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Deterministic and Stochastic Parameter Estimation for
Polymer Reaction Kinetics I: Theory and Simple Examples

Niklas Wulkow,* Regina Telgmann, Klaus-Dieter Hungenberg, Christof Schütte,
and Michael Wulkow

Two different approaches to parameter estimation (PE) in the context of
polymerization are introduced, refined, combined, and applied. The first is
classical PE where one is interested in finding parameters which minimize the
distance between the output of a chemical model and experimental data. The
second is Bayesian PE allowing for quantifying parameter uncertainty caused
by experimental measurement error and model imperfection. Based on
detailed descriptions of motivation, theoretical background, and
methodological aspects for both approaches, their relation are outlined. The
main aim of this article is to show how the two approaches complement each
other and can be used together to generate strong information gain regarding
the model and its parameters. Both approaches and their interplay in
application to polymerization reaction systems are illustrated. This is the first
part in a two-article series on parameter estimation for polymer reaction
kinetics with a focus on theory and methodology while in the second part a
more complex example will be considered.

1. Introduction

Parameter estimation (PE) for chemical kinetics means the pro-
cess of fitting a mathematical model of the reaction process of in-
terest to given observation data by tuning the parameters of the
model. The model is mostly given in the form of reaction rate
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equations, that is, a system of ordinary dif-
ferential equations (ODEs) that describes
the temporal change of concentrations of
the reactants and products and their prop-
erties by modeling individual reactions in-
volving parameters like reaction rate coef-
ficients. Measurement data is given in the
sense that some characteristic quantities of
the process are measured for a sequence of
time points. In PE, one wants to find the
parameters for which the solution of the
model is as close as possible to the data
given. In PE, closeness is typically mea-
sured by means of the residual function
that measures the distance between model-
based prediction and measurement data.

PE for polymer reaction kinetics is used
in hundreds of articles. There also is a wide
range of literature on PE for ODE systems,
including its specific use in polymer reac-
tion engineering,[1–3] or systems biology,[4]

for example. This article complements
these works by a combination of different approaches to the PE
problem that normally are dealt with independently: We will dis-
cuss (1) the classical approach to PE via minimization of the
residual function and (2) the approach utilizing Bayesian PE and
uncertainty quantification. We will outline the pros and cons and
the different contexts in which these approaches seem appropri-
ate, and will demonstrate their use in application to different re-
alistic scenarios.

It is not the objective of this article to review the literature on
PE for polymer reaction processes. Its aim is to demonstrate that
classical and Bayesian PE complement each other in ways that
allow to deal with the following typical real-world scenario: the
model is still under construction, for most model parameters at
most rough estimates are available, and the available measure-
ment data is not sufficient, in the sense that not all quantities of
interest for the process can be measured, there are too few time
points, and/or the measurement quality is low, that is, there is
significant measurement error. In this scenario, classical PE of-
ten leads to severe problems: the misfit between model and data,
the residual, stays significantly large even after many minimiza-
tion steps, and the resulting fit is unsatisfactory, or the parame-
ters are strongly correlated. We will shed light on the exact rea-
sons for this outcome and discuss how to improve the situation.
In this scenario, classical PE suffers from the fact that insufficient
and low quality measurement data leads to uncertainty about the
optimal parameters.
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In general, parameter uncertainty can take several forms: (1)
The uncertainty of all parameters is small and their distribution is
approximately Gaussian around the optimal values, (2) the uncer-
tainty is large for some parameters meaning that they are hardly
informative and the model may even be insensitive with respect
to these parameters, and (3) the uncertainty is large because the
residual function has more than one main well. Case (1) is the
lucky case in which classical PE typically works well despite low-
quality data. In case (2), special precautions have to be taken in
classical PE in order to avoid the “ill-conditioned” problem of
determining the precise value of uninformative parameters (see
Section 2.2.1 below). Case (3) poses a severe problem for classical
PE that can only be dealt with via many restarts of the minimiza-
tion procedure for diverse initial conditions. In realistic cases,
however, one may have to deal with a mixture of all three cases
and may want to get quantitative information on parameter un-
certainty and the effects causing it.

Quantitative information on parameter uncertainty typically
requires using Bayesian PE instead of classical PE. Bayesian PE,
in the form discussed in this article, samples the distribution on
parameter space induced by the limited data available, allows to
include prior information, and does not only allow to quantify un-
certainty but also to identify uninformative parameters as well as
multi-modal distributions. However, it is computationally much
more demanding than classical PE. Therefore, uncertainty quan-
tification via Bayesian PE can complement classical PE but will
not replace it.

Bayesian methods for chemical reaction kinetics have also
been discussed extensively in the literature, especially for model
inference and model reduction for large chemical reaction
networks[5–8] or polymer reaction kinetics,[9] in relation to spe-
cific chemical contexts as catalysis,[10] or combustion,[11] for
large experimental data[12] or high dimension cases,[13] as well
as for more theoretical aspects like approximation quality and
sparsity.[14] In contrast, applications to polymer chemistry, es-
pecially applications to polymer reaction kinetics with a focus
on Bayesian PE, were rarely considered: For example, in [15], a
Bayesian framework including PE is presented for surfactant-
polymer flooding with no focus on polymer reactions. Process
design via Bayesian optimization and Bayesian design of experi-
ments has attracted some attention recently (see refs. [16–18], for
example), but with no focus on PE.

In this article, Bayesian PE for polymer reaction kinetics is dis-
cussed, including uncertainty quantification and its propagation
by the model for the real-world scenario of too few and low quality
data. We outline the theoretical foundations and introduce a prac-
tical sampling algorithm including a novel and efficient step-size
scaling procedure. Moreover, we will show how the different tools
used in classical PE like efficient evaluation or gradient computa-
tion of the residual re-appear (and can be re-used) in Bayesian PE.

The aim of this article is to show that only an interplay be-
tween classical and Bayesian PE allows to perform reliable PE
for the real-world scenario of insufficient data, allowing to shed
light on parameter uncertainty and the effects causing it. The ar-
ticle describes an entire pipeline of tools, from classical PE, via its
improvement for ill-conditioned cases, up to uncertainty quantifi-
cation via Bayesian PE, including efficient sampling and visual-
ization. While many individual ideas contained in this article are
not entirely new and have in part been known since many years,

their composition into a unified framework for PE, including un-
certainty quantification (PE+UQ) is new in the best sense of a
feature article. To our best knowledge, no article exists in which
the topic PE+UQ in polymerization is covered in a similar way
or in a comparable breadth. Moreover, several of the components
were adapted to the context and several others are novel. We be-
lieve that this article provides a helpful reference for students and
experts involved with non-standard PE problems in both polymer
kinetics and other problems where measurements and unknown
parameters are strongly unbalanced.

In order to make real-world testing easily possible, the entire
integrated pipeline is made available in the commercial software
package PREDICI.[19] This article is the first part of a two-paper
series. In this part, we will develop the theory and illustrate it on
a few very basic examples. In the second part, a comprehensive
co-polymerization model from polymer kinetics will be used to
show how to really work with the suggested tools.

The article is organized as follows: First, in Section 2, we give
an introduction to PE for ODEs, starting with the general set-
ting, then considering classical PE including residual minimiza-
tion, the potential source of ill-conditioning and improved nu-
merical stability, followed by outlining the key ideas of Bayesian
PE including tools for efficient sampling of the posterior distri-
bution, its visualization, resulting uncertainty propagation, and
concluded by a comparison between classical and Bayesian PE.
Next, in Section 3, we illustrate the interplay between classical
and Bayesian PE and demonstrate the performance of the pro-
posed algorithms in application to two examples, an illustrative
example of a chemical reaction scheme with four substances, and
a more realistic radical polymerization setting. Finally, in Sec-
tion 4, we draw conclusions and set the results into perspective.

2. Parameter Estimation

This section is devoted to the in-depth discussion of two differ-
ent approaches to parameter estimation (PE) for mathematical
models in terms of differential equations.

2.1. General Remarks on Parameter Estimation of Chemical
Reaction Models

We will concentrate on the PE problem for chemical reaction
models that we are going to consider later in this article. Such
models can be written as systems of ordinary differential equa-
tions (ODE)

dx(t)
dt

= f (x(t), 𝜃), x(0) = x0 (1)

where x0 is a given initial value and 𝜃 ∈ ℝd denotes a vector of
parameters, such as a set of reaction rate coefficients, that de-
termine the outputs of the model. The general form of (1) also
holds for general evolution equations, in particular, the countable
system of ordinary differential equations (CODEs) that are used
to describe polymerization kinetics.[19] The state of the system
at time t, for example, the vector of concentrations of chemical
species in a reactor, is denoted by x(t). That is, x(t) in general is
a multi-dimensional vector in ℝm and the right hand side of our
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ODE system, f , maps x(t) to its temporal derivative, again a vec-
tor in ℝm. Under very mild conditions on f , the ODE system (1)
has a unique solution that is completely specified by the initial
condition and the present parameter values. We simply write it
in the following form:

x(t) = F(t, x0, 𝜃), or, componentwise, xi(t) = Fi(t, x0, 𝜃) (2)

where xi(t) denotes the ith component of the vector x(t) and Fi the
respective component of F. By integrating Equation (1), in time
we find that

F(t, x0, 𝜃) = x0 + ∫
t

0
f (x(s), 𝜃)ds (3)

In general, the solution map F is not available in explicit form but
can only be computed numerically and comes with the (often con-
siderable) computational effort of computing the trajectory of the
ODE system (1) from time 0 to time t. This is especially true for
polymerization systems that are solved with respect to full chain-
length distributions. Note that in reality complex polymerization
systems can result in complex mathematical models, for exam-
ple, ODEs of a high order or Partial Differential Equations (e.g.,
population balance equations describing the particle size distri-
bution in emulsion polymerization[20]). In the notation of this ar-
ticle, the model formulation is encapsulated solely in the model
function F so that the theory from hereon is applicable regard-
less of the form or complexity of the system. As we will see later,
if the evaluation of the model function is expensive, this naturally
makes the use of the numerical methods we introduce expensive.

2.1.1. Measurements

Next, we assume that we made measurements of the state of the
system at times tj, j = 1,… , T . We denote these measurements
by X = (X1,… , XT ). In general, we have to assume that we may
not be able to perform measurements for all components of the
state vector x(t) but just for some of them. For the sake of simplic-
ity, we will use notation in which x(tj), the model’s state at tj, is
directly compared to Xj, for example, by computing the Euclidean
distance

‖x(tj) − Xj‖2 =
m∑

i=1

(xi(tj) − Xji)
2 (4)

where Xji denotes the ith component of the measurement vector
at time tj. If measurements are only available for some compo-
nents of the state vector, then the sum must solely contain these
components. For real applications, we should write gi(X(tj)) using
the state vector X(tj) and a function gi that maps the state variables
to a measurement of type i. Typical examples are the conversion
of a chemical substance or the mean value of a polymer distribu-
tion. Both are computed in terms of some variables xi of the state
vector. However, for the theory developed herein, we will just use
xi(tj) as model description of a measurement to make the presen-
tation simpler. Of course, the goal is to develop a model so that
each output xi(tj) is a close as possible to Xji, that is, to minimize
the distance in Equation (4).

