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Glossary 
 

ACC - anterior cingulate cortex 

BA - Brodmann area  

BOLD - blood-oxygenation-level-dependent 

C - matched controls 

CBF - cerebral blood flow 

DLPFC - dorsolateral prefrontal cortex 

EPI - echo planar images 

HG - habitual gamblers 

MCC - medial cingulate cortex  

NAcc - nucleus accumbens 

OFC - orbitofrontal cortex  

PCC - posterior cingulate cortex 

PG - problem gamblers 

SMA - supplementary motor cortex 

SOGS - Southern Oaks Gambling Scale 

VLPFC - ventrolateral prefrontal cortex 

YC - young control
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1.0  Introduction 
 

1.1 Overview 

 

In everyday life, we need to anticipate and correctly predict future outcomes based on 

the information we are given. These expectations need to be updated regularly and 

processed accordingly. In this study, we investigate the neural correlates of anticipation 

and probability perception during operant conditioning. In addition, we compare 

problem gamblers (PG) and habitual gamblers (HG), with matched controls (C) and 

young controls (YC). Gambling participants (HG and PG) appear to be a group in which 

the anticipatory process may be impaired, explaining their extensive willingness to 

accept future risk (Potenza, 2008, 2013; Miedl et al., 2010; Gelskov et al., 2016). 

Interestingly, most investigations of HG and PG have focused on reward anticipation, 

while this study focuses on loss anticipation. For this purpose, we used the probability of 

a positive punishment (an electric shock) as a manageable and easily controllable loss 

stimulus in the laboratory (Berns et al., 2008). 

 

1.2 Operant Conditioning 

 

In the late 19th century E. Thorndike (1898) was the first to describe operant 

conditioning techniques, a subject that was later extensively studied by B.F. Skinner and 

other behavioural psychologists.  The paradigm of associative learning, also called trial-

and-error-learning, is divided in five different outcome possibilities: positive and 

negative punishment, positive and negative reinforcement, as well as extinction. 

Generally, punishment has been described to decrease behaviour by adding a 

punishment stimulus (positive punishment), for example by the use of an electrical 

shock electrode, or removing an appetitive stimulus (negative punishment). 

Reinforcement, however generally increases behaviour and is based on the adding of a 

positive stimulus comparable to a reward (positive reinforcement), while the 

subtraction of a negative stimulus (e.g. electrical shock) will result in a negative 

reinforcement outcome.  
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Furthermore, extinction may occur when previously reinforced or punished behaviour 

is no longer rewarded by the above reinforcement techniques (Kandel, Schwartz, Jessel, 

1991; Jean-Richard-Dit-Bressel, Killcross and McNally, 2018).  

 

1.3 Loss and Reward Anticipation 

The distinction between loss and reward anticipation at the spatiotemporal level is still 

a matter of research, since both appear to activate similar neural networks (Watson et 

al., 1999; Berns et al., 2008; Knutson and Greer, 2008; Balodis et al., 2012). Furthermore, 

the operant modality of an outcome (positive and negative reinforcement,  positive and 

negative punishment, and extinction) may drive the anticipation process. However, most 

studies use positive reinforcement as a reward stimulus; less frequently, positive or 

negative punishment is used as a loss stimulus. All of the above modalities share 

associations with the orbitofrontal cortex (OFC), the ventromedial and dorsomedial 

prefrontal cortex, the nucleus accumbens (NAcc), the anterior, medial and posterior 

cingulate cortex (ACC, MCC and PCC), the insular cortex, the amygdala, and the ventral 

tegmental area as well as with the raphe nuclei (Knutson and Greer, 2008; Liu et al., 

2011; Nakamura, 2013; Macoveanu, 2014; Dugré et al., 2018). Yet, for paradigms 

involving an outcome of positive or negative punishment, i.e., loss anticipation, previous 

reports stress the importance of the medial cingulate cortex (Shackman et al., 2011; 

Dugré et al., 2018).   
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1.4 Prospect Theory 

 

According to prospect theory, subjects tend to overweight small probabilities and 

underweight high probabilities of an outcome in behavioural experiments (Kahneman 

and Tversky, 1979). Among others, Drazen Prelec mathematically formalized the 

weighting function of prospect theory in 1998. The Prelec function describes the 

relationship of decision weight w(p) to loss probability p by an inverted S-shaped 

function. Albeit widely accepted, the biological manifestation of prospect theory, which 

has often been studied using functional imaging techniques, is still a matter of research 

because the theory does not account for all situations, leaving the previously suggested 

linear model of expected utility still in the running (Trepel, Fox and Poldrack, 2005; 

Preuschoff, Bossaerts and Quartz, 2006; Schultz et al., 2008; Hsu et al., 2009; Rudorf, 

Preuschoff and Weber, 2012; Bossaerts and Murawski, 2015). For example, Preuschoff 

et al. (2006) showed a linearly increasing BOLD response to probability in the ventral 

striatum and putamen. This would implicate a processing relating to the expected utility 

hypothesis. However, Hsu et al. (2009) described a nonlinear activation pattern 

according to the probability of a rewarding outcome in the striatum, supporting the 

behaviourally described prospect theory. Moreover, a quadratic relationship between 

brain response and probability comprehension was described (Preuschoff, Bossaerts 

and Quartz, 2006; Tobler et al., 2007; Rudorf, Preuschoff and Weber, 2012). Based on 

the processing of probabilities, these findings add a further dimension to the 

anticipation of an outcome. Most recent studies, however similar in models and in the 

general perception of probability processing, solely investigate reward anticipation, 

while loss anticipation is overlooked.  

 

1.5 Problem Gambling 

  
Gambling disorder is currently the only behavioural addiction listed in the DSM-V 

(2013) and therefore appears as the prototypical model for behavioural addictions. It is 

widely recognised as a problematic public health issue, with substantial personal and 

social costs, poor physical and psychiatric health, elevated suicide rates and other 

comorbidities (Cowlishaw et al., 2012). Currently, estimates of worldwide adult 

prevalence range from 0.2 to 5.3 %, varying across screening instruments and methods 
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used, as well as accessibility and availability of gambling opportunities (Hodgins, Stea 

and Grant, 2011). While the DSM-V includes individuals to have a gambling disorder 

when they meet 3 or more diagnostic criteria, the term PG may be used as a broader 

term at a lower threshold, also including the previously used terms of pathological 

gambling and disordered gambling (Nautiyal et al., 2017).  

Even though the pathophysiology of PG is not fully understood, research describes a 

distinct phenotype of affected individuals. They include risky decision-making, increased 

impulsive behaviour, increased sensation seeking, increased compulsivity, the 

occurrence of cognitive distortions, as well as an altered reward sensitivity (Rogers et 

al., 1999; Preuschoff, Bossaerts and Quartz, 2006; Balodis et al., 2012; Gelskov et al., 

2016).      

