as a literature graph

with papers as nodes and citations as edges. Only a fraction of 68M publications has

either citing or cited edges. The lack of citing (outgoing) edges indicates insufficient

parsing of the papers reference sections, while the lack of cited (incoming) edges is

likely a combination of technical limitations and unrecognized publications. Striking

though, is the presence of the largest connected component of 67.9M publications,

where each paper can be reached via at least one citation edge.

A subset of publications originating from the S2ORC data set is annotated with a

primary field of research from Microsoft Academic (MA). To get a first impression of

the value of a literature graph, we first extracted all edges connecting papers with an

2https://github.com/CrossRef/rest-api-doc, accessed 01/2021
3https://www.dimensions.ai/, accessed 01/2021
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annotated field of research. Next, a hierarchical clustering of summarized citation

counts per field is plotted as heatmap in Fig. 2.2, and shows an intuitive grouping of

natural- and social sciences.
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Fig. 2.2.: Citation edges summarized by field of research: Sum of citations (log10) between
and within fields of research (Hierarchical clustering, method: centroid, distance: cosine).

A graph is a powerful data structure, for instance to detect local communities

or compute distances between nodes, however, with a growing number of nodes

and edges it becomes impossible to visualize. For the purpose of visualization

and clustering, a graph embedding, similar to the node2vec algorithm used in the

OpenSyllabus project is therefore needed [20]. A graph embedding is a fixed length

vector representation of each node, with the aim to preserve local connectivity.

The vector representation is enabling distance based clustering methods such as

KMeans and dimensional reduction by principal component analysis (PCA) and

uniform manifold approximation (UMAP). Additionally, while sub-sampling nodes of

a graph would split connected components, sub-sampling from an embedded graph,

based on e.g. citation counts or topic, preserves the overall structure and reduces

required compute resources.

Embedding the scientific literature graph using node2vec is due to run-times of

multiple weeks on CPU and large memory requirements on GPU not feasible. We use

therefore the DeepWalk [21] algorithm with its GPU implementation in GraphVite

[22]. In order to fit on a GPU-server with 4x NVIDIA 2080Ti (11 GB RAM), only
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edges connecting publications with at least 20 citations are considered. The result-

ing sub-graph, in the following referred to as core_20 graph, contains 9M nodes

encompassed by virtually a single connected component.

Embedding with default parameters yields feature vectors of length 128 for each

publication. Following the OpenSyllabus projects workflow, the high-level visual-

ization in Fig. 2.3 is generated by first reducing to 64 dimensions using PCA (85%

explained variance), followed by further reduction to two dimensions using a UMAP.

For a better overview, only publications with fields considered relevant for this work

are shown.

Physics

Chemistry

Biology

Medicine

Mathematics

Computer Science

Engineering

Fig. 2.3.: Scientific publication graph embedding: UMAP visualization of DeepWalk graph
embedding colored by field of research. Publications from 1980 onward with at least 20
citations (n=9M embedded, n_neighbors 75, min_dist 0.01, metric correlation, n=50k
random sample of relevant fields plotted).

In summary, the gathered SQLite literature database supports a variety of fast

queries for e.g. research fields, journals, year of publication or citations. The graph

embedding of highly cited publications is a proof of concept to visualize literature

based on citations and provides an intuitive perspective on field interactions. Due to

automated parsing, lack of visibility but also novelty of a paper, a considerable part

of the database can not be embedded. To address this issue, a future version with

weighted pseudo-citations based on text similarities is planned.
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2.3 Third Generation Sequencing

Both, the Nanopype pipeline in chapter 3 and STRique repeat detection in chapter

5 are exclusively developed for nanopore sequencing data. Nevertheless, from a

review perspective, both long read platforms are of interest, in particular when

portability or initial acquisition cost play a secondary role. The identification of

third generation sequencing related publications is implemented in three steps of

seed, extend and connect. First, publications with keywords in either title or abstract

are marked as seed paper. The second step extends clusters around seed papers by

following their citation edges in the literature graph. Lastly, additional edges derived

from text similarities and random walks in the core_20 backbone graph reduce the

sparsity of the third generation citation graph.

Title and abstract columns of the records table are indexed for full text search using

the SQLite FTS5 extension. For PacBio SMRT sequencing, the respective query is

’pacbio OR single molecule real time sequencing’, for ONT ’nanopore sequencing’ is

used. FTS5 is case-insensitive and works based on tokens, ’sequencing’ for instance,

is stemmed to ’sequenc’, requiring a post processing step to validate matches and

reduce false positives. The number of seed papers for PacBio is 2900, for ONT 2852

paper contain the words ’nanopore’ and ’sequencing’ in title or abstract. The output

is comparable to the online platform Dimensions, which lists 3147 publications for

’nanopore sequencing’ (queried 01/2021).

The extension of paper clusters around keywords is achieved by iteratively adding

publications with a minimum number of citations and with a strong binding to the

cluster. The binding is computed as the fraction of in- or outgoing edges reaching

nodes in the current cluster. The seed extension is evaluated for different parameter

combinations, with five citations and a minimum binding of 0.2 resulting in the

largest stable cluster (Fig. 2.4). The PacBio and Nanopore cluster grow to similar

sizes of 4392 and 4689 publications respectively and form the third generation

sequencing cluster. The number of nodes reached by both extensions though, is with

308 unexpectedly low.

To further link isolated connected components and for additional preservation of

the global graph structure, we complement the extracted third generation sub-graph

by random walks in the core_20 backbone graph. Each walk starts at a sub-graph

node which is also contained in the core_20 graph and follows citation edges within

the core_20 backbone, until another shared node is found, or a maximum length

is reached. Edges of random walks are only used for embedding, the additional
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Fig. 2.4.: Cluster size convergence of keyword seed and extend strategy for PacBio query (a)
and ONT query (b). The iteration is stopped on convergence, after 20 steps or on exceeding
a threshold of 50k publications.

nodes are ignored in the subsequent content analysis. Of the initial 8.7k third

generation sequencing sub-graph nodes, only 7.6k have citing or cited edges suitable

for embedding. In order to also integrate publications without citations, we add

additional weighted edges based on text similarities between documents. Specifically,

a MinHash LSH Forest is used to perform top-k queries based on approximated

Jaccard similarities [23]. The LSH Forest is build of hashed titles and abstracts of all

publications in the random walk expanded third generation sequencing graph. For

each publication, edges to the top 500 most similar documents in the set are stored

as candidates, with the approximated Jaccard similarity as weight. Of all candidate

edges, the top 20% edges between highly similar documents are added to the third

generation sequencing graph. For the embedding, the graph is treated as un-directed

and weighted, with a constant weight of 1.0 assigned to all citation edges. Applying

the same DeepWalk configuration and dimensionality reduction as above results in

the third generation sequencing graph embedding shown in Fig. 2.5.

The third generation literature graph embedding reveals a largely separated field of

publications relying on either Pacific Biosciences or Oxford Nanopore Technologies.

Aside from small outlier groups, a broad PacBio field is accompanied by three distinct

accumulations of nanopore related work. The embedding of the third generation

sequencing sub-graph is clustered after discarding nodes added by the random

walk expansion. Using the KMeans algorithm, an optimal number of clusters is

found with 24 based on the distortion score. A subsequent hierarchical clustering of

cluster centers results in a distance based sorting (Fig. 2.6 a). The ratio of seed to

extension papers per technology and cluster confirms the previously noted separation

of PacBio and ONT (Fig. 2.6 b). Aside from small clusters of virtually only extension
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Fig. 2.5.: Third generation sequencing cluster: The UMAP projection shows the DeepWalk
graph embedding with points scaled by number of citations. Colors indicate technology and
seed/extend source.

publications (ID 0, 6-7, 17-19), two major groups, of which one (ID 20-23) contains

only nanopore seeds and extensions, become visible. Remarkable is, that clusters

with on average older publications tend to have a higher proportion of extensions,

indicating, that the extension of the novel third generation field is primarily directed

towards older publications, defining the broader field of application. In return, the

clusters with the highest mean citation counts are 12, 15, 22 and 23, each with high

seed to extend ratios. These clusters are in the following identified as core-assembly,

MinION usage, solid state pore development and analysis of pore translocating

polymers.

Word clouds provide an intuitive way for high-level content analysis of each cluster.

First, titles and abstracts are split into word tokens and further reduced to their

stem using the Porter Stemming Algorithm. Descriptive tokens are extracted using a

term-frequency inverse-document-frequency (TF-IDF) embedding. After filtering out

tokens occurring in less than 10 documents or more than 20% of the corpus, each

token in each document is assigned a score based on how frequent it is mentioned in

the document (for titles and abstracts commonly once) as opposed to how frequent it

is found in the corpus. The result is a word embedding matrix of 8k third generation

sequencing publications times 4.6k descriptive word tokens. After averaging TF-IDF

scores per cluster, each clusters top 200 highest scoring tokens are illustrated as

word clouds, of which three examples are shown in Fig. 2.7.
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Fig. 2.6.: Cluster of long-read applications: a, Hierarchical clustering of cluster centers
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technology composition are shown as stacked bar plots. c, Distributions of publication years
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Fig. 2.7.: Nanopore sequencing word clouds of cluster 1, 15 and 16 reveal a virus identifica-
tion, a composite cluster around the usage of the MinION and an algorithmic cluster around
assembling, error correction and alignments.

Not all word clouds can be translated into meaningful cluster labels. Especially

cluster with few publications or a low seed to extension ratio are difficult to char-

acterize. Nonetheless, for most clusters a high-level label is found and annotated

into the graph embedding (Fig. 2.8). Surprisingly, while referring to nanopore

sequencing, the isolated clusters (ID 20-23) have no direct reference to Oxford

Nanopore Technologies, but cover the development of novel protein and graphen

based nanopores, translocating polymer and signal analysis. Beyond that, the token

’assembl’ (words: assembly, assemble, assembling etc.) is one of the most prominent,

and with different scalings found in almost all clusters.

The following section aims to provide a brief insight into major application fields for

long-read sequencing technologies, while in particular highlighting the contribution
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Fig. 2.8.: Third generation sequencing applications: The UMAP projection shows the
DeepWalk graph embedding with points scaled by number of citations (1 for content linked
publications). Colors indicate cluster with labels derived of most descriptive word tokens.

of nanopore sequencing. Key publications are determined as highly cited paper

per year, in comparison to their respective cluster community. In clusters with only

few seed publications, these are primarily mentioned to emphasize the role of the

technology within the field.

Limitations: While so far providing a data-driven high-level overview of the third

generation sequencing field, the following section is referring to individual publi-

cations based on citation counts. By citing what is already highly recognized, a

bias against very new or comparably small application fields is anticipated. An

example are the already visible tokens ’sar’ and ’cov’ in the virus identification cluster.

Contributing to an emerging application field of assembling variants and detecting

mutations of the SARS-CoV-2 virus, associated key publications based on citation

counts are still impossible to obtain using our database.

2.4 Nanopore Sequencing Applications

Publications of the composite ’MinION’ cluster (ID 15) receive, with an average of

28, the most citations. Followed by 18 for the ’Assembly’ cluster (ID 12) and 16 for

’Bioinformatics & Algorithms’ (ID 16), these clusters form the most recognized section

of the third generation sequencing field. None of the other clusters is reaching more

than 11 citations on average. Based on a first inspection, these highly cited clusters
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contribute primarily methods and proof of concept studies, while the surrounding

clusters define the broader field of application with in detail very specific studies.

Major application fields are identified as:

1. Bioinformatics

2. Assembly

3. Structural variant detection

4. Bacterial and viral strain analysis

5. Metagenomics and microbiomics

6. Isoform detection

For the ’MinION’ cluster in general and otherwise where appropriate, publications

are mentioned in the context of their primary usage, regardless of their cluster

assignment. An interesting example is the interplay of ’Bioinformatics & Algorithms’

and the ’Assembly’ arm of the bacterial strain analysis field (Fig. 2.6 ID 16 and

3, Fig. 2.8 light purple and dark red). While a variety of tools and pipelines for

de-novo genome assembly have been published, the most prominent Canu [24] is

assigned to cluster ID 3, pulled towards its application to bacterial and viral strains.

A central cluster with respect to the UMAP projection (Fig. 2.8, ID 14) covers

clinical applications. Yet individual publications rely on methods of the surrounding

clusters, for example detection of disease associated structural variations or analysis

of antibiotic-resistant strains. So far not visible as independent cluster, but of

particular interest for this work, is the detection of epigenetic base modifications

using nanopore sequencing. An according section with current methods and proof

of concept studies is therefore appended.

2.4.1 Bioinformatics

Significantly longer reads, in combination with higher error rates compared to NGS

technologies, require adaptation of existing and development of novel bioinformatics

software. Among the earliest publications are tools providing simulations of SMRT

sequencing data [25, 26]. Virtually unlimited amounts of artificial long reads with

characteristic length distributions and error profiles facilitate early development

and testing of downstream applications, independent of the real data throughput

at the time. Similar tools exist for nanopore signal and sequence data, but are not

visible by their citations. With existing data and experience from SMRT sequencing,

we hypothesize, that the nanopore versions are primarily for the development and
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debugging of for instance streaming algorithms and become less important with

more real data being publicly available.

Despite ongoing improvements, the error rate of third generation sequencing tech-

nologies requires constant quality control. Particularly for nanopore sequencing, a

number of visualization packages have been developed. Initially receiving a lot of

attention, none of Poretools [27], PoRe [28] or NanoOK [29] is actively maintained

and would be able to handle the most recent ONT file formats. Functional and under

active development is NanoPack [30], supporting both, SMRT and nanopore data.

Translating the primary signal into sequences during basecalling is a crucial pro-

cessing step for third generation sequencing reads. High-fidelity (HiFi) SMRT reads

and advancing algorithms for nanopore basecalling render initial read-level error

correction methods obsolete [31–33]. For nanopore reads, the single read accuracy

has increased from ~85% using the cloud-based Metrichor over ~87% in albacore to

95% in the most recent recurrent neural network basecaller guppy. Clearly headed

by the manufacturers, a couple of community methods have been proposed, namely

DeepNano [34] Nanocall [35] and Chiron [36]. Although free and open-source, these

are not competitive in terms of accuracy and run time. The performance of neural

network basecalling tools for ONT data has recently been reviewed [37]. Yet, the

ongoing improvement of production grade, and promising experimental platforms

such as bonito4, require constant quality assessment on patch to patch level.