2.1.2. Residual Function

If we knew that the model (1) perfectly reproduced the measure-
ments for a given parameter vector 𝜃∗, then we would have a per-
fect fit in the sense that

Xj = F(tj, X0, 𝜃∗) for all j = 1,… , T (5)

For all other parameter vectors, we can measure the deviation
between model and data by the weighted least squares residual
function,

RX (𝜃) = 1
mT

T∑
j=1

m∑
i=1

|Xji − Fi(tj, X0, 𝜃)|2|Xji|2
= 1

mT

T∑
j=1

‖D−1
j [Xj − F(tj, X0, 𝜃)]‖2 (6)

where the diagonal weight matrix Dj contains the diagonal en-
tries X2

ji , i = 1,… , m. We choose the entries of D in this way to
measure the quality of fitness of the model F to each data point Xji
by the same simple relative error model since we do not assume
any special knowledge on specific data points. This also makes it
easier to translate the formulation to further theoretical sections
in this article. Note that the weight matrix could be chosen dif-
ferently to reflect even a manually chosen weighting of the errors
of individual data points (see, e.g., refs. [21, 22]). For example, in
many real cases, one will extend the scaling Dji by measurement
inaccuracies or other thresholds sji by setting Dji = max(X2

ji , sji).
In the perfect fit case, the residual function would have a mini-
mum at 𝜃∗ with RX (𝜃∗) = 0. Any evaluation of the residual func-
tion comes with the cost of computing the solution of the ODE
system, in general by numerical means.

We cannot assume to have a perfect fit for various reasons,
for example, our model might simply be imprecise. Nevertheless,
parameter vectors for which the residual function RX is smaller
will be preferable to one with larger values of RX . The parameter
values for which RX attains a (global) minimum will belong to
the best fit given the model and will be called optimal parame-
ter, given model and data. As we will see, it is crucial to be aware
that there may be more than one minimum, so-called local min-
ima, and that the vicinity of a global minimum may contain re-
gions in which the values of RX only slightly deviate from its
minimal value, at least in comparison to the error of computing
the residual function numerically. These are exactly the problems
that make PE notoriously hard.

2.1.3. Measurement Errors

Until now, we have not considered any measurement error. In
general, the measurements will have a relative error, that is, the
measured value Xji of component i at time tj will be related to the
real value X̃ji via

|X̃ji − Xji||Xji| = 𝜀ji, i.e., X̃ji = Xji(1 + 𝜀ji) (7)
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where 𝜀ji is an unknown measurement error that is often mod-
eled by a normally distributed random number with mean 0 and
variance 𝜎2

ji with some small 𝜎ji that has to be provided as part of
the measurement process. Consequently, even for a perfect fit we
only can hope for

Xji = Fi(tj, X0, 𝜃∗) + Xji 𝜀ji for all i = 1,… , T (8)

such that the residual function will no longer vanish at 𝜃∗, but
yield the value

RX (𝜃∗) = 1
mT

T∑
j=1

m∑
i=1

|𝜀ji|2 = R∗
X (9)

Therefore, all other parameter vectors 𝜃 with RX (𝜃) = R∗
X are as

good as 𝜃∗ with regard to fitting the model to the data. For the
sake of simplicity, let us consider the uniform case 𝜎ji = 𝜎. Then,
the square root of R∗

X is normally distributed with mean 0 and
variance 𝜎2. Because of this, the probability distribution on the
parameter space is given by

exp
(
− 1

2𝜎2
RX (𝜃)

)
(10)

The exponential function comes in because of the assumed nor-
mal distribution of the measurement error. This probability dis-
tribution is called the likelihood in the sense that all parameters
leading to residual values around 0 with standard deviation 𝜎 are
likely candidates for the “true” parameters while ones with higher
residual values are exponentially unlikely. This concept survives
if we do not assume a perfect fit. Then parameter values in a 𝜎-
vicinity of a minimum of the residual function are likely, while
ones with higher residual values are unlikely.

In case that the 𝜎ji are not identical across all i, j, it is straightfor-
ward to modify the likelihood accordingly by dividing each term
in Equation (6) by the corresponding 𝜎2

ji instead of 𝜎2. In part 2 of
this series, we will devote more space to the measurements and
their accuracies in the context of polymerization kinetics.

Remark 1. Note that we take the perspective that the measure-
ment Xji is given and together with the measurement error in-
duces a distribution on what the true values X̃ji is. This leads
to the Equations (8) and (9). One could alternatively assume
Xji = Fi(tj, X0, 𝜃⋆)(1 + 𝜖ji), so that the measurement results from
a perturbation of the true model, and define the diagonal entries
of the weight matrix in (6) by Dji = Fi(tj, X0, 𝜃) to arrive at (9).

2.1.4. Classical versus Bayesian PE

These short considerations already explain the different ap-
proaches to the PE problem: Classical PE is focused on comput-
ing minima of the residual function in a reliable and numeri-
cally efficient way. However, even local minimization of RX may
be troublesome because there may be extended regions in pa-
rameter space where the residuum is numerically indistinguish-
ably small which makes numerical computations ill-conditioned.
In contrast, Bayesian PE tries to explore the likely parameter

regimes stochastically. Numerically, this is a much more de-
manding task that avoids the problems of classical PE but often
may be computationally infeasible. If feasible, it generates infor-
mation about the uncertainty of model-based predictions caused
by uncertainty about the parameter values. The following two sec-
tions will outline these aspects in more detail.

2.2. Classical Parameter Estimation

While the generation of synthetic data with a model with
parameters—or of true measurements with a chemical experi-
ment in the laboratory—is usually called the forward problem,
the inference of the parameters from the data is referred to as
the inverse problem:

Forward problem: Model, parameter 𝜃

→ Measurements/Results X

Inverse problem: Model, Measurements/Results X

→ Parameter 𝜃

(11)

In classical parameter estimation, solving the inverse problem
means, one searches for the global minimum 𝜃∗ of the resid-
ual function.

In many cases, such an inverse problem is ill-conditioned. This
means that even slight variations to the data can cause a signifi-
cantly different result for the estimated parameter. Since we as-
sume the data to be subject to measurement errors, these per-
turbations naturally occur and can cause misleading results re-
garding the parameter estimation. These effects can be signifi-
cant and, it must be emphasised, very severely alter the result of
the parameter estimation, even if the forward problem is well-
conditioned (which means slight changes to the parameters only
lead to small perturbations of the model result). This is illustrated
in Figure 1. An example can be found in ref. [1], pages 227–230.

There are various numerical methods to find a local minimum
of a function, in our case of the residual function. Most of these
methods focus on finding critical points where the derivative of
the function is 0. These points typically are local minima. The
global minimum is selected as the local minimum with the low-
est residual function value. There exists an abundance of liter-
ature on numerical parameter estimation methods to which we
refer for a complete overview of the topic, such as refs. [2, 23–
27]. We will concentrate on one particular method to both illus-
trate the basic methodology of such methods and introduce an
effective way to overcome typical problems in parameter estima-
tion. This method will also be used in the experiments later on
in this article.

2.2.1. Gauss-Newton Method with Essential Directions

A prominent way to find the zeros of a function is Newton’s
method applied to the derivative of RX (𝜃). Let us write the terms

Xji − Fi(tj, X0, 𝜃)

Xji
(12)
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Figure 1. Left: Well-conditioned forward problem. Similar parameters lead to similar simulation data. Right: Ill-conditioned inverse problem. Similar
simulation data can be caused by very different parameters.

for all i, j into a single vector EX (𝜃) = [E1(𝜃),… , EN(𝜃)]T with N =
mT entries so that 1

mT
‖EX (𝜃)‖2

2 = RX (𝜃). Its gradient defines the
Jacobian matrix J(𝜃) = Jl,j(𝜃) ∈ RmT×d via

Jl,j(𝜃) =
𝜕El(𝜃)
𝜕𝜃j

, l = 1,… , N, j = 1,… , d (13)

where for now 𝜃j denotes the jth entry of a parameter 𝜃.
This approach leads to the Gauss–Newton method.[1,28] It de-

notes an iterative scheme in which, from an initial parameter
guess 𝜃0, subsequent iterates 𝜃k, k = 1, 2,… are generated. Please
note that the index of the vector 𝜃k now denotes the iteration step
such that its jth entry is denoted 𝜃k,j. Each step of the iteration
consists of the following two sub-steps:

1. Finding Δ𝜃k that minimizes ‖J(𝜃k)Δ𝜃k + EX (𝜃k)‖2

2. Setting 𝜃k+1 = 𝜃k + Δ𝜃k

(14)

A direct way to solve this minimization problem is by demanding
that

J(𝜃k)Δ𝜃k = −EX (𝜃k) (15)

Using the Moore–Penrose pseudo-inverse J+(𝜃k) (this is a substi-
tute for the inverse of the matrix if the true inverse does not exist
or the matrix is not square),[29,30] this gives

Δ𝜃k = −J(𝜃k)+EX (𝜃k) (16)

The pseudo-inverse J(𝜃k)+ can be computed using Singular Value
Decomposition. To this end, one first represents J = J(𝜃k) as

J = USVT (17)

where U ∈ ℝN×d and V ∈ ℝd×d are orthogonal matrices, while
S ∈ ℝd×d is a diagonal matrix, carrying the singular values s1 ≥
s2 ≥ ⋯ ≥ sd on the diagonal. If sd > 0, J+ is given by

J+ = VS−1UT (18)

For handling the specific case sd ≈ 0 or sd = 0, see below. With
this, we can write the Gauss–Newton step in Equation (16) as

(Δ𝜃k)j = −
d∑

l=1

Vjl
1
sl

UT
l EX (𝜃k), j = 1,… , d (19)

where Ul denotes the lth column of U.
Damping: When computing the pseudo-inverse of J(𝜃), we

essentially solve an inverse problem (a linear system of equa-
tions) which can be ill-conditioned. In this case, errors in the
data may perturb the Jacobian J(𝜃)+. In addition, correlations be-
tween parameters will result in unreasonably large step lengths.
Consequently, the objective function at the end point of the step
may show a potentially huge increase instead of a monotonous
decrease. To counter this, one has to apply a damping strategy by
multiplying the Gauss-Newton step with a damping factor 𝜆k ≤ 1,
so that

𝜃k+1 = 𝜃k + 𝜆kΔ𝜃k (20)

The damping factor is updated from step to step using a mono-
tonicity test based on the objective function. There are many so-
phisticated strategies available. A summary is given in ref. [31].

Essential Directions: In many cases, one has to deal with hid-
den parameter correlations. These correlations are not easily de-
tected, but rather hidden in the model structure. The parameters
are also not fully correlated in a way that one can express one pa-
rameter by a function of some others, which would merely be a
modeling defect. Instead, they are only locally dependent in the
sense that a change of one parameter can nearly (with respect to
the residual) be adjusted by some other parameters. By that, the
parameter estimation practically does not lead to a unique solu-
tion. In other words: only some of the directions in parameter
space are really essential whereas the others depend on the es-
sential directions. These are called the flat directions.

Next, we outline a technique for detecting such parameter cor-
relations and for dealing with them. This technique is rarely dis-
cussed in the context of classical PE, but proves to be essential for
practical purposes, for more details please see ref. [1]. A similar
approach using rank decisions to identify sensitive parameters is
presented in the text book.[4]

As we will see below, parameter correlations and their detec-
tion and removal are deeply related to the so-called condition
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number of the underlying Jacobian matrix J at the respective step
of the iteration, which is given by

𝜅(J) =
s1

sd
(21)

that is, by the ratio between the biggest and the smallest singular
value. If sd = 0, then the condition is infinite.

