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Abstract
The energy gap of correlated Hubbard clusters is well studied for
one-dimensional systems using analytical methods and density-matrix-
renormalization-group (DMRG) simulations. Beyond 1D, however, exact results
are available only for small systems by quantum Monte Carlo. For this reason
and, due to the problems of DMRG in simulating 2D and 3D systems, alternative
methods such as Green functions combined with many-body approximations
(GFMBA), that do not have this restriction, are highly important. However, it
has remained open whether the approximate character of GFMBA simulations
prevents the computation of the Hubbard gap. Here we present new GFMBA
results that demonstrate that GFMBA simulations are capable of producing
reliable data for the gap which agrees well with the DMRG benchmarks in 1D.
An interesting observation is that the accuracy of the gap can be significantly
increased when the simulations give up certain symmetry restriction of the
exact system, such as spin symmetry and spatial homogeneity. This is seen as
manifestation and generalization of the “symmetry dilemma” introduced by
Löwdin for Hartree–Fock wave function calculations.
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1 INTRODUCTION

Symmetry and its possible violation or breaking are basic notions in our understanding of physical phenomena. In
essence, this is because the symmetry transformations in a physical system relate to conservation laws of specific
observables.

Around six decades ago, Löwdin introduced the term symmetry dilemma1[1] to portray a situation where imposing
symmetry constraints in a Hartree–Fock (HF) calculation of the eigenfunction of a given electronic system gives an energy
eigenvalue higher than in absence of such constraints. In other words, the removal of constraints increases the variational

1Quoting Löwdin from that reference, p. 498: “In my opinion, the Hartree–Fock scheme based on a single Slater determinant D is in a dilemma with
respect to the symmetry properties and the normal constants of motion Λ. The assumption that D should be symmetry-adapted or an eigenfunction to
Λ. leads to an energy ⟨H⟩ high above the absolute minimum,...”
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flexibility of the HF wavefunction, giving an approximate energy value closer to the exact one, but typically does not
preserve the system’s good quantum numbers and symmetry properties. Well-known examples are HF simulations of the
ground state of the uniform electron gas, e.g., Refs. [2–4]. From Löwdin’s original insight, extensive research has spurred,
to develop approaches where symmetries in a single-determinant wavefunction are deliberately broken, and subsequently
reintroduced via symmetry projection operators, to attain a variationally improved multi-determinant state (see, e.g.,
Ref. [5] for a recent discussion).

Ambivalence in the use of symmetry is in fact of very general occurrence, and concerns both finite and infinite systems.
An interesting example is provided by spontaneous symmetry breaking (SSB).[6] In a rigorous sense, SSB only takes place
in the thermodynamic limit. However, exact numerical evidence from finite systems shows that the “disjointness” (typical
of macroscopic sizes) of phases or different values/orientations of the order parameter is replaced by a crossover behaviour
across finite barriers in Hilbert space, whose sharpness and strength increases on enlarging the system’s size. An example
is Wigner crystallization in finite electron systems, such as quantum dots, e.g., Refs. [7–9], for which also SSB in HF
calculations was investigated;[10] other examples are found in ultracold bosons in traps, nuclear matter, and quantum
chemistry; for an overview, see Ref. [11]. It can thus be methodologically expedient to artificially break the symmetry in
a finite system, to gain insight about the system behaviour in the thermodynamic limit. An often used prescription is the
addition of small external sources lowering the symmetry,[12,13] but under the stipulation that it is understood that true
SSB occurs only asymptotically.

Another central element to consider in addressing the symmetry-related behaviour of a system is electronic or
inter-particle correlations. These have deep influence in various situations, e.g. condensed-matter systems and materials,
plasmas, nuclear matter, and cold atoms, to mention a few.[14–17] Clearly, the interplay of electronic interactions and sym-
metry constraints affects the system’s properties in a way that is not accountable for within a free-particle or mean-field
picture. It should be noted, though, that already within a wavefunction framework, some theories going beyond the
mean-field picture can mimic the effect of strong electronic correlations with wavefunctions that do not respect the
expected symmetry (see, e.g., Ref. [18]).

In this work, we take a different route from wavefunctions, and we study the effect of lifting/breaking symmetry
in the presence of significant electronic correlations within many-body perturbative Green functions theory. As the
system of choice with strong correlations, we consider the Hubbard model[14,19,20] which via a minimum-complexity
Hamiltonian, describes the key trends in the behaviour of interacting electrons in the energy bands of a solid. For this
reason, Hubbard-like models have been applied in many contexts and to a wide typology of systems, both in and out of
equilibrium, see, e.g., Refs. [21–37].