Shared by most downstream applications is the alignment of reads against a refer-

ence genome. The first recognized long read aligner is BLASR [38], maintained by

PacBio and for SMRT reads only. Published in 2016, minimap [39] and GraphMap

[40] are both developed for long, noisy read alignments. While minimap computes

very fast approximate mappings, GraphMap is very sensitive, but requires, due to

its reference index structure, considerably more memory. Actively improved and

maintained in version two, minimap2 [41] and GraphMap2 [42] additionally support

spliced alignments of transcript reads. The fast and memory efficient algorithm of

minimap2 makes it to one of the most used aligners in the field. An aligner, especially

developed for the mapping of structural variations is NGMLR [43]. Splitting of reads

into fragments of few kilobases, and subsequent individual alignment using a convex

gap cost model, improves the accurate detection of breakpoints. Using parameter

presets, minimap2, GraphMap2 and NGMLR are capable of mapping both, SMRT and

nanopore reads.

4https://github.com/nanoporetech/bonito
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2.4.2 Assembly

De-novo assembling of previously unknown and improving the quality of existing

draft genomes is a primary application of long read sequencing. Assembling greatly

benefits from increased throughput per flow cell, read-lengths and single-read

accuracy, replacing next- by third-generation technologies as current gold standard.

Both, PacBio and ONT enable state-of-the-art genome assemblies, especially for viral

and bacterial genomes. The choice of a suitable platform therefore also depends

on already available data, portability and instrument acquisition cost. Limited by

throughput and accuracy, initial SMRT assemblies focused on the scaffolding and

completion of existing bacterial draft genomes [44, 45]. Hybrid approaches combine

next- and third-generation sequencing data, and thus integrate the accuracy of short

reads with the continuity of noisy long-reads [46, 47]. First third-generation-only

assemblies include a finished fungal genome (Verticillium dahliae, 35Mb) [48] based

on SMRT reads and optical mappings and a nanopore-only assembly of Escherichia

coli (4.6Mb) [49]. More recently, studies report the successful assembly of ~80% of

the hexaploid wheat genome (Triticum aestivum, 17Gb) with NG50s of 88kb and

480kb [50, 51] and an improved maize reference (Zea mays , 2.1 Gb, NG50 1.2Mb)

[52], each using SMRT sequencing in combination with optical mapping. Further

examples of improved genome sequences are tea (Camellia sinensis var. sinensis,

3.1Gb, NG50 1.4Mb) [53] and apple (Malus x domestica, ~700Mb, NG50 7.0Mb)

[54], with the latter using a combination of optical mapping and Hi-C (Chromosome

conformation capture) data for scaffolding. In summary current state-of-the-art

chromosome-scale assemblies of large, potentially di- or polyploid genomes can be

build solely based on SMRT or nanopore reads in combination with optical mapping

and/or Hi-C data for scaffolding [55].

A number of standalone tools and pipelines for genome assembly have been pub-

lished. Based on their citations, Canu [24] and Unicycler [56] are the most used

assembly pipelines. Both are not assigned to the core-assembly cluster (ID 12,

13), but are part of the strain-assembly and strain-resistance cluster respectively,

highlighting their importance for a large user group. Developed exclusively for

SMRT sequencing is FALCON [57], with the additional function of phasing diploid

genomes. Racon [58] and miniasm [39] are lightweight standalone assembly tools,

both assigned to the ’MinION’ composite cluster. Together they are forming the com-

putational backend of Unicycler when processing long-reads and Racon is performing

the initial consensus assembly of transcript reads in the ONT isoform detection

pipeline Pinfish5. Two important standalone assemblers published in 2020 are Flye

5https://github.com/nanoporetech/pinfish, accessed 02/2021
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[59] and Wtdbg2 [60], both missed by the data driven state-of-the-art analysis so

far. Both abstracts do not contain a direct reference to either one of the long-read

technologies and despite having already high citation counts, both are not reached

by the extension strategy. This example points to two shortcomings of the proposed

literature mining strategy: First, it is only sensitive to topics (tokens) present in

title and abstract. Second, its success and coverage are decisively impacted by the

seed-extension strategy. Nonetheless, if specifically interested in assembling, the

token ’assembl’ would have picked up both examples as seed publications.

Similar to the continuous improvement of basecalling algorithms, the assembly field

is advancing at a fast paste. Published in 2018, Jain et al. report the linear assembly

of the centromere on the human Y chromosome and later the assembly of a human

genome using only nanopore long-reads [61, 62]. Only two years after publication,

the reported NG50 of 6.4Mb based on Metrichor basecalling and Canu assembly is

clearly outperformed by more recent workflows. An in-house benchmark of Flye on a

human data set with 30X coverage and 20kb N50 read length lead to a draft genome

assembly with 25Mb NG50, further outperformed by the developer benchmark,

reporting up to 40Mb NG50 using comparable coverage6.

2.4.3 Structural Variant and Haplotype Resolution

Structural variations (SVs) describe differences, for instance deletions, insertions, or

translocations, between individual genomes and a reference sequence. On individual

base level, single-nucleotide polymorphisms (SNP) are substitutions of single bases

in the genome, observable in a fraction of a population. Both variation types are

detectable by NGS technologies, advantages of long-read sequencing are the accu-

rate detection of large variants and the long-distance haplotype resolution based on

SNPs. With no dedicated cluster for structural variant detection, respective tools got

assigned to the bioinformatic cluster (ID 16), while applications are mostly found

within the clinical application cluster (ID 14). Currently available SV detection tools

include NanoSV [63], Sniffles [43] and SVIM [64]. With sequence alignments as

inputs, these are commonly applicable to SMRT and nanopore reads. The perfor-

mance is, however, influenced by the preceding alignment, finding the combination

of minimap2 and Sniffles the currently most sensitive and fastest option [65].

The analysis of human leukocyte antigen (HLA) variants is a major clinical applica-

tion relying on both, NGS and third-generation sequencing. The polymorphic HLA

genes are essential for the human immune system. Before organ transplantation,

6https://github.com/fenderglass/Flye, accessed 02/2021
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their characterization is essential to minimize the chance of rejection by the receiving

patient. In addition to high-throughput NGS methods, both SMRT and nanopore

sequencing are applied to detect HLA variants [66, 67], leading to characterizations

of novel and confirmation of know alleles [68]. Furthermore, long-read sequencing

is used to characterize disease-associated structural variations, for instance segmen-

tal duplications in patients with Potocki–Lupski syndrome (PTLS) [69] or deletions

causing tumor suppressor gene inactivation in pancreatic cancer [70]. Nonetheless,

NGS still plays a major role, especially in the analysis of large patient cohorts, where

available library preparation input material and sequencing cost have to be taken

into account [71].

2.4.4 Bacterial & Viral Strain Analysis

The identification and analysis of viral and bacterial strains is, in terms of publication

counts, the largest application field for long-read sequencing. Significantly smaller

genomes compared to mammals and plants facilitate the early adaptation of third-

generation technologies by compensating the initial error rates with high sequencing

coverage. In stationary operation, the PacBio Sequel II and the ONT MinION appear

to be equally well suited platforms. However, based on citation counts, publications

relying on the real-time and mobility aspect of the MinION stick out in the following.

In contrast to the massively parallel SMRT sequencing, individual reads from a

nanopore sequencer can be analyzed directly after passing through the pore. Proof

of concept studies have demonstrated mobile nanopore sequencing in challenging

environments on the International Space Station [72] and in the Antarctic [73]. This

section is subdivided into the mobile identification of viral strains (Cluster ID 1),

analysis of bacterial antibiotic resistance (ID 5, 6) and metagenomic identification of

bacterial and viral pathogens (ID 15).

The ability to perform in-field sequencing is a unique feature of the ONT MinION

device. The 2015 outbreak of Ebola in West Africa [74], the Zika virus epidemic 2016

in Brazil [75] and the 2018 Lassa fever outbreak in Nigeria [76] have been monitored

using nanopore sequencing, proving the feasibility of on-site metagenomic analysis.

The studies demonstrate direct sequencing of viral genomes without the need for

complex laboratory infrastructure. Potential applications include guidance of control

measures by reconstructing epidemic origins, monitoring transmission rates of

different strains and generation of genomic information for vaccine development.

"Preventing, reducing, and controlling the emergence of antimicrobial-resistant or-

ganisms is a major public health challenge requiring the participation of the entire
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medical community and public health agencies." [77] Nanopore sequencing is used

to identify bacterial antibiotic resistance genes [78–80]. In a clinical environment

the sequencing, assembly and antimicrobial resistance gene annotation has been

demonstrated in less than 6h [81].

Furthermore, the applications of nanopore sequencing in a clinical setting includes

the identification and characterization of viral [82] and bacterial [83] pathogens.

An example is the same-day antibiotic susceptibility prediction of Mycobacterium

tuberculosis with a turnaround time of 7.5h [84] Recent throughput advancements

enable multiplexed sequencing of multiple samples on a single flow cell and thus

improve the economic efficiency [85].

2.4.5 Microbiomics

An isolated cluster (ID 10, Fig 2.8 orange) of comparable high density covers long-

read sequencing in micobiomics. Two major identified applications are the improved

assembly of bacterial genomes from microbiomes [86, 87] and phylogenetic profiling

using 16S rRNA sequencing. The 16S ribosomal RNA is a conserved subunit of

prokaryotic ribosomes, allowing the species identification in complex microbiomes.

The longer reads of SMRT sequencing have become a cost efficient alternative to

Roche’s 454 Genome Sequencer in studying microbial diversity [88, 89]. Based on

publication counts, PacBio appears to be the primarily used platform, however, the

portability and decreasing error rates of the ONT MinION make it an alternative to

consider [90].

2.4.6 Isoform Detection

Both third-generation platforms support the sequencing of full-length RNA transcripts

after conversion to cDNA. In addition are the nanopore devices by ONT capable

of directly sequencing RNA, providing the potential to analyze RNA modifications.

For RNA sequencing, the number of reads is crucial in order to capture a maximum

amount of transcripts. The parallel SMRT sequencing is capped at around 4M reads

per flow cell, whereas the throughput of a nanopore cDNA run is impacted by flow

cell and library quality, ranging from 5 to 10M reads. The direct RNA nanopore

sequencing is performed at lower speed with only 70nt/s (450nt/s DNA), resulting

in lower throughput of around 1M reads per MinION flow cell.
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SMRT and nanopore sequencing are able to characterize and quantify transcripts,

with improved accuracy by employing short-read hybrid approaches [91, 92]. How-

ever, ambiguous alignments and frequently truncated fragments make isoform

detection and quantification more challenging than anticipated [93]. Applications

utilizing the full-length transcript sequencing include characterization of novel tran-

scripts [94], expression analysis of human LINE1 transposable elements [95] and

estimation of poly(A) tail lengths [96].

Frequently mentioned in the context of nanopore direct RNA sequencing is the

ability to detect RNA modifications. Current methods to detect m6A in nanopore

transcript reads are based on the error profile of the used basecalling algorithm [97,

98]. Highly dependent on the basecaller version, these approaches can only be proof

of concepts, demanding for more reliable signal based methods.

2.4.7 Base Modification Detection

Single-molecule real-time sequencing is sensitive for a number of base modifications,

in particular N6-methyladenine (6mA) [99]. Modifications impact the kinetics of

the polymerase while synthesizing the complementary strand, leading to charac-

teristic pulse duration changes. The sensitivity of SMRT sequencing for different

modifications varies, the recommended coverage is ranging from 25X for 6mA to

250X for 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)7. With a

focus on mammalian genomes and a primary interest in 5mC, such high coverage

is, aside from sequencing costs, also not allowing for any single read analysis. The

sensitivity of nanopores to detect chemical base modifications, in particular 5mC and

5hmC, has already been reported in advance to the release of the ONT sequencing

platform [100, 101]. Modified bases cause a characteristic level change in the

ionic current signal, which can be detected by downstream analysis software. Both

third-generation technologies can at individual-read and -base level only report

a modification probability, leading to overall lower accuracy and missing values

compared to whole genome bisulfite sequencing.

Nanopolish [102] and SignalAlign [103] are the first tools detecting base modifica-

tions based on reads from the ONT MinION platform. Developed for the R7 pore

generation, Nanopolish is reporting 5mC, SignalAlign 6mA, 5mC and 5hmC. However,

only Nanopolish is maintained, supporting the R9 pore and current raw signal file

7https://www.pacb.com/wp-content/uploads/2015/09/WP_Detecting_DNA_Base_
Modifications_Using_SMRT_Sequencing.pdf, accessed 01/2021
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formats. More recently, neural network based approaches in ONT Megalodon8, Deep-

Mod [104] and DeepSignal [105] show promising accuracy improvements reviewed

in [106]. Yet, broad usability is hampered by non-standard output formats, lack of

maintenance and complex software dependencies such as the ONT tombo9 signal

alignment and the tensorflow environment.

Nanopore sequencing in epigenetics appears to be in a proof of concept and de-

velopment state, with no demarcated publication cluster visible at the moment.

An example of its successful application is the rapid classification of brain tumors

using nanopore sequencing, combining structural variant, epigenetic profiling and

real-time analysis [107]. Furthermore, a recent proof of concept reports the si-

multaneous profiling of chromatin accessibility and methylation by induced GpC

methylation called nanoNOMe sequencing [108]. Finally, for targeted profiling of

5mC and 5hmC, TAPS sequencing combines the accuracy of short-read bisulfite

sequencing with long-read phasing information [109]. Both methods are promising

developments towards integration of additional information on single-molecule level

and improved detection accuracy of DNA methylation.

2.5 Throughput and Accuracy

Flow cell quality, library preparation protocols and bioinformatic analysis software

underwent continuous improvements since the first release of the ONT MinION plat-

form. A similar, but delayed, trend is observed for the high-throughput PromethION

sequencer. Rapid development requires the constant evaluation of novel and existing

workflows, in order to stay up to date with latest advancements in the field. A

MinION flow cell can have up to 2048 pores of which, limited by the number of ionic

current sensors, at most 512 can sequence at the same time. Pores are multiplexed to

sensors in groups of four, the sequencing software MinKNOW is controlling the pore

selection in order to maximize the sensor occupancy. In 2017, MinION flow cells

had an average of 1200 pores, yielding on average 4Gbp in in-house experiments.