Often, the singular values of J show a clear gap in their mag-
nitudes at an index kess, meaning that s1,… , skess

are clearly bigger
than skess+1,… , sd. With this, we can closely approximate J(𝜃) by

J(𝜃) ≈ U

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s1 0
s2

…
skess

0
…

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=:S̃

VT (22)

This allows us to fix the condition of the minimization problem
in Equation (14) to s1

skess

. The Gauss–Newton step is then given by

Δ𝜃k = −US̃VT EX (𝜃k) (23)

The explicit matrix notation (23) shows that we have trans-
formed the parameter space of the problem into a new space
where the essential directions are just the main axes. By drop-
ping the non-essential coordinates there, performing the Gauss–
Newton step and then going back to the original space, we have
automatically performed an adjustment of the flat directions
based on the progress of the essential directions. It is important
to note that the parameters of the flat directions are not insensi-
tive or even fixed. There are examples where all pairs of two out
of three parameters (with one parameter fixed in a reasonable
range) are perfectly sensitive and essential, but the fit problem
with all three parameters has only two essential directions. In all
classical PEs shown in this publication, we have applied the de-
tection and treatment of essential directions. We call this method
reduced-direction approach.[32] Flat directions are usually identi-
fied by being assigned to singular values that lead to a condition
number of about 100 or larger (if there is no other clear gap be-
tween the singular values). In a 2D parameter space, the condi-
tion can be visualized by the ratio of the half-axes of an ellipsoid
(with the lengths of these half-axes corresponding to the singu-
lar values). It is obvious that in cases of large condition numbers
of, say, 𝜅(J) = 100 or larger, this ellipsoid almost degenerates to a
straight line exhibiting a clear parameter correlation. Finally, it is
important to note that the condition of a problem and the num-
ber and type of essential directions is strictly dependent on the
problem setup. Even a slight change of the scaling or a different
weighting can alter these structures. All analyses of this kind are
only performed locally at single points in parameter space that
are reached by the iteration. Therefore, it is very important to also
create a global view of the problem.

2.3. Bayesian Parameter Estimation

Bayesian parameter estimation aims at avoiding the possibly ill-
conditioned inverse problem by a stochastic reformulation of the
problem such that only forward problems need to be solved in
order to find good parameter values. It does not result in a single
optimal parameter value but, in contrast, in information on the
probability of certain parameter values. To this end, one includes
some a priori known uncertainty about measurement errors into
the parameter estimation. The Bayesian inverse problem is struc-
tured as

Model, Measurements X, Measurement precision 𝜎

→ Probability for each 𝜃 (24)

The underlying assumption is that the uncertainty in the given
data and model imperfection translates to an uncertainty in the
estimated parameter. From a quantification of data uncertainty,
Bayesian PE deduces a probability distribution on the parameter
space. If this distribution is peaked, that is, concentrates around
a single maximum, then the parameter uncertainty is small and
the parameter at the maximum highly informative. If, in contrast
the distribution is spread out, perhaps with many local maxima,
then parameter uncertainty is large.

The central relation of Bayesian PE is

p(𝜃|X ) ∝ L(X|𝜃)pΘ(𝜃) (25)

p(𝜃|X ) denotes the so-called posterior density, interpreted as the
probability distribution on parameter space resulting from the
data values X observed. L denotes the likelihood that the observed
data X come from the model with parameters 𝜃. The density pΘ,
called the prior density, is used to encode all the prior knowledge
that we may have on the parameter values. The relation states
that the posterior density is proportional, that is, equal up to a
constant, to the product of the likelihood and the prior density.

2.3.1. Derivation and Fundamentals of Bayesian Modelling

Bayesian PE starts from the fundamental Bayesian identity that
directly results from the definition of conditional probabilities:

ℙ[𝜃 ∈ A ∣ X ∈ B] ⋅ ℙ(X ∈ B) = ℙ[X ∈ B ∣ 𝜃 ∈ A] ⋅ ℙ(𝜃 ∈ A) (26)

where as above, X = (X1,… , XT ) denotes observation data, 𝜃 the
parameter vector, and A and B subsets of the parameter space
and the data space, respectively. Both sides of this equality are
identical to the joint probability that X ∈ B and 𝜃 ∈ A.

Next, one assumes that the respective probability distributions
on data and parameter space exhibit probability densities, mean-
ing that

ℙ[𝜃 ∈ A ∣ X ∈ B] ⋅ ℙ(X ∈ B) = ∫A ∫B
p(𝜃|X)pX (X ) d𝜃 dX (27)

ℙ[X ∈ B ∣ 𝜃 ∈ A] ⋅ ℙ(𝜃 ∈ A) = ∫B ∫A
L(X|𝜃)pΘ(𝜃) dX d𝜃 (28)
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where L now denotes the density related to the probability of the
data, given the parameters. Since this is true for all A, B, we get
the Bayesian identity (26) in terms of densities:

p(𝜃|X)pX (X ) = L(X|𝜃)pΘ(𝜃) (29)

Assuming pX (X ) > 0, (29) yields

p(𝜃|X) =
pΘ(𝜃)
pX (X)

L(X|𝜃) (30)

We will see later that the posterior density p(𝜃|X) allows us to
do uncertainty quantification on the parameter estimation and
in the resulting model based predictions. At this point, however,
the key fact is that computation of the posterior density is typically
well-conditioned even if the inverse problem is ill-conditioned.[33]

Specifics on The Likelihood: Under the assumption that the
noise 𝜀ji in (8) is normally distributed with variance 𝜎2 we find,
as above,

L(X|𝜃) ∝ exp
(
− 1

2𝜎2
RX (𝜃)

)
(31)

where ∝ means identity up to some normalization factor such
that ∫ L(X|𝜃)dX = 1. This holds because

L(X|𝜃) ∝
∏

i,j

exp

(
− 1

2𝜎2

|Xji − Fi(tj, X0, 𝜃)|2|Xji|2
)

= exp

(
− 1

2𝜎2

∑
i,j

|Xji − Fi(tj, X0, 𝜃)|2|Xji|2
)

∝ exp
(
− 1

2𝜎2
RX (𝜃)

)
(32)

The first relation holds because every data point Xji is assumed to
be normally distributed around Fi(tj, X0, 𝜃) with variance 𝜎2. The
likelihood of all data points is then the product of these terms.
The factor mT from Equation (6) can be omitted here since it only
changes the normalization constant. Note that the residual that
is used in classical PE is directly transformed into a probability.

Specifics on pX : In order to get an interpretation of the data
density pX , we first integrate equation (29) with respect to 𝜃 on
both sides, yielding

pX (X)∫ p(𝜃|X )d𝜃 = 1 (33)

Therefore, pX merely plays the role of the normalizing factor of
the posterior understood as a density over parameter space. Be-
cause of this identity, one often simply writes the relation (29) in
the form given by Equation (25).

Specifics on The Prior: The density pΘ, called the prior density,
is used to encode all the prior knowledge that we may have on
the parameter values. When introducing the so-called potential
function

𝜇(𝜃) = − ln pΘ(𝜃) (34)

(that takes the value ∞ where the density is zero), and using the
expression for the likelihood, we can express the posterior by

p(𝜃|X) = 1
Z

exp
(
−SX (𝜃)

)
, SX (𝜃) = 1

2𝜎2
RX (𝜃) + 𝜇(𝜃) (35)

Although with this, we merely reformulate the posterior density
by introducing additional notation at this point, the term SX will
be of help later on.

For the form of the prior, there are two typical cases:
Uniform prior: One may know the parameters are positive val-

ues and perhaps even that their values must come from a certain
interval. In this case, pΘ is constant in a certain subset A of the
parameter space and zero outside, that is,

𝜇(𝜃) =
{

c if 𝜃 ∈ A
∞ otherwise

(36)

c > 0 is a constant value resulting from normalization,
∫A pΘ(𝜃)d𝜃 = 1. It simply means, we know the parameters
are in a certain interval but have no additional information
about them.

Gaussian prior: Often one assumes that the parameters come
from a normal distribution around some mean value 𝜃0 with an
appropriate covariance matrix Σ. In this case,

pΘ(𝜃) = 1
ZΘ

exp
(
−1

2
(𝜃 − 𝜃0)TΣ−1(𝜃 − 𝜃0)

)
(37)

If the prior takes this Gaussian form then,

SX (𝜃) = 1
2𝜎2

RX (𝜃) + 1
2

(𝜃 − 𝜃0)TΣ−1(𝜃 − 𝜃0) + ln(ZΘ) (38)

Of particular interest is the maximal posterior parameter esti-
mate

𝜃max = argmax𝜃 p(𝜃|X) = argmin𝜃SX (𝜃) (39)

denoting the most probable parameter value based on both the
data and the prior estimate. In the case that the prior is constant
over an interval and the optimal parameter estimate of classical
PE from (8) is in this interval, then it is equal to the maximal
posterior parameter estimate. If the prior is not uniform and has
its global maximum at a different value than the estimate from
classical PE, then this is generally not the case. In fact, then there
exists a conflict between our prior, data-independent knowledge,
which suggests that the optimal parameters are close to one cer-
tain value, and the evidence that the data provide. The posterior
distribution takes both into account. Its specific shape then de-
pends on the exact specifications of the prior, the likelihood and
the data. For example, it could well be a bi-modal distribution
with peaks at the maxima of likelihood and prior.

2.3.2. Computing the Posterior and Related Expectation Values

In the literature, two main algorithmic concepts for computing
the posterior dominate. The first and most simple one is grid-
based: one defines a grid of parameter values 𝜃k, k = 1,… , M,
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evaluates the likelihood and the prior at these points and
sets

p(𝜃k|X) ≈
L(𝜃k|X)pΘ(𝜃k)∑M

k=1 L(𝜃k|X)pΘ(𝜃k)
(40)

This requires M evaluations of trajectories of the ODE system
(one for each point as part of the evaluation of the residual RX ;
remember that the likelihood L is directly computed from RX as
in (31)). Whenever the parameter space is high dimensional, the
number of points of a typical grid gets too large (it grows with
nd if we take n grid points per dimension for each of the d di-
mensions). For such cases, sparse grid or sparse approximation
techniques offer a solution if the dimension is not too high.[14,34]

Expectation values (like the mean or the variance) of the posterior
distribution then are computed by

⟨A⟩ = ∫ A(𝜃)p(𝜃|X )d𝜃 ≈
M∑

k=1

A(𝜃k)p(𝜃k|X) (41)

for some function A = A(𝜃) (with A(𝜃) = 𝜃 for the mean and
A(𝜃) = 𝜃T𝜃 for variance).

The second approach samples the posterior distribution. This
means, one generates a set of parameters, the samples, that are
distributed according to the desired posterior distribution.

To do this, there is a variety of techniques based on
Monte Carlo methods[35] and corresponding multilevel
approaches.[36] A particularly prominent variant is the so-called
Langevin sampler,[37,38] or its pre-conditioned or underdamped
versions,[39,40] that generates a sequence of parameter points
(𝜃1,… , 𝜃n) according to the following iterative scheme: In each
step, one first computes the proposal 𝜃k+1 for the next parameter
point via

𝜃k+1 = 𝜃k − Δt gradSX (𝜃k) +
√

2Δt rk (42)

where rj is a random number generated from the standard m-
dimensional normal distribution with mean 0 and variance 1,
Δt some sufficiently small stepsize, and gradSX the gradient of
the function SX from Equation (37). Next, one determines the
acceptance probability 𝛼 according to the Metropolis–Hastings
algorithm[41]:

𝛼 = min
{

1, e−SX (𝜃k+1)

e−SX (𝜃k)

q(𝜃k, 𝜃k+1)

q(𝜃k+1, 𝜃k)

}
(43)

with

q(𝜃′, 𝜃) = exp
(
− 1

4Δt
‖𝜃′ − 𝜃 + Δt gradSX (𝜃)‖2

)
(44)

This choice of the acceptance probability yields that for the se-
quence of parameters, the detailed balance property holds; that
is, in expectation, there are as many jumps from a parameter 𝜃
to 𝜃 as in the other direction. Under mild additional conditions,
this has a consequence that the distribution of parameters in the
sequence converges to 1

Z
e−SX (𝜃k) as in Equation (35).

Last, in each step, one sets 𝜃k+1 = 𝜃k+1 with probability 𝛼 and
𝜃k+1 = 𝜃k otherwise. The acceptance step guarantees that the sam-
pler cannot enter regions of the parameter space where SX = ∞,
which may exist due to uniform priors, for example.