Even though the Hubbard Hamiltonian is considerably simpler than that of a realistic material, exact solu-
tions for the Hubbard model are only known in special cases: in one dimension, an exact analytical treatment is
possible via Bethe-ansatz techniques,[38] and exact numerical solutions for finite samples can be obtained via the
density-matrix-renormalization-group (DMRG) method[39–41] (including spin-charge separation effects[42–44]). Using
configuration interaction (CI)[45] or quantum Monte Carlo methods,[46–49] exact solutions can be obtained for any dimen-
sionality, but only for small clusters. Finally, an exact description is possible in the limit of infinite dimensionality via
dynamical-mean-field theory (DMFT).[50–52] In all other cases (notably, in two and three dimensions), some level of
approximation must be introduced. Yet, high accuracy can be attained, for example, via the diagrammatic Monte Carlo
technique,[53] or by extensions of DMFT via cluster[54] or diagrammatic approaches.[55,56]

A premier method traditionally applied to the Hubbard model is the Green functions formalism combined with
many-body perturbation theory (GFMBA).[57,58] The GFMBA method is a general framework that can be used in any
dimension (i.e. also for 2D and 3D Hubbard models), scales not too unfavourably with system’s size, can deal with
both static and time-dependent regimes,[17,59] and is also practically viable for implementation for realistic systems.
Furthermore, a very recent reformulation of the method in terms of coupled one- and two-particle propagators[60,61]

has considerably increased its scope and range of applicability. In the case of the GFMBA method, correlation
effects are included via selected classes (possibly infinite sums) of diagrams in the selfenergy, or via truncated iter-
ative functional-derivative schemes. This leads to different perturbative treatments,[57,58] e.g. HF, second-order Born
approximation (SOA), third-order approximation,[62,63] GW , and the particle–particle and particle–hole T-matrix
approximation.[17,63] Comparisons against exact benchmarks for finite systems have shown that the GFMBA method
works well for not too strong interactions.[62–65]

The GFMBA approach has recently been under extensive scrutiny in relation to the existence of multiple solutions in
the ground state and a potential convergence to nonphysical ones[66–68] (for an example from out-of-equilibrium systems,
see e.g. Ref. [69]). However, in the discussion the multiplicity of GFMBA solutions, little or no attention has been given
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so far in the literature to the explicit role of symmetry, particularly in relation to the Hubbard model (for some discussion
of broken symmetry in the case of an isolated Hubbard dimer, see Refs. [70, 71]). For the exact solution of this model,
important ground-state properties and symmetries are well known[72,73] and in common practice, these symmetries are
granted by default also to the approximate solutions.

There is scarce knowledge on how these symmetries affect approximate treatments beyond mean-field theory. For
example, for Hartree–Fock treatments of the Hubbard model, it is well known that a phase transition from a paramagnetic
ground state to an antiferromagnetic one of unphysical nature occurs at a critical interaction, Uc, where the specific value
depends on the system size and geometry.[47,74] Yet, at the same time, the (unphysical) broken spin-symmetry solutions
result in a ground-state energy closer to the exact one, as well as in the emergence of a band gap (the latter is absent
within spin-symmetric/spin-restricted mean-field schemes). This raises the question whether selfenergy approximations
beyond Hartree–Fock can be found that violate the symmetry properties of the exact solution as well, and yet provide
“improved” values of relevant observables, such as the ground-state energy or the Hubbard gap. In other words,

1. Is there a Löwdin symmetry dilemma for the Hubbard model within many-body perturbation theory?
2. And in case, how is this related to solution multiplicity?

Our answer to the first question is in the affirmative: By considering the Hubbard model in the one-dimensional case,
and comparing GFMBA, CI, and DMRG results, we find that, lifting the symmetry constraints artificially, simulates the
effect of having more correlation effects in the system, and leads to a significant improvement of observables like the
system’s ground-state energy or the spectral functions, even at fairly large interactions. In particular, our discussion will
be especially focussed on the charge energy gapΔ (also known as Mott-Hubbard gap). For a system containing N particles,
it depends on the ground-state energies of the N, N + 1 and N − 1 systems,

Δ = EGS (N + 1) + EGS (N − 1) − 2EGS (N) . (1)

This is a central quantity of the Hubbard model, related to the metal–insulator transition at a characteristic interaction
strength.2

For the second question, we find that the occurrence of multiple (metastable) solutions is central to the connection
between symmetry lifting and improved values of certain observables in the Hubbard model. Besides looking at what
happens when lifting symmetry and why, we will also consider the possible implications in physical terms. However, due
to the explorative nature of this initial study, we will not explore/discuss strategies to restore symmetry. This is left to
future work.

The paper is organized as follows: in Section 2, we introduce the Hubbard Hamiltonian and the Green functions
formalism for HF and SOA treatments within the three self-consistency protocols with different levels of symmetry con-
straints. Section 3 presents results from a mean-field treatment, specifically for the ground-state energy, the Hubbard gap,
and the magnetic moment as function of the interaction strength U. In Section 4, we consider the SOA, discussing at
the same time the ground-state density matrix and equilibrium spectral function for all the three self-consistency pre-
scriptions. The multiple solutions in SOA are further analysed in Section 5 in terms of ground-state energy values and
self-consistency convergence errors. Finally, Section 6 focuses on a characterization of the Hubbard gap, where HF and
SOA results are compared to DMRG ones, and the dependence on system size, L, is taken into account. Our conclusions
and a brief outlook are presented in Section 7.