With these concepts in mind, problem gambling appears as a perfect model in which 

individuals frequently show risky and uncertain behaviour in the estimation of future 

outcomes. Concurrently, there is strong evidence for functional differences at the 

molecular and macroscopic levels in brain regions that are relevant to both loss and 

reward anticipation (for review see Potenza, 2008; Miedl et al., 2010; Choi et al., 2011; 

Brevers et al., 2016; Ring et al., 2018). We included HG in our study in an attempt to 

compare their neural response during anticipation with that of the non-gambling 

participants (C and YC) and PG. To our knowledge, comparatively few studies have 

addressed gambling pathology and the concept of anticipation in a single study involving 

a large sample of participants.  
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1.6 Scientific Questions  

 

Here, we present our findings regarding loss anticipation via positive punishment using 

event-related fMRI. The findings are based on the subjects’ participation in a card game 

that uses an aversive electric shock stimulus and on a behavioural approach inspired by 

our previous publications (Ring and Kaernbach, 2015; Ring et al., 2018). Do we process 

aversive contingencies of decisions in a nonlinear manner, according to the Prelec 

function? How does the brain compute the probability of an outcome? Which brain 

regions process certainty or uncertainty for negative outcomes? How do individuals 

with problematic gambling habits differ in these entities, and can we see a grading 

among non-gambling subjects, HG, and PG? 

 

 

 

  



6 
 

2.0 Methods 

2.1 Participants 

In total, our sample consisted of 88 subjects who fully participated in the study, and 83 

subjects (mean age (M)= 36.18, standard deviation (SD)= 14.3, Median= 30 years) 

eligible for further analysis. For one participant, the MRI data was lost due failure in data 

handling, another was not eligible for further participation due to excessive alcohol 

consumption and one aborted the experiment because of health problems. For the 

remaining two subjects, data had to be discarded due to extensive head movements in 

the scanner. All participants were German native speakers and had no history of 

psychiatric or neurological disorder. Study proceedings were in accordance with the 

latest revision of the declaration of Helsinki (WMA Declaration of Helsinki - Ethical 

Principles for Medical Research Involving Human Subjects, 2013) and approved by the 

Ethics Committee of the University Hospital Kiel (AZ.: A 106/14).  

We recruited 40 gamblers through advertisement in the local newspaper and flyers in 

the casino. A clinical psychologist conducted a semi-structured interview for impulse 

control disorders, used and written by the Department of Neurology at the University 

Hospital Kiel (Probst et al., 2014). Additionally, participants filled out a self-reporting 

Southern Oaks Gambling Screen (SOGS) (Lesieur and Blume, 1987). Based on the two 

measures we were able to divide the gamblers into a group of 22 PG (mean age (M)= 

39.45, standard deviation (SD)= 15.47, Median= 38 years, two self-reported left-handed) 

and 18 HG (mean age (M)= 38.33, standard deviation (SD)= 13.76, Median= 37 years). 

Additionally we recruited 23 healthy, two left-handed, matched C (mean age (M)= 41.43, 

standard deviation (SD)= 15.07, Median= 42 years) and a sample of 20 Y (mean age 

(M)= 25.14, standard deviation (SD)= 3.03, Median= 24 years), both with no previous 

history for problematic or pathological gambling habits.   
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2.2 Experimental Design and Procedure 

All subjects underwent the same general study procedures. Y additionally received an 

electroencephalography to the fMRI discussed elsewhere. The study procedure 

consisted of one or two appointments, depending on whether the first screening 

procedure and demographic data collection were done at home. Participants who took 

part in the experiment completed questionnaires and received a description of the study 

procedure before the appointment.  

Before the start of the experiment, participants gave written and informed consent. They 

answered questions about demographics, neurological and psychiatric disorders, mood, 

alcohol, drug consumption. Subsequently, subjects were screened with a semi-

structured interview for impulse control disorders and SOGS.  Exclusion criteria for the 

study were problematic alcohol or drug consumption (alcohol: more than 1 unit (0.33 l 

beer, 0.2 l wine or 0.02 l hard liquor) per day; other drugs: more than once a week) and 

a history of psychiatric or neurological disorder.  

The present experiment was part of a larger study and also comprised a behavioural and 

EEG-measurement. EEG data with a similar paradigm structure is reported elsewhere. 

To avoid confounding, the order of EEG- or fMRI-measurements was counterbalanced. In 

between EEG and fMRI measurements, subjects answered questions regarding time 

preferences of money gain and played financial risk lotteries for behavioural measure.  

Preceding the start of the Experiment, we determined the strength of electric shocks 

that served as punishment in the paradigm. Attached to the phalanx of the second and 

third toe of the right foot, electric shocks were given via Ag-AgCl electrodes with a 

diameter of 10 mm. The stimulator (Rehastim, HasoMed GmbH, current = 0-126 mA, 

pulse width = 500 microseconds, frequency = 100 Hertz (Hz)) was placed outside the 

scanner and connected to the electrodes by BNC cables approved for usage in the 

scanner. Subjects were told to give feedback about their perception of the strength of the 

shock. Starting at the lowest shock strength, we slowly increased the strength until the 

subject indicated a painful stimulus. To create an unpleasant, but not painful shock 

perception, we used the previous level as the standard adjustment for the following 

experiment.  
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2.3 Paradigm Structure  

The paradigm is a modified version from Preuschoff, Bossaerts & Quartz (2006). It has 

been successfully used to show differences in skin conductance response depending on 

punishment probability in a prior study (Ring and Kaernbach, 2015; Ring et al., 2018).   

Our paradigm was programmed using Matlab 7.1 (Math Works Inc., Natwick, U.S.A.) and 

the software package Psychtoolbox-3 (www.psychtoolbox.org).  The card game was 

based on a set of 10 covered cards containing all numbers from 1 to 10. The participant, 

as well as the computer drew a card and depending on the bet type, the higher or the 

lower drawn card won. This was all explained to the participant prior to the experiment. 

 

 

Figure 1: Paradigm Structure. After participants actively choose a card, a second card is chosen 

by the game, both in pseudo-randomized manner. Based on the indicating arrow, the lower or 

higher card wins the trial (in this case the participant loses, since the card he chose is lower, and 

the arrow indicates that the higher card wins). We were particularly interested in the 

anticipation phase, when participants are able to calculate the odds of winning or losing a trial.  
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Each trial began by presenting the covered set of 10 cards in 2 rows and an arrow (↑ or 

↓, with equal frequency) indicating whether the higher or the lower drawn card was 

going to win the trial. Arrow key presses enabled the participants to choose a card from 

the covered set of 10 cards for the bet. If the participant took longer than three seconds, 

the first selected card was chosen. The card was turned around and moved to the centre 

of the screen (mean= 1250ms, range= 1000 – 1500), which revealed the probability to 

win or lose the bet. For instance, a bet type indicating “high card wins” (↑), while the 

participant drew a 10, the win was sure. If instead the drawn card showed a 7 the 

probability to loose was 3/9 (nine cards left, three are higher than 7). Consequently, 

there were 10 different probabilities of losing: p=0, p=0.12, p=0.22, p=0.34, p=0.44, 

p=0.56, p=0.66, p=0.78, p=0.90 and p=1. Subsequently, the computer chose a card from 

the remaining set of cards (after a jittered interval, mean = 7s, range= 5 to 9.5s) and 

placed next to the first card chosen by the participant. It was turned around (duration 

~1000ms) and shown for approximately 6 seconds (range= 3 to 9s). If a trial was lost by 

the participant, he received an electric shock in 50 per cent of the cases at the instant the 

second card was revealed. To avoid habituation, participants were explicitly informed, 

that for the remaining 50 per cent of the cases, the electric shock was absent. For the 

instance of a won trial no punishment followed in a 100 per cent of cases. A control 

question was shown after each trial, asking the subject whether the trial was won or 

lost. An electric shock was applied, if the participant failed to answer the question 

correctly within 3 seconds. Then, a fixation cross was shown for a mean of 4.17 seconds 

(jittered interval, range= 2 to 3s, except in four trials for 15s), followed by the next trial.   