The sequence generated via this kind of MALA is automati-
cally distributed according to the posterior[37] such that expecta-
tion values are simply given by

⟨A⟩ ≈ 1
n

n∑
k=1

A(𝜃k) (45)

by the Birkhoff Ergodic Theorem.[42]

These sampling techniques automatically concentrate points
in regions of the parameter space where the posterior density is
significantly large. Expectation values converge with n−1∕2 in the
number of points generated, almost independent of the dimen-
sion. However, each step of the Langevin sampler requires the
evaluation of the gradient of the residual function, which may be
very expensive whenever the dimension of the data space is high.
Note that for multi-modal posteriors, the expressiveness of the ex-
pectation value can be low since it will simply lie somewhere be-
tween the different modes without sending a interpretable mes-
sage. In this case, it becomes especially important to get a global
view of the representation compared to simply considering the
expectation value.

The optimal acceptance rate in order to yield a fast convergence
typically lies between 50% and 70%, as is discussed in refs. [37,
43]. It does not hurt if the acceptance ratio lies slightly outside of
this interval. Truly worrying would be acceptance ratios of close
to 100% because this would indicate that the step size was too
small to efficiently sample from the entire state space of interest
and below ≈ 20% because in this case the algorithm is likely to
remain in a state unreasonably long.

We provide additional explanations on the algorithm in Ap-
pendix A.1.

2.3.3. Prescaling of the Step Size

In the case that parameters are in different orders of magnitude,
the choice of a reasonable step size Δt can pose a difficult task:
a choice that is suitable for one parameter might either be too
big for another, yielding proposals to frequently come from re-
gions where SX is high so that the proposal is accepted only with
very low probability, or too low so that an infeasibly high num-
ber of steps is required in order for the distribution of samples
to converge because the steps taken become minuscule in the di-
rections of parameters with values on higher orders of magnitude
(see Figure 2).

We therefore introduce a novel step size prescaling technique,
which chooses different step sizes in each parameter direction
by proposing a prescaling of the step size for each parameter be-
forehand. We replace the step size Δt by a diagonal matrix P that
contains the step sizes for each direction in its diagonal. The pro-
posal step then has the form

𝜃k+1 = 𝜃k − P gradSX (𝜃k) +
√

2P
1
2 rk (46)

where rk is a vector with random entries drawn from a standard
normal distribution.

In Appendix A.2, we provide an algorithmic way on how to
suitably set the diagonal entries of P. Note that realistic examples
very often require a proper prescaling.
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Figure 2. Example of difficulty when the parameters are of very different
sizes. The parameter spaces here are bounded via a uniform prior that is
positive only inside the box. Top: Step size that is suitable for parameter
1 but not for parameter 2 since the proposal lies outside the parameter
space. Bottom: Step size that is suitable for parameter 2 yields that many
steps are necessary to move through the space of parameter 1.

2.3.4. Marginal Densities

Whenever 𝜃 is more than 2D, we can hardly visualize the full
density any more. Instead, we will be interested in the posterior
densities for each of these individual parameters or a subset of
two of them. These densities will be called marginal densities:
let 𝜃 be multidimensional and be split into 𝜃 = (u, v) and let the
set of all possible parameters be denoted by Θ = ΘU × ΘV (so that
u lies in ΘU and v in ΘV ). Then the marginal distribution over u
is defined as

pU(u|X) := ∫ΘV

p(u, v|X)dv (47)

In other words, one integrates the posterior p with respect to all
entries of 𝜃 except for the ones in u (see Figure 3).

2.3.5. Visualization of Densities with Kernel Density Estimation

Sometimes a global representation of the posterior is needed, for
example, for the sake of visual inspection. Then point-wise val-
ues need to be interpolated in some appropriate form. To this
end, we suggest Kernel density estimation (KDE).[44,45] Although
there exist various other approaches to visualising the distribu-
tion, we want to illustrate KDE here in order to provide a com-
plete work flow from the classical PE problem of minimizing the
residual, the augmentation into the Bayesian PE, sampling from
the posterior and the visualization.

KDE can be understood as a continuous form of a histogram.
Having sampled parameters 𝜃1,… , 𝜃n from the posterior with,
for example, MALA, we could create a histogram of the distri-
bution by counting the number of samples that lie in each of a
chosen set of boxes. However, weaknesses of histograms include
a severe loss of precision when choosing boxes too big and need
for a high number of samples when choosing boxes small. In
KDE, we approximate the posterior at every point 𝜃 by

p̂KDE(𝜃) := 1
nh1 … hd

n∑
k=1

K(H−1(𝜃 − 𝜃k)) (48)

where K is a closeness measure and H is a diagonal matrix that
contains so-called bandwidths h1,… , hd > 0 as diagonal entries.
As a consequence, p̂KDE(𝜃) will be high in regions with many
samples since the values for K(H−1(𝜃 − 𝜃k)), which are added to-
gether, will be high if many samples are close to 𝜃. This is con-
sistent with the fact that by construction of the MALA algorithm,
many samples should come from regions where the posterior is
high. In total, we approximate p(𝜃) through a continuous weight-
ing according to closeness of samples to 𝜃. The similarity to his-
tograms lies in the fact that we do keep note of how many samples
are close to a point 𝜃 in the parameter space but instead of simply
counting how many samples lie inside a certain box, we include
the exact distance between each sample and 𝜃. More details on
the choice of the function K and the bandwidths can be found in
Appendix A.3.

2.4. Comparison between Classical and Bayesian PE

So far we have discussed two fundamentally different approaches
to PE. In classical PE, we seek a solution of the optimization prob-
lem in order to find the parameter that, in combination with the
model, best explains the data at hand. In Bayesian PE, we assign
a probability distribution to parameter space, the posterior distri-
bution, assuming that the data and model might not be precise.
In this way, we can quantify how reliably we can determine the pa-
rameters and draw conclusions for the range of possible forward
simulations of the model. Although both approaches can be tack-
led by various means, there are specific state-of-the-art methods
for both, which we have presented in our variants of the Gauss–
Newton optimization and MALA.

We have to observe, however, that in spite of their different
aims, algorithmically both of these approaches are in fact quite
similar. As is conceptualized in Figure 4, both methods rely on
the approximation of the gradient of the residual function that
compares data and the output of the model for a given parame-
ter. While in classical PE, we construct a sequence of which we
hope that it quickly converges to a minimum of the residual, in
the Bayesian approach with MALA, we generate a sequence (of a
chosen length) which should visit parameters in a frequency that
is proportional to the probability with which they denote the opti-
mal parameter. From then on, the real structural differences be-
come apparent: In the Bayesian approach, we can then quantify
and visualize the parameter uncertainty and instead of using the
optimal parameters for forward simulation of the model, com-
pute the propagation of parameter uncertainty by the model, for
example, by computing the 90% percentile of the forward trajec-
tories (this last aspect will be illustrated in Section 3).

3. Examples

We now showcase the interplay of classical PE with the Bayesian
approach to parameter estimation in combination with the
prescaled MALA on two examples and explain which conclusions
can be made from the results in practice. The first example is
quite simple and meant to illustrate the basic steps while the sec-
ond is more complex. All simulations have been performed in
the commercial program package Predici, v11, 2021.[19]
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Figure 3. Left: 2D distribution p(u, v|X) for two scalar parameters u and v. Right: Marginal distribution over u was computed by integrating along the
axis of v for each value of u.

Figure 4. Structures of classical PE using Gauss–Newton (top) and Bayesian PE using MALA (bottom). Both approaches are very similar in the way they
create a sequence of states. While in classical PE, one tries to find the minimizer of the residual as quickly as possible, MALA generates a long sequence
of states (as part of the overall result) whose distribution converges to the true distribution.

3.1. Example 1: Simple Four-Substance First Order Reaction

Consider the reaction scheme

2A
kab
←←←←←←←←←←→ B, kab = 10−4 1

s

3A
kac
←←←←←←←←←←→ C, kac = 10−5 1

s

3A
kad
←←←←←←←←←←→ D, kad = 5 ⋅ 10−5 1

s

(49)

with initial concentrations A0 = 10 mol
l

, B0 = C0 = D0 = 0 mol
l

.
From here onwards, we omit the units of the parameters. The

reaction temperature is not important here. We simulate the re-
action for a time span of 1000 s and observe concentrations of A,
B, C, and D on 22 different time points. We then perturb each
data point by a factor that is normally distributed with mean 1
and standard deviation 𝜎 = 0.1 to simulate measurement errors
(Figure 5).

3.1.1. Estimating Parameters with Data about A

As a first parameter estimation step, we determine best-fitting
parameters kab, kac and kad, using only the data points corre-
sponding to A. Using the Gauss–Newton method with essen-
tial directions with initial values given by (kab)0 = (kac)0 = (kad)0 =
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Figure 5. Exact and measured concentrations of A, B, C, and D. It might appear as if the data points of substance A were perturbed only by a much
smaller amount compared to the other substances but this is only due to the scaling of the figures.

10−5, we obtain that the residual is minimized for kab = 0.89 ×
10−4, kac = kad = 2.85 × 10−5, yielding a residual of ≈ 0.08. The
estimate of kab shows an error of 11% while the estimates of kac
and kad deviate strongly from their true values. The condition
number of the Jacobian results to be 𝜅 ≈ 108, a value that can
be interpreted as sign of strong correlation of at least two param-
eters. Actually, the analysis of degrees of freedom shows only two
out of three independent parameter directions here.

For this reason, we will now investigate the probability den-
sities for both parameters. We deploy the prescaled MALA and
make the correct assumption that the data are subject to nor-
mally distributed measurement errors with 𝜎 = 0.1. We bound
the parameter space to the interval [10−6, 10−3] × [10−6, 10−4] ×
[10−6, 10−4] for kab, kac and kad, resulting in a uniform distribution
on this interval as the prior distribution pΘ. We specify as residual
function the function introduced in Equation (6). We set up the
prescaled MALA so that a step should on average have the length
of one fiftieth of the length of the parameter space in each direc-
tion. The sampling sequence created has length 2500. As initial
values, we choose the estimated parameters given above but dis-
card the first 500 steps of the algorithm to minimize dependence
on the initial values. The acceptance ratio lies at 75% which is
slightly higher than the supposed optimal range of 50-70% men-
tioned in Section 2.3 but still suitable.

The result is shown in Figure 6 (blue curves). As we can see,
we get a broad range of probable values for all three parameters,
especially kac and kad. It is important to observe here that in spite
of the deviation of the estimated parameters from the true values,
the true values are well inside the range of probable parameters.
However, the data about A do not seem to be enough to determine

good estimates for kac and kad. This lack of data together with the
assumption of a relatively high measurement uncertainty yields
a high uncertainty of the parameters.

3.1.2. Including Data about B, C and D

We now include the observed values of B, C, and D into the data
set, which also consist of 22 data points each. The parameter
estimation using Gauss-Newton with essential directions gives
kab = 0.89 × 10−4, kac = 0.95 × 10−5 and kad = 4.57 × 10−5 with a
condition number of 𝜅 ≈ 2; so, apparently, the inclusion of B, C,
and D significantly improves the parameter estimation. The es-
timated values, however, still deviate from the true parameters,
especially the estimate for kab. In order to check whether there
still exists a large uncertainty around these values, we again sam-
ple parameters using prescaled MALA from the posterior distri-
bution that comes from the inclusion of B, C, and D. As we can
see in Figure 6 (red curves), the densities for kac and kad become
much slimmer, yielding a more reliable estimate for kac. Plus, the
true values are still inside the range of probable values.

3.1.3. Effect of a Lower Measurement Uncertainty

Let us assume, we take the measurements now with a more pre-
cise apparatus. To this end, we perturb the original data again
but with 𝜎 = 0.03. The result of the Gauss-Newton scheme now
is kab = 1.0 × 10−4, kac = 0.99 × 10−5, and kad = 4.96 × 10−5, with
a condition number of 𝜅 ≈ 1. This is much closer to the true
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Figure 6. KDE visualization of the marginal densities of kab, kac, and kad with data perturbed with 𝜎 = 0.1 and 𝜎 = 0.03. The inclusion of B, C, and D is
vital to generate reliable estimates for kac and kad. A lower data measurement error yields better certainty of the parameters.

values. Sampling from the ensuing posterior distribution (with
𝜎 = 0.03) with prescaled MALA again generates densities which
are much more precise than with 𝜎 = 0.1.