2 GREEN FUNCTIONS THEORY

We consider the Fermi-Hubbard model which is described by the Hamiltonian

Ĥ = −J
∑
⟨i,j⟩

∑
𝜎=↑,↓

ĉ†i,𝜎 ĉj,𝜎 + U
∑

i
n̂i,↑n̂i,↓, (2)

2The characteristics of the MIT (and thus of the gap) depend on dimensionality (see, e.g., Refs. [14, 75]). For D = 1, the exact solution shows that the
insulating phase (and the charge gap) exist for any U > 0 (i.e. no MIT occurs).[38] For infinite dimensions, where the model is exactly solvable via
DMFT, the MIT occurs at finite interaction values[52] (however, there is coexistence of metallic and insulating solutions in an interval Uc2

< U < Uc1
).

This picture qualitatively remains in three dimensions, with however quantitative modifications, due to antiferromagnetic fluctuations.[48] However,
antiferromagnetic correlations appear to play an even more dramatic role in two dimensions, where it has been recently also proposed in Ref. [76] that
the system is gapped for any U > 0. For a recent review of the situation in 2D see e.g. Ref. [77].
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where J is the hopping amplitude between adjacent lattice sites, and U is the on-site interaction strength. The operators
ĉ†i,𝜎 and ĉj,𝜎 create and annihilate an electron with spin projection 𝜎 at site i and j, respectively, and the density operator is
given by n̂i,𝜎 = ĉ†i,𝜎 ĉi,𝜎 .

The one-body nonequilibrium Green function of the system is defined by the canonical operators for complex times
z on the Keldysh contour ,[78,79]

Gij,𝜎
(

z, z′
)
= 1

iℏ

⟨ {ĉi,𝜎 (z) ĉ†j,𝜎
(

z′
)}⟩

, (3)

where  is the time-ordering operator on the contour, and the averaging is performed with the correlated unperturbed
density operator of the system. In the rest of this work, we specialize to the equilibrium regime, i.e. when the system is
not acted upon by external fields. In that case, the real-time components[17,59] of the Green function depend only on the
difference of the two time arguments. Further, the retarded (R) component for the spin projection 𝜎 obeys the Dyson
equation

GR
𝜎 (𝜔) = GR

0 (𝜔) + GR
0 (𝜔)𝜮R

𝜎 (𝜔)GR
𝜎 (𝜔) , (4)

where all quantities are matrices in the orthonormal single-particle basis {|i⟩}. For spin-compensated situations, the
noninteracting retarded Green function GR

0 (𝜔) is independent of the spin projection and given by

GR
0,ij (𝜔) =

⟨
i
||||
(
𝜔 − ĥ0 + i𝜂

)−1||||j
⟩
, 𝜂 → 0+, (5)

depending only on the single-particle contribution to the Hamiltonian

ĥ0 = −J
∑
⟨i,j⟩

|i⟩⟨j|, (6)

where the sum over ⟨i, j⟩ ensures only nearest neighbour hopping. For numerical reasons, a finite value of 𝜂 = 10−2 is
used throughout this work. If the exact selfenergy 𝛴R

𝜎 (𝜔) of the system was known, Equation (4) would provide the exact
single-particle Green function. However, in practice many-body approximations to the selfenergy have to be used.

In this work, we employ the time-diagonal Hartree–Fock as well as the time-non-local second-order Born approxima-
tion. The retarded component of the HF selfenergy is defined as3

𝜮
R,HF
𝜎 (t) = 𝛿 (t, 0) U diag

(
n1,𝜎 , … ,nL,𝜎

)
, (7)

where 𝛿 is the Dirac delta function for the relative time t in equilibrium and diag(⋅) represents a diagonal matrix with the
given arguments as diagonal entries. Further, 𝜎 denotes the spin-projection opposite to 𝜎, L the number of lattice sites,
and ni,𝜎 =

⟨
n̂i,𝜎

⟩
. The density matrix is given by the less component of the Green function,

n𝜎 = −iℏ∫
∞

−∞

d𝜔
2𝜋

G<
𝜎 (𝜔) . (8)

For the correlated Green function, the less (<) and greater (>) components can be determined by

G<
𝜎 (𝜔) = −fF (𝜔 − 𝜇)

[
GR

𝜎 (𝜔) − GA
𝜎 (𝜔)

]
, (9)

G>
𝜎 (𝜔) = f F (𝜔 − 𝜇)

[
GR

𝜎 (𝜔) − GA
𝜎 (𝜔)

]
, (10)

with the Fermi function f F(𝜔) = 1/(e𝛽𝜔 + 1), f F (𝜔) = 1 − fF (𝜔), the inverse temperature 𝛽, and GA
𝜎 (𝜔) =

[
GR

𝜎 (𝜔)
]†.