Participants were informed that each trial consisted of a new random order of 10 cards, 

indicating no possibility to know which card would be drawn next. They each played 

three sessions consisting of 30 trials, each lasting 12.68 minutes during which fMRI 

acquisition took place. To ensure enough trials per probability level, we predetermined 

and pseudo-randomized the values of the drawn cards. This resulted in three trials per 

cases for each probability per session, as well as 15 losses and 7 or 8 shocks per session.   
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2.4 Financial Risk Elicitation Task 

 

Amongst other behavioural measurements, participants played a paper-based lottery 

task knowing that their reimbursement for participation would be partially based on the 

outcome of the game. The task was proposed by Vieider et al. (2015) and elicits, as 

indicated by the name, a risk assessment during binary monetary lotteries and various 

sure monetary outcomes. It enabled us to separately measure risk attitudes in the gain 

domain, loss domain, calculate probability weights in both domains, as well as the 

degree of loss aversion. For the purpose of this study, we used these probability weights 

for further modelling with the BOLD-contrast. Paradigm structure and further results 

can be found in our previous publication (Ring et al., 2018). 

 

2.5 Functional Magnetic Resonance Imaging (fMRI) 

 

Our experiment rests upon the principals of functional imaging of the brain via fMRI, a 

method based on the idea that regional cerebral blood flow (CBF) may reflect neuronal 

activity. Ogawa et al. (1990) were the first to directly describe the effect by using a 

contrast they coined as blood oxygenation level dependency (BOLD). The contrast is 

based on the physical differences of haemoglobin in its magnetic properties. While 

deoxyhaemoglobin is an endogenous paramagnetic agent, haemoglobin is diamagnetic. 

Changes in concentration in the cerebral vascular system then lead to differences in MRI 

signal intensity and provide an indirect measure for brain activity (Kim and Bandettini, 

2006). Although the theoretical formulation was clear, it was not until 2001 that 

Logothetis and colleagues described a direct relationship of the local field potential 

generated by neuronal activity and the BOLD contrast and thereby verified its use as an 

indirect measure for a neural signal. 

  



11 
 

2.5.1 Regression Analysis and the General Linear Model (GLM) 
 

In the present study, fMRI data analysis is based on the principle of model testing. 

Regression analysis offers an approach that rests on the timing and duration of an 

evoked neural response, usually through a controlled event. It assumes that the 

observed data (y) is composed of two sources, a linear combination of regressors (xi), 

together with its variable parameter weighting (βi), as well as the residual noise or error 

in the measurements (ε). The involvement of all factors, held constant throughout the 

experiment, is depicted in the total parameter weight β0  (Huettel, Song and McCarthy, 

2014).  The regressors (xi) correspond to retrieving of memory, visual processing, head 

movement during the scan, age and gender. As for the present study, among others the 

participant’s keypress was implemented in the design. The basic formula for regression 

analysis  

 

y = β0 + β1x1 + β2x2 + … + βnxn + ε 

 

depicts how the single factors contribute to the observed data (y). By the use of this 

model, it is possible to minimize the error term and ideally isolate the contribution of 

the hypothesized evoked response. Eventually, the statistical significance of a regressor 

is determined by the amount of variability it explains (when multiplied with its 

parameter weight) and compared to the amount of variability that is explained by the 

error term (Huettel, Song and McCarthy, 2014). 
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The statistical approach to separate the regressors in data sets with many dependent 

variables is implemented in the GLM. Among others, Friston et al. (1995) proposed the 

implementation of the GLM for MRI usage. The statistical test postulates that a linear 

combination of different model factors, together with uncorrelated noise, contribute to 

the experimental data. Therefore, with MRI data, the unidimensional formula given 

above is replaced by two-dimensional formula given in figure 2. The data matrix (Υ) is 

comprised of time points (n) and voxels (V).  The design matrix (G) consists of time 

points (n) and regressors (M) and specifies how model factors change over time. The 

parameter matrix (β) contains voxels (V) and parameter weights (M), resulting in a 

specification of β-weight for each voxel. At last, the error matrix (ε) depicts the error in 

measurement for the two-dimensional space with time points (n) for each voxel (V). 

While the experimental data is obtained during the experiment, the parameter weights 

and residual error are calculated during the analysis. However, for the design matrix 

regressors must be chosen by the experimenter, based on the previously formulated 

hypothesis. 

 

Figure 2: The basic elements of the GLM based on a figure from Huettel et al. (2014). The data 

matrix Υ comprises the original fMRI data and is dependent on the design matrix (G), the 

parameter matrix (β) and the error matrix (ε). While the simple regression model is based on a 

unidimensional approach, the GLM uses a two-dimensional space to meet the statistical 

requirements of the fMRI.   
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2.5.2 Image Acquisition 
 

Images were obtained in the Neurocenter at Kiel University hospital using a 3 Tesla 

whole-body MRI scanner (Achieva; Philips, Best, the Netherlands). A 32-channel head 

coil was used to acquire 310 T2*-weighted whole brain echo planar images (EPI) per 

fMRI session. Repetition time (TR) was 2500 ms, echo time (TE) = 35 ms, flip angle (FA) 

= 90° and field of view (FOV) = 216 x 216 mm.  Each EPI had 38 slices with a 64 x 64 

matrix and a slice thickness of 3mm (plus an inter-slice gap of 0.3 mm). Additionally, T1- 

and T2-weighted structural images were acquired for each subject. 

For the fMRI measurement, participants received ear plugs to protect them against the 

scanner noise. The presentation of stimuli was achieved via a MR-compatible 

VisualSystem from NordicNeuroLab with integrated vision correction. 

 

2.6 fMRI Analysis 

 

For the fMRI analysis, we used Statistical Parametric Mapping 12 (SPM12, Wellcome 

Department of Cognitive Neurology, London, United Kingdom) implemented into Matlab 

14a (Mathworks Inc., Natick, U.S.A.).  