In summary, as we can see in Figure 6 (orange curves), higher
trust in the observed data—resulting in a smaller value for 𝜎—
and inclusion of the concentrations of B, C, and D in the parame-
ter estimation procedure now enables us to determine all param-
eters with only a small amount of uncertainty. It is important to
understand that the specified value for 𝜎 depends on the mea-
surement precision of the experimentalist. The more precisely
the measurements are taken, the more meaningful generally the
result is. This is also illustrated by the fact that the parameter
densities become slimmer, meaning that the range of likely val-
ues for a parameter is narrowed down with higher measurement
precision. This means, receiving a small residual in the classical
PE and a large range of parameters with a high value for 𝜎 need
not be a contradiction: It means that if the data uncertainty is
large, then the residual can be made small but at the same time
the optimal parameters are not reliable.

Note that the overall measurement error may have different
sources. In most cases one determines 𝜎 as a repetition error, that
is, measuring the same sample n times for example by spectro-
scopic or chromatographic methods. Then 𝜎 is usually small, but
we neglect all errors caused by sample preparation which usually
needs several operations like dilution, filtration, neutralization,
extraction, etc. Further errors arise from the evaluation of the raw
data, that is, the transformation of the detector signal to the final
measuring quantity. This may involve setting the correct base-
line, choice of calibration curve, etc. The latter ones are usually
higher than just the repetition error. By choosing different values
for 𝜎, we want to demonstrate the importance of the evaluation
of correct 𝜎.

If one has either, ideally, estimated the measurement precision
to be high or at least is confident in the data measurements then
𝜎 should be chosen small. As a consequence, the parameter den-

sities will likely be very sharp and centered around the optimal
value from classical PE.

In conclusion, this example illustrates how the reliability of pa-
rameter estimation depends on the data at hand and the amount
of trust we can put into it.

3.1.4. Uncertainty Propagation

We can now substitute the sampled parameters into the model
itself to see the range of probable outcomes of a simulation. To
this end, we have simply created one trajectory for each sampled
parameter vector, and at each point in time discarded the upper
and lower 5% of values, leaving us with the 90% percentile. In
Figure 7, we can see that all data points for D lie inside the 90%
percentile of simulations. This indicates that our model can ex-
plain the data quite well, taking into account the data uncertainty
(of additional interest could be to perform forward simulations,
that is, beyond the time span for which the data were taken). This
should be no surprise since the model we used to estimate the dy-
namics is precisely the one we used to create to data. This does
not always have to be the case, for example, if the data are gener-
ated by a complex chemical experiment for which we only have a
much simpler model, as the next example shows.

Remark 2. In the above example, one might argue that trying to fit
all parameters only using the measurements for substance A is
not reasonable. However, in more complex examples, this is the
typical situation: having a set of measurements and a given model
with some unknown parameters where it is not clear whether it
is possible to get a unique or narrowly-distributed parameter fit.

3.2. Example 2: Radical Polymerization

For the next example, we will address a situation which one
often encounters in polymer research. Suppose there is a new
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Figure 7. Illustration of uncertainty propagation: 90% percentile of concentrations of D for forward simulations with sampled parameters. We can see
that the model is capable to explain the data within its uncertainty.

monomer M in whose basic kinetics in radical polymerization
we are interested. First, you have to decide on the kinetic model,
that is, what are the elementary steps which happen during this
process. Radical polymerization is a chain process, that means
the kinetic chain must be initiated, it must propagate, and finally
terminate. Let us start with a rather simple model which one can
easily pick off from text books of polymer science.

3.2.1. The Chemical Reaction Models

The initiator I decomposes to two radicals R with a rate coeffi-
cient kd and an efficiency f , which considers that not all radi-
cals R may start a kinetic chain because they are destroyed by
some (unknown) side reactions before they can add the first
monomer unit.

R starts chains by adding the first monomer M giving a
polymerization-active, “living” chain P1 of length 1. The active
chains grow by adding one monomer after the other to chains Ps
of length s (often named macroradical) until they terminate with
each other yielding dead polymer D, the final product which you
can isolate and sell. Termination can either be by combination of
two active chains Ps and Pr yielding dead polymer Ds+r of length
s + r or by disproportionation, when the chain length of the active
chains are preserved yielding two dead chains Ds and Dr . When
the initiator radical R starts a growing chain, the group R is incor-
porated as end group (EG) in the polymer chain, and to account
for the concentration of these incorporated groups, a massless re-
action product, a counter EG, is introduced as auxiliary quantity.

I
kd
←←←←←←←←→ 2fR

R + M
kp
←←←←←←←←→ P1 + EG

Ps + M
kp
←←←←←←←←→ Ps+1

Ps + Pr

kt,c
←←←←←←←←←←→ Ds+r

Ps + Pr

kt,d
←←←←←←←←←←←→ Ds + Dr

(50)

Reaction scheme for the assumed polymerization mechanism
for which rate coefficients will be estimated using “experimen-
tal” data generated with the “real” model given in (49).

One has to keep in mind that the life-time of an active chain is
in the order of seconds or less, so R must be continuously gener-
ated by decomposition of I to generate new active macroradicals
which grow to chain lengths of some hundreds or thousands un-
til they terminate.

It is obvious that the mode of termination has a strong in-
fluence on the chain length of the final polymer D, that is, of
its molar mass. The same holds for the efficiency f , which de-
termines how many chains will be effectively started, that is, on
how many chains the polymerized monomer will be finally dis-
tributed. Thus, it is important to know the values of f , kt,c, and
kt,d to be able to design a new polymer grade with a desired chain
length or molar mass.

We assume that we know the exact value of kd, usually provided
by the supplier of the initiator, and the value of the propagation
rate coefficient kp from some independent measurement.[46] The
task now is to estimate values of the unknown coefficients f , kt,c,
and kt,d.

At this stage, one has to perform a couple of experiments and
measurements. Here, we replace the experiment by simulation
results, but with a somewhat more complex, “real” model includ-
ing reactions which are responsible for the efficiency f of the ini-
tiating radicals R.

I
kd
←←←←←←←←→ 2R

R + R
kcage
←←←←←←←←←←←←←←→ T

R + M
kp
←←←←←←←←→ P1 + EG

Ps + M
kp
←←←←←←←←→ Ps+1

Ps + Pr

kt,c
←←←←←←←←←←→ Ds+r

Ps + Pr

kt,d
←←←←←←←←←←←→ Ds + Dr

Ps + R
kprim
←←←←←←←←←←←←←←←→ Ds + EG

(51)

Reaction scheme for the “real” polymerization mechanism to
generate “experimental” data together with rate coefficients and
recipe from Table 1.

Typical initiators are so-called azo-initiators which upon heat-
ing give two small radicals R and one nitrogen molecule N2 which
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Table 1. Upper: rate coefficients used in model (51) to produce the data.
Below: recipe for generation of data.

Parameter Value

kd 7 × 10−4 1 s−1

kcage 3 × 1010 l mol−1 s−1

kprim 5 × 108 l mol−1 s−1

kp 2 × 103 l mol−1 s−1

kt,c 2 × 107 l mol−1 s−1

kt,d 0 l mol−1 s−1

Compound M [kg mol−1] m [kg] Conc. [mol L−1]

M 0.1 0.2 2.0

I 0.2 0.002 0.01

S 0.1 0.8 7.98

are captured in a so-called solvent cage, that is, they are sur-
rounded by solvent molecules. The reaction of such small rad-
icals with each other occur near diffusion control, and so these
two R may react with each other to give a non-reactive compound
T before they diffuse out of this solvent cage to meet a monomer
and start a growing chain. This is called the cage effect. Once
they have left the solvent cage, these primary initiator radicals
may also react with growing chains to dead polymer D, a reac-
tion which is called primary radical termination. Again, EG gives
the concentration of end groups in polymer chains. Contrary to
the assumed model, end groups from the initiator radical R are
generated by chain initiation as well as by primary radical termi-
nation. These two reactions add an inherent “initiator efficiency”
to the reaction system, and depending on the value of kcage and
kprim the amount of radicals available for chain initiation will be

reduced. Note that this efficiency is not constant throughout the
reaction, in contrast to the simple model (50).

To generate “experimental” data, we use the “real” kinetic
model (51), together with the rate coefficients given in Ta-
ble 1, left. The kinetic model is translated to a system of ODEs
assuming the mass balance for a batch reactor together with
the mass action law of reaction rates and constant densities of
1 kg

l
for all compounds together with the initial reactor load

and molar masses M for monomer M, initiator I, and solvent S
given in Table 1, right. In the following, we denote the complete
reactor setup as the recipe.

The data are shown in Figure 8 and the exact values in Table B1
in Appendix B1.

3.2.2. Estimation of Parameters

We will now estimate the parameters f, kt,c, and, later, kt,d, using
model (50) based on the data generated by model (51).

Test 1: Fitting f and kt,c with Monomer Concentration [M]: At
first, we estimate f and kt,c only with the data of the monomer
concentration [M]. We select as initial values f0 = 1 and (kt,c)0 =
106. kt,d is assumed to be 0 as it is in the real model (note that
since both models differ this does not have to be a good value
in the simple model). Using the Gauss–Newton with essential
directions algorithm in Predici, we find as optimal results

f = 0.17, kt,c = 3.6 × 106 (52)

while

RX = 0.130, condition 𝜅 ≈ 1000 (53)

The high condition number should be a worrying sign. It
indicates that parameters might be correlated so that there

Figure 8. Data from the “real” model (51) for monomer concentration [M], weight average molar mass Mw and concentration of end groups of dead
chains coming from the small radical R from reactions 3 and 7 of (51). The exact values can be found in Table B1.
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Figure 9. Test 1: full approximated probability density of f and kt,c (left), and marginal densities (middle and right). The images suggest a large range of
probable choices for the parameters.

exist significantly different good parameters. For example, if we
choose as initial parameters f0 = 0.5 and (kt,c)0 = 107, the result is

f = 0.48, kt,c = 1.04 × 107, RX = 0.132, 𝜅 ≈ 300 (54)

Apparently, there exist very different parameters which give very
similar residuals. If we now assume the data to be subject to
measurement errors, it becomes immediately unclear, which of
these two parameters is better suited in our model because, if
the true data are slightly different from the observed data, then
the parameters in (54) could easily yield a better residual than
the ones in (52).

It is thus worthwhile to view the PE here from the Bayesian
perspective and approximate the probability distribution. To this
end, we assume to have made a measurement error of 𝜎 = 0.05
and use the prescaled MALA. Note that here one could also use
the grid-based approach since we only consider two different pa-
rameters. However, we also want to showcase the applicability
of the more complex MALA approach which is better suited for
high-dimensional parameters. Details on the prescaled MALA in
this example are found below.

The ensuing distribution is visualized using KDE in Figure 9.
As we can see, we cannot reliably estimate the parameters since
the region of parameters with high probabilities is vast for both
parameters, especially for f . Considering the structure of the
chemical reaction, this should not come as a surprise. While a
high efficiency f denotes a high fraction of effectively initiating
radicals and thus a fast conversion of the monomer, kt,c is the
rate of the termination by combination during which radicals are
destroyed. As such, f and kt,c work against each other, yielding

multiple possible choices for them with similarly small residual.
Together with the assumption of possible data measurement er-
rors, this yields a large range of similarly probable parameters.

Please see Appendix B.2 for technical details of the application
of the PE methods in this section.