3Mind that in the Hubbard model all exchange contributions vanish and only the direct diagrams remain.
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For the SOA selfenergy, the retarded component is given by

𝜮
R,SOA
𝜎 (t) = 𝜮

R,HF
𝜎 (t) + Θ (t)

[
𝜮

>,SOA
𝜎 (t) −𝜮

<,SOA
𝜎 (t)

]
, (11)

with the Heaviside step function Θ(t) and the greater and less components of the selfenergy

𝜮
≷,SOA
𝜎 (t) = −(iℏ)2U2G≷

𝜎 (t) ◦G≷

𝜎
(t) ◦

[
G≶

𝜎
(t)
]†
. (12)

Here, ◦ denotes the Hadamard product between matrices, and the G≷(t) are determined by the inverse Fourier
transform,

G≷
𝜎 (t) = −1

[
G≷

𝜎 (𝜔)
] ≔ ∫

∞

−∞

d𝜔
2𝜋

e−i𝜔tG≷
𝜎 (𝜔) . (13)

Finally, using the Fourier transform, 𝜮R
𝜎 (𝜔) =  [

𝜮
R
𝜎 (t)

]
, the selfenergies, Equations (7) and (11), can be included in

Equation (4).
Since the selfenergy, in general, is a functional of the single-particle Green function, Equation (4) has to be solved

iteratively for both spin components until a self-consistent solution is found. The choice of a suitable initial value is crucial
and can affect the final result of the iteration. Here, if not mentioned otherwise, GR

0 (𝜔) is chosen as the starting point.
In summary, for the self-consistent solution of Equation (4) the following scheme is iterated until convergence is

achieved:

1. Diagonalize the single-particle Hamiltonian ĥ0, cf. Equation (6), set GR
0 (𝜔) via Equation (5) and choose an initial value

to start the iteration, e.g. GR
𝜎 (𝜔) = GR

0 (𝜔)
2. Calculate G≷

𝜎 (𝜔) from G𝜎
R(𝜔), using Equations (9) and (10)

3. Perform the inverse Fourier transform G≷
𝜎 (t) = −1

[
G≷

𝜎 (𝜔)
]
, cf. Equation (13)

4. Calculate 𝜮
≷
𝜎 (t) and 𝛴R

𝜎 (t) using Equations (7), (11) and (12)
5. Perform the Fourier transform 𝜮

R
𝜎 (𝜔) =  [

𝜮
R
𝜎 (t)

]
6. Solve the Dyson equation for GR

𝜎 (𝜔), Equation (4), using the new 𝛴R
𝜎 (𝜔)

7. If GR
𝜎 (𝜔) is not yet converged start again at (1)

To improve the convergence of the above scheme, the input Green function at iteration k, GR
k,in (the spin index is

neglected here), is determined by mixing the solutions of the two previous iterations

GR
k,in (𝜔) = 𝛼GR

k−1,out (𝜔) + (1 − 𝛼)GR
k−1,in (𝜔) , (14)

where a mixing parameter of 𝛼 = 0.05 is used. The error at iteration k is given by

ϵk = 1
𝛼L ∫

∞

−∞

d𝜔
2𝜋

∣ Dk (𝜔) − Dk−1 (𝜔) ∣, (15)

where D(𝜔) is the density of states (DOS) of the system,

D (𝜔) = iℏ
∑
𝜎=↑,↓

tr
[
G>

𝜎 (𝜔) − G<
𝜎 (𝜔)

]
. (16)

During the calculations, it is verified that the sum rules for the spectral function hold, i.e. that the DOS remains positive
and integrates to the number of lattice sites L within numerical accuracy. To ensure the convergence of the iteration
scheme an error threshold of 𝜖thr = 10−12 is used in this work. In addition to spectral properties, the single-particle Green
function gives access to the total energy of the system.[17,57]

Etot =
1
2

Ekin + EGM, (17)
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which combines the kinetic part

Ekin =
∑
𝜎

tr (h0n𝜎) , (18)

and the Galitskii–Migdal interaction energy

EGM = − iℏ
2

∑
𝜎=↑,↓∫

∞

−∞

d𝜔
2𝜋

(𝜔 − 𝜇) tr
[
G<

𝜎 (𝜔)
]
, (19)

where, in the GFMBA simulations of the present paper, the chemical potential is set to 𝜇 = 0.
In this paper, we consider three distinct cases for which different symmetry restrictions are imposed on the Green

function during the solution of the Dyson equation:

1. “uniform” (uni): the system is required to be translationally invariant. In this case, the iteration scheme is solved in
momentum space where the Green function and selfenergy are diagonal, i.e. GR

ij,𝜎 (𝜔) → GR
p,𝜎 (𝜔).

2. “restricted spin” (rs): the system is required to be spin-symmetric. In this case, the iteration scheme is solved for one
spin projection only since the Green function and selfenergy are spin-independent, i.e. GR

↑ (𝜔) = GR
↓ (𝜔).