 

2.6.1 Preprocessing 
 

Due to unsatisfactory coregistration of EPI images to the bias-corrected T1 image, we 

used a different approach to prepare our data for statistical analysis. First, EPI images 

were resliced and realigned to correct for head motion. Second, we normalized the EPI 

images to an EPI template provided by SPM. The normalized fMRI images were then 

spatially smoothed in the x, y, and z axes (Gaussian kernel of 8 mm, full-width at half-

maximum) 
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2.6.2 1st Level Analysis 
 

At the 1st level, we modeled the BOLD-signal with a general linear model including 26 

regressors, according to the events of the paradigm. The onset of all cards for selection 

was parametrically modulated by the number of key presses to choose a card (regressor 

nr. 1 and 2). Second, the analysis contained all separate probability levels for losing the 

trial, p(L), revealed at card one as 10 separate conditions (nr. 3 – 12). Next, the onset of 

the second card was divided into 3 conditions: Loss without shock, loss with shock and 

win, each parametrically modulated by the a priori probability of the respective outcome 

(nr. 13 – 18). Additionally, we included the answering of the control question as a 

condition and modulated it with the according keypress (nr. 19 and 20). At last, 

movement parameters from realignment were entered as separate regressors (nr. 21 – 

26) (Friston et al., 1996).   
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2.6.3 2nd Level Statistical Group Analysis 
 

For the 2nd level statistical group analysis, contrasts of interest were set up for: 

1) first card shown (weight of 1 for all regressors, independent of the probability 

level)  

2-11) separate contrasts for each probability level to lose p(L)= 0, 0.12, 0.22, 0.34, 0.44, 

0.56, 0.66, 0.78, 0.9, 1.0 (e.g. for the average BOLD-response in trials with the loss 

probabilitiy of 50%, a contrast weight of 1 would be placed at the regressor for 

p(L)=0.5) 

12) low loss probability p(L) = 0.12, 0.22, 0.34 (weight of 1 for each of those 

regressors) 

13) medium loss probability p(L)= 0.44, 0.56, 0.66 (ditto) 

14) high loss probability p(L)= 0.78, 0.9, 1.0 (ditto) 

15) high  versus low loss probability (1 on p(L) = 0.78, 0.9, 1.0, -1 on p(L) = 0.12, 0.22, 

0.34) 

16) high versus medium loss probability (accordingly) 

17) medium versus low loss probability (accordingly) 

18) linear function, based on the ideas of the expected utility theory (Von Neumann 

and Morgenstern, 1944; Knutson and Peterson, 2005; Abler et al., 2006; Tobler et 

al., 2007) (weights see table 1) 

19) quadratic function as a correlate for certainty (Preuschoff et al. 2006) (weights 

see table 1) 

20) Prelec function (1998), based on our behavioural data from the lottery game of 

PG, HG and Controls (Figure 3, Ring et al. 2018) (weights see table 1) 
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Table 1: Contrast weights vectors for the linear function, certainty function, and the Prelec 

function according to each probability level to lose p(L) for each 1st level regressor. 

 

We were interested in generalized effects of probability processing during anticipation 

of a negative outcome. The probability weighting functions by Prelec (1998) 

w(p) = exp(-β(-ln p)α) 

were fitted from choice data of PG, HG, and C using non-linear estimation techniques.  

The procedure and results are described in Ring et al. 2018. As we did not find evidence 

for systematic differences in the loss domain, we used the same probability weighting 

function in all groups. The resulting decision weights were used as the weights vector 

for the corresponding BOLD-contrast of the objective probability level p(L), as shown in 

contrast 20. This was compared to the results with linear probability weighting of 

contrast 18.  To increase validity and the size of the sample we extended our statistical 

model with group Y that did not contribute behavioural data for non-linear estimation. 

Previous metanalysis have not shown any differences in risk assessment regarding the 

age (Mata et al., 2011). Yet, to omit confounding of the age disparity of Y compared G, HG 

and C, an ANOVA confirmed no significant group differences in the contrasts of interest.  

  

Probability level p(L)  0  0.12 0.22 0.34 0.44 0.56 0.66 0.78 0.9 1.0 

Linear function weights 
(contrast 18) 

9 7 5 3 1 -1 -3 -5 -7 -9 

Certainty function 
weights (quadratic, 
contrast 19) 

6 2 -1 -3 -4 -4 -3 -1 2 6 

Prelec function 
weights (contrast 20)   

8.9 5.1 3.3 1.8 0.5 -0.7 -1.9 -3.2 4.7 -9.1 
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Figure 3: The black line shows the linear function model used in contrast 18 of a monotonical 

increase in function weight, according to the objective probabilitiy.  Similar to Preuschoff et al. 

(2006), certainty of the outcome (1/risk) was implemented as u-shape function (contrast 19). 

The grey line depicts the modelled probability weighting function by Prelec (1998) (contrast 

20), as found in our behavioural data (Ring et al., 2018).  

 

Furthermore, we were interested in the perceptive correlates of uncertainty, based on 

previous assumptions stated by Preuschoff et al. (2006) who depicted this uncertainty 

as a form of risk. They hypothesized a quadratic relationship of reward probability and 

risk (i.e. uncertainty) with minimum values at p(L) = 0 and p(L) = 1, and a maximum 

value at p(L) = 0,5. Due to the nature of our paradigm we expected a similar activation 

for our participants. We extended this relationship to the inverse quadratic relationship 

(U-shape function, minima at p(L) = 0, p(L) = 1 and minima at p(L) = 0.5) to model the 

converse sensation of certainty. Hence, objective probability weights at p(L) = 1 and 

p(L) = 0  should produce a subjective expectation and certainty of the trial outcome 

(certain loss or no loss, contrast 19 and figure 3). Similar to the modelling of the Prelec 

function, we fitted the quadratic function to the fMRI data during the anticipation of the 

trial outcome.  
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3.0 Results 

3.1 Task Performance 

 

The participants won in 50.09% +/- 1.7% of all trials and reported the outcome (won or 

lost) correctly in 97.92% +/- 3.23% of the cases. In 22.35% +/- 0.72% of all trials, the 

participants received a shock. For the correctly reported outcome, group comparison 

did not show any significant differences, indicating good overall compliance with the 

paradigm for both the gambling and control groups (chi2-test, p<0.05). 

 

3.2 Southern Oaks Gambling Scale  

 

The SOGS was recorded for the HG, PG and C. It proved to be a valid measure for 

detecting gambling participants and confirmed the outcome of the semi-structural 

interview for impulse control disorders. On the SOGS scoring system (0 = no problem 

with gambling, 1-4 = some problems with gambling, > 5 = probable PG), the participants 

in the PG group scored a median of 8.5 (mean 8.73 +/- 3.9), those in the HG group scored 

a median of 3.5 (mean 3.12 +/- 2.52), and the controls scored a median of 0 (mean 0.22 

+/- 0.6) (Lesieur and Blume, 1987). The Kruskal-Wallis test and post hoc pairwise 

comparison using Dunn’s test revealed significant differences between the groups 

(p<0.05, Bonferroni corrected). 
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Figure 4: Self-reported SOGS as a valid measure for problem gambling (Lesieur and Blume, 

1987). The figure depicts the sum-score on the y-axis and the participant groups on the x-axis. 
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3.3 fMRI Results 

3.3.1 Identification of Loss Anticipation Effects (contrast 1) 
 

We used event-related fMRI to investigate the neural response during the anticipation of 

a negative stimulus. After revelation of the first card, the participants were able to assess 

the probability of winning or losing the trial and, in case of a loss trial, subsequently 

received an electric shock. This general effect of anticipation resulted in strong event-

related activation in a number of brain regions. The cerebellum, bilateral insula, anterior 

and posterior cingulum, bilateral middle frontal gyrus, bilateral ventral striatum, 

thalamus, amygdala, SMA and fusiform gyrus showed significant BOLD responses 

(Figure 5, Table 2; p<0.05, FWE-corrected).  

We were also interested in the decrease in brain activity during loss anticipation. A 

decrease in BOLD signal intensity was observed in regions such as the anterior and 

medial cingulum as well as in the OFC, the left medial temporal lobe and the precuneus. 

Furthermore, activity in the SMA and the postcentral gyrus was decreased. 

