
Received: 23 April 2020 Revised: 18 January 2021 Accepted: 30 January 2021

DOI: 10.1002/rnc.5461

R E S E A R C H A R T I C L E

Observer design for a class of nonlinear systems combining
dissipativity with interconnection and damping assignment

Bastian Biedermann Thomas Meurer

Chair of Automatic Control, Faculty of
Engineering, Kiel University, Kiel,
Germany

Correspondence
Bastian Biedermann, Chair of Automatic
Control, Faculty of Engineering, Kiel
University, 24143 Kiel, Germany.
Email: basb@tf.uni-kiel.de

Abstract
A nonlinear observer design approach is proposed that exploits and com-
bines port-Hamiltonian systems and dissipativity theory. First, a passivity-based
observer design using interconnection and damping assignment for time vari-
ant state affine systems is presented by applying output injection to the system
such that the observer error dynamics takes a port-Hamiltonian structure. The
stability of the observer error system is assured by exploiting its passivity prop-
erties. Second, this setup is extended to develop an observer design approach
for a class of systems with a time varying state affine forward and a nonlinear
feedback contribution. For a class of nonlinear systems, the theory of dissipa-
tive observers is adapted and combined with the results for the passivity-based
observer design using interconnection and damping assignment. The conver-
gence of the compound observer design is determined by a linear matrix inequal-
ity. The performance of both observer approaches is analyzed in simulation
examples.
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1 INTRODUCTION

Nonlinear controllers generally rely on the availability of the full state information. However, only a subset of the needed
state information is usually measurable so that the non-measurable states have to be reconstructed from the knowledge
of the system equations, inputs and outputs.

Observer designs for linear time invariant (LTI) and linear time variant (LTV) systems are well studied. Typical
examples are Luenberger observer designs or optimal observer designs like the Kalman filter. However, these concepts
cannot be directly applied to nonlinear systems. Possible solutions are given by transformations of nonlinear systems
into observer normal forms,1-3 bilinear systems up to output injections,4 or state affine systems.5-8 There are also various
developments of Kalman filtering for nonlinear systems, for example, the extended Kalman filter, which makes use of the
local linearisation and the solution of a Riccati equation at each time step.

Based on dissipativity concepts,9-14 a dissipative observer design15-17 is presented providing a systematic approach
to solve the observer design problem for certain nonlinear systems. The system is decomposed into a linear part and
a nonlinear perturbation term in the feedback loop. The resulting error system is in a Lur’e system structure18 so that

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

4064 wileyonlinelibrary.com/journal/rnc Int J Robust Nonlinear Control. 2021;31:4064–4080.

https://orcid.org/0000-0001-9640-6010
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frnc.5461&domain=pdf&date_stamp=2021-03-01


BIEDERMANN and MEURER 4065

the observer error dynamics is linear with a nonlinear feedback perturbation. Assuming that the nonlinear perturbation
satisfies a quadratic dissipativity condition, the observer gain can be designed to assure the stability of the observer error
dynamics by fulfilling certain linear matrix inequalites (LMIs). This observer approach covers several other observer
designs like circle criterion design,19 high gain observer20 or Lipschitz observer.21

Port-Hamiltonian systems (PHSs) are a subclass of passive systems. They offer a framework to model various linear and
nonlinear finite-dimensional and linear infinite-dimensional systems on the basis of an underlying Dirac structure.22-24

The passivity property of PHSs in terms of an input-output pairing enables the development of powerful control methods
for nonlinear systems. For example, the concept of interconnection and damping assignment passivity-based control
(IDA-PBC) provides a controller design so that the interconnected system consisting of the nonlinear system and the
controller is a PHS.25 A full order observer for a class of PHSs is presented in Reference 26. Thereby, the observer is
designed so that the augmented system, which consists of the system and the observer, preserves the PHS structure.
Stability is then achieved using passivity theory in terms of a new input-output pairing. Moreover, an observer for linear
PHSs is presented in Reference 27 to estimate the magnetic and temperature profiles in a fusion reactor. The observer
gain is chosen so that the error dynamics is in a PHS form. Furthermore, the observer approach is extended by an integral
part. Extensions to interval observers for linear PHS are available.28 An observer design applying contraction analysis for
PHSs is presented in Reference 29. However, these observer designs can only be applied to certain types of PHSs.

The state estimation for state affine systems by a passivity-based observer design using interconnection and damping
assignment (IDA-PBO) was first presented by the authors in Reference 30. The system under consideration is divided into
measurable and non-measurable states and output-input injection is applied. Based on this, the observer design adapts
the underlying idea of IDA-PBC. The observer is set up so that the resulting observer error dynamics form a PHS. The
stability conditions rely on the definiteness of the matrix, which describes the system’s energy dissipation.

This work presents two main results. First, the IDA-PBO is extended, so that the considered system class may
depend explicitly on time. Thus, this observer approach can be applied to general LTV systems. Secondly, a combina-
tion of the augmented IDA-PBO and the dissipative design is presented by considering a system with a state affine
forward and a dissipative nonlinear feedback part. The convergence of the observers is verified by taking into account
the properties of PHSs and dissipativity theory. It is shown that the convergence of the combined observer design is
determined by an LMI emphasizing the synergy of the IDA-PBO and the theory of dissipative observers. The result-
ing observer design approach can be applied to a wider class of nonlinear systems, overcoming the limitations of each
technique.

This article is organized as follows: Section 2 introduces the problem and the basic observer structure. In Section 3, the
observer design for time varying state affine systems by interconnection and damping assignment is presented. Section 4
introduces an observer approach for a class of nonlinear systems by the combination of the enhanced IDA-PBO with a
dissipative observer. Examples and simulation results are presented and evaluated for each proposed design. Some final
remarks are provided in Section 5.

Notation

The set of real numbers larger or equal to t0 is denoted by R
+
t0
= {t ∈ R|t ≥ t0}. To reduce notation overhead and if clear

from the context, the arising tuple (t, y,u) with t ∈ R
+
t0

, output y ∶ R
+
t0
→ Rp and input u ∶ R

+
t0
→ Rk is denoted by 𝝃 ∈

X
t0
u,y. Moreover, time dependencies are omitted if clear from the context. We write 𝝃 ∈ X

t0
u,y to refer to a condition that

holds true for all 𝝃, that is, for all t ≥ t0, u and y. If not stated otherwise, ‖𝜶‖ denotes the Rn-norm of a vector 𝜶 ∈ Rn.

2 PROBLEM FORMULATION

In the following, an observer design for nonlinear systems that can be decomposed into a time varying state affine part,
a nonlinear feedback part and a perturbation term, that is,

ẋ = A(t, y,u)x + G(t, y,u)𝝍(𝝈, y,u) + 𝝑(t, y,u), t > t0, x(t0) = x0

y = Cx, t ≥ t0

𝝈 = Hx, t ≥ t0 (1)
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is developed. This class of systems resembles the ones investigated in References 15-17. The main difference is that the
forward path in terms of A(t, y,u)x is not restricted to an LTI structure. Moreover, LTV systems or linear PHSs denote
subclasses of (1).