3. “unrestricted spin” (us): no restrictions regarding both, the translation and spin symmetry are imposed. In this case,
an antiferromagnetic state is chosen to start the iteration.4

3 SPIN SYMMETRY IN THE MEAN-FIELD APPROXIMATION

Since the exact ground state of the half-filled 1D Hubbard Hamiltonian is known to be spin-symmetric (i.e. param-
agnetic) for systems with an even number of particles,[72,73] a logical prescription is to introduce spin symmetry also
for approximate solutions like HF and SOA. However, it is well known that, beyond a critical interaction strength Uc,
unrestricted-spin HF (usHF) spontaneously breaks spin symmetry resulting in an antiferromagnetic ground state. In the
following, we quantify the influence of this artificial phase transition on important ground-state properties by compar-
ing the performance of restricted-spin (rs) and unrestricted-spin (us) HF for finite one-dimensional Hubbard chains with
open (hard-wall) boundary conditions. In Figure 1a the ground-state energy of three Hubbard clusters containing L = 2,
4, 6 sites is plotted vs. the interaction strength U for rsHF, usHF, and the result obtained by exact diagonalization of the
Hamiltonian. The qualitative observations are similar for all three systems. In the limit of vanishing on-site interaction
all three methods agree perfectly and show a linear increase of the ground-state energy with U. For interactions beyond
U ≳ 1J, the exact energy is reduced due to increasing correlations giving rise to mounting differences compared to the two
HF solutions. In the case of rsHF, which by design fulfils the exact spin symmetry of the system, the linear increase of the
ground-state energy is present for all values of U resulting in a strong deviation from the exact result, for U ≳ 1J. Most
notably, since correlations are not included in rsHF, no Mott regime is observed in the presence of the on-site interaction.

By contrast, removing the requirement of spin-symmetry (usHF) results in a lower ground-state energy for interac-
tions beyond Uc ≈ 2 J which approaches the exact value for U →∞. Additionally, the usHF density of states, shown in
Figure 1c for a Hubbard chain of 10 sites, is indicative that a correlation gap in the spectrum (corresponding to a Mott
transition) emerges for a critical interaction Uc. However, since the usHF selfenergy accounts only for mean-field effects,
the improved results for the Hubbard gap and the ground-state energy cannot be attributed to the effects of correlations.
Instead, they are connected to the emergence of the antiferromagnetic state. This becomes apparent when looking at the
local magnetic moment on the outermost site of finite Hubbard chains depicted in Figure 1b. The local magnetic moment
is defined as

⟨
m̂2

i
⟩
=
⟨(

n̂i,↑ − n̂i,↓
)2
⟩
= ni − 2di, (20)

with ni = ni,↑ +ni,↓ and the local double occupancy di which contains a mean-field and a correlation part,

di = ni,↑ni,↓ + dcorr
i . (21)

4When choosing the spin-symmetric GR
0 (𝜔) as the initial value, the iteration will not break spin symmetry.
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F I G U R E 1 (a) Comparison of the ground-state energy EGS vs. interaction strength U for rsHF, usHF, and the exact solution of the
Hubbard Hamiltonian. Three finite Hubbard chains of length L = 2, 4, 6 with open boundary conditions at half filling are considered. (b)
Interaction dependence of the local magnetic moment

⟨
m̂2⟩, Equation (20), on the first site of finite Hubbard chains of length L = 2, … , 20

with open boundary conditions at half filling for usHF. (c) Interaction dependence of the DOS for a finite Hubbard chain of length L = 10
with open boundary conditions at half filling for usHF. A sudden opening of the correlation gap occurs at U ≈ 2 J

In the exact case, where the spin densities are homogeneous, an increasing magnetic moment at high interac-
tion strengths is caused by an increase of electronic correlations leading to a negative di

corr and, thus, a decrease
in the double occupancy. However, for usHF, where di

corr ≡ 0, the inhomogeneous spin-density distribution of the
antiferromagnetic spin state mimicks the effect of additional correlations.5 To summarize, removing the require-
ment of a homogeneous spin-symmetric ground state, as observed in the exact solution, allows HF simulations to
achieve results for ground-state energies closer to the exact ones and gives rise to a Hubbard gap of reasonable
magnitude.

4 SYMMETRIES IN SECOND-BORN APPROXIMATION

We next analyse the effect of imposing symmetry restrictions when including selfenergies with correlation effects (beyond
HF). The first correction beyond HF that takes into account interparticle scattering is the second-order Born approxima-
tion (SOA). We thus consider, within SOA, the behaviour of finite Hubbard chains with periodic boundary conditions for
which the exact ground state is known to be both, spin symmetric and invariant under space translations.[72,73,80] The effect
of relaxing the aforementioned symmetry constraints is quantified by comparing results from the three SOA approaches
I, II, and III, (i.e. for the uniform, restricted-spin, and unrestricted-spin treatments) introduced in Section 2; we will refer
to these three treatments as uniSOA, rsSOA, and usSOA, respectively. For all three cases, we compare in Figure 2 the
spin-up density matrix (a–d), the DOS (e–g) and the ground-state energy (h) to the exact results for an 8-site Hubbard
chain with periodic boundary conditions at U = 4 J. In the uniform case, the density matrix by design exhibits perfect

5Note that the critical interaction Uc for which the symmetry-broken state emerges decreases with increasing length of the chain. An in-depth
analysis on the exact value of Uc goes beyond the scope of this work.
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F I G U R E 2 Ground-state properties of a periodic, half-filled Hubbard chain of length L = 8 and U = 4 J, within second-order Born
approximation. (a)–(d) Density matrix for a translationally invariant system (red), without imposing homogeneity but spin symmetry (blue),
without both, homogeneity and spin restriction (green), and exact configuration interaction (CI) solution without restrictions (black). (e)–(g)
Spectral function (density of states) of the three approximations compared to CI results (“Exact”). (h) Total ground-state energy for the three
cases, compared to the exact result

translational symmetry and the resulting checkerboard structure closely resembles the exact solution (cf. Figure 2a,d). At
the same time, the ground-state energy of −3.64 J for uniSOA does not agree with the exact value of −4.60 J. Similarly, the
DOS shows poor qualitative agreement with the exact result, failing to reproduce the correct position of the peaks and,
above all, the existence of a band gap.

Relaxing the requirement of translational symmetry (rsSOA) leads to unphysical inhomogeneities in the odd minor
diagonals of the spin-up density matrix which is in contrast to the exact solution.6 However, the ground-state energy is
improved, to −3.84 J, closer to the exact result. Additionally, in the DOS, a correlation-induced gap emerges at the Fermi
energy in conjunction with an, in general, better qualitative agreement with the exact spectrum. Still, the rsSOA gap of
0.77 J is less than half the size of the exact result of 2.01 J.

As a next step, we no longer enforce spin symmetry (usSOA) which results in an antiferromagnetic ground state
indicated by the spin-density wave on the diagonal and the inhomogeneities on the even minor diagonals of the spin-up
density matrix, shown in Figure 2c. This Néel state has an energy of −4.08 J which is in much better agreement with the
exact value. In this case, the DOS nicely reproduces the position of the main peaks and the Hubbard gap of 1.77 J is much
closer to the exact value.7

Similar to the findings for the HF selfenergy presented in Section 3, removing the requirement of translation
and spin symmetry for the SOA leads to a significant improvement for the ground-state energy and the DOS.
This way the exact Mott gap can be remarkably well reproduced, even for relatively large interactions such as
U = 4 J.

6Note that, while the translational symmetry is broken, the spin symmetry is still fulfilled.
7The remaining differences to the exact DOS, namely, the missing high-energy satellites and the degenerate peak at ∼±1.8 J, can be attributed to the
shortcoming of the SOA at the large interaction U = 4 J.
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5 MULTIPLE SOLUTIONS OF THE DYSON EQUATION IN SECOND-BORN
APPROXIMATION

The possibility of multiple solutions is a well-known feature of self-consistent treatments of the Dyson equation.[67,68,81]

Usually, a self-consistency requirement is employed in approximate treatments via e.g. perturbation theory. The existence
of a self-consistent solution to the Dyson equation was shown to depend on the choice of the selfenergy approximation,
in particular its positive semi-definiteness (PSD). The SOA selfenergy used in this work is known to be conserving and
PSD,[82] and is thus suitable to study the emergence of multiple solutions. With a specific choice of the translational
invariance, and without addressing the role of broken symmetry, this was done before in a specific case.[83] Here, the effect
of artificially breaking specific symmetries is brought to the foreground, and explicitly connected to the insurgence of
multiple approximate self-consistent solutions. To this end, we solve Equation (4) with no symmetries enforced (usSOA),
for a half-filled Hubbard chain of length L = 8 with periodic boundary conditions and U = 4 J, i.e., for the same system
as in Section 4. The initial state of the iteration scheme is chosen to be the homogeneous, spin-restricted HF ground state
where the density is modified by a small random perturbation of the order 10−5.8

In Figure 3, the DOS (a,b), ground-state energy (c), and iteration error (d) are shown during the iterative proce-
dure. The calculation starts from the slightly disturbed rsHF ground state with energy −1.52 J (not shown in Figure 3c).
Within the first 170 iterations, the system converges into the homogeneous state (cf. the DOS in Figure 2e), as the rela-
tive iteration error drops to 10−3. However, at around 300 iterations the error increases and the system transitions into
the inhomogeneous but spin-symmetric state (cf. the DOS in Figure 2f). This state appears to be even more stable, with
the relative iteration error temporarily dropping to 10−5. However, after 3000 iterations, a final transition sets in, and
the system arrives in the spin-asymmetric state (cf. the DOS in Figure 2g). The system remained in this state for the
remainder of the iteration process, and the relative error of the calculation eventually reached the order of machine
precision.9

While, during the iteration, the DOS evolves through the three states shown in Figure 2, the total energy passes through
the values of the respective states that are depicted in Figure 2h. This is shown in detail, as a function of the iteration
number, in Figure 3c, cf. the coloured lines. This shows that the three states, corresponding to the different symmetry
restrictions discussed in Section 4, can be reached by a single iterative solution of the Dyson equation when no symmetries
are enforced. During the iteration, in the vicinity of each of the three states, the iteration error drops significantly (reaching
a high degree of self-consistency). This suggests that all of them are solutions of the same Dyson equation, with only the
unrestricted-spin state being absolutely numerically stable. A well-conditioned iteration scheme will, ultimately, reach
this minimum-energy state. Of course, the sequence of states reached on the way to the minimum depends on the choice
of the initial state of the iteration and on details of the numerical procedure.