 

 

Figure 5: A: Areas with increased and B: decreased BOLD response after revealing the first card, 

in anticipation of the trial outcome (contrast 1, p<0.05, FWE-corrected). The colour indicates 

regional t-values according to the reference scale. 
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Table 2: Anticipation after revealing the first card (contrast 1, p<0.05, FWE-corrected) 

AAL label side X Y Z t-value 

Increase in BOLD-response  

cerebellum R 44 -70 -18 21.6 

anterior insula R 38 22 -10 14.43 

anterior insula L -36 16 -6 13.96 

PCC 

 

/ 0 -26 30 13.02 

L -3 -26 31 11.46 

L -6 -26 35 6.33 

medial frontal gyrus 

 

R 46 28 34 10.96 

R 46 44 16 10.75 

R 48 36 24 10.27 

putamen L -24 16 -1 9.62 

thalamus R 14 -25 4 8.49 

amygdala L -26 0 -16 8.08 

ACC R 2 26 38 8.01 

R 6 32 32 7.45 

putamen R 28 -4 10 7.98 

PCC R 8 -26 34 7.97 

thalamus L -14 -8 2 7.29 

amygdala R 26 0 -18 6.91 

SMA L -6 4 70 5.53 

L -10 14 62 5.19 

fusiform gyrus L -30 -4 -38 5.23 
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AAL label 

Decrease in BOLD-response 

side X Y Z t-value 

postcentral gyrus L -36 -24 54 12.69 

SMA L -8 -8 56 9.61 

SMA R 10  -2 56 7.12 

precuneus R 22 -44 12 7.88 

precuneus L -10 -58 14 6.3 

temporal inferior gyrus L -50 -6 -28 7.35 

OFC L -4 54 -12 7.28 

precentral gyrus R 40 -10 52 6.24 

ACC R 2 34 -4 5.22 
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3.3.2 Linear function, Prelec function and Certainty (contrasts 12, 13, and 14) 
 

Our main interest was in determining which regions are involved in probability 

processing during anticipation of a negative stimulus. Due to our experimental design, 

we were able to finely map 10 events based on the probability of the outcome. 

Accordingly, we followed the activation patterns after revelation of the first card 

corresponding to loss probabilities of 0% (p(L)=1), 12%, 22%, 34%, 44%, 56%, 66%, 

78%, 90%, and 100% (p(L)=10). Based on the behavioural data obtained from the PG, 

HG and C in the lottery game, we modelled a nonlinear function according to Prelec 

(1998) for all groups, depicting activation in brain regions that followed the Prelec 

function. We found that there was a positive correlation with increasing probability of 

losing in the SMA, the ACC (p<0.05, FWE-corrected), the inferior frontal gyrus, the 

supramarginal gyrus and the dorsolateral prefrontal cortex (DLPFC) (p<0.001, uncorr.). 

In addition, a strong negative correlation with the nonlinear model according to Prelec 

was found for the occipital cortex, the bilateral caudate, the superior and middle frontal 

gyrus, the OFC, the putamen and DLPFC and the frontopolar prefrontal cortex (Tab. 3). 

However, we found that for anticipation of an aversive stimulus, both the linear and the 

Prelec function could explain the brain activation (FWE-corrected, p<0.05, Table 3). A 

paired t-test could not separate the BOLD contrasts adequately, leaving our question 

regarding linear and nonlinear processing partially unanswered. Based on the 

assumption that uncertainty (or risk, according to Preuschoff et al. 2006) or certainty of 

a reward may be depicted by a quadratic function, we modeled a U-shaped function for 

further investigation. No significant results were found in the domain of uncertainty, 

while the negative correlation (certainty = (1/uncertainty)) was correlated with strong 

activation in the bilateral insula, the OFC, the ACC, the PCC, the frontopolar prefrontal 

cortex, and the angular gyrus (p<0.05, FWE-corr., Table 3). Figure 6 shows the 2nd-level 

results in the relevant brain regions; they follow the Prelec function (green and red) or 

certainty (cyan) when peak activation is mapped as a function of the probability of 

losing. 
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Figure 6: Differential model according to the Prelec funtion (positive correlation orange and 

negative correlation green) and quadratic function (cyan) via t-test during probability 

processing for a negative stimulus (all FWE-corrected, p<0.05, except insula*, x y z = 40 24 4).  

Probability levels itemized according to its corresponding regions, thru flexible factorial model. 

The orange and green plots show activation according to the behavioural data of C, HG and PG 

based on Prelec function. An increase to the chance to lose is shown in red including the caudate 

nucleus, superior frontal gyrus, fusiform gyrus and NAcc. Cyan plots present brain regions that 

follow the hypothesis of certainty in a u-shape model and show corresponding activation in the 

Insula and ACC. The respective coloured curves refer to the regressors utilized for modelling.  

 

Table 3:  Anticipation contrast after revealing the first card modelled with Prelec function and 

the U-shape function (FWE-corrected, p<0.05, except marked regions (*) uncorrected, p<0.001 ) 

AAL label side X Y Z t-value 

Activation following Prelec function 

calcarine sulcus 

occipital inferior lobe 

fusiform area 

L 4 -84 -2 11.12  

R 36 -86 -4 10.41 

R 26 -78 -14 10.1 

caudate nucleus 

hippocampus 

R 14 18 -8 8.01  

R 20 12 -14 7.27 

ventral striatum 

NAcc 

OFC 

L -18 10 -14 7.39  

L -10 8 -12 6.64 

L -14 18 -10 6.23 

middle frontal gyrus R 30 10 60 6.78  

superior frontal gyrus 
 

R 26 30 52 6.19 

R 20 18 48 6.1 

superior frontal gyrus 

middle frontal gyrus 

superior frontal gyrus 

L -18 32 44 6.72  

L -34 10 54 5.82 

L -20 14 54 5.61 
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AAL label side X Y Z t-value 

primary motor cortex R 10 -34 70 5.97 

OFC R 36 44 -14 5.95  

white matter 

putamen 

R 28 

32 

-22 

-10 

0 

-4 

5.87 

5.24 

OFC R 42 50 -8 5.86 

frontopolar prefrontal cortex L -4 60 -2 5.83  

DLPFC L -42 52 -4 5.78 

Activation following the decrease in Prelec function 

SMA R 10 -4 64 5.39 

 L -12 -10 68 5.28 

ACC L -2 16 34 4.87 

 L -8 2 44 4.85 

inferior frontal gyrus, pars triangularis R 40 24 4 4.62* 

 L -36 10 10 4.52* 

supramarginal gyrus L -60 -30 18 4.19* 

DLPFC L -38 40 36 3.43* 

inferior frontal gyrus, pars opercularis L -52 0 2 3.41* 

 R 54 4 -2 3.21* 

 L -16 -50 64 3.19* 
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AAL label                                                             side        X         Y               

Activation following the U-shape function 

  Z t-value 

insula, 

inferior frontal gyrus, 

pars triangularis 

R 30 20 -18 8.05  

R 46 32 -12 7.66 

R 54 22 2 5.6 

insula, 

inferior frontal gyrus, 

pars triangularis 

L -28 20 -14 8.01 

ventromedial prefrontal cortex, 

ACC 

 

L -8 46 20 7.57 

L -8 42 28 7.48 

L -2 56 -4 6 

angular gyrus, superior temporal gyrus 

 

 

L -54 -68 30 6.33 

L -54 -66 28 6.22 

L -56 -52 40 4.81 

angular gyrus, superior temporal gyrus 

 

R 64 -48 20 6.24 

R 58 -50 32 5.14 

MCC L -2 -22 36 5.64 

medial temporal gyrus R 66 -40 -6 5.25 

Superior frontal gyrus, BA 8 

                                             BA 10 

                                             BA 8 

L -12 22 58 5.05 

R 16 60 28 5.04 

R 12 22 60 4.94 

SMA R 12 4 66 4.75 
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3.3.3 Group Comparison According to Prelec Function. 
 