These numbers increased to around 1400 pores and an average throughput of 7Gbp

between 2018 and 2019. Recently, the flow cell quality is mostly stable at 1400

pores, with consistent throughput of at least 8Gbp and up to 25Gbp from single

MinION flow cells (1500-1600 pores) using a nuclease flush protocol. The nuclease

flush increases the throughput by unblocking clogged pores. After a certain period

8https://github.com/nanoporetech/megalodon
9https://github.com/nanoporetech/tombo
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of sequencing time, stuck DNA fragments are digested and the flow cell is reloaded

with a fresh library (Fig. 2.9 a).

Starting with ~85% accuracy in 2015 [110], subsequent basecaller generations

have improved the single read accuracy to 95% median in the most recent Guppy

high-accuracy model (Fig. 2.9 b). Importantly, any sample sequenced with the

same pore version (currently R9.4) can be re-analyzed and benefit from the latest

accuracy.
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Fig. 2.9.: Throughput and single read accuracy. a, Cumulative sequencing throughput over
time of one representative MinION flow cell. Nuclease flushes unblock clogged pores and the
flow cell can be reloaded with a new library. b, Density plot comparing single read accuracy
(BLAST identiy) of 4k random reads basecalled with fast and high-accuracy model of Guppy
v3.5 and high-accuracy model of Guppy v4.0 (Median accuracy: 0.90, 0.93, 0.95; Modal:
0.92, 0.94, 0.95).

Without adapter and quality trimming of reads, the throughput of an NGS run

equals read count times read length. The read length distribution of a nanopore

sequencing run depends on the library preparation, with median and N50 read

length as common metrics. The N50 is the minimum read length in the larger half

of the total throughput, in other words, half of the total sequencing throughput is

supported by reads longer than the N50. Read length distributions, median and N50

are compared for two libraries (Fig. 2.10), of which one included a size selection

step. The selection for reads of around 15kB is visible in the distribution, but not

reflected in the median (Fig. 2.10 a). The throughput as a function of read length is

shown in Fig. 2.10 b, revealing a higher yield (area under curve) for the size-selected

library, but a larger N50 for the untreated one. In summary is the restriction of read

lengths beneficial for the absolute throughput, however larger N50s are for instance

crucial for the continuity of genome assemblies.

Single molecule base modification detection of for instance 5-methylcytosine is a key

advantage of nanopore sequencing and of particular interest for this work. Accuracy

and scalability of Nanoplish are decisive arguments for its use on a daily production
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Fig. 2.10.: Read length distribution: a, Read length distributions shown as number of reads
per length (bins of 500nt) of two PromethION flow cells loaded with libraries from different
preparation methods. The preparation of the HUES8 library included an additional size
selection. Dashed lines show median read length at 15883 (HUES8) and 14281 (J1). b,
Read length distributions shown as sequenced basepairs per read length. Dashed lines show
N50 at 21041 (HUES8) and 31906 (J1).

level. The accuracy is assessed in comparison to whole genome bisulfite sequencing

of the same human cell line in Fig. 2.11 a, resulting in a correlation coefficient

of 0.9 on 23M intersected CpGs. The methylation state per CpG on single-read

level is reported as a methylation probability (HMM methods) or confidence score

(NN methods). Both require subsequent filtering to reduce the overall error rate.

The impact of a log-likelihodd threshold on the Nanopolish methylation detection

accuracy is shown in Fig. 2.11 b. More stringent thresholds reduce the error rate, at

the cost of less CpGs passing the filter (Fig. 2.11 c).
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Fig. 2.11.: Nanopore 5mC methylation detection: a, Correlation of whole genome bisulfite
sequencing (WGBS) and nanopore sequenced mean methylation rates per genomic position
(Pearson correlation, Nanopolish detection with abs. log-p threshold: 2.5, min. coverage:
10X, reference hg19). b, Detection error depending on the applied absolute log-likelihood
ratio (methylation probability) threshold. c, Fraction of dataset remaining depending on
log-p value threshold.
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2.6 Summary

In 2015, a year after the release of the ONT MinION, Loman et al. review the

potential of nanopore sequencing [111]. Despite the initially high error rates, they

anticipate the application in genome assembly, real-time pathogen sequencing in

hospitals and environmental monitoring. Five years later, our systematic review of

third-generation sequencing literature identifies these topics as major application

areas. We demonstrate a data driven literature analysis, suitable to generate a big

picture overview of an emerging technology. Citation and content based cluster-

ing allows us to characterize application fields of nanopore and SMRT sequencing.

Advancements on laboratory and bioinformatic side have promoted long-read se-

quencing to become state-of-the-art in genome assembly and structural variant

detection. On the other hand, persistent shortcomings such as the unchanged high

amount (>1ug) of input DNA for library preparation remain and inhibit usage in

areas, where input material is rare.
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3Nanopype Processing Pipeline

Long-read third-generation nanopore sequencing enables researchers to now address

a range of questions such as genome assembly, structural variant and isoform detec-

tion that are difficult to tackle with short read approaches. The rapidly expanding

user base and continuously increasing throughput have sparked the development of

a growing number of specialized analysis tools. However, streamlined processing

of nanopore datasets using reproducible and transparent workflows is still lack-

ing. Therefore we developed Nanopype, a nanopore data processing pipeline that

integrates a diverse set of established bioinformatics software while maintaining con-

sistent and standardized output formats. Seamless integration into compute cluster

environments makes the framework suitable for high-throughput applications. As a

result, Nanopype facilitates the comparability of nanopore data analysis workflows

and thereby should enhance the reproducibility of biological insights. Nanopype is

available at https://github.com/giesselmann/nanopype.
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Note: This chapter is based on the publication P. Giesselmann et al. Nanopype: a

modular and scalable nanopore data processing pipeline, Bioinformatics, 2019 and

contains text from the original paper.

The chapter starts with a brief background in 3.1 followed by high-level pipeline

design decisions covering storage, tool encapsulation and reproducibility in section

3.2. Grouped into modules individual tools are highlighted in section 3.3. The

installation section 3.4 illustrates the setup and configuration of the pipeline in

different environments. Finally the usage on a daily production level is outlined in

section 3.5.
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3.1 Background

Due to constant development and improvement of applications, frequent repro-

cessing of the raw signal and downstream data is necessary. Based on the same

chemistry and pore version, the single read accuracy could be enhanced from 90%

to 95% modal in software over the past years. Thus, novel archiving and processing

strategies are needed for data storage and handling that scale with the large amount

of data produced by the MinION sequencer. Even when using the most recent

compression, the raw signal data is typically five times larger than the sequenced

base pairs, resulting in hundreds of gigabytes per sequencing run. This will still

be more relevant as higher throughput devices such as the PromethION become

more widely available. Furthermore, a limiting factor of the applicability of this

new technology are the currently available, research-grade software packages for

nanopore long read data analyses. These tend to be difficult to install and require

complex software environments. Despite the growing number of recently developed

algorithms [112], primary data processing remains challenging due to stand-alone

tools without congruent data formats and requirements. Most recent examples of

nanopore data processing pipelines are Katuali1 for basecalling and assembly and

Pinfish2 for RNA isoform detection from cDNA and direct RNA sequencing experi-

ments. However, they have been developed to perform very specific and inflexible

analysis workflows without integrated handling of the critical raw data storage or

version control of wrapped tools.

To overcome these issues, we have developed Nanopype, a pipeline designed ex-

plicitly for streamlined and automated nanopore long read processing. Apart from

the integration of essential basecalling, quality control, and alignment tools, we

facilitate a set of publicly available analysis applications for barcode demultiplexing,

DNA methylation readout, structural variant calling, RNA isoform detection and

genome assembly. Based on the Snakemake engine [113], our method integrates es-

tablished error handling and uniform output structures across multiple experiments.

Furthermore, Nanopype can be run in a parallel setup on both single computers

and server clusters. Deployed as a python module, Nanopype is mostly built from

source with encapsulated routines to simplify the initial setup and integration into

existing environments. Additionally, we provide Singularity images for all modules

and an automatically built all-in-one Docker container. This enables the usage of the

pipeline for both less bioinformatically experienced experimental scientists and bioin-

1github.com/nanoporetech/katuali
2github.com/nanoporetech/pipeline-pinfish-analysis
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formaticians. Lastly, Nanopype provides a well-defined framework for standardized

processing independent of the underlying operating system.

3.2 Design

Nanopype’s core element is a modular setup to easily update existing tools and to

allow seamless integration of the latest developments. Nonetheless, each pipeline

release is freezing the included tool versions to guarantee reproducible results.

Snakemake as workflow management is chosen over the competitor Nextflow to sup-

port a custom cluster engine and preferring Python over Java for rapid development.

In a nutshell, Nanopype has been designed around three key components: raw data

storage, tool encapsulation and standardized directory structures that mirror the

applied toolchain.

Snakemake

Snakemake is a Python based workflow management system. Reproducibility

and scaling on cluster environments make it preferable over plain bash script

or Makefile based pipelines. As a core concept, Snakemake is built around

rules defining steps to compute an output from an input file. By requesting a

single output file, the user initiates the construction of a directed acyclic graph

(DAG), chaining all intermediate steps needed to complete the workflow. With

the inputs of sequences and reference genome, an alignment rule could for

instance compute alignments into an intermediate SAM format to be further

sorted and converted to BAM-files. Snakemake workflows are defined through

the resulting file and folder structure and require a shared file system across

compute nodes.

3.2.1 Storage

The first core design component is the consistent storage of the raw signal data

from any ONT sequencer. Raw nanopore reads are stored in FAST5 files, an ONT

specification of the universal HDF5 file format. Initially, the sequencers exported one

file per read, resulting in hundreds of thousands of files per sequencing run. The

number of files generated could, especially on Linux file systems, disrupt background

services such as nightly mirrors and backups. Nanopype is backward compatible with

datasets of single read FAST5 files, for which we provide a module to import and

package single reads into TAR archive batches. More recently, in 2019 ONT utilized
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the full functionality of the HDF5 format with groups (comparable to directories),

datasets (structured arrays of primitive data types) and attributes (single values

for meta information) and released the multi-read-FAST5 format. The new format

typically groups 4000 reads into a single file, resulting in notable improvements

regarding copy and synchronization tasks. Lately, the replacement of the GZIP by

the custom VBZ3 compression reduced file sizes by approximately 30%.

Besides the Nanopype pipeline we propose a multi-device and multi-user nanopore

sequencing setup (Fig. 3.1). Provided with a suitable server infrastructure, the

design supports processing of multiple sequencing runs per week from both local

and remotely connected devices. Deploying syncthing4 on device and server side, we

synchronize the output folder from the ONT sequencing software MinKNOW with

device specific folders in a central spooling area. After completion of the sequencing,

the data is moved to the active storage, the file ownership is changed to a particular

data user and files are made write-protected (Fig. 3.1).
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Fig. 3.1.: Data flow for multi-sequencer and multi-user setup: Raw data generated on local
or remote devices is synchronized into a local spooling directory. Complete runs with meta
information (PAD75042: flow cell ID, HUES64: sample name) are stored with read-only
access and archived on tape. Processing combines multiple sequencing runs of the same
sample and provides basic readout for downstream analysis.

The active storage contains one folder per sequencing run following a uniform

naming pattern of date, flow cell ID, flow cell type, sequencing kit and a sequence of

arbitrary user tags e.g.:

3https://github.com/nanoporetech/vbz_compression
4https://github.com/syncthing/syncthing
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20200401_FAH12345_FLO-MIN106_SQK-LSK109_HUES64_WT

From the active storage, sequencing runs can be archived on e.g. tape drives for

long term data retention. For the processing, sequencing runs are mapped into an

interface (a directory with softlinks into the active storage). This additional layer

allows the distribution of raw data across multiple physical devices, while maintain-

ing consistent access. The raw data archive forms the basis for any downstream

analyses and enables smooth re-processing of legacy datasets as soon as for example

improved basecalling algorithms become available.

3.2.2 Encapsulation

The installation of experimental software packages still being actively developed

with complex library dependencies can be time-consuming, but remains essential

to make use of the current-generation nanopore analysis workflows. On a base

level, Nanopype uses Snakemake rules to wrap the build from source and installation

process of its dependencies and therefore does not require root privileges for the

setup on common Linux and MacOS systems. Whenever available, wrapped software

is built from versioned releases creating a frozen set with the respective pipeline

release.

The internal wrappers are used to automatically build and deploy Singularity images

for preset modules and pipeline versions. The images are automatically pulled once

a module is used. This mechanism enables the complete function set of Snakemake

and Nanopype while only requiring a system-wide Python and Singularity installation.

In contrast to Docker, the execution of Singularity containers does not require root

privileges on the target system at run time. An all-in-one Singularity container is

provided, wrapping the entire pipeline into a single environment. Primarily aimed

for stand-alone usage, Windows systems, and for initial testing, this method does

not offer support for cluster computation.

While greatly simplifying the installation process, containerized software comes at

the cost of the container size. Whereas the minimap2 binary alone is 1 MB small,

the size of the compressed Nanopype alignment image is 191 MB (v1.0.1) due to

integration of alignment tools, samtools, libraries and the Ubuntu kernel. Especially

within distributed environments where each cluster job needs to fetch these images

from a file server, this may lead to noticeable overhead depending on the jobs core

function.
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3.2.3 Transparency

Common file formats in bioinformatics such as FASTQ or BigWig do not support

the direct documentation of the applied workflow. An exception is the BAM align-

ment format, which can preserve the executed command in the @PG header line.

Nonetheless, the source of the sequences remains obscure. Extensive and continu-

ously updated documentation is required, especially when multiple parallel projects

and workflows are involved.

Nanopype follows the Snakemake concept of output file driven computation: a

single user command typically provokes transparent processing of any required

intermediate result. Preexisting tools are integrated into consistent workflows

and provide standard output formats to connect to workflows of established next-

generation sequencing data analysis tools. The processing and subsequent output is

intuitively organized in modules and underlying application directories (Fig. 3.2).

