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Abstract—The development of power electronics and power
systems due to the massive integration of renewable energy
sources is challenging the distribution grids. Among several
concepts, the Smart Transformer (ST), a solid-state transformer
with advanced control and communication capabilities, has been
investigated by several researchers. A great challenge of this kind
of system is the possibility to test the effectiveness of the physical
system under a broad spectrum of operating conditions. For this
reason, the Power Hardware in the Loop (PHIL) concept can be
adopted to emulate the behavior of a distribution grid connected
to the ST. In this case, because the low-voltage stage of the ST
is voltage controlled, the test setup must be current-controlled.
In this paper, the current-controlled PHIL setup is analyzed.
The theorethical analysis is carried out and preliminary results
obtained with the PHIL facilities are presented, highlighting how
the current-controlled PHIL can be an effective means to study
the ST.

I. INTRODUCTION

The integration of new loads (e.g., electric vehicles) chal-
lenges distribution grid management in several aspects, such
as intermittent power, voltage violations, reverse power flow
and harmonic instability.

The smart transformer (ST) is a power electronics-based
transformer [1] that aims not only at adapting the voltage level
from medium voltage (MV) to low voltage (LV), but at provid-
ing new services to the distribution grids: load identification
and control [2], [3], reverse power flow controller [4], reac-
tive power support in MV grid [5], power management in the
DC grid [6], grid hosting capacity increase for photovoltaics
(PV) and the integration of electric vehicle charging stations
[7].

Fig. 1 shows the hardware and control structure of the ST. A
three-stage solution is adopted, to guarantee the availability of
the DC Links and to decouple the reactive power requirements
of the two sides. The MV stage controls the MV current
iMV , and an outer voltage (V ∗DC

MV ) and reactive power (Q∗)
loop gives the current references (i∗d and i∗q). The DC/DC
stage regulates the power exchange between the two grids and
controls the LV DC Link (V DC

LV ). The DC/AC inverter control
target is the voltage (vLV ) regulation in the LV grid.

The Power-Hardware-In-Loop (PHIL) simulation by means
of a Real Time Digital Simulator (RTDS) system offers new
opportunities for hardware testing [8]–[11]. With respect to
the classical CHIL evaluation, used for testing controllers and
relays, the PHIL simulation allows to analyze the impact on
the grid of the hardware under test using a scaled model
connected to the RTDS by means of an interface converter.

This feature increases the testing possibilities and allows to
perform hardware tests without affecting the real grid (e.g.,
faults, overvoltages, high harmonic content, etc.).

Despite the many advantages that the PHIL has, its imple-
mentation is complex and the stability and accuracy of the loop
must be studied in order to replicate accurately the behavior
of the simulated grid in the hardware setup. The accuracy of
the PHIL evaluation is related to the capacity of the interface
converter controller (e.g., a linear power amplifier) to follow
the reference signals sent by RTDS, keeping the system stable
without any undesired behavior (e.g., instability caused by
loop delays). The stability and accuracy of the loop depends on
the chosen interface algorithm between software and hardware
and on the interface converter [8], [9], [12]. The interface
algorithm must be tailored to the application of the PHIL and
incorrect tuning may lead to hardware behavior, which is not
consistent with the RTDS simulation.

II. LOOP MODELLING AND STABILITY

The PHIL facility realized in lab is composed by 4 parts:
the Hardware under Test (HuT) (the LV side of the ST),
the RTDS, the linear power amplifier (3 phase, 4 quadrant
Spitzenberger&Spies PAS15000), and the dSPACE control
desk working station (Fig. 2).

The PHIL is realized by means of a current-type loop.
The ST controls the voltage vL on the filter capacitor. The
measurement system measures the voltage and sends the
measurement signals vL to the RTDS software, RSCAD. Here
the voltage is applied directly in the simulated grid by means
of an ideal controlled voltage source. The current demanded
by the grid i∗g is sampled by the RTDS and sent to a current
controller, that controls the current injection ig of the linear
power amplifier in order to reproduce accurately the grid
current in RTDS ig , closing the loop. Between the simulated
grid and the ST hardware, a current scale factor can be chosen
to represent in software systems bigger than the HuT size. In
this case a scale factor of 50 has been introduced in the current
to cope with the limited power capability of the hardware in
lab. It means that 1A current change in the hardware side
corresponds to 50A current change in RSCAD. Any change
in the current absorption in RSCAD, due to a different load
demand, influences the ST controller, and, vice-versa, any
change in the ST voltage amplitude or frequency, impacts on
the grid power consumption.
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Fig. 1: Control structure of the ST.
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Fig. 2: Picture of the experimental setup with the main
components highlighted.

III. EXPERIMENTAL TEST FACILITY

The PHIL stability and accuracy are important for achieving
realistic grid conditions in the laboratory. They are interlaced:
the stability is a necessary condition for the PHIL evaluation,
and it is needed for the evaluation accuracy and the equipment
safety [9]. The accuracy of the PHIL can be defined as the
capacity of the PHIL to reproduce in hardware a certain
variable simulated in RSCAD with a certain dynamic. In
the particular case of the current-type PHIL, it refers to the
capacity of the power amplifier current controller to reproduce
in hardware the current flowing in RSCAD.

However, the PHIL is composed of several interconnected
elements, such as RTDS, power amplifier and HuT (i.e., the
ST), working with their own controllers and dynamics. Hence,
their interaction can affect the stability and accuracy of the
loop in reproducing in the hardware side what simulated in
RTDS. The purpose of this section is to analyze mathemati-
cally the stability and the accuracy of the loop in Fig. 3, and

to perform a proper tuning of the power amplifier controller in
order to get a tradeoff between accuracy and system stability.

The system shown in Fig. 3 can be represented mathemat-
ically as in Fig. 4. The ST and the RTDS are interfaced due
to the voltage measurement vL, that is reproduced in RSCAD
as voltage source. Following, the RTDS provides the current
reference i∗L to the current controller implemented in RTDS,
which controls the current on the inductor LPA. This current
ig corresponds to the same output current of the ST filter on
the grid side.

The transfer function written in the blocks in Fig. 4, are
defined as follows:

FST (s) =
1

sCL
+RdL

1
sCL

+RdL + LLs+RL

RTDS(s) =
1

Lloads+Rload
· delRTDS

CCST (s) = Kpi · delST

V CST (s) = Kpv +Krv
s

s2 + w2

CCPA(s) = KpPA +
KiPA

s
+KrPA

s

s2 + w2
· del2RTDS

delST (s) =
−Tcs+ 1

Tcs+ 1

delRTDS(s) =
−Tc/2 s+ 1

Tc/2 s+ 1
(1)

where FST represents the ST LC filter transfer function,
except for the contribution of the grid current (LLs+RL)ig;
RTDS(s) is the equivalent grid implemented in RSCAD,
composed of a passive LR load; CCST and V CST are
respectively the ST current and voltage loop transfer func-
tion; CCPA is the current controller of the power amplifier
transfer function; and delST (s) and delRTDS(s) are the delay
transfer function of the ST and the RTDS, represented as
Padé first order approximation of a time step Tc=100µs. This
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Fig. 4: Equivalent transfer function scheme of the PHIL setup depicted in Fig. 3

approximation is an acceptable tradeoff between accuracy and
complexity in representing the delay. Moreover, the number of
poles and zeros introduced in the transfer function are kept at
the minimum. The Padé approximation equations of a single
time step delay are described in (2), where the approximations
up to the third order are listed. As can be noted in Fig. 5,
where a delay of the single time step 50µs is considered (i.e.,
delRTDS(s)), increasing the order of the Padé approximation
does not give substantial benefits in the dynamics to justify
a higher complexity and more poles pairs in the transfer
function.

Pade1 =
2− sTc
2 + sTc

Pade2 =
12− 6sTc + (sTc)

2

12 + 6sTc + (sTc)2

Pade3 =
120− 60sTc + 12(sTc)

2 − (sTc)
3

120 + 60sTc + 12(sTc)2 + (sTc)3

(2)

The power amplifier parameters and ST-fed grid data sim-
ulated in RSCAD are listed in Table I. A current ratio iratio
between the software and the hardware side is set to 50 initially
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in order to simulate large grids (hundreds of kW) with a small
lab setup (4 kW).

TABLE I: PHIL power amplifier parameters

Parameter Value Parameter Value

Tc 50µs TST 100µs
LPA 2.4mH RPA 0.1 Ω

Rload 1 Ω Lload 1 mH
iratio 50 pu

The power amplifier controller bandwidth can be increased,
incrementing the value of the proportional controller KpPA.
In Fig. 6, the gain KpPA has been varied from 1 to 19
with steps of 3, in order to show three effects created by
the different controller bandwidth: the resonant peak present
with low proportional gain (about 700Hz) decreases, till
disappearing with a gain higher than 7; a new resonance peak
is present for higher gains at higher frequencies (1100Hz), but
of minor magnitude; and the power amplifier current controller
bandwidth increases from 700Hz in case of low gains, up to
3 kHz with gain KpPA=19.

However, high power amplifier bandwidth may lead the
system to instability. As shown in Fig. 7a, where the trans-
fer function vL/v

∗
L is plotted, increasing KpPA values, the

stability of the system is affected. For a gain higher than 16,
the system is not stable, and slightly lower gains (e.g. 13)
may lead to high oscillatory behavior in the system. Another
point to be noted, is the behavior over the frequency spectrum
of the loop transfer function (Fig. 7b). Increasing the power
amplifier controller gain, the response of the system tends to
flatten over the frequency spectrum, and the resonance peak
at high frequency (around 4 kHz) increases till the point it is
not damped anymore (0 dB condition). As aforementioned, the
tuning of the power amplifier controller must be done follow-
ing a tradeoff between stability of the system and accuracy
in reproducing the software phenomena in hardware side. For
the ST testing, it is need a power amplifier current controller
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Fig. 6: Power amplifier current controller and plant close-loop
bode plot.

bandwidth high enough to represent the current dynamics up
to several harmonics of the fundamental frequency (e.g. 13th

harmonic, that is 650Hz). Thus the current controller tuning
must have flat response in amplitude and limited phase shift
in the desired range. For these reason, the tuning parameters
listed in Table II have been chosen.

TABLE II: Power amplifier current controller parameters

Parameter KpPA KiPA KrPA

Value 10 6 20000

IV. CONCLUSION

This paper has analyzed the current-type Power Hardware
in the Loop control for a Smart Transformer applications.
The theoretical analysis showed that a high bandwidth of
the current controller of the interface is needed to correctly
represents the emulated grid, however, stability problems arise.
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