Next, we were interested in the differential activation of specific brain regions in YC, C, 

HG and PG. As mentioned in our previous publication (Ring et al., 2018), behaviour 

during the lottery game did not show any significant differences in the loss domain. 

However, at the functional level, the t-test suggests that there is an increased nonlinear 

response to the weighting of probabilities of gambling participants (HG and PG) 

compared to non-gambling participants (YC and C) in the bilateral temporal pole, the 

right anterior insula and the MCC (cluster-level, uncorr., p<0.05; peak-level, uncorr., 

p<0.001, Figure 7A). Figure 7B illustrates the focal changes in probability processing in 

the right temporal pole extending into the anterior insula. Changes in temporal lobe 

activity in gamblers during decision-making have been reported by other groups, who 

reported focal abnormalities in clinical EEG recordings (Regard et al., 2003) as well as in 

event-related fMRI (Miedl et al., 2010). In addition, the insula and the cingulate cortex 

were highlighted in the search for the neural substrate of risk assessment in pathological 

gambling (Potenza, 2008, 2013; Moccia et al., 2017).  
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Table 4: Group differences for gambling and nongambling participants for probability 

processing according to the Prelec function and to the U-shape function of certainty.      

AAL  label side   X  Y  Z statistic cluster size (in voxels) 

Y+C < HG+PG anticipation processing according to Prelec function 

superior temporal gyrus L -44 6 -18 4.50 71 

 

anterior insula 

R 44 14 -20 4.15  

208 (cluster-level,  

p<0.05, uncorr.) 

R 38 20 -14 3.87  

medial cingulate cortex L -10 -6 36 3.32 3 

Y+C < HG+PG certainty  processing according to U-shape function 

amygdala L -18 4 -16 3.76 19 

PCC R 18 -48 10 3.52 10 

 L -18 -52 12 3.27 1 

ACC R 2 34 -4 3.37 7 
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Figure 7: Group differences between PG, HG and C displayed in the right temporal pole for the 

Prelec function, extrapolated from behavioural data according to the Prelec function (p<0.001, 

uncorr.).  A: The colour indicates regional t-values according to the reference scale B: Plotted 

group differences for YC, C, HG and PG on the x-axis and contrast estimate on the y-axis. 
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4.0 Discussion 
 

With the present paradigm, we were able to map brain activation at 10 different 

probability levels while participants were in anticipation of a negative outcome. We 

found that systematic increases and decreases in activity may depend on the probability 

of losing. This supports our hypothesis of a finely tuned perception of single 

probabilities and partially confirms previous findings regarding that matter (Preuschoff, 

Bossaerts and Quartz, 2006; Berns et al., 2008; Hsu et al., 2009). Furthermore, we 

compared gambling participants to non-gambling participants (Y and C) and we found 

an increased brain response in regions that are active during arousal and anticipation, 

such as the MCC, the anterior insula and the superior temporal gyrus. Finally, we 

investigated how overall loss anticipation is processed; contrary to other suggestions, 

the general perception of loss anticipation did not differ in gambling and non-gambling 

participants.  

 

4.1 Loss Anticipation (contrast 1) 

4.1.1 Division of Reward and Loss Anticipation 

 

First, we measured the general effect of anticipation for a negative stimulus (i.e., main 

effect of anticipation) after the revelation of the first card during a trial, disregarding 

single probability units. Without any significant differences at the group level, we 

included all 83 participants in calculating the overall BOLD response statistics. Our 

experiment revealed strong activation in the ACC, the anterior insula, the putamen, the 

thalamus and the SMA. Furthermore, we found activation in the MCC, the PCC, the DLPFC 

and the anterior prefrontal cortex, as well as in hippocampal and parahippocampal 

areas extending to the fusiform gyrus. The former regions, in particular, have been 

shown to be active during both reward and loss anticipation (i.e. anticipatory affect), 

while the latter regions seem to define the valence or quality of the outcome, i.e., loss 

anticipation (Knutson and Greer, 2008; Liu et al., 2011; Dugré et al., 2018). Regions that 

are active during loss and reward anticipation have routinely been reported to 

contribute to affective functions in the brain. For example, tasks that elicit positive 

emotions appear to activate these regions (Knutson et al., 2001; Chandrasekhar et al., 

2008; Suardi et al., 2016); however, negative stimuli such as viewing fearful and angry 
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faces, social conflict, listening to sad music or receiving a painful stimulus also seem to 

do so (Koelsch, 2010; Palermo et al., 2015). This connection has frequently been 

suggested to stem from a shared connection between positive and negative emotions in 

the salience network and the corticolimbic circuit that integrates the uncertainty-

induced arousal experienced in an unknown situation (Menon and Uddin, 2010; Liu et 

al., 2011).  

The ACC, anterior insula, putamen, thalamus and SMA are most often reported to be 

solely active during loss anticipation, a finding that suggests the existence of a separate 

network that may define the specific valence of the outcome. In particular, the BOLD 

response in large parts of the cingulate cortex, insula, amygdala and prefrontal areas 

suggests a complex network of loss anticipation. A meta-analysis by Dugré et al. (2018) 

showed that the MCC was predominantly active during loss anticipation, and this was 

confirmed in the present study. The MCC has been suggested to serve as a goal-directed 

hub for information about incoming punishment that is then used to guide further action 

induced by negative stimuli (Shackman et al., 2011). Shackman et al. (2011) also showed 

a notable shift of activity from the medial OFC during reward anticipation to the 

ventrolateral prefrontal cortex (VLPFC) in loss anticipation. In the present study, 

however, we found increased activation in the DLPFC rather than in the VLPFC. This may 

be due to the difference in paradigm structure; in our study, the previous necessity to 

choose  a card may have increased the activation of the DLPFC, which has been linked to 

decision making and cognitive flexibility (Greene et al., 2001; Donahue and Lee, 2015).  
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4.1.2 Group Differences in Loss Anticipation 

  

When comparing loss anticipation (contrast 1), we could not show any significant 

differences between gambling (PG and HG) and non-gambling (C and Y) participants. 

Several reasons could account for this outcome. Specifically when taking into 

consideration the previously suggested concept of duality in reward and loss 

anticipation. Here we can assume that differences related to gambling and non-gambling 

may only be present during reward anticipation. During loss anticipation, however, the 

brain response appears to be similar to that of healthy individuals. Problem gamblers 

have often been reported to have functional changes in the ventral striatum and the 

medial OFC, while areas that are vital for loss anticipation do not underlie significant 

changes. This hypothesis is corroborated by findings at the behavioural and neural 

levels. For example, individuals with gambling disorders were found to show a 

decreased physiological brain response in the ventral striatum and the ventromedial 

prefrontal cortex during winning (Reuter et al., 2005). Furthermore, Balodis et al. 