Remark 3. Note that, although f = 0.17 together with kt,c = 3.6 ×
106 also gives a small residual, apparently parameters in its vicin-
ity do not since only few samples were found in this region.
This is, in fact, an artifact of the MALA algorithm: proposals
which are close to this parameter are still rejected because there
the residual is high. As a consequence, the small region around
f = 0.17, kt,c = 3.6 × 106 is slightly undervalued by the created se-
quence of samples.

Test 2: f and kt,c with [M] and Mw: We include the four data
points of the average molar mass Mw into the data and again
perform parameter estimation with the essential directions ap-
proach in Predici. The result is

f = 0.72, kt,c = 1.6 × 107, RX = 0.123, 𝜅 ≈ 3 (55)

Now, with a very small condition number, we are able to de-
termine f and kt,c. Their values are also in accordance with the
result of the Bayesian PE in the previous setting: 0.72 for f and
1.6 × 107 for kt,c were inside the set of probable values.

We again perform the Bayesian PE with prescaled MALA for
this setting and find a much smaller range of probable param-
eters, which also includes the optimal parameters stated above
(Figure 10). The optimal parameters are close to the maxima
of the determined distribution. Apparently, the inclusion of the
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Figure 10. Test 2: Full approximated probability density of f and kt,c (left), and marginal densities (middle and right). With the inclusion of Mw, the range
of probable parameters becomes much slimmer.

average molar mass Mw into the data has a strong effect on
the reliability of the parameter estimation: the residual could
be made small both with and without Mw, but the parameter
region in which this is possible is significantly narrowed down
by inclusion of Mw.

Test 3: f, kt,c and kt,d with [M] and Mw: We now assume the
parameter kt,d to be unknown, too. Note that we do not intend the
different parts of this example to build on each other, but rather
aim to show what happens when the knowledge we have about
the model and the provided data varies. With [M] and Mw as data
and initial values given by f0 = 0.5, (kt,c)0 = (kt,d)0 = 107, we get
similarly ambiguous results as in Test 1. For initial values f0 =
0.5, (kt,c)0 = 107, (kt,d)0 = 1 we find

f = 0.72, kt,c = 1.59 ⋅ 107, kt,d = 1, RX = 0.125,

𝜅 ≈ 1400 (56)

while for initial values f0 = 0.5, (kt,c)0 = 1, (kt,d)0 = 106 we get

f = 0.71, kt,c = 1.45 ⋅ 107, kt,d = 1.06 ⋅ 106, RX = 0.125,

𝜅 ≈ 8900 (57)

Apparently, while f is nearly at the same value, there are multiple
possibilities for combinations between kt,c and kt,d.

The implication of this needs to be stressed. Although these
parameters are minima of the residual function, they need not be
predictive: if we use them to simulate other properties of the re-
action, for example, simply simulate forward in time, they might
yield significantly different results than other optimal parame-
ters. Hence, one would have to ask, which prediction would then

have to be expected? Taking the probabilities for the different pa-
rameters into account, we will see a range of probable scenarios.
This will be illustrated in Test 4.

The Bayesian PE with 𝜎 = 0.05 again sheds light on which pa-
rameters are how probable through the posterior distribution.
As it turns out, we find a broad range of values with high prob-
abilities (Figure 11). It implies that with kt,d unknown and the
data at hand, we cannot find a reliable estimate for the three
parameters.

Test 4: f, kt,c and kt,d with [M], Mw, End Groups and The Molar
Mass Distribution: We now include the end groups and full mo-
lar mass distribution into the data in the hope that it yields a
more precise estimate of the parameters. With initial values given
equally as in Test 3, we get as optimal parameters

f = 0.76, kt,c = 1.66 ⋅ 107, kt,d = 1.09 ⋅ 105, RX = 0.124,

𝜅 ≈ 170 (58)

These parameters are similar to the ones in Test 3, but they come
with a much lower condition number. We see, however, that kt,d
is quite close to its initial value. This should make us suspicious
since it could indicate that there exist many local minima with
different values of kt,d and simply the one closest to the initial
value was found.

To reveal whether this is true or whether kt,d = 1.09 × 105 is
in fact the unique best choice, we again start the Bayesian PE at
these optimal parameters. Compared to Test 3, the distributions
of kt,c and f become much slimmer and resemble normal dis-
tributions centered around the optimal parameters determined
above (Figure 12). kt,d, however, is distributed across a vast range
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Figure 11. Test 3: Since kt,c and kt,d both impact the destruction of radicals and f counteracts these values being responsible for the number of initiating
radicals, their values are highly non-unique.

Figure 12. Test 4: With data about the molar mass distribution and end groups included, the parameters can be much more reliably inferred since the
distributions are much slimmer than in Test 3. kt,d seems not to impact the outcome of the model much since many very different values seem probable.

of values from 10 to 107. This is because there exist multiple dif-
ferent combinations of values for kt,d, kt,c, and f which yield a sim-
ilarly small residual. In other words, the parameters are corre-
lated. This is also expressed by the fact that in the Gauss–Newton
scheme, there existed two essential directions and not three. The
range for the combinations, however, is much smaller for the lat-
ter two than for kt,d.

With all data points included, we were able to learn important
properties of our model. We could find optimal values for kt,c and
f by minimizing the residual function. Taking into account the
possibility of measurement errors that perturb the data, we could
quantify how this uncertainty affects the parameter estimation.
We could also see that for kt,d many different values, between 10
and 107, are permitted.
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Table 2. Second recipe used to generate another data set.

Compound M [kg mol−1] m [kg] Conc. [mol L−1]

M 0.1 0.5 3.78

I 0.2 0.02 0.075

S 0.1 0.8 6.06

As the last step, we will now investigate the possible outplays
of the model with other recipes based on their probabilities. In
doing so, we also show how to verify whether the simple model
is generally a good approximation to the true model, opposed to
only for the recipe used in generation of the data depicted in Fig-
ure 8.

We generate data points with the true model (51) with a differ-
ent recipe, given in Table 2.

Afterward, we make forward simulations with parameters with
the simple model (50) which were sampled from the 3D proba-
bility distribution for the parameters and visualize the 90% per-
centile in each time step for these forward simulations (i.e., in
each time step we show the boundaries above and beneath of
which only 5% of the forward simulations lie). We compare these
forward simulations with the data and want to check if the data
lie inside the range of possible forward simulations. The aim is
to find out whether the simple model can accurately approximate
the true model for different recipes, taking into account that the
parameter estimation is subject to uncertainty. If this is the case,
it means that the parameters estimated on the basis of the data in
Table B1 are applicable to other recipes, too. We find (Figure 13)

that while the evolutions of Mw and the end groups are reasonably
well captured, the concentration of the monomer takes a quite
different path, indicating that the simple model is not able to pre-
dict its concentration well. One could argue that maybe the data
measurement error was actually higher than initially assumed so
that we are led to the wrong parameters. In order to take this into
account, we set 𝜎 = 0.1, again sample from the probability distri-
bution corresponding to this value for 𝜎—the probability distri-
butions are not visualized here but naturally become broader—
and generate predictions. As we can see, even assuming a high
measurement error, that is, allowing the idea that many different
parameters are candidates to be optimal, the simple model is not
capable to accurately predict the evolution of the monomer con-
centration. This gives us an important message that the classical
PE could not have sent: there exists a modeling error in the sim-
ple model (50) in regard to the true model (51); that is, there are
components of the true, unknown model that are badly or not
at all captured by the simple model. Hence, we must modify our
simple model if we strive to forecast the monomer concentration.
Of course, if we are only interested in Mw and end groups, then
the simple model seems to be sufficient. For this, the Bayesian
PE sheds light on where the outcomes of the true model lie with
different recipes.

In order to improve the simple model, there does not exist a
blueprint in the sense of a clear algorithmic way how to do that.
It requires expertise in regard to the chemical model to find the
missing parts of the simple model. This is also the reason why we
do not take the discussion of this example further since we want
to showcase specific generally recommendable steps one should
take in order to gain maximal insight into the uncertainty of the

Figure 13. Test 4: 90% percentiles of forward simulation of model (50) with a different recipe for samples of the posterior distribution generated with
𝜎 = 0.05 (solid lines; dark grey) and 𝜎 = 0.1 (dashed lines; light grey) and data points generated with the true model (51). We see that even if we assume
to have made a higher measurement error (𝜎 = 0.1 instead of 0.05), the simple model is still not enough to explain the evolution of the concentration
of M.

Macromol. Theory Simul. 2021, 30, 2100017 2100017 (18 of 24) © 2021 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH



www.advancedsciencenews.com www.mts-journal.de

estimated parameters and how it translates to forward simula-
tion. For completion, for this model, it is the step of termination
with R with parameter kprim that should be included into the sim-
ple model to give a much better prediction for the monomer.

4. Conclusion

In this article, we have illustrated, compared, and combined two
different approaches to parameter estimation: (1) the classical ap-
proach that focuses on minimizing the residual function which
measures the distance between the outcome of a model and the
observed data, and (2) the Bayesian approach which quantifies
the uncertainty that the parameters underlie. Both play an im-
portant role in estimation of parameters in chemical processes
such as polymerization. In this article, we argued that only the
interplay between both approaches allows reliable parameter es-
timation in typical real-world scenarios.

In this light, it is vital to understand that both approaches do
not contradict but rather complement each other. Classical PE
gives the answer to the more intuitive question: it tells us what
the optimal parameter is that brings the model outcome closest
to the observed data. Bayesian PE, on the other hand, assumes a
probability distribution on the data which translates to a proba-
bility distribution of the parameters. It complements the classi-
cal PE in the sense that it tells us the degree of reliability with
which we can assume to have found the optimal parameters. If
one finds that the distribution allows a large region of probable
parameters, it indicates that the data at hand are either not expres-
sive enough or their measurement error is too high. Additionally,
the parameter that was determined in classical PE can be used to
make forecasts for future time points of the model simulation or
entirely different recipes as done in Test 4 of Example 2. Plus, one
has to take into account that the uncertainty in the parameters
naturally translates to these forecasts. On the basis of the prob-
ability distribution of the parameters from Bayesian PE, we can
estimate the probabilities for the outcomes of these new simula-
tions. Further, this allows us to infer whether the model we use
actually offers an accurate description of the real experiment that
generated the data.

The uncertainty of the PE arises if one does not have perfect
reliability of the data. It must be stressed that this data measure-
ment error must be quantified by the experimentalist first (in the
form of a value for 𝜎). Afterward, the data uncertainty translates
to parameter uncertainty which itself translates to a range of pos-
sible model outcomes for other recipes or future points in time.
If the data can be measured almost perfectly, the Bayesian PE will
give overwhelming probability to the parameters that were deter-
mined as optimal in the classical PE and the probable model out-
comes will lie in a very small range around the outcome that cor-
responds to the optimal parameters. On the contrary, of course,
if the data underlie large measurement errors, then the result
from classical PE does not deserve a large amount of trust and
consequently the parameter distributions from Bayesian PE will
be broad.

In order to communicate these characteristics of the ap-
proaches as well as their interplay, we explained their motivation,
theory, and applicability in detail. We further introduced practi-
cal methods for both—the Gauss–Newton method with essen-

tial directions for classical PE and the novel sampling technique
prescaled MALA for Bayesian PE. Last, we showcased how to ap-
ply both approaches and how to interpret the results in two ex-
amples of different complexity.

In total, the whole work flow to perform Parameter Estimation
with Uncertainty Quantification we suggest in this article can be
summarized as follows:

1. Generate data with an experiment.
2. Define a model, for example, of the form in Equation (1).
3. Estimate optimal parameters—that is, the global minimum

of the residual function, defined, for example, as in Equa-
tion (6)—with Gauss–Newton with essential directions (see
Section 2.2), using multiple different initial conditions since
many optimization methods are prone to get stuck in local
minima.

4. Quantify the data measurement error 𝜎.
5. Define the prior distribution in the Bayesian framework as the

data-independent intuition of the parameters and the likeli-
hood function (see Section 2.3).