The present example is a direct illustration of Löwdin’s symmetry dilemma discussed above and shows that a succes-
sive reduction of the symmetry of explored states may allow one to improve certain target properties of a system, such as
the ground-state energy, also in a many-body calculation with the SOA selfenergy. The behaviour just discussed here is
expected to be a specific facet of a general scenario underlying the search for multiple solutions of the Dyson equation
that are a consequence of the nonlinear dependence of the collision integrals on the Green functions which is a gen-
eral property of selfenergies beyond Hartree–Fock. These observations should give useful hints how to improve iterative
solutions of the Dyson equation or similar nonlinear equations.

6 BENCHMARKING AGAINST DMRG

The existence of a Mott gap for large on-site interactions is one of the most important features of the Hubbard model. After
analysing the general properties of GFMBA simulations with HF and SOA selfenergies for the three methods (I)–(III), we
now focus on their performance regarding the Hubbard gap, Equation (1), in particular. Since we are considering finite
systems we are interested in the correlation part of the band gap which we define as

Δcorr = Δ − ΔrsHF, (22)

8Recall that, without this small initial inhomogeneity, no broken spin symmetry would occur, even in spin-resolved calculations.
9It should be noted that there is a little dip/kink in the relative error at around iteration 3500. This could hint to a possible forth viable state that we
did not reach in our calculation.
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F I G U R E 3 Ground-state properties of a half-filled Hubbard chain of length L = 8 and U = 4 J for usSOA during the iteration
procedure. The initial state is the rsHF solution of the system modified by a small deviation to initiate the symmetry breaking. (a),(b)
Evolution of the density of states during the iteration procedure, for two stages A and B of the iteration that are highlighted by the grey areas
in (c) and (d). The coloured spectra correspond to the respective states in Figure 2. (c) Ground-state energy during the iteration procedure.
The energies corresponding to the states of Figure 2 are shown with their respective colour. (d) Relative error during the iteration procedure

where ΔrsHF is the band gap obtained from a rsHF calculation that contains only the finite-size contribution. In the ther-
modynamic limit ΔrsHF vanishes, and Δcorr = Δ. In Figure 4, we compare the correlation gap of finite Hubbard chains of
varying length at U = 4 J to the (exact) result obtained by DMRG (we employed the size-increasing scheme as in Refs. [84,
85]). Additionally, we extrapolate the data to L→∞ where the DMRG result agrees with the Bethe-ansatz solution.[86]

In the case of the restricted-spin HF and the homogeneous SOA (uniSOA) state the Hubbard gap vanishes, cf. Figure 2d
for the latter.

In contrast, starting with open boundary conditions, rsSOA shows a finite gap and correctly predicts its qualitative
dependence on the length of the system. However, since SOA captures only part of the correlation effects, the correct
band gap is underestimated by ∼0.7 J for all system sizes. As discussed for the local magnetic moment in Section 3, the
antiferromagnetic ground state of the unrestricted-spin methods can compensate shortcomings of the selfenergy approx-
imations in treating correlations. In the case of usHF, this results in the opening of a correlation gap on the mean-field
level. However, for the large interaction of U = 4 J, the size of the gap is severely overestimated, especially, in the thermo-
dynamic case, where usHF predicts a size of 3.073 J, as opposed to the exact value of 1.287 J. In contrast to the exact case,
the correlated gap is monotonically increasing with the system length for the unrestricted-spin methods. Nevertheless,
usSOA shows the best agreement with the exact gap out of all selfenergies and symmetry restrictions considered here.
Especially for large system sizes, including the case of the infinite Hubbard chain, the deviation does not exceed ∼0.25 J.

The results for periodic boundary conditions (shown as dashed lines in Figure 4) differ only slightly from the above
observations. While, for small systems (L< 40), there is a noticeable difference between both cases, the size of the cor-
related gap converges to the same value for larger systems. The speed of this convergence is considerably faster for the
unrestricted-spin methods which possess an antiferromagnetic ground state.

Independent of the type of boundary conditions, giving up on the symmetries of the exact solution, the description of
the Hubbard gap in finite systems, especially for the selfenergy in SOA, improves dramatically, even for large interaction
strengths, again confirming Löwdin’s symmetry dilemma.
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F I G U R E 4 Correlation band gap of a half-filled, one-dimensional Hubbard chain of finite length L and U = 4 J with open (full lines
with crosses) and periodic (dashed lines with circles) boundary conditions. Density-matrix-renormalization-group results are compared to
different restricted-spin (rs) and unrestricted-spin (us) selfenergy approximations. The extrapolated results for the limit of the infinite
Hubbard chain are shown as dotted lines on the right