./

sequences/

guppy/

batches/

Hues8.fast.fastq.gz

alignments/

ngmlr/

guppy/

batches/

Hues8.fast.hg38.bam

methylation/

nanopolish/

ngmlr/

guppy/

batches/

Hues8.fast.10x.hg38.bw

Fig. 3.2.: Typical Nanopype output directory structure after basecalling, alignment and
methylation detection. Top level directories represent pipeline modules with the applied
tools in subjacent levels. Hues8.fast is the user defined tag of the output, in this case for the
HUES8 cell line and guppy basecalling in fast mode. 10x is the coverage wildcard, indicating
to filter for CpGs with at least 10 reads coverage. Hg38 defines the reference genome and
.bw the output file format.

The full reach of this concept becomes visible in the case of alternative workflows,

re-processing and downstream analysis. Requesting for instance the output file
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methylation/nanopolish/minimap2/guppy/Hues8.fast.10x.hg38.bw would de-

tect the presence of basecalled reads for the tag Hues8.fast and run only the

subsequent alignment and methylation detection. While the processing of sv/

sniffles/ngmlr/guppy/Hues8.fast.hg38.vcf.gz would utilize the already exist-

ing alignments, the same workflow but for reference hg19 would automatically

generate the missing intermediate alignments. Lastly, any analysis using Nanopype

as a pre-processing step can rely on filename patterns and the fixed output directory

structure.

3.3 Modules

Nanopype’s backbone consists of modules that resolve a specific task, like basecalling,

alignment or further downstream analyses. If available, alternative applications are

provided for the same task and grouped into a module with a coherent output for-

mat. Integrating first and foremost low-level nanopore data processing applications

provided by ONT, established community developed software packages have been

included in the first Nanopype release as well.

3.3.1 Basecalling

The basecalling module translates raw nanopore signals into nucleotide sequences

and is utilized by most subsequent pipeline layers. With the initial release, we

include the established packages Guppy, Albacore, and Flappie, all provided by ONT

[37]. The default basecaller package is set to the recently released Guppy. Albacore

is supported for backward compatibility but deprecated by ONT. The experimental

Flappie is ONT’s first DNA methylation-aware basecaller. It extends the usual four-

letter nucleotide alphabet by a fifth letter for methylated cytosine in CpG contexts.

For all basecallers, the output is the standardized FASTQ and supplemented by us

with a basic quality control summary.

3.3.2 Alignment

The core functionality of the pipeline is the alignment of reads against a reference

genome or draft assembly. Here, we provide three different aligners with distinct

advantages, which make them favorable for different applications downstream.

While Minimap2 [41] is a fast, low memory footprint solution suitable for both DNA

and RNA alignments, GraphMap [40] is a sensitive aligner but with comparably
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high memory requirements. NGMLR [43] is the recommended tool for the structural

variation module. Any combination of basecalling, alignment, and reference genome

is supported and reports BAM format files.

3.3.3 DNA methylation

Sequencing without prior DNA amplification enables the direct readout of DNA

base modifications. The current state of the art approach, Nanopolish [102] and

the more experimental flip-flop basecaller Flappie, are incorporated into Nanopype.

Subsequently, Nanopype splits Flappie’s atypical sequence output into standard FASTQ

and methylation status. DNA methylation at CpG dinucleotides of both tools is

reported in a table format for single reads. Furthermore, we provide standard

bedGraph and BigWig files for genome-wide methylation tracks and thus enable

downstream processing and visualization using established workflows, e.g., calling

of differential methylated regions and comparison to bisulfite-sequencing.
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Fig. 3.3.: Nanopype single-read methylation track of nanopore sequenced HUES8. Mean
methylation track of CpGs with >=10x coverage. Single-read methylation computed from
original alignment by substituting unmethylated Cs to Ts (imitated bisulfite conversion,
blue). Unclassified sites (abs. nanopolish log-likelihood-ratio < 2.0) are substituted with As
and appear as mismatches (orange). All remaining mismatches in the nanopore reads are
replaced with the genomic sequence. Shown are reads overlapping DIRAS3, an imprinted
gene on genome build hg38, grouped by allele and shaded by strand.

3.3.4 Structural variation

Detection and characterization of structural variation play a central role in cancer

research and population genetics. Long read sequencing particularly facilitates

investigation of variants with unprecedented accuracy and resolution. Therefore,
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Nanopype encompasses the variant callers Sniffles [43] and SVIM [64] and provides

output in the standard variant calling format (VCF).

3.3.5 Transcriptome

Another application of the long read nanopore technology is sequencing of cDNA

and RNA molecules directly. For instance, recovery of full-length transcripts enables,

the detection of alternatively spliced isoforms and is implemented in Nanopype

using the Pinfish package. The output of polished transcripts is provided in the GFF

format.
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Fig. 3.4.: Nanopore direct RNA sequencing of H1 from one MinION flow cell. Shown are
minimap2 splice-aligned reads spanning DNMT3B, obtained by using the RNA sequencing
without amplification. The isoform detected from the Pinfish package matches one of the
reference isoforms.

3.3.6 Genome Assembly

De novo assembly of genomes requires only the long read sequences and benefits

barely from the integration into a pipeline. Due to its own cluster back end, the still

widely used Canu [24] has not been included. The recently published Flye [59] and

wtdbg2 [60] assemblers provide comparable continuity of the output genome while

reducing the required compute time. Both are part of Nanopype, enabling basic

assemblies already from 20-30x coverage.

Complemented by SAMtools [114], BEDtools [115] and UCSCtools [116] our pipeline

establishes a comprehensive framework for ONT sequencing data processing.

3.3 Modules 43



3.4 Installation

The installation process of dependencies is a crucial, though sometimes neglected

step to deploy reproducible workflows. A commonly found bypass is to require tools

to be discovered through the user’s PATH variable, with a remaining uncertainty of

particular versions and thus limiting the outcome to the order but not necessarily

exact behavior of applied tools. We address this issue by providing installation

wrappers, enforcing tool versions to be bound to each individual pipeline version.

Programs and files are identified by their absolute path, making the approach

robust against changes of environment variables between local and cluster servers.

Within Nanopype, consistent versioning of source and container builds ensures

reproducibility independent of the installation method.

3.4.1 Source

We utilize the workflow engine Snakemake to automate cloning and building of

open source software. The build from source is the most customizable setup option

and moreover allows the integration into complex, preexisting environments. The

snakefile rules/install.smk in the Nanopype repository contains installation wrappers

for all included tools, except proprietary software like the basecaller albacore. For

example, the following command would clone and build the minimap2 binary

required by the currently installed pipeline version. A more detailed description of

the Snakemake command line is given in section 3.5.

1 snakemake --snakefile ~/ src/ nanopype /rules/ install .smk --

directory ~/ minimap2

Listing 3.1: Snakemake tool installation example

After completion, the home directory will contain the common src, lib and bin folders

and the executable ∼/bin/minimap2. As an example, the source of the minimap2

build rule is given in listing A.1.

A special case when building from source is formed by heterogeneous server cluster

environments in combination with vector instructions such as MMX, SSE and AVX.

Depending on the software, the support of these parallel instructions is determined

at build- and not at run time. Compiling the toolset of Nanopype on a modern CPU

with e.g. AVX2 can cause program crashes (Signal 4, illegal instruction) on other
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older nodes. A simple solution can be building the pipeline on a node with the

largest common subset of advanced CPU instructions.

3.4.2 Container

Docker and Singularity enable the encapsulation of tools and dependencies into

virtualized software containers. Packaging libraries and data, these containers can

be executed on any operating system with just the virtualization set up. While the

source installation method of Nanopype aims to minimize dependencies, a functional

C/C++ tool chain and a basic set of development libraries are required to build

all parts of the pipeline. To further reduce both, target site dependencies and

installation time, we provide pre-build Singularity containers per pipeline module

and as all-in-one.

Nanopype module images are build and tested on Travis-CI and deployed as Docker

containers to https://hub.docker.com/u/nanopype/. Being executed by Singularity

in the Snakemake backend, both the Docker and Singularity container formats are

supported, allowing a choice based on personal preferences. Webhooks from Github

trigger builds on each push to master and development branch. Tagged commits

(e.g. v1.0.1) to the master branch are build as tagged images. Upon execution the

pipeline version is inferred from the git tag and associated images are pulled as

needed for the workflow.

In order to minimize the size of each container, all Nanopype modules rely on a

staged build process. A base and a build container are set up in a first step, one

with the pipeline and its basic dependencies, the other with build tools and libraries.

Within each module’s Dockerfile two separate stages are configured. The first build

stage inherits from the build container. Bioinformatic tools required by Nanopype are

compiled and linked in this stage. As an example, the build process for the alignment

module is shown in listing 3.2.

1 # BUILD STAGE

2 ARG TAG= latest

3 FROM nanopype / build_bionic :$TAG as build_stage

4

5 ## run setup rules

6 RUN mkdir /build

7 WORKDIR /app
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8 RUN snakemake --snakefile rules/ install .smk --directory /

build alignment

9

10 # PACKAGE STAGE

11 FROM nanopype / base_bionic :$TAG

12 MAINTAINER Pay Giesselmann <giesselmann@molgen .mpg.de >

13

14 ## copy packages from build stage

15 COPY --from= build_stage /build/bin /* /usr/bin/

16 WORKDIR /app

17 # default entrypoint is /bin/sh

Listing 3.2: Staged Docker build

A subsequent packaging stage inherits from the base container and copies all needed

binaries from the build stage and requires only the installation of runtime libraries for

dynamically linked executables. The build stage is dropped in the final compressed

image.

The all-in-one container works in a similar way, by first pulling all module containers

into intermediate layers, copying their binaries and squashing everything into a

single image. The cascaded build process from source over module to all-in-one

container reduces redundant code to a minimum and enhances the maintainability

of the pipeline. Thus, to update or add additional tools, only the source build rules

need to be edited.

3.4.3 Configuration

The last part of the installation is the site dependent configuration. Nanopype has

two configuration layers: The central environment configuration env.yaml covers

application paths and reference genomes and is set up independent of installation

method and operating system once. The environment configuration is stored in

the installation directory. For each project an additional workflow configuration is

required, providing data sources, tool flags and parameters. The workflow config

file nanopype.yaml is expected to be found in the root of each processing directory.

Configuration files are in .yaml format; examples with default values can be found

in the pipeline repository.
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If a compute cluster is available, the respective Snakemake configuration is only

needed once per Nanopype installation. Already available presets support a custom

scheduler called mxq and the common SLURM scheduler. Presets are stored in the

profiles folder of the repository and can be extended by pull requests through the

community. A compute rule can, depending on the number of threads assigned,

define memory and time requirements. These parameters can be forwarded to the

cluster scheduler upon execution. Both memory and run time are conservatively

pre-configured but can be adjusted via individual offset and scaling parameters in

the environment configuration.

Nanopype makes extensive use of the Snakemake shadow directory mechanism.

Per default, rules are executed directly in the working directory. By specifying a

shadow-directory, the input of supporting rules is linked into a temporary location

and only expected outputs are copied to the working directory. Intended for the

isolation of tools producing temporary intermediate outputs, this concept can also

be used to move I/O heavy computations to local hard drives on each compute

node and thus reducing the load on network file systems. Given that each compute

node in the cluster has a local disk mounted as e.g. /scratch/local, the Snakemake

shadow-prefix would be set to this path.

3.5 Usage

Due to the functional range of Nanopype, dependent on the operating system and

selected installation method the setup can require advanced system administrative

knowledge. However, after deployment, the subsequent usage is straightforward,

given basic command line understanding. Complete Nanopype workflows can be

executed with a single concise command line call. For instance, local processing of

multiple flow cells into a collective genome-wide methylation track of at least 5x

coverage on reference hg38 requires only the following call:

1 snakemake --snakefile ~/ nanopype / Snakefile methylation /

nanopolish /ngmlr/guppy/Hues8 .5x.hg38.bw

Listing 3.3: Snakemake example

This command invokes basecalling, alignment and methylation detection using

declared tools without further user interaction. The basecalling and alignment

outputs are kept and can be reused to avoid redundant processing.
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The output path encodes the applied toolchain, the filename is composed of the tag

and a sequence of workflow dependent wildcards. For the given example, Hues8 is

the name of the cell line, while 5x and hg38 are parsed by the pipeline to determine

minimum coverage and reference genome. Different tags can be used to test different

settings on the same data set e.g. basecalling with guppy in fast and high-accuracy

mode could be indicated by Hues8.fast and Hues8.hac.

Tags are global, changing only the alignment settings and re-running a workflow

would still trigger a new basecalling, since sequences for the new tag are not

available.

3.5.1 Batch processing

Nanopype exploits the storage of raw nanopore data into batches of single reads.

The automatic distribution of workflows into independent compute portions enables

efficient handling of high-throughput experiments. This feature becomes particularly

relevant for scaling in cluster environments and, most importantly in case of termi-

nated or failed jobs. As a result, only failed batches require reprocessing by resuming

the workflow from where it left off, using the same command, which enhances the

overall error robustness. Nanopype keeps the dataset separated as long as possible:

For instance does the methylation detection of a single read only require its sequence

and alignment, while the structural variant detection requires all alignments to be

merged into a single sorted file.

When working with batches of nanopore reads, two limitations of the underlying

operating system require special handling: The maximum command line length

and the limit of parallel opened files. Taking the example of sequence alignment

and sorting, a naive merge of all batches into a single BAM file would call samtools

merge followed by the list of independently computed alignment batches. For

high throughput experiments, this is likely to break either the maximum command

argument length (getconf ARG_MAX, on ubuntu e.g. 2097152) or the maximum

allowed open files per process (ulimit -Sn, on ubuntu e.g. 1024). The former is

solved by reading from files of filenames (.fofn) and piping data through stdin, the

latter by first merging multiple times with the maximum opened files and a final

merge of these intermediate results.
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3.5.2 Barcoding

Barcoded sequencing allows pooling of multiple samples on a single flow-cell. Thus,

sequencing of comparable small bacterial genomes can be efficiently parallelized to

use the available sequencing depth optimally. The corresponding demultiplexing is a

special transparent module in Nanopype. Using Deepbinner [117] on signal or Guppy

on sequence level, it assigns a barcode label to each individual read. The following

example illustrates the command to only process reads of barcode NB01 from the

ONT native barcoding kit:

1 snakemake --snakefile ~/ nanopype / Snakefile sequences /

guppy/Ecoli.NB01.fastq.gz

Listing 3.4: Nanopype demultiplexing

The pipeline automatically scans the previously introduced tag for substrings indi-

cating the usage of a barcode. Barcodes are specified through an additional config

file barcodes.yaml. Indexing the content of both packaged and multi-FAST5 output

enables the fast retrieval of individual reads by their ID. The demultiplexing module

first generates batches of read IDs per barcode and then temporarily extracts those

reads for downstream processing.