6. Sample from the ensuing posterior distribution, for example,
using prescaled MALA (see Section 2.3 and Appendix A.2)
with initial values chosen as the optimal values from classi-
cal PE.

7. Visualize the parameter distribution (for parameters with di-
mension bigger than 2 the marginal distribution), for exam-
ple, using KDE (Equation (48)).

8. Use sampled parameters to investigate probable outcomes of
the model for future points in time or different recipes.

9. If the experiment (respectively its model formulation) with
which the data were generated is unknown and it is unclear
whether the used model is a good description, take the real ex-
periment again with a different recipe and compare the range
of predicted model outcomes with the newly generated data.
If the data lie far outside the range of probable model out-
comes, this indicates that the used model is insufficient to
describe the real experiment. In this case, problem-specific
expert knowledge is required to find an improvement.

All these steps are implemented and were executed in Predici.
While in this article we focused on the theoretical foundations

of classical and Bayesian PE, in part 2 of this article series, we will
apply both approaches to a more comprehensive example and il-
lustrate all the details and specifics one has to take into account
to infer the maximal amount of information about parameters,
predictions, and model quality from the data.

Appendix A: Additional Information on
Metropolis-Adjusted Langevin Algorithm

A.1. Fundamentals of Metropolis Sampling

A.1.1. The Metropolis-Hastings Algorithm

The Metropolis-adjusted Langevin Algorithm (MALA) is a special
case of the Metropolis-Hastings algorithm (MH).[41] MH gener-
ates a sequence of states that are distributed by a desired prob-
ability distribution 𝜋 by taking subsequent steps according to a
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probability density T(𝜃k+1, 𝜃k), that is, if 𝜃k = 𝜃, then 𝜃k+1 is dis-
tributed by T(⋅, 𝜃). It is required that 𝜋 be the invariant distribution
of this sequence. As the name suggests, this means that the den-
sity of parameters does not change over time, that is, the prob-
ability density for 𝜃k is identical to the one of 𝜃k+1. Formally, the
invariant distribution fulfills

𝜋(𝜃) = ∫ 𝜋(𝜃′)T(𝜃, 𝜃′)d𝜃′ (A1)

The sequence is generated by drawing proposals

𝜃k+1 ∼ q(⋅, 𝜃k) (A2)

from a proposal distribution q. The choice for q is almost arbitrary.
The only restrictions on q are that it be non-negative and that it
holds q(𝜃′, 𝜃) > 0 ⇔ q(𝜃, 𝜃′) > 0.

This proposal is then accepted with probability

𝛼(𝜃k+1, 𝜃k) = min{1,
𝜋(𝜃k+1)
𝜋(𝜃k)

q(𝜃k, 𝜃k+1)

q(𝜃k+1, 𝜃k)
} (A3)

If q is symmetric, for example, a Gaussian distribution, the q-
terms cancel out and can be omitted.

With this, we can make the following observation: let T(𝜃′, 𝜃)
be the density of making a transition from 𝜃 to 𝜃′ in the sequence
generated by MH. For T it holds

T(𝜃′, 𝜃) = q(𝜃′, 𝜃)𝛼(𝜃′, 𝜃) (A4)

since in order to reach 𝜃′ from 𝜃, 𝜃′ has to be drawn as the pro-
posal (density q(⋅, 𝜃)) and additionally has to be accepted (with
probability 𝛼(𝜃′, 𝜃)). This yields

T(𝜃′, 𝜃) = q(𝜃′, 𝜃)𝛼(𝜃′, 𝜃)

= q(𝜃′, 𝜃) min
{

1,
𝜋(𝜃′)
𝜋(𝜃)

q(𝜃, 𝜃′)
q(𝜃′, 𝜃)

}
⇒ 𝜋(𝜃)T(𝜃′, 𝜃) = 𝜋(𝜃)q(𝜃′, 𝜃) min

{
1,

𝜋(𝜃′)
𝜋(𝜃)

q(𝜃, 𝜃′)
q(𝜃′, 𝜃)

}
= min{𝜋(𝜃)q(𝜃′, 𝜃), 𝜋(𝜃′)q(𝜃, 𝜃′)}

(A5)

Analogously, we obtain

𝜋(𝜃′)T(𝜃, 𝜃′) = min{𝜋(𝜃′)q(𝜃, 𝜃′), 𝜋(𝜃)q(𝜃′, 𝜃)} (A6)

which yields

𝜋(𝜃′)T(𝜃, 𝜃′) = 𝜋(𝜃)T(𝜃′, 𝜃) (A7)

This is the detailed balance property which ensures

∫ 𝜋(𝜃′)T(𝜃, 𝜃′)d𝜃′ = ∫ 𝜋(𝜃)T(𝜃′, 𝜃)d𝜃′ = 𝜋(𝜃)∫ T(𝜃′, 𝜃)d𝜃′

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=1

= 𝜋(𝜃). (A8)

As a direct consequence, MH creates a sequence of states for
which 𝜋 is the invariant distribution. Thus, we can draw states
from this sequence whose distribution in fact converges to 𝜋.

A.1.2. The Langevin Sampler

We can address the Metropolis-adjusted Langevin algorithm
from a different perspective. For a stochastic differential equa-
tion (SDE) of the form

d𝜃t = −gradV(𝜃t)dt +
√

2dBt (A9)

where Bt is the Standard Brownian motion, it holds that the in-
variant distribution of realizations of this SDE is given by

𝜋(𝜃) = 1
Z

exp(−V(𝜃)) (A10)

Since the solution of an SDE is not a discrete sequence of states
but rather a time-continuous function in time, invariant distri-
bution here means that the density of 𝜃t having a certain value is
independent of t. Over time, the density of states converges to this
invariant distribution. As a consequence, by setting V = − log(𝜋),
we find that the SDE has invariant distribution

exp(log(𝜋)) = 𝜋 (A11)

We should therefore be interested in creating realizations of the
SDE

d𝜃t = grad log(𝜋) +
√

2dBt. (A12)

In Section 2.3, we introduced 𝜋 as equal to the function
1
Z

exp(−SX ). Thus, the SDE becomes

d𝜃t = − 1
Z

gradSX (𝜃t) +
√

2dBt (A13)

A common method to create realizations of SDEs is the Euler–
Maruyama method.[47] It approximates the SDE by taking dis-
cretized steps of the form

𝜃k+1 = 𝜃k − Δt gradSX (𝜃k) +
√

2Δt rk (A14)

where rj is a normally distributed random variable with mean
0 and variance 1. The normalization constant 1

Z
simply is ac-

counted for by the step size Δt.
While in the original SDE, after some time, the 𝜃k should be

distributed by exp(−SX ), this property might be violated for the
states of this sequence due to approximation errors induced by
the step size Δt. By choosing a small step size, one can install
convergence of the distribution of the 𝜃k to a distribution that is
closer to exp(−SX ).

Until here, we have not used the acceptance probability 𝛼. In
fact, creating a sequence of states from the approximated SDE
is referred to as the Unadjusted Langevin Algorithm (ULA). In
order to achieve that the detailed balance property is fulfilled and
that the sequence thus has the desired distribution as its invariant
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distribution, in MALA one extends ULA by the Metropolis-step
of only accepting a candidate 𝜃k+1 with probability

𝛼 = min
{

1, e−SX (𝜃k+1)

e−SX (𝜃k)

q(𝜃k, 𝜃k+1)

q(𝜃k+1, 𝜃k)

}
(A15)

where

q(𝜃′, 𝜃) = exp
(
− 1

4Δt
‖𝜃′ − 𝜃 + Δt gradSX (𝜃)‖2

)
(A16)

The proposal distribution q has this form because in order
to draw 𝜃k+1, we move to 𝜃k − Δt gradSX (𝜃k) and then add a
number that is normally distributed with mean 0 and variance
2Δt. Thus, the density of 𝜃k+1 is a normal distribution around
𝜃k − Δt gradV(𝜃k) with variance 2Δt, which is precisely reflected
in q.

In summary, MALA combines two different algorithms that
have the same goal: the Metropolis–Hastings algorithm and the
approximation of a solution of an appropriate SDE. In both al-
gorithms, a sequence is generated whose states are distributed
by a chosen distribution. Technically, the use of MH would suf-
fice for that. In MH, a bad choice of q can force the candidates to
mainly come from low regions of 𝜋 so that few candidates are ac-
cepted and it would take long for the states of the sequence to be
distributed by 𝜋. Through the use of the gradient step in MALA,
candidates are usually chosen in regions of interest, yielding a
faster convergence.

A.2. Prescaled MALA

We present here the exact derivation of the step sizes in the
prescaled MALA. In the algorithm, a step has the form

𝜃k+1 = 𝜃k − P gradSX (𝜃k) +
√

2P
1
2 rk, rk ∼  (0, Id) (A17)

Id is the d × d identity matrix.
The proposal distribution q is then given by

q(𝜃′, 𝜃) = exp
(
− 1

4
(𝜃′ − 𝜃 + P gradSX (𝜃))T

× P−1 (𝜃′ − 𝜃 + P gradSX (𝜃)
)

(A18)

The choice of P is done in the following way:

1. Specify the desired average length of a step in each of the d
parameter directions, denoted by 𝜏1,… , 𝜏d. The term “aver-
age” is used with respect to the posterior distribution from
which the algorithm samples. Over all samples of the result-
ing time series, the step taken toward the proposal should
have average length 𝜏i in direction i. A step consists of a de-
terministic part P gradSX (𝜃k) and a stochastic part

√
2P− 1

2 rk,
which both contribute to the length of the step. The average,
or expected, step length in direction i, dependent on Pii, is
given by

𝔼(| − Pii gradSX (𝜃k) +
√

2Pii (rk)i|) (A19)

It is difficult to find an analytical expression to make this prop-
erty be equal to a chosen 𝜏i. Still, we can find an upper bound
by

𝔼(| − Pii gradSX (𝜃j) +
√

2Pii (rk)i|)
≤ 𝔼(|Pii gradSX (𝜃j)|) + 𝔼(|√2Pii (rk)i|)
= 𝔼(|Pii gradSX (𝜃j)|) + 2

√
Pii

𝜋

(A20)

because of the triangle inequality and the fact that

𝔼(|√2Pii (rk)i|) = √
2Pii

√
2
𝜋

= 2

√
Pii

𝜋
(A21)

This holds because for a normally distributed random variable

r ∼  (0, 1), it holds that 𝔼(|cr|) = c
√

2
𝜋

.
2. Draw n points 𝜃1,… , 𝜃n randomly from the parameter space

and compute the gradients gradSX (𝜃1),… , gradSX (𝜃n). In this
article, we always used n = 100.

3. In each direction 1,… , d, compute the average length of the
gradient

𝔼((gradSX )i) ≈ (gradSX )i =

n∑
k=1

exp(−SX (𝜃k))|gradSX (𝜃k)i|
n∑

s=1
exp(−SX (𝜃s))

(A22)

4. We can then solve

Pii gradSX + 2

√
Pii

𝜋
= 𝜏i (A23)

which can be transformed to

Pii + 2

√
Pii√

𝜋(gradSX )i

−
𝜏i

(gradSX )i

= 0 (A24)

Solving the quadratic equation for Qi :=
√

Pii we get

Qi =
−1√

𝜋(gradSX )i

+
√

1

𝜋(gradSX )2
i

+
𝜏i

(gradSX )i

(A25)

so that

Pii =
⎛⎜⎜⎝ −1√

𝜋(gradSX )i

+
√

1

𝜋(gradSX )2
i

+
𝜏i

(gradSX )i

⎞⎟⎟⎠
2

(A26)

If desired, one can easily replace the average gradient length by a
maximal or minimal gradient length in step 3. Note that the time
step is not adaptively chosen but still determined in advance. This
yields that the property of the algorithm that we exploit, namely
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that it produces the desired distribution of samples, is not dam-
aged.