To further assess the quality of not only the correlation gap but the total DOS, in Figure 5 we compare the results of
the rsSOA and usSOA methods to the spectral function obtained by Nocera et al.[87] using the time-dependent DMRG
(tDMRG) method for an open Hubbard chain of 40 sites for U = 4 J. The finite real-time window of the tDMRG approach
results in an artificial broadening of the peaks in the spectral function. For a better comparison, we emulate this effect by
performing on our much sharper DOS a convolution with a Gaussian that corresponds to a time-window size of 15 J−1.
The general trends observed in Figure 2f,g for a short chain of eight sites are confirmed also for this larger system of
length L = 40. The main characteristics of the tDMRG spectrum are the major peaks at ±1 J and± 2 J, the satellites at
±4.5 J and a slowly descending slope between those features. According to the observations of Figure 4, rsSOA severely
underestimates the size of the Hubbard gap since the spectrum in general is shifted toward the Fermi energy resulting
in a poor overall agreement with tDMRG. On the contrary, usSOA reproduces the position of the major peaks and the
satellites remarkably well, whereas only the slope between them is not described correctly. The spectral weight that is
missing in the slope is, instead, transferred to the oversized major peaks. Nevertheless, the agreement of usSOA with the
tDMRG results is striking, considering the high on-site interaction of U = 4 J.

7 CONCLUSION

Currently, there is great interest in the theoretical condensed-matter community in devising approaches for strongly
correlated systems, i.e. for those systems where a description based on an independent-particle picture is qualitatively
inadequate.

In this work, we have looked at a certain aspect of the problem, namely, the interplay of symmetry constraints and
electronic correlations. Specifically, using finite Hubbard chains at half filling as a case study for strongly correlated sys-
tems, we investigated the role of symmetry requirements in many-body perturbation Green function theory (GFMBA),
where approximations of increasing complexity can be systematically devised for the many-body selfenergy.
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F I G U R E 5 Density of states of a half-filled Hubbard chain of length L = 40 and U = 4 J with open boundary conditions. The tDMRG
data are taken from Ref. [87]. The rsSOA and usSOA spectra are broadened using a Gaussian corresponding to a real-time window of size
15 J−1 that matches the width in Ref. [87]

In the literature, GFMBA is often seen as an ill-suited conceptual paradigm to describe strong correlations, because
of, e.g., possible multiple self-consistent approximate solutions, or uncertainty about the convergence radius of the per-
turbation expansion. While not calling into question this point of view, in this study we have used GFMBA to address the
interplay of symmetry and correlation effects. To our knowledge this is a point that, irrespective of the methodology used,
has received little systematic attention so far. For our GFMBA description of Hubbard systems, we used the second-Born
approximation which accounts for electronic correlations at lowest perturbative order in a “skeleton-diagram” sense.
However, for the sake of comparison we also presented results from an Hartree–Fock treatment.

Already at the HF level, our comparison of spin-symmetry-restricted and unrestricted self-consistent solutions indi-
cates that one is facing a so-called Löwdin symmetry dilemma for the one-dimensional Hubbard model: namely, the
violation of spin-symmetry can lead to a spectral function and ground-state energy that are closer to the exact ones than
those obtained when spin symmetry is imposed.

Our results suggest that this behaviour is robust against the inclusion of electronic correlations within GFMBA. For
our self-consistent SOA treatment of finite periodic Hubbard chains at half-filling, in addition to spin symmetry we also
considered translation symmetry. While the exact solution corresponds to densities which are both spin-projection sym-
metric and translationally invariant, the violation of these properties in SOA leads to results for the ground-state energy
and the local spectral function which are remarkably close to the exact ones. This is particularly so when using the
unrestricted-spin symmetry SOA: in this case, the exact value of the Hubbard energy gap is surprisingly well produced,
within ∼15%, also for strong on-site interaction U = 4 J. Finally, an interesting overall trait of our results is that the
symmetry-restricted states are in fact solutions (albeit metastable) to the unrestricted Dyson equation: starting from a
specifically crafted initial state, the self-consistency iteration dynamics passes through the symmetry-constrained states
before reaching the unrestricted ground state.

Thus, altogether our work illustrates a direct connection between symmetry constraints and solution multiplicity in
GFMBA, adding to the already available body of knowledge on the behaviour of multiple solutions for the Dyson equation.
As possible future directions, an obvious point to address is if more complex selfenergy approximations, such as the
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T matrix and GW approximations, would give improved results in symmetry-lifted treatments as well. Other
straightforward extensions would be the exploration of the case of higher dimensions (where, however, an increased
complexity is expected due to a richer structure of the phase diagram) and electron occupancies different from half filling.

More in general (and very much in the spirit of Löwdin’s original lines of thought), it could be of some interest to see
if it is possible (and what happens) when concretely profiting from the symmetry dilemma within GFMBA, by restoring
symmetry at the end via projection techniques. This procedure, in different variants and extensions, has been already
used in the literature for wavefunctions, typically starting from HF symmetry-unrestricted states, e.g., Ref. [11]. Pursuing
the same strategy within GFMBA would allow one to explore the feasibility of convenient ways to access some important
physical quantities in strongly correlated systems.
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