(2012) found decreased activation in the ventral striatum during reward anticipation 

but not during loss anticipation. To our knowledge, only one study reported slight 

decreases in brain activation in pathological gamblers during loss anticipation, 

specifically in the caudate nucleus and the temporal pole (Choi et al., 2012). However, 

these group differences did not survive FWE-correction at a cluster size of 8 and 7 

voxels. Based on the previous literature and given the statistical power of the present 

experiment, we therefore propose that at least during loss anticipation, gamblers may 

not differ from healthy controls in their brain response.  
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4.2 Probability Weighting According to Behavioural Models (contrasts 12-14) 

 

A central question in the present study was the processing of probability levels during 

loss anticipation. Does brain activation follow the predictions of prospect theory as the 

probability of positive punishment or negative reinforcement increases? Is there a 

neural correlate of the sensation of certainty? To investigate this matter, we modelled 

the behaviourally measured probability weighting function according to Prelec (1998) 

using our BOLD data during loss anticipation (Ring et al., 2018). A few studies have 

attempted to determine whether the function is linear, following the expected utility 

model or nonlinear, thus following the Prelec function (Preuschoff, Bossaerts and 

Quartz, 2006; Berns et al., 2008; Hsu et al., 2009; Rudorf, Preuschoff and Weber, 2012). 

However, none of these studies arrived at a definite conclusion. In the present study, we 

found that increasing and decreasing probability levels influence the cognitive 

representation and perception of individual probability levels (Figure 6). In addition, we 

could show a pronounced activation of certainty for an outcome (without valence, U-

shaped), as has already been suggested by another group (Berns et al., 2008). 
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The prospect theory stresses the overweighting of small probabilities and the 

underweighting of high probabilities, while the prelec function is the fitted formalization 

of this theory. We used the behavioural data as regressors and found an increase in 

brain activity in response to increased probability of losing, mainly in the MCC, SMA, 

anterior insula and DLPFC. These findings are consistent with the suggestion that the 

MCC acts as a hub for incoming negative stimuli, integrating information as a basis for 

further action in anticipation of a shock (Shackman et al., 2011). The increased 

activation in the SMA may represent the suppressed or unsuppressed planning of motor 

functions for possible punishment avoidance. Furthermore, with increasing probability 

of positive punishment, we could show activation of the anterior insula; this may be 

attributed to its role during arousal (Wu et al., 2014; Dugré et al., 2018). Involvement of 

the insula in both reward and loss anticipation, as well as its nonlinear response to 

probability, was shown previously (Berns et al., 2008; Knutson and Greer, 2008; Liu et 

al., 2011; Dugré et al., 2018).  

Interestingly, we found a strong negative correlation of activity in some brain areas with 

increased probability of losing. Striatal components and their dopaminergic projections, 

namely the NAcc, caudate nucleus, putamen, OFC, and DLPFC, showed a strong inverse 

correlation with the behavioural model (Figure 6, red). This is consistent with the recent 

literature regarding probability perception, specifically for anticipation of positive 

reinforcement. Hence, we assume that with a decrease in punishment probability, 

activation follows the increasing probability of not suffering the loss-associated 

outcome. The behavioural advantage of avoidance of negative outcomes can be called 

negative reinforcement. We therefore infer that negative reinforcement triggers brain 

responses that are similar to those, triggered by positive reinforcement.  
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A similar response can be seen in the reward paradigm proposed by Hsu et al. (2009). 

Those authors used a paradigm containing 6 rather than 10 probability levels. In their 

investigation, they found nonlinear activation in the striatum, cingulate gyrus, motor 

cortex and cerebellum. In comparison, we used a card game similar to that used by 

Preuschoff et al. (2006). The latter paradigm involved the presentation of the aim (to 

have a higher or lower card) and the subsequent presentation of two cards, while the 

temporal segment between the presentation of the two cards constituted the time of 

anticipation. Preuschoff et al. found distinct activation of the ventral striatum and the 

putamen; however, the activation increased linearly with the increase in the probability 

of winning. The linearity may therefore reflect the physiological equivalent of a linear 

perception of probability and contradict the idea of a physiological correlate following 

prospect theory. 

To our knowledge, only one study has investigated the prospect theory at the neural 

level using an evoked response (positive punishment), similar to the one used in the 

present study. That study used a loss anticipation delay-conditioning paradigm with 5 

probability levels and revealed a nonlinear response in relevant regions such as the 

anterior insula, the superior temporal gyrus, the cingulate gyrus and the inferior parietal 

gyrus (Berns et al., 2008). As in the present study, the authors found a U-shaped 

activation, which may resemble a form of certainty, as well as the assumed S-shaped 

model according to the prospect theory. Furthermore, they showed a significant positive 

correlation of the increased probability of a negative stimulus with activity in the 

superior frontal gyrus, which has been shown to contribute to anticipatory signaling 

(Hsu et al., 2009; Seidel et al., 2015). Similar to the present experiment, a nonlinear 

negative correlation with probability was found in the ACC, which has been suggested to 

be involved in the integration of probability weighting (Berns et al., 2008). Meta-

analyses of loss and reward anticipation emphasize the presence of a shared 

anticipation network and support the importance of these areas (Dugré et al., 2018).  
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Similar to Berns et al. (2008), we observed a U-shaped dependence of activation on 

probability level (Figure 6). This may reflect a sensation of certainty regarding the 

outcome of the trial. In both studies, the activation involved the insula and the superior 

temporal gyrus. In addition, we found activation in the ventromedial prefrontal cortex, 

the ACC and the MCC. These regions have been suggested to contribute greatly to 

anticipatory cognition and decision-making (Liu et al., 2011; Shackman et al., 2011; 

Dugré et al., 2018). Based on these results, we propose that the five regions mentioned 

above regions may integrate the probability of an outcome, giving the individual 

feedback for use in future situations during decision-making.  

The insula has been suggested to play an integrative role in the anticipation process, and 

some groups have found that it is involved in the perception of certainty (Preuschoff, 

Quartz and Bossaerts, 2008; Seidel et al., 2015). Interestingly, Preuschoff et al. (2008) 

found activation of the anterior insula during risk prediction (i.e., uncertainty) and risk 

prediction error (i.e., certainty), but they separated the neural response both spatially 

and temporally. They argue for a distinction in anticipatory signaling in the anterior 

insula. On the one hand, it may mediate a learning process for future probability 

predictions, and on the other hand, it may contribute to an anticipatory process before a 

potential risk is realized. Unfortunately, our data does not allow such a temporal 

division; however, taken together, the distinct activation observed in the anterior insula 

during loss anticipation (see previous paragraph) and the association of activation with 

the probability level supports these findings.      
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4.3 Group Differences 

 