A.3. Details on Kernel Density Estimation

The Kernel function K should be nonnegative, monotonically in-
creasing as 𝜃 approaches 0, and its integral over ℝd should be
equal to 1. A typical choice is

K(𝜃) = 1√
2𝜋

exp
(
−1

2
‖𝜃‖2

2

)
so that K(H−1(𝜃k − 𝜃)) = 1√

2𝜋
exp

(
−1

2
‖H−1(𝜃k − 𝜃)‖2

2

) (A27)

With the bandwidths, one can regulate the influence of sam-
ples on p̂KDE(𝜃k) depending on the distance between 𝜃k and 𝜃. In
case that p is a Gaussian function, a recommended choice for hi
is given by [48]

h⋆
i = 1.06vin

−1∕5 (A28)

where vi is the standard deviation of the ith entries of the samples.
It indicates that the more samples one has at hand, the smaller
the bandwidths should be chosen.

With KDE, we can then evaluate p̂KDE on a fine grid through
Equation (48) and obtain a fine visualization of an approximation
of p. Note that in general p̂KDE(𝜃k) is unequal to p(𝜃k) but can be
brought closer by decreasing the hi. This in turn is already advised
by Equation (A28) but needs a sufficient number of samples.

Appendix B: Details on The Radical Polymerization
Example

B.1. Data in Section 3.2

B.2. Technical Details on The Application of PE Methods in
Section 3.2

B.2.1. Test 1: Fitting f and kt,c with Monomer Concentration [M]

We used the prescaled MALA with 12 000 steps, out of which
we discarded the first 2000 to give the sequence of points time
to lose dependence on the initial values. This number of steps is
high for only two parameters compared to Test 2. The explanation
is natural: Such a high number becomes necessary if the region
of parameters with high probabilities is large because it takes
more time to comb this entire region compared to a small region.
The initial values were set to the optimal parameters determined
above. We assume a measurement error of 𝜎 = 0.05 and a uni-
form prior with bounds given by [0.1,1] for f and [104, 109] for kt,c.
In the pre-scaled MALA, we set 𝜏1,2 so that in each direction a step
has the average length of one 200th of the length of its parame-
ter domain. The acceptance ratio was 72%. In the Gauss–Newton
scheme with essential directions, the number of essential direc-
tions was 1 for both sets of initial values.

Table B1. Data set produced with model (51).

Time in s [M]/ mol∕l Mw / kg∕mol end groups / mmol∕l

1 1.99

44 1.83

96 1.65

132 1.54

227 1.3

286 1.17

353 1.04

429 0.93

500 0.83 73 5.5

597 0.72

698 0.63

805 0.55

921 0.48

1000 0.44 65 9.0

1210 0.35

1360 0.31

1520 0.27

1696 0.24

1887 0.21

2000 0.19 59 12.7

2153 0.17

2379 0.15

2634 0.14

2912 0.12

3214 0.11

3539 0.09

3886 0.08

4249 0.08

4624 0.07

5000 0.06 56 15.5

B.2.2. Test 2: f and kt,c with [M] and Mw

In the Gauss–Newton with essential directions algorithm, the
number of essential directions was 2. We used prescaled MALA
with 6000 steps, out of which we discarded the first 1000, assum-
ing a measurement uncertainty of 𝜎 = 0.05. The initial values
were the same in Test 1. The acceptance ratio was 57%.

B.2.3. Test 3: f, kt,c and kt,d with [M] and Mw

In the Gauss–Newton algorithm, the number of essential direc-
tions was 2. As prior distribution, we again used a uniform dis-
tribution over the interval used so far for f and kt,c, while for
kt,d we used the interval [1, 108]. As initial values, we chose f0 =
0.5, (kt,c)0 = 107, (kt,d)0 = 1. We performed 6000 steps of which we
discarded the first 1000 to reduce dependence on the initial val-
ues. The acceptance ratio was 72%. Since the range for kt,d was
unclear a priori, we replaced it by its logarithm to the base 10 and
transformed it back for the visualization.
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Figure B1. Molar mass distribution (MMD) generated with the “real” model in equation (51) and rate coefficients and recipe of Table . MMD is given
as the outcome of gel permeation chromatography (GPC), the state of the art method to determine MMD. For various representations of MMD, see for
example ref. [49].

B.2.4. Test 4: f, kt,c and kt,d with [M], Mw, End Groups and The Molar
Mass Distribution

In the Gauss–Newton algorithm, the number of essential direc-
tions was 2. As prior distribution, we again used a uniform dis-
tribution over the interval used so far for f and kt,c, while for
kt,d we used the interval [10, 108]. As initial values, we chose
f0 = 0.5, (kt,c)0 = 1e7, (kt,d)0 = 1. Again, we performed 6000 steps
of which we discarded the first 1000. The acceptance ratio was
71%.

Acknowledgements
This research has been funded by Deutsche Forschungsgemeinschaft
(DFG) through grant CRC 1114 “Scaling Cascades in Complex Systems”
Project Number 235221301, as well as through project EF4-5 of the DFG
Cluster of Excellence MATH+.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
deterministic and Bayesian parameter estimation, experimental data, poly-
merization kinetics, uncertainty quantification

Received: March 12, 2021
Revised: May 31, 2021

Published online: June 13, 2021

[1] K.-D. Hungenberg, M. Wulkow, Modeling and Simulation in Poly-
mer Reaction Engineering: A Modular Approach, Wiley VCH, New York
Weinham 2018.

[2] N. Kazemi, T. Duever, A. Penlidis, Macromol. React. Eng. 2011, 5,
385.

[3] R. Bindlish, J. Rawlings, R. Young, AIChE J. 2003, 49, 2071.
[4] S. Roeblitz, P. Deuflhard, A Guide to Numerical Modelling in Systems

Biology, Springer, New York 2015.
[5] N. Galagali, Y. Marzouk, Chem. Eng. Sci. 2015, 123, 170.
[6] M. A. Katsoulakis, P. Vilanova, J. Comput. Phys. 2020, 401, 108997.
[7] P. Loskot, K. Atitey, L. Mihaylova, Front. Genet. 2019, 10, 549.
[8] A. Overstall, D. Woods, K. Martin, Comput. Stat. Data Anal. 2019,

132, 126.
[9] S. Masoumi, T. A. Duever, A. Penlidis, R. Azimi, P. López-Domínguez,

E. Vivaldo-Lima, Macromol. Theory Simul. 2018, 27, 1800016.
[10] S. Matera, W. F. Schneider, A. Heyden, A. Savara, ACS Catal. 2019, 9,

6624.
[11] L. Hakim, G. Lacaze, M. Khalil, K. Sargsyan, H. Najm, J. Oefelein,

Combust. Theory Modell. 2018, 22, 446.
[12] C. Schillings, B. Sprungk, P. Wacker, Numer. Math. 2020, 145, 915.
[13] J. Bell, M. Day, J. Goodman, R. Grout, M. Morzfeld, Combust. Flame

2019, 205, 305.
[14] C. Schillings, M. Sunnaker, J. Stelling, C. Schwab, PLoS Comp. Biol.

2015, 11, e1004457.
[15] P. Naik, P. Pandita, S. Aramideh, I. Bilionis, A. M. Ardekani, 2019, 23,

981.
[16] T. Minami, M. Kawata, T. Fujita, K. Murofushi, H. Uchida, K. Omori,

Y. Okuno, MRS Adv. 2019, 4, 1125.
[17] A. Nabifar, N. T. McManus, E. Vivaldo-Lima, A. Penlidis, Macromol.

Symp. 2011, 302, 90.
[18] A. J. Scott, A. Nabifar, C. M. R. Madhuranthakam, A. Penlidis, Macro-

mol. Theory Simul. 2015, 24, 13.
[19] M. Wulkow, Macromol. React. Eng. 2008, 2, 461.
[20] E. Vafa, M. Shahrokhi, H. Abedini, Chem. Eng. Commun. 2013, 200,

20.

Macromol. Theory Simul. 2021, 30, 2100017 2100017 (23 of 24) © 2021 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH



www.advancedsciencenews.com www.mts-journal.de

[21] C. Shalizi, in Advanced Data Analysis from an Elementary Point of View,
Cambridge University Press, England 2013.

[22] Y. Yang, F. Ye, Front. Math. China 2013, 8, 695.
[23] A. van den Bos, Numerical Methods for Parameter Estimation, John

Wiley & Sons, New York 2007, pp. 163–210.
[24] L. Xu, Adv. Mech. Eng. 2017, 9, 1.
[25] R. Aster, B. Borchers, C. Thurber, Parameter Estimation and Inverse

Problems, vol. 90, Academic Press, San Diego, CA 2005.
[26] S. M. Safdarnejad, J. Gallacher, J. Hedengren, Comput. Chem. Eng.

2015, 86.
[27] L. T. Biegler, Nonlinear Programming, Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA 2010.
[28] D. Constales, G. S. Yablonsky, D. R. D’hooge, J. W. Thybaut, G. B.

Marin, Advanced Data Analysis and Modelling in Chemical Engineering,
1st Edition, Elsevier, Netherlands 2016, pp. 285–306.

[29] R. Penrose, Math. Proc. Cambridge Philos. Soc. 1955, 51, 406.
[30] G. H. Golub, C. F. Van Loan, Matrix Computations, 4th ed., The Johns

Hopkins University Press, Baltimore, MD 2012.
[31] P. Deuflhard, A. Hohmann, Numerical Analysis in Modern Scientific

Computing, 2nd ed., Springer-Verlag, New York 2003.
[32] R. Telgmann, Ph.D. Thesis, FU Berlin 2008.
[33] A. M. Stuart, Acta Numer. 2010, 19, 451.
[34] C. Schillings, C. Schwab, Inverse Probl. 2014, 30, 065007.

[35] P. Saracco, M. Pia, J. Phys.: Conf. Ser. 2013, 513, 022033.
[36] T. Dodwell, C. Ketelsen, R. Scheichl, A. Teckentrup, SIAM Rev. 2019,

61, 509.
[37] G. Roberts, J. Rosenthal, J. R. Stat. Soc. B 1998, 60, 255.
[38] M. Dashti, A. Stuart, in Handbook of Uncertainty Quantification (Eds:

R. Ghanem, D. Higdon, H. Owhadi), Springer, New York 2017.
[39] H. AlRachid, L. Mones, C. Ortner, SMAI J. Comput. Math. 2018, 4, 57.
[40] A. B. Duncan, N. Nuesken, G. Pavliotis, J. Stat. Phys. 2017, 169, 1098.
[41] S. Chib, E. Greenberg, Am. Stat. 1995, 49, 327.
[42] I. P. Cornfeld, S. V. Fomin, Y. G. Sinai, Ergodic Theory, Springer, 1982.
[43] A. Durmus, G. Roberts, G. Vilmart, K. Zygalakis, Ann. Appl. Probab.

2015, 27, 2195.
[44] E. Parzen, Ann. Math. Statist. 1962, 33, 1065.
[45] Y.-C. Chen, Biostat. Epidemiol. 2017, 1, 161.
[46] O. Olaj, I. Bitai, F. Hinkelmann, Makromol. Chem. 2003, 188, 1689.
[47] P. Kloeden, E. Platen, The Numerical Solution of Stochastic Differential

Equations, vol. 23, Springer, New York 2011.
[48] B. U. Park, J. S. Marron, J. Am. Stat. Assoc. 1990, 85, 66.
[49] R. Hutchinson, M. Aronson, J. Richards, Macromolecules 1993, 26,

6410.
[50] D. Constales, G. S. Yablonsky, D. R. D’hooge, J. W. Thybaut, G. B.

Marin, Advanced Data Analysis & Modelling in Chemical Engineering,
Elsevier, Netherlands 2016, pp. 285–306.

Macromol. Theory Simul. 2021, 30, 2100017 2100017 (24 of 24) © 2021 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH


