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Abstract—Voltage source converters (VSCs) are nowa-
days widely integrated in the power grid, nevertheless
they can induce low frequency stability problems under
weak grid conditions. The interaction of PLL, dc-link
voltage control, and ac voltage control generates a positive
feedback which threatens the power system stability. The
existing researches mainly focus on modeling strategies
and stability analyses tools, however still few studies dealt
with active damping in the low frequency range. In this
paper, a nonlinear state space model of a VSC is presented
and linearized around the operating point. From the
model, a linear state feedback control law is designed and
incorporated in the dc-link and ac voltage control in order
to increase the system damping. Eigenvalue analysis is used
to investigate the performance of the proposed controller.
The simulation results based on a 2 MW grid connected
wind generation unit, clearly show the effectiveness of
the proposed solution. Experimental results with a 4 kW
scaled-down setup validate the analytic and simulation
results.

Index Terms—Low Frequency Stability, Voltage Source
Converter, Active Damping

I. INTRODUCTION

The evolution of the transmission and distribution grid
towards a power converter dominated network brings
instability problems in various frequency ranges [1]–
[3]. Low frequency stability problems in modern power
system have been investigated in literature, and several
possible causes have been identified [4]–[10]. The con-
stant power characteristic of the power converters results
in a negative resistance behavior, which deteriorates
the grid stability [11], [12]. The interactions between
PLL, dc-link and ac voltage control have been reported
as a major cause of instability in the low frequency
range [4], [7]. The instability phenomena becomes more
severe under weak grid condition, when the distributed
generator is far away from the main grid or with high
penetration of power electronics in the grid [4].

The abovementioned instability problems have been
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modeled and analyzed under different points of view
in literature. Nevertheless, active damping strategies to
concurrently address all of them are still under devel-
opment. The research [12] used the ac voltage filtered
through a bandpass filter as feedback inside the dc-
link voltage control to increase the damping. However,
since only a variable is used as feedback, the resulting
damping action is limited. The publication [13] proposed
a 2 degrees of freedom Active Damping (AD) for VSC
operating in autonomous microgrid. However, the dc-link
dynamics is not considered in the paper.

In this paper, a nonlinear state-space model of a grid-
connected voltage source converter (VSC) is derived,
and linearized around the operating point [14]. From the
obtained linear state-space model, a state-feedback based
AD is designed through eigenvalue placement method
[15], [16]. The eigenvalue placement is realized through
a systematic and straightforward procedure, which aims
to make the control design almost completely machine-
based, avoiding laborious eigenvalue placement designs.
An additional parameter σ is included in the control
law to regulate the damping intensity and provide an
additional degree of freedom to the controller.

The rest of the paper is structured as follows: Section
2 presents the system under consideration and its state
space model, Section 3 describes the proposed state-
feedback controller with the eigenvalue placement algo-
rithm, Section 4 provides the simulation results, Section
5 shows the experimental results and Section 6 deals
with the conclusions.

II. SYSTEM DESCRIPTION AND MODELING
The schematic of the grid-connected VSC under anal-

ysis is depicted in Fig. 1(a). The current generator
idc represents the primary energy source, i.e. the pho-
tovoltaic module or the wind turbine. The converter
implements the PI controller for the dc-link voltage,
the PI controller for the ac voltage and a synchronous
reference frame phase locked loop (SFR-PLL) for the
synchronization. The current control is realized through a
PI regulator in the synchronous reference frame [2]. The
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Figure 1: The three-phase grid connected voltage source converter
under analysis. (a) The switching model and the control loop, (b) the
average model of the converter.

converter is plugged to the grid through an impedance
Zg , which is composed of a resistive component Rg and
an inductive component Lg .

Since this paper is focused on the low frequency
stability issues, the converter hardware part modeling
is realized through an average model shown in Fig.
1(b). The dc side model is realized according to the
active power balance equation [2]. The ac side model
is realized through a current source ic, and a parallel
impedance Zc representing the current loop equivalent
virtual impedance [17]. The derived impedance model
is then converted in state-space form.

The derivation of the ac side state-space model starts
from the expression of the injected current ig in the ac
side in the frequency domain.

ig = Gc(s)i
∗
g + Yc(s)vg (1)

being Yc(s) = 1
Zc(s)

. The transfer functions in (1) are
defined as: 

Gc(s) =
Kps+Ki

Lfs2 +Kps+Ki

Yc(s) =
s

Lfs2 +Kps+Ki

(2)

which can be approximated to the first order as:
Gc(s) =

1

1 +
Lf

Kp
s

Yc(s) =

s
Kp

1 + Ki

Kp
s

(3)

Considering the approximation in (3), the model (1) can
be expressed in state-space form as:

v̇cc = Kiic −Kiig

i̇c = −Kp

Lf
ic +

Kp

Lf
i∗g

vg = Kp (ic − ig) + vcc

(4)