It is assumed that a unique solution of (1) exists for all t ≥ t0. The input is given by u(t) ∈ Rk and the output is
denoted as y(t) ∈ Rp. The output matrix is considered in the form C = [C1, 0] with the invertible matrix C1 ∈ Rp×p. With-
out loss of generality, C1 is taken as the p× p identity matrix C1 = I implying y = x1. The state vector is divided into
x(t) = [xT

1(t), xT
2(t)]

T ∈ Rn, where x1(t) ∈ Rp denotes measurable and x2(t) ∈ Rn−p non-measurable states. The system
matrix A ∶ R

+
t0
× Rp × Rk → Rn×n is partitioned as

A(t, y,u) =

[
A11(t, y,u) A12(t, y,u)
A21(t, y,u) A22(t, y,u)

]
(2)

with A11(t, y,u) ∈ Rp×p, A12(t, y,u) ∈ Rp×(n−p), A21(t, y,u) ∈ R(n−p)×p, A22(t, y,u) ∈ R(n−p)×(n−p) and the elements of each
matrix are assumed to be locally Lipschitz in (u, y) and piecewise continuous in t. Moreover, A(t, y,u) is assumed uni-
formly bounded. Furthermore, 𝝈 ∶ Rn → Rr is a linear function of the states with H ∈ Rr×n. The nonlinear functions
𝝑 ∶ R

+
t0
× Rp × Rk → Rn, 𝝍 ∶ Rr × Rp × Rk → Rq and the elements of the matrix G ∶ R

+
t0
× Rp × Rk → Rn×q are assumed

to be locally Lipschitz in (u, y) and piecewise continuous in t.
A full order observer for (1) is proposed as

̇̂x = A(t, y,u)x̂ − L(t, y,u)(ŷ − y) + 𝝑(t, y,u) + G(t, y,u)𝝍(�̂� + N(t, y,u)(ŷ − y), y,u), t > t0, x̂(t0) = x̂0

ŷ = Cx̂, t ≥ t0

�̂� = Hx̂, t ≥ t0. (3)

The elements of the observer gain matrices L ∶ R
+
t0
× Rp × Rk → Rn×p and N ∶ R

+
t0
× Rp × Rk → Rr×p are assumed

to be locally Lipschitz in (u, y) and piecewise continuous in t. Subsequently, conditions for the matrices L(t, y,u) and
N(t, y,u) are determined to achieve that x̂ converges to x with asymptotic or even exponential convergence rate. Thereby,
two cases are distinguished:

(i) The matrix G(t, y,u) is assumed to be zero, implying a time varying state affine system with a perturbation term
to acquire conditions for L(t, y,u). The obtained observer approach extends the theory of observers for state affine
systems5-7 and IDA-PBO30 as the system is allowed to depend explicitly on time. Furthermore, the observer design
is simple, since its stability properties depend on particular properties of the arising matrices.

(ii) The nonlinear feedback part is included, that is, G(t, y,u) ≠ 0. The observer (3) is developed by combining the results
obtained for the first case with the theory of dissipative observers.15-17 This constitutes a more general observer design
approach, since dissipative observers are typically designed for systems with a LTI forward path. Conditions for the
matrices N(t, y,u) and L(t, y,u) are determined by solving an LMI.

In the following, both cases will be introduced starting with the generalized IDA-PBO (case (i)) to motivate its
combination with dissipative observers (case (ii)).

3 IDA-PBO FOR TIME VARYING STATE AFFINE SYSTEMS

In this section, a generalized IDA-PBO is developed for systems that may explicitly depend on time. The observer gain
matrix L(t, y,u) is given by transforming the error system dynamics into a PHS structure.

3.1 Observer design

For G(t, y,u) = 0 system (1) reduces to

ẋ = A(t, y,u)x + 𝝑(t, y,u), t > t0, x(t0) = x0

y = Cx, (4)
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which is a state affine system in the non-measurable states x2.

Assumption 1. System (4) is uniformly observable for all t ≥ t0.
In this case, the observer (3) is set up with N(t, y,u) = 0, that is,

̇̂x = A(t, y,u)x̂ − L(t, y,u)(ŷ − y) + 𝝑(t, y,u), t > t0, x̂(t0) = x̂0

ŷ = Cx̂. (5)

By introducing the observer error x̃ = x̂ − x and the output error ỹ = ŷ − y, the resulting error system reads as

̇̃x = A(t, y,u)x̃ − L(t, y,u)ỹ, t > t0, x̃(t0) = x̃0

ỹ = Cx̃. (6)

The main objective is to transform the error dynamics (6) into a PHS structure given by

̇̃x = (J(𝝃) − R(𝝃))Px̃, t > t0, x̃(t0) = x̃0 (7)

with bounded matrices P = PT ≻ 0, J(𝝃) = −JT(𝝃) and R(𝝃) = RT(𝝃) ≽ 0 for all 𝝃 ∈ X
t0
u,y to exploit its favorable stability

properties. To achieve this, the matching equation

A(𝝃) − L(𝝃)C = (J(𝝃) − R(𝝃))P (8)

has to be fulfilled for all 𝝃 ∈ X
t0
u,y. In other words, the matrix L(𝝃) has to reshape the error dynamics by inserting intercon-

nection and damping elements. Thereby, the matrix R(𝝃) is used to stabilize the observer error system and to determine its
convergence behavior. Using the separation into measurable and non-measurable states and by partitioning the matrices
according to (2) together with ỹ = x̃1, the error dynamics (6) reads[

̇̃x1

̇̃x2

]
=

[
A11(𝝃) A12(𝝃)
A21(𝝃) A22(𝝃)

][
x̃1

x̃2

]
−

[
L11(𝝃) 0
L21(𝝃) 0

][
x̃1

x̃2

]
=

[
A11(𝝃) − L11(𝝃) A12(𝝃)
A21(𝝃) − L21(𝝃) A22(𝝃)

][
x̃1

x̃2

]
. (9)

The matrix L(𝝃) has to be designed so that the error dynamics fulfills[
̇̃x1

̇̃x2

]
=

([
J11(𝝃) J12(𝝃)
−JT

12(𝝃) J22(𝝃)

]
−

[
R11(𝝃) R12(𝝃)
RT

12(𝝃) R22(𝝃)

])[
P11 P12

PT
12 P22

][
x̃1

x̃2

]
, (10)

where Jii(𝝃) = −JT
ii(𝝃), i ∈ {1, 2} and Rii(𝝃) = RT

ii(𝝃), i ∈ {1, 2}. In reference to the matching condition (8), the following
matrix equalities have to be fulfilled

L11(𝝃) = A11(𝝃) − (J11(𝝃) − R11(𝝃))P11 − (J12(𝝃) − R12(𝝃))PT
12 (11a)

L21(𝝃) = A21(𝝃) +
(

JT
12(𝝃) + RT

12(𝝃)
)

P11 − (J22(𝝃) − R22(𝝃))PT
12 (11b)

0 = A12(𝝃) − (J11(𝝃) − R11(𝝃))P12 − (J12(𝝃) − R12(𝝃))P22 (11c)

0 = A22(𝝃) +
(

JT
12(𝝃) + RT

12(𝝃)
)

P12 + (J22(𝝃) + R22(𝝃))P22. (11d)

Theorem 1. Consider the observer error dynamics (6) with (11) which results in the desired dynamics (7). Let P = PT ≻ 0,
R(𝝃) = RT(𝝃) ≽ 0 and J(𝝃) = −JT(𝝃) for all 𝝃 ∈ X

t0
u,y. Then the equilibrium point 0 of the observer error dynamics (7):

(i) is uniformly stable for all 𝝃 ∈ X
t0
u,y;
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(ii) is globally exponentially stable if the matrix R(𝝃) is positive definite for all 𝝃 ∈ X
t0
u,y. Let 0 < 𝜇min ≤ 𝜇max denote the

minimal and the maximal eigenvalue of P. Then there exists an 𝜖 > 0 such that

‖x̃‖ ≤
√

𝜇max

𝜇min
exp

(
− 𝜖

𝜇max
t
)‖x̃0‖ . (12)

In addition, the following assertions hold true:

(iii) The observer error dynamics approaches the limit determined by limt→∞ x̃TPR(𝝃)Px̃ = 0 as t →∞, if for all
𝝃 ∈ X

t0
u,y the derivative Ṙ(𝝃) exists and M(𝝃) = sym(Ṙ(𝝃) + 2R(𝝃)[J(𝝃) − R(𝝃)]) is bounded, where sym(⋅) yields

the symmetric part.
(iv) The equilibrium point 0 of (7) is asymptotically stable, if for all 𝝃 ∈ X

t0
u,y the derivative Ṙ(𝝃) exists, M(𝝃) =

sym(Ṙ(𝝃) + 2R(𝝃)[J(𝝃) − R(𝝃)]) is bounded, and limt→∞ R(𝝃) = R∞ ≻ 0.

The proof of these results is provided in Appendix A1.

Remark 1 (Observer design for LTV systems). This observer design in addition provides a methodology for the determi-
nation of the observer gain matrix L(𝝃) for LTV systems. In this case, time derivatives with respect to the matrix A(𝝃) are
not needed for the design compared to eigenvalue placement using the Ackermann formula,31 which makes use of the
transformation into observer canonical form and the compensation of the time-variance.

The matching conditions (8) or (11), respectively, are rather general but various solutions for different param-
eterizations of J(𝝃), R(𝝃) and P can be obtained. For this note that only (11c) and (11d) have to hold true since
L11(𝝃) and L21(𝝃) are degrees of freedom so that (11a) and (11b) can always be fulfilled. One possible approach to
relax (11c) and (11d) is to assign J(𝝃) and R(𝝃) to determine either P12 or P22 directly by one equation. Another
possible procedure is to assign P to calculate J(𝝃) and R(𝝃). This is presented in the following for a special
case of A22(𝝃).

3.2 Systematic solution approach

An explicit solution scheme for the matrix L(𝝃) to directly achieve stability for (7) is given if A22(𝝃) is positive semidefinite
for all 𝝃 ∈ X

t0
u,y. Here, P in (10) is considered as a block diagonal matrix, that is,

P =

[
P11 0
0 P22

]
= PT ≻ 0, P11 = PT

11 ≻ 0, P22 = PT
22 ≻ 0. (13)

By assigning P12 = 0, the matching conditions (11) are relaxed. This approach denotes the opposite of the procedure
presented in the example in Section 3.3. It is noteworthy to highlight that the following equations may also be derived
from (11) by simply inserting P12 = 0. However, the following procedure shows the strong dependency on the definiteness
of A22. To obtain L(𝝃), the system matrix is partitioned into three matrices

A(𝝃) =

[
A11(𝝃) 0
A21(𝝃) 0

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

(⋆)

+

[
0 A12(𝝃) + R12(𝝃)P22

0 J22(𝝃)P22

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(⋆⋆)

−

[
0 R12(𝝃)P22

0 R22(𝝃)P22

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(⋆⋆⋆)

. (14)

Recalling the matching equation (8), that is, A(𝝃) − L(𝝃)C = (J(𝝃) − R(𝝃))P, the first matrix (⋆) contains matrix
elements to be compensated in the course of the observer design. This yields

L11(𝝃) = A11(𝝃) − (J11(𝝃) − R11(𝝃))P11 (15a)

L21(𝝃) = A21(𝝃) +
(

JT
12(𝝃) + RT

12(𝝃)
)

P11 (15b)
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The second matrix (⋆⋆) defines entries of the interconnection matrix J(𝝃) by assigning

J12(𝝃) = A12(𝝃)P−1
22 + R12(𝝃) (16a)

J22(𝝃)P22 = 1
2
(

A22(𝝃) − AT
22(𝝃)

)
. (16b)

The third matrix (⋆⋆⋆) defines the entry

R22(𝝃)P22 = −1
2
(

A22(𝝃) + AT
22(𝝃)

)
(17)

of the dissipation matrix R(𝝃). Note that the matrix A22(𝝃) is divided into its skew-symmetric and symmetric part to define
J22(𝝃) and R22(𝝃). Inserting (16a) in (15b) yields the observer gain matrix

L(𝝃) =

[
A11(𝝃) − (J11(𝝃) − R11(𝝃))P11

A21(𝝃) +
(

AT
12(𝝃)P

−1
22 + 2RT

12(𝝃)
)

P11

]
. (18)

The submatrices J11(𝝃) = −JT
11(𝝃), R11(𝝃) = RT

11(𝝃) and R12(𝝃) are degrees of freedom to adjust the performance of the
observer (5). To analyze the stability properties of (10) first the definiteness of R(𝝃) is assessed in the following Lemma.

Lemma 1. Let R11(𝝃) ≻ 0 for all 𝝃 ∈ X
t0
u,y. The matrix R(𝝃) is positive definite, if

R22(𝝃) − RT
12(𝝃)R

−1
11 (𝝃)R12(𝝃) ≻ 0 ∀𝝃 ∈ X

t0
u,y. (19)

The matrix R(𝝃) is positive semidefinite, if

R22(𝝃) − RT
12(𝝃)R

−1
11 (𝝃)R12(𝝃) ≽ 0 ∀𝝃 ∈ X

t0
u,y. (20)

The proof of this result is obtained by taking into account the Schur complement.32 The matrices R11(𝝃) and R12(𝝃)
serve as degrees of freedom to ensure that these conditions hold true. In many cases, R12(𝝃) = 0 is sufficient if the sub-
matrix A22(𝝃) satisfies A22(𝝃) + AT

22(𝝃) ≼ 0 for all 𝝃 ∈ X
t0
u,y so that R22(𝝃) ≽ 0 according to (17). However, R12(𝝃) ≠ 0 can

introduce additional coupling in the system in terms of (16a).
Taking into account Lemma 1, the stability properties of the observer error dynamics (6) with L(𝝃) assigned accord-

ing to (18) or equivalently (7) follow directly from Theorem 1 depending on R(𝝃) being positive semidefinite or positive
definite, respectively. In particular asymptotic stability can be verified taking account Theorem 1 (ii).

Corollary 1. Consider L(𝝃) as defined in (18) so that the observer error dynamics (6) is equivalently given by (10) with P12 = 0
as determined by (13). Let (A-1) condition (20) be satisfied with R12(𝝃) = 0, (A-2) A22(𝝃) + AT

22(𝝃) ≼ 0 so that R22(𝝃) ≽ 0 for
all 𝝃 ∈ X

t0
u,y and assume that (A-3) the derivatives Ṙ(𝝃), J̇(𝝃) exist and are uniformly bounded. Then (10) is asymptotically

stable.

The proof of this result is provided in Appendix A2.

3.3 Example

The observer design is applied to estimate the states of a magnetic levitation system.33 An iron ball levitates in a magnetic
field created by an electromagnet or coil, respectively. Magnetic flux x1 and ball position x2 are assumed to be measurable
so that the ball’s momentum x3 has to be estimated. An observer approach based on the port-Hamiltonian framework is
presented in Reference 26. For simplicity, physical parameters are omitted. The dynamics are given by

ẋ1 = −(1 − x2)x1 + u
ẋ2 = x3

ẋ3 = 1
2

x2
1 − g
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with the external input voltage u and the gravitational acceleration g= 9.81. The electromagnet is located at x2 = 1. The
levitating ball is assumed to not touch the electromagnet so that x2 < 1 for all t ≥ 0. The state affine system representation
according to (4) reads

ẋ =
⎡⎢⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎦ x +
⎡⎢⎢⎢⎣
y1(y2 − 1) + u

0
1
2

y2
1 − g

⎤⎥⎥⎥⎦ , t > 0, x(0) = x0

y =

[
1 0 0
0 1 0

]
x. (21)

The submatrix A22 reduces to the scalar a22 = 0 and is positive semidefinite. Thus, an asymptotic stable observer error
system is given according to Corollary 1 by assigning the PHS matrices and the observer gain matrix in the form

J =
⎡⎢⎢⎢⎣

0 1 0
−1 0 1
0 −1 0

⎤⎥⎥⎥⎦ , R =
⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎦ , P = I ⇒ L =
⎡⎢⎢⎢⎣
1 −1
1 1
0 1

⎤⎥⎥⎥⎦ (Σa),

where I is the identity matrix. Exponential stability can be proven for a different setup by utilizing Theorem 1. To reduce
the degrees of freedom of the matching equations (11c) and (11d), the matrices R ∈ R3×3, J ∈ R3×3 and P ∈ R3×3 are
assigned as

R =
⎡⎢⎢⎢⎣
𝛼 0 1
0 𝛼 0
1 0 𝛼

⎤⎥⎥⎥⎦ , J =
⎡⎢⎢⎢⎣

0 𝛽 1
−𝛽 0 0
−1 0 0

⎤⎥⎥⎥⎦ , P =

[
P11 p12

pT
12 p22

]

with 𝛼, 𝛽 > 0, P11 ∈ R2×2, p12 ∈ R2, and p22 ∈ R. The matching conditions (11c) and (11d) read

0 =

[
0
1

]
−

[
−𝛼 𝛽

−𝛽 −𝛼

]
p12 (22a)

0 =
[
2 0

]
p12 + 𝛼p22. (22b)

The vector p12 is directly determined by

p12 =

[
−𝛼 𝛽

−𝛽 −𝛼

]−1 [
0
1

]
= 1

𝛼2 + 𝛽2

[
−𝛼 −𝛽
𝛽 −𝛼

][
0
1

]
= − 1

𝛼2 + 𝛽2

[
𝛽

𝛼

]

according to (22a). The scalar p22 follows by (22b), that is,

p22 = − 1
𝛼

[
2 0

]
p12 = 2𝛽

𝛼(𝛼2 + 𝛽2)
.

The matrix P11 denotes a degree of freedom to be chosen so that P is positive definite. For example, if 𝛼 = 2 and 𝛽 = 4,
then a solution is given by

P11 = 12
20

I ⇒ P = 1
20

⎡⎢⎢⎢⎣
12 0 −4
0 12 −2
−4 −2 4

⎤⎥⎥⎥⎦ ⇒ L = 1
5

⎡⎢⎢⎢⎣
6 −12

12 6
4 −1

⎤⎥⎥⎥⎦ (Σe).

The eigenvalues of P read 𝜆1 = 2∕20, 𝜆2 = 12∕20 and 𝜆3 = 14∕20. Thus, exponential stability of the observer error
system is given according to Theorem 1 (ii).
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F I G U R E 1 Evolution of the states
x of (21) (dashed black), estimated states
x̂ of the observer (5) with observer gain
Σa (asymptotically stable) (blue) and Σe

(exponentially stable) (orange). The
error norms ‖x̃‖ is colored accordingly.
The initial conditions read
x0 = [

√
2g,−1, 0]T and x̂0 = [

√
2g, 0, 0]T

for both observers [Colour figure can be
viewed at wileyonlinelibrary.com]

Simulation results can be seen in Figure 1. The plants initial state reads x0 = [
√

2g,−1, 0]T. The initial states of the two
observers are given by x̂0 = [

√
2g, 0, 0]T. Due to the instability of the system, the evaluation of the observer performance is

done in closed-loop by taking into account a state feedback control based on exact input-state linearization with the ball
position x2 serving as linearizing output. The task is to balance the ball at the setpoint x2 = 0. Due to the initial deviation
both observers given by (5) with observer gain Σa (asymptotically stable) and Σe (exponentially stable), respectively, show
some transients before converging to the real states. The analysis of the observer error norm reveals that Σe yields a
slightly faster convergence to zero thanΣa. Concluding, this example shows that different parameterizations with different
stability conditions can be achieved. The first approach is more straightforward but the second one yields the stronger
stability condition.

4 DISSIPATIVE IDA-PBO

For G(𝝃) ≠ 0, the system (1) involves a nonlinear feedback. A nonlinear observer (3) is obtained by adapting the results
of Section 3 for a time varying state affine system in combination with the theory of dissipative observers15-17 to deal with
the nonlinear feedback. Conditions for L(𝝃) and N(𝝃) are developed in terms of an LMI.

4.1 Preliminaries

This section summarizes some fundamental results for the observer design in Section 4.2. Dissipativity theory12-14,18 is in
the following adapted to systems of the form

ẋ = (J(𝝃) − R(𝝃))Px + B(𝝃)𝝂, t > t0, x(t0) = x0

𝜼 = Λ(𝝃)x, t ≥ t0

𝝂 = −𝝍(t, 𝜼), t ≥ t0 (23)

with J(𝝃) = −JT(𝝃), R(𝝃) = RT(𝝃) for all 𝝃 ∈ X
t0
u,y, P = PT ≻ 0, the state affine time variant forward path in terms of 𝜼 with

Λ ∶ R
+
t0
× Rp × Rk → Rg×n locally Lipschitz in (u, y) and piecewise continuous in t, and the nonlinear feedback in terms

of the function 𝝍 ∶ R
+
t0
× Rg → Rk. Let Ω ⊆ Rg be a subset containing the origin. The nonlinearity 𝝍(t, 𝜼) is assumed

piecewise continuous in t and locally Lipschitz in 𝜼 ∈ Ω with 𝝍(t, 0) = 0. Furthermore, consider a quadratic supply rate

𝜔(𝜶, 𝜷) = 𝜶TQ𝜶 + 2𝜶TS𝜷 + 𝜷TK𝜷, (24)

where 𝜶 ∈ Ra, 𝜷 ∈ Rb, Q = QT ∈ Ra×a, S ∈ Ra×b, K = KT ∈ Rb×b. In the following, the stability of (23) is determined
by Lyapunov arguments. Consider the positive definite Lyapunov function candidate V(x) = xTPx. Its rate of change is
given by

V̇ = 2xTPẋ = −2xTPR(𝝃)Px + 2xTPB(𝝃)𝝂, (25)

http://wileyonlinelibrary.com
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since J(𝝃) = −JT(𝝃) is skew-symmetric. Taking into account the supply rate (24) and introducing an 𝜖 > 0, the
inequality

V̇ = −2xTPR(𝝃)Px + 2xTPB(𝝃)𝝂 ≤ 𝜔(𝜼, 𝝂) − 𝜖V(x) (26)

is imposed. Using 𝜼 = Λ(𝝃)x and (24), (26) can be rewritten as

V̇ =

[
x
𝝂

]T [
−2PR(𝝃)P PB(𝝃)

BT(𝝃)P 0

][
x
𝝂

]
≤

[
x
𝝂

]T [
ΛT(𝝃)QΛ(𝝃) ΛT(𝝃)S

STΛ(𝝃) K

][
x
𝝂

]
− 𝜖V(x). (27)

To determine exponential stability of (23) in terms of 𝜖, the following definitions12-14 are recalled.

Definition 1. The state affine part ((J(𝝃) − R(𝝃))P,B(𝝃),Λ(𝝃)) of (23) is called (Q, S, K)-state strictly dissipative (SSD)
with respect to the supply rate (24), if there exists an 𝜖 > 0 such that the LMI[

−2PR(𝝃)P + 𝜖P PB(𝝃)
BT(𝝃)P 0

]
−

[
ΛT(𝝃)QΛ(𝝃) ΛT(𝝃)S

STΛ(𝝃) K

]
≼ 0 (28)

holds true for all t ≥ t0.

Definition 2. The nonlinearity 𝝍(t, 𝜼) of (23) is said to be (Q, S, K)-dissipative with respect to 𝜼, if the supply rate

𝜔(𝝍(t, 𝜼), 𝜼) =

[
𝝍(t, 𝜼)
𝜼

]T [
Q S
ST K

][
𝝍(t, 𝜼)
𝜼

]

is positive semidefinite for all t ≥ t0 and 𝜼 ∈ Ω.

Conditions for exponential stability of (23) are obtained in the following result.

Lemma 2. If there exist Q ∈ Rk×k, S ∈ Rk×g and K ∈ Rg×g such that (i) the state affine part ((J(𝝃) − R(𝝃))P,B(𝝃),Λ(𝝃)) is
(−K, ST,−Q)-SSD and (ii) the nonlinear feedback 𝝍(t, 𝜼) is (Q, S, K)-dissipative for all t ≥ t0, then the system (23) is locally
exponentially stable for all 𝜼 ∈ Ω.

The exponential stability of (23) applies locally around the origin for 𝜼 ∈ Ω ⊂ Rg. If Ω = Rg, that is, 𝜼 ∈ Rg, then the
system is globally exponentially stable. The proof of Lemma 2 is summarized in Appendix A3.

Remark 2. Considering a vector-valued nonlinearity 𝝍(t, 𝜼) it may be useful to use several supply rates, for example,
one for each vector element. Assuming that there exist M independent supply rates, a general supply rate is
given by

𝜔(𝜶, 𝜷) =
M∑

m=0
𝜃m𝜔m(𝜶, 𝜷), 𝜃m ≥ 0. (29)

Thereby, the state affine part is said to be (−K𝜃, ST
𝜃
,Q𝜃)-SSD and the nonlinearity is said to be (Q𝜃, S𝜃,K𝜃)-dissipative.

4.2 Observer design

Consider the observer (3) for system (1). Utilizing the observer error x̃ = x̂ − x and the output error ỹ = ŷ − y, the observer
error dynamics reads

̇̃x = A(𝝃)x̃ − L(𝝃)ỹ + G(𝝃) (𝝍(�̂� + N(𝝃)ỹ, y,u) − 𝝍(𝝈, y,u)) , t > t0, x̃(t0) = x̃0

�̃� = Hx̃, t ≥ t0

ỹ = Cx̃, t ≥ t0. (30)
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The observer design proceeds in two steps. First, the time varying state affine part of the error dynamics is transformed
to a desired PHS structure by utilizing the matrix L(𝝃), that is,

A(𝝃)x̃ − L(𝝃)ỹ = (J(𝝃) − R(𝝃))Px̃

as done to transform (6) into (7). This procedure illustrates the structural connection between the IDA-PBO and this
setup. Second, the theory of dissipative observers is applied. Considering the linear function

z = �̃� + N(𝝃)ỹ = (H + N(𝝃)C)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=HN (𝝃)

x̃

and the nonlinear function

𝝍(𝝈, y,u) − 𝝍(�̂� + N(𝝃)ỹ, y,u) = 𝝍(𝝈, y,u) − 𝝍(𝝈 + �̃� + N(𝝃)ỹ, y,u)
= 𝝍(𝝈, y,u) − 𝝍(𝝈 + z, y,u) =∶ 𝝓(z,𝝈, y,u) (31)

the error system (30) can be rewritten as

̇̃x = (J(𝝃) − R(𝝃))Px̃ + G(𝝃)𝝂, t > t0, x̃(t0) = x̃0

z = HN(𝝃)x̃
𝝂 = −𝝓(z,𝝈, y,u). (32)

In the following, the properties of J(𝝃), R(𝝃) and P will be used in combination with dissipativity theory to
determine the stability of (32). Note that (32) structurally resembles (23) by taking into account the following
relations:

x ↔ x̃, 𝜼↔ z,Λ(𝝃) ↔ HN(𝝃),B(𝝃) ↔ G(𝝃),𝝍(t, 𝜼) ↔ 𝝓(z,𝝈, y,u).

Moreover, the nonlinearity fulfills 𝝓(0,𝝈, y,u) = 0 for all (𝝈, y,u). Hence, the results of Section 4.1 can be applied to
obtain the following result. In this case, the set Ω ⊆ Rn contains all z such that Definition 2 with respect to 𝝓 and z is
fulfilled.

Theorem 2. If there exist Q = QT ∈ Rq×q, S ∈ Rq×r, K = KT ∈ Rr×r, L(𝝃), N(𝝃), R(𝝃) = RT(𝝃) for all 𝝃 ∈ X
t0
u,y and

P = PT ≻ 0 so that (A-1) the nonlinearity𝝓(z,𝝈, y,u) introduced in (31) is (Q, S, K)-dissipative with respect to z uniformly in
(𝝈, y,u) and (A-2) the state affine part (J(𝝃) − R(𝝃))P,G(𝝃),HN(𝝃)) of (32) is (−K, ST,−Q)-SSD, that is, there exists an 𝜖 > 0 so
that [

−2PR(𝝃)P + 𝜖P + HT
N(𝝃)KHN(𝝃) PG(𝝃) − HT

N(𝝃)S
T

GT(𝝃)P − SHN(𝝃) Q

]
≼ 0 ∀𝝃 ∈ X

t0
u,y, ∀z ∈ Ω, (33)

then (32) is locally exponentially stable for z ∈ Ω. The exponential convergence of the error norm is given by

‖x̃‖ ≤
√

𝜇max

𝜇min
‖x̃0‖ exp

(
− 𝜖

2
t
)
, (34)

where 0 < 𝜇min ≤ 𝜇max denote the minimal and maximal eigenvalue of P.

The proof of Theorem 2 can be found in Appendix A4. There are several possibilities to calculate a suitable supply
rate such that 𝝓(z,𝝈, y,u) is (Q, S, K)-dissipative with respect to z. For example, using Lipschitz conditions, the mean
value theorem or sector conditions.15,16,18 Note that in Theorem 2, the symmetric matrix R(𝝃) does not have to be positive
semidefinite. A solution for the LMI (33) can be obtained using numerical calculations, for example, in terms of semidef-
inite programming. Moreover, applying the theory of Section 3.2, then R22(𝝃)P22 = −1∕2 (A22(𝝃) + AT

22(𝝃)) is fixed by the
system to be observed.
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4.3 Example

The performance of the proposed observer is evaluated for a modified version of the Lorenz system,34 which may show
chaotic behavior.35 The system is augmented by an additional nonlinearity, that is,

ẋ1 = a(t)(x2 − x1) + 𝜇(t) arctan(x2)
ẋ2 = bx1 − x2 − x1x3

ẋ3 = x1x2 − cx3 (35)

with real positive coefficients a(t) = 10 + sin(t), b= 28, c= 8/3 and 𝜇(t) ∈ R. Assuming that x1 can be measured, (35) can
be rewritten for t0 = 0 in the form

ẋ =
⎡⎢⎢⎢⎣
−a(t) a(t) 0

b −1 −y
0 y −c

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=A(t,y)

x +
⎡⎢⎢⎢⎣
𝜇(t)

0
0

⎤⎥⎥⎥⎦
⏟⏟⏟
=g(t)

arctan(𝜎), t > 0, x(0) = x0

y =
[
1 0 0

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=C

x = x1, t ≥ 0

𝜎 =
[
0 1 0

]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=H

x = x2, t ≥ 0. (36)

With (3), the observer is given by

̇̂x = A(t, y)x̂ − l(t)(ŷ − y) + g(t) arctan(�̂� + n(t)(ŷ − y)), t > 0, x̂(0) = x̂0

ŷ = x̂1, t ≥ 0
�̂� = x̂2, t ≥ 0. (37)

The observer gain vector is chosen as

l(t) =
[
𝛼 − a(t) a(t) + b 0

]T
(38)

as proposed in Section 3.2. The resulting observer error system reads

̇̃x = (J(t, y) − R)x + g(t)𝜈, t > 0, x̃(t0) = x̃0

z = Hn(t)x̃
𝜈 = −𝜙(z, x2) = arctan(x2 + z) − arctan(x2)

with the corresponding matrices

J(t, y) =
⎡⎢⎢⎢⎣

0 a(t) 0
−a(t) 0 −y

0 y 0

⎤⎥⎥⎥⎦ , R =
⎡⎢⎢⎢⎣
𝛼 0 0
0 1 0
0 0 c

⎤⎥⎥⎥⎦ , Hn(t) =
⎡⎢⎢⎢⎣
n(t)

1
0

⎤⎥⎥⎥⎦
T

, P = I.

To apply the exponential stability condition from Theorem 2, the (Q, S, K)-dissipativity of 𝜙(z, x2) is investigated in
view of Definition 2. Herein, matrices (Q, S, K) reduce to scalars (q, s, k) due to 𝜙(z, x2) being a scalar function.



BIEDERMANN and MEURER 4075

4.3.1 Stability analysis

Sector conditions for the nonlinearity are determined to specify the supply rate 𝜔(𝜙, z). Based on this, the LMI condition
of Theorem 2 is analyzed to determine 𝛼 and n(t) ensuring the exponential stability of the observer error system. Given
𝜙(z, x2) = arctan(x2) − arctan(x2 + z) it follows with 𝜙(0, x2) = 0 and

𝜕

𝜕z
𝜙(z, x2) = − 1

1 + (x2 + z)2 ∈ [−1, 0]

that the nonlinearity is in the sector [−1, 0] with respect to z uniformly in x2, that is,

(𝜙(z, x2) + z)(𝜙(z, x2) − 0) = 𝜙2(z, x2) + 𝜙(z, x2)z ≤ 0.

Note that this is valid for all z ∈ R and thus Ω = R. As a result, a suitable supply rate is given by

𝜔(𝜙, z) = −𝜙2(z, x2) − 𝜙(z, x2)z ≥ 0

and 𝜙(z, x2) is (−1,−1/2, 0)-dissipative with respect to z. Taking into account the LMI (33) for some 𝜖 > 0
yields that

⎡⎢⎢⎢⎢⎢⎣

𝜖 − 2𝛼 0 0 𝜇(t) + n(t)
2

0 𝜖 − 2 0 1
2

0 0 𝜖 − 2c 0
𝜇(t) + n(t)

2
1
2

0 −1

⎤⎥⎥⎥⎥⎥⎦
≼ 0 ∀t > 0

has to hold true to achieve exponential stability of the error system (32). By assigning n(t) = −2𝜇(t), this simplifies to
study the LMI

Π =

⎡⎢⎢⎢⎢⎢⎣

𝜖 − 2𝛼 0 0 0
0 𝜖 − 2 0 1

2
0 0 𝜖 − 2c 0
0 1

2
0 −1

⎤⎥⎥⎥⎥⎥⎦
≼ 0.