Finally, we were interested in whether non-gamblers and gamblers show differences in 

brain activation during probability weighting. In our previous publication based on the 

behavioural data of the present study, we did not find group differences in the loss 

domain during a time preference paradigm (Ring et al., 2018). Nevertheless, we 

hypothesized that changes occur in the brain response, since there are assumptions that 

propose a pathological neurophysiology in multiple cognitive domains, such as 

anticipation, response inhibition, conflict monitoring, decision making, and cognitive 

flexibility (Choi et al., 2011; for review see Moccia et al., 2017). In fact, we found 

evidence that the temporal pole and the anterior insula present increased activation in 

gambling participants during the processing of probabilities according to our 

behavioural model based on the Prelec function (1998). This was true when we 

compared non-gambling (Y and C) and gambling (PG and HG) participants and was still 

present in the comparison of C and PG (p<0.001, uncorr.). The temporal pole, as an 

extension of the superior temporal gyrus and the anterior insula, was linked to gambling 

in previous studies. Choi et al. (2011) described decreased activation in the temporal 

pole and anterior insula when individuals with a gambling disorder were compared with 

controls. They argue that the decrease in activity in the anterior insula may be due to the 

function of that region as a mediator in the emotional processing of adverse events. This 

does not fit with our results, however the present approach was profoundly different, 

and the differences may explain the divergence in the results. While the contrast 

employed in our study may detect the difference in the evolution of perceived 

probability levels, Choi et al. compared loss anticipation in general, similar to our 

approach in contrast 1 (i.e., general loss anticipation).     
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A different group used the Iowa Gambling Task to test PG poker players during 

monetary decision making. During card selection, gamblers showed mildly increased 

bottom-up connections from the ventral striatum to several cortical regions, including 

the superior and middle temporal gyrus (Brevers et al., 2016). The authors interpreted 

their findings as indicating the presence of a physiological correlate of increased 

salience during sensory processing. These findings show that there are changes during 

the processing of loss probabilities in gambling participants. However, the differences 

appear stronger for reward anticipation, specifically in the striatum and related 

networks of reward (Moccia et al., 2017).    

 

4.4 Limitations 

 

For the present study, limitations arise predominantly from the experiment structure. 

Due to the design of the paradigm, there was no possibility to compare the two entities 

of reward and loss anticipation. Future research could therefore include a reward 

stimulus in the design, creating an opportunity for direct comparison. Furthermore, the 

50% chance of receiving a punishment stimulus blurred the measured emotions of risk 

and uncertainty. Risk is predominantly modelled in a U-shape curve in paradigms that 

apply a 100% risk of receiving a punishment, while uncertainty is often modelled in a 

strictly randomized manner. By informing the participants of the 50% chance to receive 

a punishment stimulus beforehand, the present study may have merged both risk and 

uncertainty. Furthermore, the implemented probability weighting was based on an 

unrelated task and performed outside the scanner. For future research a probability 

weighting based on the choices during the paradigm could increase the explanatory 

power of the experiment.   
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4.5 Conclusion 

 

Answering the questions from the introduction, our results paint a picture of discrete 

regional probability processing with increasing loss anticipation in the SMA, the MCC 

and the anterior insula. Conversely, there was increased activation with increased 

probability of evading a loss in the fusiform gyrus, the NAcc, the caudate nucleus and the 

superior frontal gyrus. Additionally, we found that other brain regions, including the 

insula, the OFC and the ACC, show a U-shaped pattern of activity, which we interpreted 

as a function of certainty.  

Furthermore, we compared the gambling (PG and HG) and non-gambling (C and Y) 

participants, and we found evidence for an increased activity in the superior temporal 

lobe, the insula and the MCC of gamblers during probability prediction according to the 

Prelec function. This indicates that anticipation of adverse events may be mediated in 

different ways in gamblers and non-gamblers.  

Moreover, we found a distinct pattern of activation during loss anticipation and found 

activation in regions commonly described with affect and arousal: the anterior insula, 

the ACC, the putamen, the thalamus and the SMA. Consistent with the recent literature, 

the neural pattern observed in those brain areas during loss anticipation is closely 

shared with the pattern associated with reward anticipation (Dugré et al., 2018). 

However, the valence of loss is determined by the involvement of the MCC, the PCC, the 

DLPFC, the anterior prefrontal cortex, the hippocampus, the parahippocampus and the 

fusiform area. Interestingly, no differences in the general anticipation of negative stimuli 

could be found in gambling and non-gambling participants, suggesting an exclusive 

deficit in gambling individuals in the reward domain.   
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5.0 Summary 
 

Objective: With this study, we aim to arrive at a better understanding of the neural 

mechanisms underlying the anticipation of losses due to unpleasant electric shock 

stimuli. According to prospect theory – currently the most important descriptive model 

of decision making under uncertainty in economics – subjects overweight small 

probabilities and underweight high probabilities. Here, we analyzed to what extent 

prospect theory is manifested in biological data. Does the human brain process aversive 

contingencies of decisions in a nonlinear manner according to the probability weighting 

function underlying prospect theory? Which brain regions process certainty or 

uncertainty regarding an outcome regardless of its valence? How do individuals with 

problematic gambling habits differ in these entities? 

Methods: The present study included a total of 83 participants (22 problem gamblers, 

18 habitual gamblers, 23 age-matched subjects and 20 young control subjects). Each 

participant was evaluated by psychologists through a semi-structured interview and the 

self-reported Southern Oaks Gambling Scale. The study participants engaged in a card 

game in which unambiguous situations with various risk levels for aversive events 

(unpleasant but not painful electric shocks) were created. Apart from neural responses 

during anticipation of an aversive event, our paradigm allowed us to measure how 

neural activity during expectation is modulated by the probability of the outcome. 

Furthermore, we used the participants’ attitudes towards risk to account for the 

subjective evaluation of probabilities, as suggested by prospect theory.  

Results: We confirmed existing knowledge about the active network during anticipation 

of aversive events in a large sample. Specifically, in response to our experimental 

stimuli, the BOLD (blood oxygen level dependent) signal increased in the anterior and 

medial cingulate cortex, the anterior insula, the amygdala, the thalamus and the medial 

frontal regions. Based on economic studies and on our previous behavioural results, we 

modelled the expected outcomes according to uncertainty and prospect theory. With 

increasing chances of avoiding punishment, we found that the BOLD signal increased in 

the orbitofrontal cortex, the striatum, the hippocampus, the precuneus, and the 

posterior cingulate cortex. Conversely, with increasing certainty of a positive or negative 

outcome (U-shaped from most certain loss to no loss), we found activation patterns in 

the medial superior frontal cortex, the anterior cingulate cortex, the anterior insula, the 
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frontopolar prefrontal cortex and the angular gyrus. Furthermore, we found evidence 

for group differences in cerebral activation in the bilateral superior temporal pole, the 

anterior insula and the medial cingulate cortex during the perception of distinct 

probability levels according to the nonlinear probability weighting function. 

Interestingly, these regions are relevant both in loss anticipation paradigms and in 

functional imaging studies describing pathological gambling. 

Conclusion: Our results support the concept that the neural response to anticipation is 

determined by its valence. Although it has frequently been reported that gamblers and 

non-gambling individuals show differences in reward anticipation, during loss 

anticipation gambling participants do not differ in their neural activation patterns. We 

also tested whether specific regions of the brain follow a nonlinear brain response 

according to prospect theory and the certainty of an outcome. When their BOLD 

responses during probability perception were compared, non-gambling and gambling 

individuals did show differences in the perception of probabilities. This provides new 

evidence that simultaneously occurring cognitive processes are represented in different 

sets of brain regions. Specifically, neurobiological correlates of loss anticipation were 

found in areas known to be involved in dopaminergic reinforcement learning and in the 

corticolimbic circuit, while regions known to subserve decision making, conflict 

monitoring and punishment showed correlation with the certainty of the outcome.  
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