3.5.3 Logging and Reports

Finally, an extensive logging of both, job specific output on each compute node

and a summary of configuration values, ensures the complete documentation of the

workflow. The quality control of the sequencing is enabled by automatic pdf reports

containing basic statistics as read lengths, mapping rates and coverage. The report

is obtained by the following command and contains dynamic sections for each of the

pipeline modules.

1 snakemake --snakefile ~/ nanopype / Snakefile report .pdf

Listing 3.5: Nanopype report

An example report is attached in supplement A.1.
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3.6 Summary

Nanopype is a modular and easy-to-use data processing pipeline with a detailed

online documentation, specifically designed to handle nanopore sequenced long

read data. Nanopype provides end-to-end processing of the raw sequencer signal

into standard data formats and consequently closes the gap to downstream next-

generation sequencing algorithms. Single command invocations of entire workflows

reduce the hands-on-time for users to receive the desired output. Implicitly, this also

lowers the potential of user mistakes and deviations in processing of multiple data

sets. Consequently, workflows are easier to reproduce with fixed versions among

datasets or repeated with improved tool releases on existing ones. Nanopype is

implemented as a Python package and additionally provides pre-built and versioned

Singularity and Docker images, making it favorable for effective usage in cluster

and single computer environments. The pipeline design ensures portability and

version controlled usage of the implemented tools, to enable consistent results across

platforms and laboratories.
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4Nanopore Signal Analysis

The primary output of third-generation nanopore sequencing devices is the raw

ionic current measured as a proxy signal for a DNA or RNA strand passing through

the pore. An initial processing step of particular importance is the basecalling,

translating the raw signal into the respective genomic sequence. Common workflows

such as genome assembly, structural variant or isoform detection typically rely on

sequence inputs only. However, the error rate and run time of state of the art

basecalling algorithms motivate ongoing research on raw signal processing itself.

Furthermore, the sequencing without amplification preserves signatures of modified

bases in the signal of DNA and RNA samples. Prominent applications based on raw

nanopore signals include methylation detection, barcode demultiplexing and real-

time alignment for selective sequencing. Challenges in the raw signal analysis arise

from noise induced by measuring currents in pico ampere ranges and time-warping,

the uncertainty of how long the molecule resides stationary in the pore before being

advanced by the motor protein.
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The following chapter serves as a transition from basic data handling and processing

using Nanopype in chapter 3 and introduces the underlying algorithms for the signal

driven repeat detection STRique in chapter 5. After a brief background in section

4.1, this chapter covers the raw signal simulation from known sequences in section

4.2. Noise and time warping are addressed by the normalization followed by

event detection and annotation of raw nanopore reads with reference sequences in

sections 4.3 and 4.4.
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4.1 Background

In contrast to second generation sequencing, the main output of nanopore sequencing

is the ionic current measured on the device while a molecule is passing through any

of its pores. The characteristics of this signal are determined by pore and chemistry

version, currently R9.4.1, as released by ONT in October 2016. In March 2020

ONT released the R10.3 (dual reader head), promising better consensus accuracy,

particularly for homopolymer stretches. In terms of throughput per flow-cell, the

R10 is slightly lacking behind R9 [118]. Independent of the pore version, the storage

of the raw signal is valuable, as constant development by ONT and researchers in

the community provides enhanced readouts from existing sequencing data.

From a technical perspective, the ionic current is sampled at 4kHz and saved as a

16-Bit unsigned integer array to FAST5 files. In combination with the sequencing

speed of ~450nt/s, determined by the chemistry, this results in a square wave-like

signal with a median of 9 measurements per nucleotide. Being a specification of the

HDF5 file format, FAST5 files can be inspected using GUI and command line tools

like HDFView and h5dump. File access from custom software is available for C/C++

programs by linking against the HDF5 library1 and from python using the h5py

package. Additionally, to work with the most recent data sets, the VBZ compression

plugin2 is required.

While the raw nanopore signal is utilized in some bioinformatic applications [102,

117, 119], the set of methods providing frameworks is currently limited to Tombo3,

the successor of Nanoraw [120] and the recently published SquiggleKit [121]. The

motivation to develop and use custom code for the raw signal analysis is driven by

the lack of sufficiently effective and customizable algorithms. For example, Tombo is

hard-coded to usage of minimap2 alignments and writes its output in form of event

tables into the FAST5 files. While technically supported by the FAST5 format, writing

of analysis results into the sequencing data is generally undesirable in a multi-user

environment. It causes, in the case of FAST5 files, excessive disk usage since new,

but also overwritten data sets are appended to the end of the file. SquiggleKit so far

only provides basic data indexing and signal alignment, mostly to identify barcodes

in raw reads.

1https://bitbucket.hdfgroup.org/projects/HDFFV/repos/hdf5/browse
2https://github.com/nanoporetech/vbz_compression
3https://github.com/nanoporetech/tombo
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Publicly available, highly customizable methods in the form of a generic API are

still lacking, demanding the development of an in-house framework to handle raw

nanopore reads. Future work aims to include advanced normalization methods like

iterative re-normalization after signal alignment as described in [34] and hardware

acceleration, comparable to the GPU implementation of a banded signal alignment

in the f5c package [122].

4.2 Simulation

Third generation sequencing data can be simulated on different levels by generating

sequences with realistic read length and error rate distributions or raw signal traces,

ideally indistinguishable from measured ones. Simulated reads of both types are

helpful to develop or test applications under controlled conditions. Two state of the

art simulators are simulatION [123] and deepSimulator [124], following different

concepts to generate FAST5 files of simulated reads, which can be processed with

common workflows. While the former utilizes exiting models of level and noise, the

latter uses a LSTM neural network to generate the signal from reference sequences.

Nonetheless, generation of realistic signal traces in memory can already be achieved

with a pore model and an event length distribution.

A pore model describes the mapping from sequence to expected signal. The ionic

current level in the nanopore is determined by the local sequence context, termed

kmer. Current models utilized by e.g. Nanopolish are built of the mean and standard

deviation of signal levels per 6mer. The distribution of all levels, in this case 4096, is

shown in Fig. 4.1 a, emphasizing the multi-modal characteristic of the R9.4 pore.

In general, the nanopore is sensitive for several base modifications, which are

preserved when sequencing without prior amplification. A secondary pore model

can be derived from sequencing e.g. 5-methylcytosine modified DNA, enabling the

discrimination of native and 5mC on signal level. The model difference between

native and 5mC for single-CpG containing 6mers is illustrated in Fig. 4.1 b, showing

a pronounced difference on the last position (Native and methylated model taken

from Nanopolish). The combined differences of all CpG overlapping kmers allow the

discrimination between methylated and native DNA.

In addition to the signal level, the event length or dwell time of the molecule

in the pore needs to be modeled. It is not fully understood, to which extend

the behavior of the motor protein controlling the sequencing speed is a random or
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Fig. 4.1.: Pore model and event lengths: a, Density plot and kernel density estimation of
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position) depending on the CpG location. c, Event length (samples per kmer) density plot
from signal alignment (red: approximation by generalized gamma distribution with a=4.3,
c=0.6, shift=2, scale=0.7).

sequence context dependent process. Aimed solely towards the development of signal

alignment methods, event lengths are randomly sampled from a generalized gamma

distribution in this work. The distribution is derived from in-house sequencing data

using the event detection described in section 4.4 and shown in Fig. 4.1 c. The

measured event median of 9 samples per 6mer matches the expected value for a

sequencing speed of 450nt/s sampled at 4kHz.

With pore model and event length distribution, simulated raw nanopore signals can

be generated from any given target sequence. The mean event level, a simulated

and corresponding stretch from a real nanopore read are depicted in Fig. 4.2.
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Fig. 4.2.: Basic nanopore signal simulation from pore model and event lengths: Mean ionic
current levels per kmer for short sequence (top), simulated nanopore signal with noise and
random time warping (center) and raw signal fragment extracted from real nanopore read
covering the same sequence (bottom).

Both, the published and the proposed simplified simulation do not mirror every

detail of actual sequencing data and can therefore only serve as an approximation.

Examples of missing technical artifacts are rare spikes of single values and tem-

54 Chapter 4 Nanopore Signal Analysis



porarily stalled reads with hundreds of samples from the same kmer. Lastly, motor

protein and analog-digital converter are not synchronized, frequently resulting in

measurements on the rising or falling edges between events.

4.3 Normalization

A robust normalization is a substantial initial step during nanopore signal processing,

impacting any downstream method and readout. Baseline for the following nor-

malization is the raw ionic current measurement, saved by the sequencing software

MinKNOW as an unprocessed unsigned integer with a typical numeric range from

300 to 700 (cf. Fig. 4.4 top track). Before any downstream processing, we apply

a median filter with a sliding window of length three to remove signal spikes and

reduce the overall noise. Factors further affecting the signal levels are: Individual

offset and scale induced by the electronic circuit per pore and an uneven sequence

composition depending on the genomic context resulting in biased sampling from

the multi modal pore model.

Offset and scale for normal distributed signals (X) can be compensated by using a

z-score normalization:

Xnorm,z−score = Xi − µ
σ

(4.1)

Suggested by Nanoraw and claimed [120] to be more robust against the underlying

distribution is a normalization with median offset and median absolute deviation

(MAD) scale:

Xnorm,MAD = Xi −median(X)
median(|Xi −median(X)|) (4.2)

With regard to the signal driven repeat quantification in chapter 5, we propose a

novel strategy combining a min-max and quantile normalization. Subtraction of the

signals 0.025 quantile (Q) and scaling by its interquantile range is expected to be

more stable, especially for biased signal distributions:

Xnorm = 2 · (Xi −Q0.025)
Q0.975 −Q0.025

− 1 (4.3)
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The suitability of normalization algorithms applied to real nanopore data can, due

to the absence of true scale and offset values, only be implicitly rated by the per-

formance of subsequent methods. Therefore we evaluate the proposed min-max

normalization against the other methods on simulated signals and assess their ability

to minimize the distance between simulated and normalized signals. Taking the

different statistical characteristics of each normalization output into account, we

first generated specific pore-models for each method, mapping the signal levels from

pico ampere to e.g. the [-1:1] interval of the min-max method. Next we sampled

random fragments from the human genome hg38 with lengths from 1kb to 10kb.

Nanopore signals were simulated with event levels from each pore model and event

lengths only sampled once per read to be comparable across all three methods.

The sequence complexity is expected to influence the normalization due to a biased

sampling from the multi-modal pore model. The complexity is measured as observed

kmers per read, divided by the total kmer count and its distribution is illustrated in

Fig. 4.3 a. While generally rising with increased read length, none of the simulated

reads contains all possible 4096 6mers.
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Ideally, a normalization method applied to a signal from a normalized pore-model is

expected to be transparent. Nonetheless, the observed mean absolute differences of

simulated and normalized signals show notable deviation, especially and surprisingly

in the case of the MAD method (Fig. 4.3 b). With overall smallest differences and es-
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pecially robust against low complexity regions, indicated by less pronounced outliers,

the proposed min-max normalization appears to outperform previous methods. We

conclude, that the min-max normalized signal with most values in the range [-1:1]

maintains the characteristics of the nanopore, is comparable to simulated reads

using a pore model and is therefore used in this form for the repeat quantification in

chapter 5.

For the purpose of signal alignment and event segmentation, we propose two

additional steps of histogram equalization and morphological smoothing [125].

Commonly used to enhance the contrast of digital images, a histogram equalization

can be used to project the multi-modal distribution of mean event levels to a more

uniform distribution (Fig. 4.1 a, Fig. 4.4 bottom track). The histogram equalization

would be affected by uneven sequence compositions and is therefore learned on a

random set of long reads, before being applied individually. Consequently the static

multi-modal pore model can be normalized without sensitivity to read specific signal

compositions. To further reconstruct the expected square wave like signal, we apply

a morphological noise removal, specifically an opening followed by a closing with a

structuring element of length three.
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Fig. 4.4.: Signal normalization and histogram equalization followed by morphological noise
reduction on raw nanopore signal traces. The figure shows signal segments over a 50nt
window in combination with density plots of raw and normalized values over the entire
read.

The final result of normalized and filtered signal, with a near uniform distribution of

values across the full signal range, is the basis for the alignment and event detection

described in the following section.

4.4 Signal Alignment

For applications, where neither signal nor sequence alone enable the intended

readout, the sample wise annotation of raw signals with the respective reference

sequence is required. Affected by the basecalling error of around 5-10% (cf. Fig.

2.9 b), the usage of the reference sequence after read alignment is preferable
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over the read sequence for this purpose. The following two sections describe the

segmentation and alignment of nanopore signals to extract any region of interest

from a read, followed by the precise annotation of signals with reference sequences

and base modifications using Hidden Markov Models (HMM). The former is the

enabling step for the latter, as HMMs become computationally very expensive with

increasing numbers of hidden states and sequence lengths.

4.4.1 Segmentation and Event Detection

A semi-global signal alignment is calculated between the normalized raw signal and

a simulated signal with a constant event length of either the complete reference

span or a query region of interest within the read. Primarily to extract larger regions

of interest from a raw signal, we specify a template function of the SeqAn2 [126]

library to perform a distance-based semi-global signal alignment. Specifically, we

utilize the globalAlignment function with a float32 data type, an affine gap penalty

and the following score function:

si,j = max

{
c− |xi − yj |

0 (4.4)

The absolute signal difference per position is transformed into a score by subtracting

it from a constant c. The score is capped at zero as a lower boundary, resulting

in a fixed minimum mismatch score, independent of the actual signal difference.

Gap costs within signal and simulation are configured differently. Both, gap open

and gap extension penalty in the signal are set to a small negative value with begin

and end gaps being free (semi-global alignment). Gap open and extension in the

simulated reference signal are scored with a penalty an order of magnitude larger.

The rationale behind is, that gaps in the signal are expected and introduced by

simulated events of length one, being stretched to the observed lengths. Gaps in the

simulated reference signal are expected to be very rare and result from sequence

stretches not being observed in the raw signal.

The described approach is limited by the modeling of event lengths with affine

gap costs and more severe by the quadratic time and memory complexity of the

semi-global alignment with respect to the read length. Read lengths of multiple

hundred kilobases make direct alignments in signal space increasingly ill-suited to

annotate the full read. Implementations in Tombo and Nanopolish [102, 122] address
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this issue with banded alignments, without appreciating the underlying problem of

an oversampled square wave like signal.

Inspired by a general concept for the discretization of time series into symbolic

strings [127], we further improve our signal alignment by an event compression

and discretization step. Exploiting the distinct steps between events after histogram

equalization and morphological noise reduction, we apply an image processing edge

detection on the normalized signal using a one-dimensional convolution with the

kernel [-3 0 3]. Intermediate segments are summarized into an event table with

their lengths and mean signal levels (Tab. 4.1). The previously described uniform

distribution of signal values enables a discretization into equally represented symbols,

by splitting the signal range into evenly sized bins. A lookup table mapping reference

kmers from the pore model to the same symbol space can be pre-computed. Lastly,

any generic sequence alignment library can be used to align both symbolic sequences

without handling the nanopore specific time-warping.

Tab. 4.1.: Event table of raw nanopore signal with reference sequence annotation.

mean event length seq. offset kmer
...

En 1.332 15 3205 AGTCCA
En+1 0.981 22 3206 GTCCAG
En+2 -1.058 6 3208 CCAGTC
En+3 -1.662 17 3209 CAGTCC
En+4 1.360 7 3210 AGTCCT
En+5 0.664 33 3211 GTCCTG
En+6 0.107 11 3212 TCCTGT
En+7 0.844 4 3213 CCTGTG
En+8 1.362 38 3213 CCTGTG

...

Here, the event alignment is implemented using the python module of the Edlib [128]

package. Based on Myer’s bit-vector algorithm and with alignment path traceback

in linear memory (Hirschberg’s algorithm), the library supports symbol sequence

alignments over alphabets of up to 256 characters. The overall sensitivity of the

method depends on the edge detection threshold, resulting in an over- or under-

detection of events and the size of the discretization alphabet. In this work, we align

event sequences represented by an alphabet of 12 characters. Furthermore, Edlib

allows to extend the character equality matrix, which we utilize to treat symbols

to be additionally equal with adjacent symbols in terms of the signal level they

represent.
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A small extract of the resulting event annotation is shown in Table 4.1. Highlighted

are a row followed by a missed event (deletion, orange) and two rows belonging to

the same reference kmer (insertion, green). Taken together, the event detection and

alignment maps 90% of the events to a unique kmer, 5% are over segmented and

the remaining 5% are distributed to the most critical errors of single and consecutive

reference kmers without signal observations.

The above signal alignment enables reference guided extraction of any region of

interest from long nanopore reads. Yet, for the analysis of base modifications encoded

into the signal or regions diverging from the reference genome, a more sophisticated

model is needed.

4.4.2 Annotation

Already proposed for the analysis of nanopore signals from previous pore genera-

tions, Hidden Markov Models are a powerful resource to map signal onto sequence

features [129]. In contrast to the discrete emission distributions, used in for example

sequence motive detection, the hidden states model in this case the sequence context

depending signal observed in the pore, overlayed by Gaussian distributed noise.

ONT’s first generation of basecalling algorithms used HMMs with hidden states

derived from kmer signal levels and all possible transitions between consecutive

overlapping kmers. The Viterbi path through such a model is the most likely state-

and thus genomic-sequence given the observed signal. Whereas outperformed

by recurrent neural networks for basecalling, HMMs still provide state of the art

performance for base modification detection such as in Nanopolish. For the repeat

analysis in chapter 5 we use profile Hidden Markov Models closely following the

concept of modular blocks described in [129].

Starting with a target sequence, a series of match states from overlapping kmers and

with normal distributed signal emissions forms model’s expected path. Additional

insertion states with uniform emission distributions over the whole signal range com-

pensate observations outside of the match state distributions. Lastly, silent deletion

states allow the model to skip parts of the profile sequence without corresponding

observations in the signal (Fig. 4.5 a, b).

Simply chained by single transitions to the four outer silent states (s1/2 and e1/2),

the modular profile HMM blocks can be used to build more complex architectures as

illustrated in Fig. 4.5 c. The first example shows a possible base modification detec-
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tion architecture with two profile HMM components derived from the same sequence,

but with emission distributions centered around expected signal levels of native

and, for instance, 5-methylcytosine modified DNA. Computing the log-probability

and Viterbi path through this model yields the most likely hidden state sequence of

one branch, given an observed nanopore signal. The second example addresses the

case of heterogeneous genomic regions, where reference and sequenced individual

diverge. In-depth introduced in the following chapter, short tandem repeats are

sequence fragments with varying repetition counts per individual. The illustrated

compound profile-HMM is anchored by stable and known genomic prefix and suffix

sequences, framing a single instance of the repeat. Feedback transitions around the

repeat enable the model to adjust to any repeat length. In this case, the Viterbi path

as the most likely state sequence given the observed signal can be used to quantify

the length of the tandem repeat.

4.5 Summary

Taken together, this chapter introduces signal processing methods required to in-

tegrate the genomic sequence with additional information encoded in the raw

nanopore signal. Normalization methods reversing scale and offset induced by the

sequencer have been compared and form the backbone for subsequent analysis
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steps. The advancement of existing banded signal alignment algorithms by event

compressed symbolic sequences make this framework fast and memory efficient.

Lastly profile Hidden Markov Models are introduced as an universal but also compu-

tationally most expensive method. In the following chapter, the above methods are

applied to analyze the biological phenomena of expanded short tandem repeats in

clinically relevant disease contexts.
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5STRique Repeat Detection

Expansions of short tandem repeats are genetic variants that have been implicated in

several neuropsychiatric and other disorders, but their assessment remains challeng-

ing with current polymerase-based methods. Here we combine a CRISPR-Cas-based

enrichment strategy for nanopore sequencing with an algorithm for raw signal

analysis. Our method, termed STRique for short tandem repeat identification, quan-

tification and evaluation, integrates conventional sequence mapping of nanopore

reads with raw signal alignment for the localization of repeat boundaries and a

Hidden Markov Model based repeat counting mechanism. We demonstrate the

precise quantification of repeat numbers in conjunction with the determination of

CpG methylation states in the repeat expansion and in adjacent regions at the single-

molecule level without amplification. Our method enables the study of previously

inaccessible genomic regions and their epigenetic marks. STRique is available at

https://github.com/giesselmann/STRique.
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Note: This chapter is based on the publication P. Giesselmann et al. Analysis of

short tandem repeat expansions and their methylation state with nanopore sequencing,

Nature Biotechnology, 2019 and contains text and figures from the original paper.

The chapter starts with a brief background in 5.1, followed by the evaluation of

sequenced based repeat analysis in 5.2.1. The development of an accurate signal

based method is described in 5.2.2 and applied to patient samples with c9orf72 and

FMR1 repeat expansions in 5.2.3. Finally the DNA methylation detection on repeat

and surrounding sequence is shown in 5.3.
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5.1 Background

Short tandem repeats (STRs), also called microsatellite repeats, form the shortest

class of tandem repeat elements in the genome. They consist of short nucleotide

sequences (2 to 6 bp) concatenated without other sequence fragments in between.

Distinguished by length, the next larger tandem repeat class, termed variable nu-

cleotide tandem repeat (VNTR) or minisatellite repeat follows the same repeat

pattern but from larger fragments (>6 bp). VNTRs are for instance used as genetic

fingerprints in forensic crime investigations due to their highly variable lengths

within populations [130]. Lastly alpha satellite repeats are a class of large ~171 bp

repeat elements structuring the centromeric regions of the human genome [131].

The expansion of unstable genomic STRs is of particular interest as it causes more

than 30 Mendelian human disorders [132]. An extended GGGGCC-repeat [(G4C2)n]
within the C9orf72 gene is the most frequent monogenic cause of Frontotemporal

Dementia and Amyotrophic Lateral Sclerosis c9FTD/ALS [133]. Similarly, accumu-

lation of a CGG motif in the FMR1 gene underlies the Fragile X Syndrome, and is

currently one of the most common identifiable genetic causes of mental retardation

and autism [134]. In both repeat expansion disorders, recent evidence has suggested

pronounced inter- and intraindividual repeat variability as well as focal changes in

DNA methylation to modulate the disease phenotype [135–137]. Repeat expansions

of up to 100-150 repeats can still be analyzed with conventional PCR or short read

based approaches. However in the clinical diagnostic setting, ’analog’ southern blot

analysis are still state of the art to estimate the repeat length. Requiring multiple

days and suffering from decreased resolution for longer repeats, these workflows

would benefit from a sequencing based approach, both time- and resolution-wise.

For applications in the research sector, the combination of a high counting accuracy

and the single-molecule resolution of nanopore sequencing provides unforeseen

potential to gain better insights. A SMRT sequencing is despite the higher accuracy

of HiFi-reads less suitable due to the lacking sensitivity to DNA methylation on single

molecule level.

To get a first impression of the visibility of STRs in nanopore sequenced samples,

we used the publicly available data from the human GM12878 cell line. The

inspection revealed a characteristic pattern in raw nanopore read signals spanning

the c9orf72 STR locus (Fig. 5.1). To overcome current difficulties in characterizing

expanded STRs we focused on three areas: i) optimization of nanopore sequencing

and signal processing to capture STRs ii) development and implementation of a

target enrichment strategy to increase efficiency and iii) integration of expansion
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measurements with CpG methylation at the single molecule level. To enable a

robust repeat analysis, we developed STRique, a general-purpose signal processing

algorithm for the exact quantification of STR numbers in raw nanopore signals.

forward signal

reverse signal

Fig. 5.1.: Multi signal HMM alignment of publicly available raw traces from two forward
and eight reverse strand reads from the GM12878 cell line shows matching signal pattern
in all reads [61]. Displayed are the current measurements as dots and the model signal as
black line. Blue dots indicate current measurements identified as prefix or suffix sequence.
Red dots indicate raw current measurements identified by STRique as belonging to the
C9orf72-(G4C2)n-STR. STRique detects in this case a (G4C2)5-repeat.

5.2 Repeat quantification

Accurate counting of repeats with high resolution into even large expansion ranges

serves as a first step during investigation of short tandem repeats. While a sequence

based approach appears desirable due to a generally lower implementation complex-

ity, the following sections illustrate the need for a signal based algorithm to exactly

quantify the length of a short tandem repeat based on nanopore sequencing.

5.2.1 Sequence based repeat detection

To first benchmark existing repeat expansion evaluation methods we constructed,

verified and nanopore sequenced plasmids with several synthetic (G4C2)n-repeat

lengths [138]. As a baseline, we manually counted repeats for a subset of reads,

exploiting the clear visibility of the repetitive signal pattern (Fig. 5.1). Current (May

2019) production grade (guppy v3.0.3, high accuracy model) software developed by

Oxford Nanopore Technologies (ONT) was used to translate the raw signal into the

respective nucleotide sequence. In order to determine the repeat length with existing

methods we deployed a decoy-alignment approach (Nanopore re-implementation of

the STRetch algorithm [139]) and the RepeatHMM [140] package. For the alignment
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method we added decoy-chromosomes to the reference genome, each with a distinct

repeat length in the range of 3 to 100 (e.g. chr_9_3 to chr_9_100). The quan-

tification is based on the assumption, that individual reads with possibly different

repeat lengths will align to the decoy-chromosome with the best matching length.

Resolution and range of this approach are limited by the set of additional reference

sequences. RepeatHMM was initially developed and tested for tri- (SCA3/ATXN3)

and pentanucleotide (SCA10/ATXN10) repeat expansions and originally only reports

an estimated repeat length distribution per target locus The software was forked1

and modified to also work with the c9orf72 hexanucleotide repeat and to provide

individual counts per read.

Both methods were evaluated on our synthetic repeat sequences (8, 32, 50, 56

and 76 G4C2 repeats) and compared to the manual counted lengths. The analysis

revealed, that current generation sequence based methods fail to satisfactorily

resolve expanded STRs (Fig. 5.2).
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Appreciating the constant development and improvement of neural network based

basecalling software [37] we systematically tested different versions and configu-

rations. Specifically we deployed the previous state of the art software albacore

and the research and technology demonstration tool flappie (both ONT). To keep

memory requirements in a manageable range, these tools typically work on over-

lapping windows of the raw signal and combine these sub-sequences to the final

output. For guppy and albacore the window size (default 1k and 10k respectively) is

adjustable and we hypothesized that a larger basecalling window could improve the

overall accuracy due to a larger context provided to the neural network. For guppy

we further tested two different models for fast and high accuracy predictions and

1https://github.com/giesselmann/RepeatHMM, customized by Christian Rohrandt.
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computed correlations with the manually obtained counts in Fig. 5.3 a. Whereas

the deprecated albacore performed best in combination with the decoy alignment

approach, sequences from guppy with high accuracy model and increased window

size resulted in the highest correlation with manual counts when evaluated with

RepeatHMM (Fig. 5.3 b). Further described and qualified in section 5.2.2, our

method STRique outperforms any other approach on this level.
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Fig. 5.3.: a, Correlation of manual counted repeat lengths with sequence base methods.
Decoy alignment against reference with 3-100 repeats with Albacore (window 10k and 16k),
Guppy (fast and hac mode, 1k and 16k window size) and Flappie basecalling (n=204 reads).
b, Correlation of manual count with RepeatHMM and STRique results (n=204 reads).

To further assess the characteristics of existing workflows applied to larger repeat

expansions, we next sequenced and analyzed the bacterial artificial chromosome

(BAC) clone 239, generated from a c9FTD/ALS patient with an expected (G4C2)800

repeat [141]. In absence of ground truth values per read we compare repeat counts

across decoy alignment, RepeatHMM and STRique in Fig. 5.4. Mostly masked by

a band of comparatively short repeats, only STRique is able to resolve a secondary

peak at 800 repeats. More striking is the systematic strand bias observed in both

sequence based methods resulting in generally more accurate counts for reads on the

complement strand (GGGGCC repeat) compared to the template (GGCCCC repeat)

strand.

In conclusion, we find that nanopore sequencing in general is capable of reading

through expanded short tandem repeats. However, existing sequenced based meth-

ods fail to accurately quantify repeat lengths beyond ~32 hexanucleotide repeats.

We further detect a strand and therefore sequence specific bias in the case of the

c9orf72 G4C2 repeat, requiring re-evaluation of methods per target and worst case

per software and model version.

5.2 Repeat quantification 67



0

1000

0 250 500 750 1000
# 

re
ad

s

0

250

500

750

1000

0 250 500 750 1000
Decoy Alignment

ST
R

iq
ue

0

250

500

750

1000

0 1000
# reads

0

1000

0 250 500 750 1000

# 
re

ad
s

0

250

500

750

1000

0 250 500 750 1000
RepeatHMM

ST
R

iq
ue

0

250

500

750

1000

0 1000
# reads

template
complement

template
complement

Fig. 5.4.: Comparison of repeat counts from STRique, decoy alignment based on guppy (high
accuracy model, 16k window size) and repeatHMM based on guppy (high accuracy model,
16k window size) for BAC data. One dot (n=5004) per read passing all three approaches
and colored by strand.

5.2.2 Signal based repeat detection

For overcoming inaccuracies of sequence based methods our STRique signal analysis

software first identifies reads spanning a STR location by aligning the conventionally

basecalled sequences to a reference [41]. Next, STRique maps the upstream and

downstream boundaries of the repeat within each read more precisely with a signal

alignment algorithm and, as a third step, quantifies the number of any given STR

sequence with a Hidden Markov Model (HMM, Fig. 5.5).
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Fig. 5.5.: Repeat quantification enabled by raw signal alignment of flanking prefix and
suffix regions and HMM-based count on the signal of interest.
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Raw signal normalization is a crucial first step prior to the quantification process. Due

to the reduced complexity of the repetitive signal segment, the overall distribution

of measurements is skewed compared to reads from regular genomic contexts. Both,

mean and median centered normalization fail to project a signal containing a STR

expansion and being affected by offset, scaling and drift over time into a uniform

range. We therefore applied a min-max normalization by scaling the 0.025 and

0.975 quantiles of the raw signal to the respective values of the pore model (cf.

chapter 4.3).

With the normalized read and simulated signal fragments of the genomic sequence

context around the STR, a signal alignment is used in order to locate prefix and

suffix and to extract a region of interest. Within STRique, we use the distance

based semi-global alignment described in section 4.4.1. Depending on the sequence

complexity of prefix and suffix, a 100 to 150 bp frame around the repeat appeared to

be robust. Reads with overlapping or reversed order of prefix and suffix alignments

are flagged and dropped in this step. Furthermore the alignment scores, equivalent

to the sum of absolute differences between simulated and raw signal are part of the

STRique output and can be utilized to filter repeat counts in a post processing step.

Finally the actual repeat count is determined by a compound profile HMM composed

of linear prefix and suffix modules, surrounding a single repeat instance with a

feedback loop around (Fig. 5.5, section 4.4.2). The transition from repeat end

to repeat begin enables the HMM to stay in the repeat associated states to model

arbitrary long repeat expansions. The Viterbi algorithm assigns the most likely state

from prefix, repeat and suffix to each observation of the normalized signal given the

models states and transitions. The number of passes through the feedback transition

is reported as the detected repeat count, the precise positions of prefix end and

suffix begin are provided to enable masking of the repetitive signal fragment for

downstream processing (cf. section 5.3.1).

Aggregated STRique repeat counts matched closely gel electrophoresis profiles (Bio-

analyzer) from our synthetic repeat constructs and could be confirmed on the single

molecule level by manually counting repeat patterns in raw signal traces (Fig. 5.6).

STRique is written in python3 with a C++ extension for the signal alignment,

supports multiprocessing and is automatically build and tested using Travis-CI.

STRique is deployed either as a python3 virtual environment or as a standalone

Docker container.
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5.2.3 Repeat expansion in C9orf72 and FMR1

The nanopore sequencing of repeats integrated into plasmid or BAC backbones

typically yields thousands of reads containing the expanded repeat. For the applica-

tion in disease contexts, the sequencing of DNA from e.g. patient-derived induced

pluripotent stem cell lines is favored, as it for instance preserves the epigenetic

landscape around the repeat. However, a straightforward whole genome sequenc-

ing would only yield few reads covering the repeat of interest. From e.g. 30 Gbp

throughput, equivalent to 10 fold genome wide coverage, on average only 10 reads

would be expected to cover any target repeat. For the monoallelic expansions in the

C9orf72 and FMR1 genes, only half of those would be informative to infer the repeat

length.

To increase the amount of reads covering any repeat expansion of interest, we

therefore set up a CRISPR-Cas9 target enrichment strategy. Briefly, during library

preparation, the method cuts the DNA on defined guide sequences next to the target

locus. Following on a dephosphorylation step during fragmentation, only the Cas9

cleaved and therefore phosphorylated ends are capable to ligate the ONT sequencing

adapter. Hence only fragments starting on definable guide sequences are sequenced

on the nanopore flow cell. We applied enrichment and quantification to one C9orf72

repeat expansion patient derived stem cell line (24/5#2) and two patient derived

cell lines (SC105-iPS6/iPS7) from another patient with a FMR1 repeat expansion

(Fig. 5.7).
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In the C9orf72 case, the analysis revealed two distinct repeat expansion bands next

to the wild-type allele with ~450 and ~750 G4C2 repeats respectively. Even though

derived from the same male patient, the two FMR1 samples showed different repeat

lengths with a difference of 343 CGG repeats. During development and improvement

of the enrichment protocol, both samples were sequenced multiple times on the

MinION and PromethION platform. Nonetheless, the two repeat expansion cluster

are already detectable from the output of a single MinION sequencing run with up

to thousand reads on target (Fig. 5.8, FAK67994)

In summary we show, that even heterogeneous expansion distributions of any short

tandem repeat can be sequenced and quantified from a single MinION flow cell. In

comparison to established southern blotting, our approach increases the accuracy

and adds the resolution of single molecule counts. In combination with target

enrichment, the workflow could be deployed to provide same-day analysis in a

clinical environment.
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5.3 Methylation detection

The epigenetic modification of C9orf72 and FMR1 loci have been correlated with

STR expansion status and patient characteristics in both disorders, however with-

out quantification at the single molecule level so far [137, 142]. Additionally, in

c9FTD/ALS patients pervasive CpG methylation of the G4C2-repeat itself has been

reported [143]. Assessed with a strictly qualitative assay, the expanded STR itself

was reported to be methylated in the majority of cases examined. A similar ob-

servation has been directly implicated in the pathogenesis of FXS, where a CGG

repeat expansion at the FMR1-locus beyond a threshold of > 200 repeats leads in

most cases to the silencing of the entire FMR1-gene through CpG-methylation [144].

Exploiting the visibility of 5-methylcytosine in nanopore sequencing, we extend

STRique in the following sections to integrate repeat length and DNA methylation

status on the same molecule.

5.3.1 Region methylation detection

Nanopore reads spanning an expanded STR location can be aligned to a reference

genome using standard tools like minimap2 [41]. Though, due to the potentially

large insertion, the reads are commonly soft-clipped from one side up to the STR,

mapping either prefix or suffix. While this is sufficient to identify reads spanning the
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target locus during quantification of the repeat length, it does not allow the direct

readout of the DNA methylation status on both sides of the repeat. We therefore use

the signal level information of the exact position of the STR within the read from the

previous quantification and provide a script (fast5Masker.py) to trim the STR signal

fragment from each read (cf. red signal segment in Fig 5.5). The resulting traces are

stored as regular fast5 files and can be processed with any standard pipeline. The

manipulation of the raw signal leads to minor basecalling errors directly adjacent

to the STR, but enables the mapping of both flanking sequences to the reference

genome.

Hereafter we integrated single read CpG methylation analysis of regions adjacent to

the c9orf72 STR using nanopolish [102] with our STRique results (Fig. 5.9 a). We

found that in the 24/5#2 line all reads with STR expansions > 750 repeats showed

a significantly increased methylation level at the promoter CpG island. In contrast all

wild-type reads and those with ~450 repeats were not or only partially methylated

(Two sided Wilcoxon rank sum test p < 0.001, Fig. 5.9 b).
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Fig. 5.9.: a, C9orf72 methylation status in HUES64 as measured by whole-genome bisulfite
sequencing. The wild-type (blue) allele and expanded (ex; orange) alleles (with 450 and
750 (G4C2)n repeats (red), respectively) are shown for patient 24/5#2, as measured by
nanopore sequencing. b, Single read nanopore methylation of C9orf72 covering reads
from the minus strand (n = 259, 100 and 43 rows per block) sorted by detected repeat
length (rows, single read; columns, single CpGs). CpGs with logP ratio > 2.5 are considered
methylated, while those with logP ratio < −2.5 are considered unmethylated. The median
methylation difference (95% CI) and P value (determined by two-sided Wilcoxon rank-sum
test on mean promoter CGI methylation) for comparisons were as follows: WT − ex450 :
3.9 · 10−5(4.8 · 10−6to3.4 · 10−2), P = 5.3 · 10−9;WT − ex750 : 0.56(0.46 − 0.64), P <
2.2 · 10−16; ex450− ex750 : 0.53(0.40− 0.64), P < 2.2 · 10−16; ∗ ∗ ∗P < 0.001.

Masking segments of the raw nanopore signal is a considerable change of the original

measurement. We therefore validated the region methylation detection approach on

our previously introduced BAC data. Amplified in bacteria, the artificial chromosome

is free of CpG methylation but contains a larger sequence window around the repeat

on chromosome 9 making it comparable to the patient data. Applying the same

workflow of repeat quantification, masking and nanopolish methylation detection,
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we find no 5-methylcytosine signal in any of the BAC reads independent of the

repeat length (Fig. 5.10 a,b). Comparing the mean methylation rates between

patient 24/5#2 and BAC, we find no evidence for a difference on the intron CGI, but

significant level differences in particular for the ~750 repeat cluster on the promoter

CGI.

In summary, the STR detection on signal level facilitates the reconstruction of

wild-type like reads from large STR expansions, enabling execution of established

workflows.
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Fig. 5.10.: a, Methylation status of c9orf72 region in BAC data for repeats < 200 (WT),
200-750 (Cluster1,orange) and > 750 (Cluster2,red) and control (HUES64, WGBS) b, Single
read methylation on a sample of 500 BAC minus strand reads sorted by repeat count (row
split 200 and 750 repeats, n=423,63,14). c, Difference in mean CGI methylation of intron
and promoter per read on minus strand. Reads binned by detected repeat length for BAC
(n=2066 WT; 315 Cluster1; 72 Cluster2) and patient 24/5#2 (n=925 WT; 362 Cluster1;
153 Cluster2). Two sided Wilcoxon rank sum test, corrected for multiple testing (Holm),
q-vals: * 0.05 - 0.01; ** 0.01 - 0.001; *** < 0.001. Median methylation differences between
promoter CGI [95%CI] for WT −2.3e−5[CI : −5.6e−6 : −1.5e−5, q = 7.4e−3] and Cluster1
−0.01[CI : −7.1e−5 : −3.4e−2, q = 1.4e−17] and Cluster2 −0.46[CI : −0.58 : −0.37, q =
1.0e−26].

5.3.2 Repeat methylation detection

Due to the intrinsic heterogeneity in STR length, reference genome based methods

such as nanopolish cannot be used to determine CpG methylation on the repeat

expansion itself. To detect 5mC modifications on STRs, we extended STRique by

employing a parallel HMM with unmodified- and 5mC-paths. Taking the expected

signal levels for native and 5mC modified DNA from nanopolish, the profile-HMM

block modeling the repeat is replaced by two parallel blocks, allowing the full HMM

to switch between methylated and native path during each repeat iteration. This

single read analysis returns a methylation state for each tandem repeat, which then

can be summarized into the mean repeat methylation level over the whole repetitive

sequence.
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When applying the methylation-aware STRique, all expanded FMR1-STRs in nanopore

reads from patient SC105 are found to be highly methylated (Fig. 5.11 a), consistent

with previous analyses [142]. We next evaluated this approach on plasmids contain-

ing n=76 synthetic G4C2 and n=99 CGG-repeats (Addgene, #63089), which were

covalently modified with the methyltransferase M.SssI (Fig. 5.11 b,c). In addition

we tested the algorithm on (G4C2)n-containing reads from patient-derived DNA,

which had been modified with M.SssI in vitro. In summary, we found that STRique

can determine the repeat CpG methylation state correctly in all positive and negative

controls evaluated. Surprisingly though, all reads covering the C9orf72-STR from

our patient-derived samples showed little to no CpG-methylation, independently of

the repeat expansion length or methylation status of the promoter CGI (Fig. 5.9 b,

center column).
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Fig. 5.11.: a, FMR1 region methylation in SC105iPS6/iPS7 compared to HUES64 WGBS
and patient sample 24/5#2. b, CGG mean repeat methylation status detected by STRique
for SC105 (n=197) and synthetic plasmid control with 99 repeats treated with M.SssI+/−

(5mC level on minus strand, n=1232 M.SssI+; n=11991 M.SssI−). c, GGGGCC repeat
methylation status for plasmid control with 76 repeats treated with M.SssI+/− (n=2939
M.SssI+; n=31280 M.SssI−) and patient sample 24/5#2 treated with M.SssI+ (5mC
level on minus strand, n=52 WT and n=6 Cluster1). Data in (b-c) presented as violin plots
with overlayed boxplots (centerline, median; box limits, first and third quartiles; whiskers,
1.5x interquartile range; outliers not shown).

5.4 Summary

Our results demonstrate the precise and multi-layered molecular characterization

of pathological short tandem repeat expansions. The CRISPR/Cas-nuclease-target

enrichment and STRique can be rapidly adapted to any other genomic region of

interest, ensuring broad applicability to overcome challenges associated with the

single molecule analysis. This allows for immediate integration of genetic and

epigenetic signals associated with unstable repeat expansions or any other as of yet

unsequenceable genomic regions in human health and disease. This type of analysis

improves diagnostic workflows in regard to accuracy and resolution of unstable
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repeat expansion while enabling efforts to gain mechanistic insights into effects on

differentiation, aging and future therapeutic agents that modify DNA methylation.
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6Discussion

But could you not also do that with short reads? - Expressing an initial scepticism

against a novel technology, nanopore sequencing is, six years after the first release

in 2014, still termed the emerging technology. Next-generation sequencing remains

the established and widely undisputed reference method. However, after significant

improvements, addressing shortcomings of throughput and accuracy, both third-

generation platforms have evolved to become the primary technology for genome

assembly and are commonly used for the analysis of viral and bacterial genomes.

Yet, a broader replacement of NGS methods is not in sight, raising the question, why

the introductory question is not more frequently re-phrased to: Would nanopore here

not be the more suitable platform? Or: Would you not confirm this by using nanopore

sequencing?

The underlying research question of this work is therefore to analyze unique use-

cases for nanopore sequencing, identify key limitations and provide a comprehensive

investigation of the current status. Despite many improvements, the application

of nanopore sequencing in the context of large mammalian and plant genomes

remains challenging. At the same time are the benefits of long reads known: Reliable

alignments in repetitive regions, no duplicates and biases by library amplification

and the linkage of distant genetic and epigenetic features on single molecule level.

Yet, the stable throughput, higher read accuracy and established workflows of NGS

technologies justify the commitment to nanopore sequencing only for applications

infeasible with short reads.

A niche to gain traction at applying nanopore sequencing is the analysis of repetitive

regions in the human genome. For comparison, using short reads, the reachable part

of a repeat is limited by the read length, leading to ambiguous alignments, once a

read contains only repeat sequence. Short tandem repeats (STRs) are accumula-

tions of three to six nucleotide long sequence patterns, in disease cases expanded

to hundreds of copies. The epigenetic analysis of repeats is a unique feature of

nanopore sequencing, considering that SMRT sequencing is not sufficiently sensitive

to 5-methylcytosine on single-molecule level. Repeat detection by sequencing is the

digital advancement over southern blot based quantification, increasing the accuracy
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and reducing the turnaround time. STRique is a bioinformatic analysis software,

developed to integrate the quantification of short tandem repeats with their methyla-

tion state on individual read level. The algorithmic key features of STRique are raw

signal alignment and the sequence to signal annotation. Due to the oversampling

of the sequencer, raw signal traces are roughly ten times longer compared to their

corresponding sequence and, with respect to noise and time warping, generally

more difficult to handle. Yet, only a signal based counting algorithm allows to

bypass systematic errors induced during conventional basecalling of tandem repeats.

Hidden Markov Models (HMM) are a powerful resource to align nanopore signals

to a reference sequence, with the most prominent usage in the Nanopolish package.

However, their computational complexity is scaling quadratically with the number

of hidden states, limiting the usage to restricted signal and sequence windows of

interest. The purpose of the signal alignment is therefore, to extract a signal segment

covering the repeat with sufficient flanking sequence to anchor a counting HMM.

The flexibility of the HMM is needed over a static alignment, since the repeat length

is unknown and varying between reads. A looping transition around a single repeat

profile allows the model to iterate through an arbitrary number of repeat patterns.

The signal alignment is the enabling and at the same time limiting step: The Viterbi

path through the HMM is the most likely state-sequence given the observed signal,

fed with a wrong signal alignment, the model will still yield a repeat count. A

filtering based on signal alignment scores is therefore crucial to exclude low quality

counts. A useful side-effect of the signal alignment is the ability to mask regions

within the read. STRique provides a script to cut out the expanded repeat from the

raw signal and creates wild-type like reads passing any conventional downstream

pipeline, to detect for instance DNA-methylation in the repeat-flanking sequence.

Taken together, STRique is an example for a unique nanopore application, enabling

more detailed investigations of short tandem repeat expansions.

Bioinformatics for nanopore sequencing are undergoing constant development.

Even a stable nanopore workflow needs, in contrast to NGS analysis, constant

maintenance to factor in accuracy improvements, new pore generations, but also

for example recent file format and compression method changes. Zooming out from

individual tool- to pipeline-level, the streamlined processing and data archiving has

received very little attention in the nanopore community. Computational setups

ranging from few MinION flow cells analyzed on a Laptop to high-throughput

PromethION sequencing in combination with GPU accelerated cluster environments

are complicating, if not inhibiting, a uniform processing strategy. The motivation

behind the development of the Nanopype pipeline is therefore not only to wrap the

processing, but also set up a scaling data management. While certainly site specific
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on the implementation detail, the concepts of the pipeline backend transfer to any

institute aiming to set up a nanopore workflow. The ONT device control software

MinKnow is providing raw data in batches of currently 4k reads packed into fast5

files. Further transfer to permanent storage, indexing and archiving are essential

for a high-throughput environment. The organization in batches is, as opposed to a

single fastq file per NGS run, beneficial for distributed processing. Nanopype operates

on batches whenever possible, submitting for instance alignments in batches bears

the advantage that multiple compute nodes can process a single sequencing run and

that only few reads need to be re-processed in case of errors. An abstraction layer

around the raw data handling is needed to be robust against different file formats

(single- and bulk-fast5) and changing output directory structures of the MinKNOW

software.

Using workflow management systems such as Nextflow or Snakemake over plain

shell script implementations greatly simplifies the development and maintenance of

a pipeline. Snakemake workflows are becoming more popular for both, standalone

pipeline development, but also to enhance the reproducibility of publications by

wrapping the applied toolchain into a workflow. Other pipelines in the field are

mostly linear in a way, that they utilize a single tool per processing step and provide

specialized outputs to analyze e.g. isoforms or single-nucleotide polymorphisms

(SNPs). Tailored to the requirements of methods development, Nanopype provides

basic processing with interchangeable methods for each module, supporting for

instance minimap2, NGMLR and GraphMap alignments. Among the greatest advan-

tages of using Snakemake is the support of cluster schedulers and the build-in support

for Singularity containers. With regard to increasing throughput and fast paced

algorithmic accuracy improvements, distributed processing of nanopore datasets is

an essential ability to operate on a competitive level. The deployment of pipeline

modules as Singularity containers is of less importance for the local usage, but is set-

ting a new state-of-the-art for providing exactly reproducible workflows. Nanopype

is unique in not only embedding the order and parameters of applied tools, but

also enforcing their version. Tool installations are commonly left to the user, by

either expecting to find required tools in the systems PATH variable or by providing

options with full path configurations. Both ways allow the execution of the work-

flow, but will produce divergent outputs depending on installed versions. Within

Nanopype, installation wrappers ensure that tool versions are tied to the pipeline

version, guaranteeing consistent outputs across labs and experiments. Lastly, after

building the Singularity images as part of the deployment process, functionality

tests can be executed with little overhead on minimal example datasets. The broad

functional range of Nanopype is ideal for basic processing and serves as a baseline for
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both, users and developers. At the same time is the all-in-one approach increasingly

complex to maintain and extend. An example is the trend to apply deep learning

algorithms to raw nanopore signals, not only for basecalling, but also for barcode

demultiplexing, variant- or base-modification-detection. Popular neural network

frameworks are Tensorflow (v1 and v2) and Pytorch, which have to be provided

by the pipeline. The current implementation would for instance not allow to have

parallel applications requiring different versions of Tensorflow. A subject of future

work is therefore the further isolation of included tools, for instance through distinct

python virtual environments for compatible applications. In order to not further

increase the complexity of the core pipeline, the Snakemake subworkflow feature

could be used to implement nested extension pipelines, each requiring Nanopype

outputs as external inputs.

Nanopore sequencing: What’s coming next?

The exploration of established use-cases in the literature review reveals the broad

applicability of third-generation sequencing for the analysis of bacterial and viral

genomes. Genome assembly and structural variant detection are prominent examples

for applications, where NGS sequencing is no longer the primary technology. The

thought experiment of what would be needed to fully replace NGS by nanopore

sequencing allows to assess remaining limitations. If nanopore reads had perfect

accuracy, not only on sequence, but also on base-modification level, there would

be no further need to store large raw datasets for future re-processing. A higher

accuracy would also reduce the required coverage, facilitating the widespread

sequencing of larger genomes with present throughput. On the other hand are

short reads convenient for count-based methods such as ChIP-Seq, where long reads

would impede peak-calling. Viewing third-generation sequencing as an extension,

rather than a potential replacement, appears therefore to be the most appropriate

perception.

From a hardware and wet-lab perspective, shrinking the sequencing devices using

voltage sensors or solid state pores could help to increase throughput and at the same

time decrease the amount of input material needed for library preparation. From

a software developer perspective, increasing the sequence and base modfication

detection accuracy on existing data would have wide-ranging impact. Processing

infrastructure and signal segmentation methods of this work are the foundation for

future work on basecalling and methylation detection algorithms. Novel transformer

neural network architectures have demonstrated impressive results on translation

and speech to text conversions. Translating an event table of feature vectors into
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a genomic sequence is from an algorithmic point of view very similar and the

performance of attention based learning over classical recurrent layers will be

exciting to investigate.
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ANanopype Supplement

A.1 Listings
1 rule minimap2 :

2 output :

3 bin = "bin/ minimap2 "

4 threads : config [’threads_build ’]

5 shell:

6 """

7 mkdir -p src && cd src

8 if [ ! -d minimap2 ]; then

9 git clone https :// github .com/lh3/ minimap2 --

branch v2 .14 --depth =1 && cd minimap2

10 else

11 cd minimap2 && git fetch --all --tags --prune

&& git checkout tags/v2 .14

12 fi

13 make clean && make -j{ threads }

14 cp minimap2 ../../{ output .bin}

15 """

Listing A.1: Snakemake installation wrapper
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Sequencing Report
V65_v2

3 Flow cells

121.1 GB Total bases

29.0 kB N50

1763.54 GB Total disk usage

Nanopype v1.0.1-11-ga124850



Nanopype report 2 V65_v2

1 Flow cells

  0: 20200708_PAE91419_FLO-PRO002_SQK-LSK109_V65_WT
  1: 20200709_PAE86216_FLO-PRO002_SQK-LSK109_V65_WT
  2: 20200710_FAN41394_FLO-MIN106_SQK-LSK109_V65_WT

2 Basecalling

2.1 Summary

Sum Mean Median N50 Maximum

V65.hac guppy 121110031025 13239 6603 29048 1315417

2.2 Guppy:

3 Alignments

3.1 Mapped bases (primary alignments)

Basecalling: guppy



Nanopype report 3 V65_v2

3.2 Mapped reads

Basecalling: guppy (V65.hac)

3.3 Read identity (primary alignments, all aligners)

Basecalling: guppy

3.4 Coverage



Nanopype report 4 V65_v2

4 Methylation

4.1 CpG coverage

Basecalling: guppy, Alignment: minimap2
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Tab. B.1.: Cas12 target enrichment throughput per flow cell

run reads valid wild type expanded target sample

FAH91937 74 67 36 31 C9orf72 24/5#2

FAH91937 5 3 3 NA FMR1 24/5#2

FAJ02524 139 87 51 36 C9orf72 24/5#2

FAJ02524 2 0 0 NA FMR1 24/5#2

FAJ03272 14 1 0 1 C9orf72 24/5#2

FAK02383 10 7 2 5 C9orf72 24/5#2

FAK02383 5 5 5 NA FMR1 24/5#2

FAK02402 1 1 1 0 C9orf72 24/5#2

FAK57423 22 18 9 9 C9orf72 24/5#2

FAK57423 25 22 22 NA FMR1 24/5#2

FAK67802 102 93 53 40 C9orf72 24/5#2

FAK67802 63 55 55 NA FMR1 24/5#2

PAD01039 228 122 72 50 C9orf72 24/5#2

PAD01039 19 10 10 NA FMR1 24/5#2

PAD01249 601 436 290 146 C9orf72 24/5#2

PAD01249 623 491 491 NA FMR1 24/5#2

PAD42366 152 122 69 53 C9orf72 24/5#2

PAD42366 102 90 90 NA FMR1 24/5#2

FAH66294 28 21 21 NA C9orf72 iPS6

FAH66294 1 0 0 0 FMR1 iPS6

FAJ02378 350 291 291 NA C9orf72 iPS6

FAJ02378 4 2 0 2 FMR1 iPS6

PAD01034 151 96 65 NA C9orf72 iPS6

PAD01034 5 4 0 4 FMR1 iPS6

PAD01413 779 565 564 NA C9orf72 iPS6

PAD01413 317 166 0 166 FMR1 iPS6

FAK02017 2 0 0 NA C9orf72 iPS7

FAK02017 28 11 0 11 FMR1 iPS7

FAK58936 283 261 261 NA C9orf72 iPS7
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FAK58936 181 147 0 147 FMR1 iPS7

Tab. B.2.: Cas9 target enrichment throughput per flow cell

run reads valid wild type expanded target sample

FAJ04502 639 463 284 179 C9orf72 24/5#2

FAJ04502 316 233 233 NA FMR1 24/5#2

FAJ04588 94 67 38 29 C9orf72 24/5#2

FAJ04588 46 39 39 NA FMR1 24/5#2

FAK01734 2 2 2 0 C9orf72 24/5#2

FAK01734 1 1 1 NA FMR1 24/5#2

FAK01877 36 31 17 14 C9orf72 24/5#2

FAK01877 56 47 47 NA FMR1 24/5#2

FAK57718 73 60 37 23 C9orf72 24/5#2

FAK57718 69 59 59 NA FMR1 24/5#2

FAK58137 157 128 75 53 C9orf72 24/5#2

FAK58137 127 109 109 NA FMR1 24/5#2

FAK62030 151 126 82 44 C9orf72 24/5#2

FAK62030 100 79 79 NA FMR1 24/5#2

FAK67994 1041 884 575 309 C9orf72 24/5#2

FAK67994 367 319 319 NA FMR1 24/5#2

PAD43259 364 298 187 111 C9orf72 24/5#2

PAD43259 197 154 154 NA FMR1 24/5#2
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