Using the Schur complement Π is negative semidefinite if 𝜖 ≤ min{2𝛼, 7∕4, 2c}. In view of the used system
parameters and 𝜖 > 0, this implies 0 < 𝜖 ≤ min{2𝛼, 7∕4, 16∕3}. If 𝛼 ≥ 7∕8 is assigned, then the maximal decay rate
is 𝜖max = 7∕4. As a result, Theorem 2 implies the exponential stability of the observer error dynamics. As the set
Ω = R, convergence is global, cf. Lemma 2. It should be pointed out that also a time-varying gain 𝛼(t) may be
considered.

4.3.2 Simulation results

In the following, the observer performance is analyzed in simulation scenarios. For this 𝜇(t) = 4 + 2 cos(t) is assigned
and a mismatch between the initial states x0 = [10, 10, 10]T of the plant and x̂0 = [0, 0, 0]T of the observer is induced.
Considering a fast exponential decay rate, the degrees of freedom are set as 𝛼 = 5 and n(t) = −2𝜇(t) as investigated
in the previous section. Considering the stability analysis of the previous section, the degrees of freedom are set as
𝛼 = 5 ≥ 7∕8 and n(t) = −2𝜇(t) so that the observer error convergence is faster than the exponential decay rate. Note
that if 𝛼 is very large, then a high gain observer with n= 0 can achieved. Simulation results are shown in Figure 2.
As predicted by the theoretical results the observer convergence is achieved. The time evolution of the error norm‖x̃‖ = ‖x̂ − x‖ decreases faster than the exponential decay rate (34) for 𝜖 = 7∕4 plotted by a black line for comparison
purposes.
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F I G U R E 2 Evolution of the states x
of (36) (orange), estimated states x̂ of (37)
(blue) and error norm ‖x̃‖ in nominal
case for 𝛼 = 5, n(t) = −2𝜇(t) with initial
conditions x0 = [10, 10, 10]T and
x̂0 = [0, 0, 0]T. The black line shows the
exponential decay rate of the error norm in
terms of (34) with 𝜖 = 7∕4 [Colour figure
can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

Two observer design approaches are presented for a class of nonlinear systems by using the PHS framework and dis-
sipativity theory. First, the application of an IDA-PBO is extended to general LTV systems by taking into account an
explicit time dependency of the differential equations. Asymptotic and exponential stability is determined by solving an
LMI. Secondly, an observer is developed by combining the enhanced IDA-PBO with the theory of dissipative observers.
The obtained observer approach can be applied to a class of systems with an LTV forward and nonlinear feedback path,
thus overcoming the limitations of an IDA-PBO or dissipative observer. Exponential stability can be ensured under cer-
tain assumptions given by matrix properties and LMIs. An example for the last observer design shows how to adjust the
observer parameters and the performance is confirmed by numerical simulation results. The extension by an integral
part27,36 or parameter adaptation37 to improve the robustness of the observers are open topics for future research.
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APPENDIX A. PROOFS

A.1 Proof of Theorem 1
The observer error dynamics (6) with L(𝝃) assigned according to (11) is equivalently described by (7) with J(𝝃) = −JT(𝝃),
R(𝝃) = RT(𝝃) ≽ 0 for all 𝝃 ∈ X

t0
u,y and P = PT ≻ 0. Consider the Hamiltonian (x̃) = 1∕2 x̃TPx̃ as Lyapunov function can-

didate satisfying 1∕2𝜇min‖x̃‖2 ≤ (x̃) ≤ 1∕2𝜇max‖x̃‖2 for 0 < 𝜇min ≤ 𝜇max the minimal and the maximal eigenvalue of P,
respectively. The rate of change of (x̃) along a solution trajectory x̃ of (7) reads

̇ = x̃TP ̇̃x = x̃TP (J(𝝃) − R(𝝃))Px̃ = −x̃TPR(𝝃)Px̃ ≤ 0,

since R(𝝃) ≽ 0 and J(𝝃) is skew-symmetric. With this, the stability assertions for the observer error dynamics stated in
Theorem 1 are verified.
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(i) The property ̇ ≤ 0 together with the upper and lower bounds for (x̃) implies uniform stability of (7) according
to Theorem 4.8 in Khalil.18 Moreover, the error norm satisfies

𝜇min

2
‖x̃‖2 ≤ (x̃) ≤ (x̃0) ≤

𝜇max

2
‖x̃0‖2 ⇒ ‖x̃‖ ≤

√
𝜇max

𝜇min
‖x̃0‖ . (A1)

(ii) As R(𝝃) ≻ 0 for all 𝝃 ∈ X
t0
u,y it follows that PR(𝝃)P ≻ 0 for all 𝝃 ∈ X

t0
u,y. For all 𝝃 ∈ X

t0
u,y let 𝜆(𝝃) > 𝜖 > 0 be the minimal

eigenvalue of PR(𝝃)P. Hence x̃TPR(𝝃)Px̃ ≥ 𝜆(𝝃)‖x̃‖2 ≥ 𝜖‖x̃‖2 ≥ 0 and hence ̇ ≤ −𝜖‖x̃‖2. Thus, global exponen-
tial stability follows from Theorem 4.10 of Khalil.18 The decay rate is calculated by utilizing the upper bound of
the Hamiltonian, that is, ̇ ≤ −𝜖‖x̃‖2 ≤ −2𝜖∕𝜇max(x̃), which yields (x̃) ≤ (x̃0) exp(−𝜖∕𝜇maxt). Substituting the
upper and lower bounds for (x̃) results in (12).

(iii) Differentiation of ̇ with respect to t in view of (7) results in

̈ = −x̃TP
[
Ṙ(𝝃) − 2R2(𝝃) + R(𝝃)J(𝝃) − J(𝝃)R(𝝃)

]
Px̃ = −x̃TPsym

(
Ṙ(𝝃) + 2R(𝝃)[J(𝝃) − R(𝝃)]

)
Px̃,

where sym(M) denotes the symmetric part of matrix M. The second line follows as R(𝝃)J(𝝃) − J(𝝃)R(𝝃) = R(𝝃)J(𝝃) +
(R(𝝃)J(𝝃))T = 2sym(R(𝝃)J(𝝃)). Hence, if M(𝝃) = sym(Ṙ(𝝃) + 2R(𝝃)[J(𝝃) − R(𝝃)]) is bounded, then ̇(x̃, 𝝃) is uniformly
continuous in time, which together with the lower boundedness of (x̃) and ̇(x̃, 𝝃) ≤ 0 implies38 that ̇(x̃, 𝝃) =
−x̃TPR(𝝃)Px̃ → 0 as t →∞.

(iv) The previous result can be strengthened to deduce asymptotic stability provided that limt→∞ R(𝝃) = R∞ ≻ 0.
Recalling P≻ 0 in this case the limit of ̇(x̃, 𝝃) = −x̃TPR(𝝃)Px̃ → 0 as t →∞ implies the convergence of x̃ to
the origin.