Starting from the ac side model in (4), adding the dc side,
the outer loops and the grid model, the proposed state-
space nonlinear model of the whole system is derived:

i̇c = −Kp

L ic +
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L i∗g
v̇dc = − 3

2
1

Cdc

vg·ig
vdc

+ 1
Cdc

idc

Φ̇dc = vdc − v∗dc
Φ̇g = v∗g −

√
vg · vg

δ̇ =
(

0 Kp,PLL

)
vg +Ki,PLL

Φq

Φ̇q =
(

0 1
)
vg

˙vcc = −Kiig +Kiic

i̇g =
Rg

Lg
ig − Ωig + 1

Lg
vg − T (δ)e

(5)

with

Ω =

(
0 −2π50

2π50 0

)

T (δ) =

(
cos δ sin δ

− sin δ cos δ

)

i∗g =

(
Kp,DC

(vdc − v∗dc) +Ki,DC
Φdc

Kp,AC
(v∗g −

√
vg · vg) +Ki,AC

Φg

) (6)

In (5) the state is defined as x =(
ic vdc Φdc Φg δ Φq vcc ig

)
where Φdc, Φg

and Φq are the integral states for the dc-link, ac voltage
controllers and PLL respectively, and vcc is an auxiliary
state variable to express vg . The disturbance input is
defined as d =

(
idc e

)
while the reference input is

defined as r =
(
v∗dc v∗g

)
. For the linearization, the

operating point is defined by constant values de and re
of the inputs, and the nonlinear vectorial differential
equation (5), expressed the form ẋ = f(x, de, re), is
integrated in order to compute the equilibrium state xe.
Once it is derived, the Jacobian matrices are computed
and evaluated in the equilibrium point. The resulting
linearized system has the form

ẋ = Ax+ Fd+Gr (7)

with 

A =
∂f

∂x

∣∣∣∣
x=xe,d=de,r=re

F =
∂f

∂d

∣∣∣∣
x=xe,d=de,r=re

G =
∂f

∂r

∣∣∣∣
x=xe,d=de,r=re

(8)
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Figure 2: The eigenvalue analysis of the grid connected VSC depending on the grid SCR. (a) Traditional PI controller (b) State-feedback AD
controller with σ = 1 (the red lines represent the critical damping ζ̄). (c) The eigenvalue shift respect to the coefficient σ.

III. THE STATE-FEEDBACK CONTROL
The proposed nonlinear model (5) is used to model a

VSC-based wind generation unit with a power rating of 2
MW. Based on the state-space model (8), the eigenvalue
analysis of the VSC connected to the grid as in Fig. 1(a)
is realized for different short circuit ratio (SCR) values,
as shown in Fig. 2(a). From this analysis it emerges as
values of the SCR lower than 2.6 are associated with low
damped dynamics (ζ < 0.3), in accordance with other
papers in literature [1], [4]. That represents a hazard for
the grid stability.

The target of this paper is to address the stability prob-
lems highlighted in Fig. 2(a) through a state-feedback
based active damping solution. That is realized through
the introduction a feedback loop, denominated with u,
directly in the current controller reference as in Fig. 3.
The blue arrows in Fig. 3 indicate the state variables
physically measured. The orange arrows indicate non-
physical state variables obtained though operations on
the existing variables.

The feedback signal u is included in the state-space
model (5) by modifying the first differential equation as
follows:

i̇c = −Kp

L
ic +

Kp

L

(
i∗g + u

)
(9)

Consequently, the matrix B can be computed as

B =
∂f

∂u

∣∣∣∣
x=xe,d=de,r=re

(10)

similar to (8). The model in (8) becomes:

ẋ = Ax+Bu+ Fd+Gr (11)

and the state feedback design can be done on the
linearized model ẋ = Ax + Bu, considering Fd and
Gr as disturbances.

The state-feedback gain matrix K is computed
through eigenvalue placement procedure [18]. However,
the choice of the vector of the desired eigenvalues
P̄ which reaches a good compromise between system

damping, system dynamic response and control effort
remain still an open issue.

In this paper, an algorithm for the choice of P̄
is proposed, and graphically explained in Fig. 4. The
eigenvalues which do not meet the specification defined
by the minimum allowed damping ζ̄ and the minimum
allowed natural pulsation ω̄n, are moved to a region
defined by ζ∗ and ω∗n; the eigenvalues which do meet
the specification, are not moved. The functioning of the
algorithm can be better understood from Fig. 2(b), in
which ζ̄ = 0.45 and ω̄n = 50 rad/s. For SCRs > 4 all the
eigenvalues of the system do respect the specification,
thus are not moved. For SCRs ≤ 4 the low damped
eigenvalues are moved to a desired position determined
by ζ∗ = 1√

2
and ω∗n = 50rad/s. The aim of the proposed

algorithm is to make a systematic choice of the matrix
K, and to use a coefficient σ shown in Fig. 3 to regulate
the damping feedback strength.

The damping regulation capability of σ is shown
through eigenvalue analysis in Fig. 2(c). By increasing
the value of σ, the eigenvalues approach the desired
point defined by ζ∗ = 1√

2
and ω∗n = 50rad/s. This

demonstrates how σ can regulate the damping strength.
Overall, the proposed control design includes two steps,
the first is the computation of optimal damping feedback
matrix K with the systematic procedure of Fig. 4, and as
second is the regulation of the damping strength through
the coefficient σ.

Table I: The value of ρ for different grid SCRs.

Grid SCR ρ

8 1.08
6 1.28
5 1.05
3.5 1.88
2.6 4.59
2 4.61
1.3 3.33
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Figure 3: The implementation scheme of the proposed state-feedback AD controller. In the right, the back to back converter and the power
amplifier used for the experimental results.
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Figure 4: The flowchart of the proposed eigenvalue placement algo-
rithm.

IV. SIMULATION RESULTS

The proposed state-feedback controller is imple-
mented in a simulation of a 2 MW wind turbine with
a VSC as interface with the grid. The SCR of the
considered grid is equal to 2.6, represented by the green
eigenvalues in Fig. 2. A symmetrical voltage sag of
0.35 p.u. with a phase jump of 18 degrees is simulated

at time 1.3 s, and the behavior of the dc-link voltage,
PCC voltage and injected current is depicted in Fig. 5
with respect to the coefficient σ. It can be noticed in
Fig. 5 that, in the case σ = 0, corresponding to no
active damping case, severe oscillations are present in
the VSC currents and voltages, which may threaten the
grid stability. When σ = 0.4, the AD feedback shifts to
the left the critical eigenvalues, as shown in Fig. 2(c),
resulting in more damped oscillations and higher stability
margins. The situation is different for σ = 0.8. In the
first fractions of seconds after the sag, the oscillations
on currents and voltages are more damped respect to
the case of σ = 0.4. Nevertheless, at time t = 1.4s an
overmodulation phenomena occurs, causing a distortion
in the injected current. The phenomena can be noticed
in the VSC injected current in Fig. 5(b), and is clearly
shown in Fig. 5(c). Nevertheless, the occurrence of the
overmodulation could not be presaged from the linear
eigenvalue analysis in Fig. 2, since it is a nonlinear
phenomena, due to the too high control effort needed
to damp the oscillations.

The needed control effort is dependent on many vari-
ables, including the grid SCR, the dc-link capacitor, VSC
power rating and current loop bandwidth, thus difficult
to quantify. However, with the help of the functional
analysis, a parameter

ρ = σ
‖K‖2
‖xe‖2

(12)

which is the L2-norm of the matrix K normalized
respect to the equilibrium state xe norm, can be defined.
It represents the generalized normalized gain of the
damping feedback, and provides an absolute measure
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Figure 5: The VSC dynamic response to a symmetrical voltage sag for different values of σ. (a) The grid voltage and the PCC voltage. (b)
The dc-link voltage and the injected current. (c) The modulation index in the case σ = 0.8
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Figure 6: The experimental results in three different cases. (a) Traditional PI controller, (b) state-feedback controller with σ = 0.4, (c)state-
feedback controller with σ = 0.8.

of the damping strength. The dependence of ρ on the
SCR is shown in Table I. It is clear from the table, as
with lower SCR the control effort needed to damp the
system is higher, and ρ is higher. However, when the
SCR is very low, the grid impedance is very high, and
even if the oscillation are big, less current is necessary
to induce a desired voltage drop in the PCC. That is the
reason why for SCR=1.3 less control effort respect to
SCR=2 is needed.

From empirical studies, a value of ρ less than 2 is
recommended to obtain good performances and to not
encounter the overmodulation phenomena. The param-
eter ρ in the case study is equal to 4.59 with σ = 1.
Reducing σ to 0.4 allows to reduce ρ until 1.84, resulting
in lower control effort and no overmodulation, as shown
in Fig. 5.

V. EXPERIMENTAL RESULTS

The proposed controller is implemented in a
Microlabbox-controlled VSC connected to a grid with
SCR equal to 4. A increase from 600 V to 700 V is
given to the dc-link voltage reference, and the dynamic
behavior is depicted in Fig. 6 under different values of
σ, analogously to Fig. 5. In Fig. 6, increasing values
of σ results in lower overshoot and higher damping of
the dc-link voltage, in accordance with the analysis in
Fig. 2; no overmodulation phenomena can be noticed,
in this case. Indeed, in this case study the value of ρ
for σ = 1 is 0.96, much lower respect to the case of

the previous section (ρ = 4.59). Indeed, the SCR of the
grid considered in the experimental results (SCR=4) is
significantly higher respect to the one considered in the
simulation (SCR=2.6), thus less damping control effort
is needed. Therefore, σ = 0.8 is a good value for the
AD implemented in the considered experimental setup.

VI. CONCLUSIONS

The proposed state-feedback controller has the capa-
bility to damp the low frequency dynamics in voltage
source converters connected to weak grid. The simula-
tion and experimental results confirm the analytic results
showing high damping performance and lower overshoot
of the state-feedback respect to the PI traditional con-
troller. However, a too strong damping action can result
in converter overmodulation; the index ρ is defined to
quantify the control effort. The parameter σ allows to
regulate the control effort and, in case of a too high
ρ, it can be reduced in order to avoid overmodulation
phenomena. Both the simulations and the experimental
results confirm as through the regulation of σ a good
compromise between damping capability and control
effort can be achieved.
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