A.2 Proof of Corollary 1
Recall that the matrix R12(𝝃) is a degree of freedom setting R12(𝝃) = 0 preserves the positive semidefiniteness of R(𝝃) for
all 𝝃 ∈ X

t0
u,y according to (20) since R11(𝝃) ≻ 0 and R22(𝝃) ≽ 0 by assumption (A-2). Proceeding now as in the proof of

Theorem 1 (i) and (ii) we can conclude using the Lyapunov function candidate (x̃) = 1∕2 x̃TPx̃ with 1∕2𝜇min‖x̃‖2 ≤
(x̃) ≤ 1∕2𝜇max‖x̃‖2, where 0 < 𝜇min ≤ 𝜇max are the minimal and the maximal eigenvalue of P, that

̇ = −x̃T
1P11R11(𝝃)P11x̃1 − x̃T

2P22R22(𝝃)P22x̃2. (A2)

In view of assumptions (iii) ̇(x̃, 𝝃) is uniformly continuous in time, which together with the lower boundedness of (x̃)
and ̇(x̃, 𝝃) ≤ 0 implies38 that ̇(x̃, 𝝃) = −x̃TPR(𝝃)Px̃ → 0 as t →∞. Taking into account Pii ≻ 0, R11(𝝃) ≻ 0 and R22(𝝃) ≽ 0
this implies x̃∞

1 = limt→∞ x̃1 = 0 so that the solution x̃2 converges to

lim
t→∞

x̃T
2P22R22(𝝃)P22x̃2 → 0. (A3)

Noting that limt→∞ ∫ t
t0

d∕d𝜏x̃(𝜏) d𝜏 = limt→∞ x̃ − x̃(t0) = −x̃(t0) is finite under the preliminary of bounded initial error
Barbalat’s lemma implies limt→∞ ̇̃x = 0 if ̇̃x is uniformly continuous. The latter is ensured by assumption (A-3), which
implies that ̈̃x exists and is bounded. Thus (10) with (13), (16), (17), and R12(𝝃) = 0 yields

0 = lim
t→∞

[
A12(𝝃)
A22(𝝃)

]
x̃2 =

[
A∞

12

A∞
22

]
x̃∞

2 ,

where x̃∞
2 = limt→∞ x̃2. In view of (16b) and (17), we obtain from (A3) that

(x̃∞
2 )TP22

(
A∞

22 + (A∞
22)

T
)

x̃∞
2 = 0.

These equations in the limit as t →∞ imply

x̃∞
2 ∈ ker

(
A∞

12
)
∩ ker

(
A∞

22
)
∩ ker

(
(A∞

22)
T
)
. (A4)
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Recalling that the output matrix C = [I, 0] extracts the states x1 or x̃1, respectively, it follows that (A4) excludes non-zero
x̃∞

2 ≠ 0 as in this case x̃∞
2 ∈ ker(A∞

12) ∩ ker(A∞
22) denotes a direction that is not observable. To illustrate this let x̃∞

2 = r ≠ 0
satisfy (A4) and recall x̃∞

1 = 0. Then [
A∞

11 A∞
12

A∞
21 A∞

22

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=A∞

[
0
r

]
⏟⏟⏟

=v

= 0

shows that v is an eigenvector of A∞ = limt→∞ A(𝝃) to the eigenvalue 𝜆 = 0. As Cv = [I, 0]v = 0 the
Popov–Belevitch–Hautus eigenvector criteria yields that the pair (A∞, C) is not observable, which contradicts
Assumption 1 imposing uniform observability of (4). Hence x̃∞

2 = r = 0, which together with x̃∞
1 = 0 proves asymptotic

convergence of the observer error to the origin.

A.3 Proof of Lemma 2
System (23) is (−K, ST,−Q)-SSD by assumption. Thus, the rate of change of the positive definite Lyapunov function
candidate V(x) = xTPx with P≻ 0 is given by applying (27), that is,

V̇ =

[
x
𝝂

]T [
−2PR(𝝃)P PB(𝝃)

BT(𝝃)P 0

][
x
𝝂

]
≤

[
x
𝝂

]T [
−ΛT(𝝃)KΛ(𝝃) ΛT(𝝃)ST

SΛ(𝝃) −Q

][
x
𝝂

]
− 𝜖V(x).

Inserting the definition 𝝂 = −𝝍(t, 𝜼) yields

V̇ ≤

[
x

𝝍(t, 𝜼)

]T [
−ΛT(𝝃)KΛ(𝝃) −ΛT(𝝃)ST

−SΛ(𝝃) −Q

][
x

𝝍(t, 𝜼)

]

−𝜖V(x) = −

[
x

𝝍(t, 𝜼)

]T [
ΛT(𝝃)KΛ(𝝃) ΛT(𝝃)ST

SΛ(𝝃) Q

][
x

𝝍(t, 𝜼)

]
− 𝜖V(x).

Inserting 𝜼 = Λ(𝝃)x and using that the nonlinear function 𝝍(t, 𝜼) is (Q, S, K)-dissipative by assumption implies

V̇ ≤ −

[
𝝍(t, 𝜼)
𝜼

]T [
Q S
ST K

][
𝝍(t, 𝜼)
𝜼

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥ 0

− 𝜖V(x) ≤ −𝜖V(x).

The exponential stability follows from V(x) ≤ V(x0) exp(−𝜖t) for all t ≥ t0.

A.2 Proof of Theorem 2
Consider the positive definite Lyapunov function candidate V(x̃) = x̃TPx̃ with P≻ 0. The system (32) is (−K, ST,−Q)-SSD
by assumption. Thus, the rate of change of V(x̃) is given by adapting (27), that is,

V̇ =

[
x̃
𝝂

]T [
−2PR(𝝃)P PG(𝝃)

GT(𝝃)P 0

][
x̃
𝝂

]
≤

[
x̃
𝝓

]T [
−HT

N(𝝃)KHN(𝝃) −HT
N(𝝃)S

T

−SHN(𝝃) −Q

][
x̃
𝝓

]
− 𝜖V(x̃).

Using 𝝂 = −𝝓(z,𝝈, y,u) yields

V̇ =

[
x̃
𝝂

]T [
−2PR(𝝃)P PG(𝝃)

GT(𝝃)P 0

][
x̃
𝝂

]
≤

[
x̃
𝝂

]T [
−HT

N(𝝃)KHN(𝝃) HT
N(𝝃)S

T

SHN(𝝃) −Q

][
x̃
𝝂

]
− 𝜖V(x̃)
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and the LMI (33) follows by rearranging the terms. The exponential stability of (32) is given by Lemma 2, since𝝓(z,𝝈, y,u)
is (Q, S, K)-dissipative by assumption. The Lyapunov function can be bounded by V(x̃) ≤ V(x̃0) exp(−𝜖t) and 𝜇min‖x̃‖2 ≤
V(x̃) ≤ 𝜇max‖x̃‖2, where 0 < 𝜇min ≤ 𝜇max are the minimal and maximal eigenvalue of P. Combining the upper and lower
bounds for V(x̃) yields the estimate

‖x̃‖ ≤
√

𝜇max

𝜇min
‖x̃0‖ exp

(
− 𝜖

2
t
)

and thus proves the claim.


