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Simple Summary: Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly
form complex interactive networks within the ecosystem rather than existing as single planktonic
cells. Interactions among microorganisms occur between the same species, with different species,
or even among entirely different genera, families, or even domains. These interactions occur after
environmental sensing, followed by converting those signals to molecular and genetic informa-
tion, including many mechanisms and classes of molecules. Comprehensive studies on microbial
interactions disclose key strategies of microbes to colonize and establish in a variety of different
environments. Knowledge of the mechanisms involved in the microbial interactions is essential to
understand the ecological impact of microbes and the development of dysbioses. It might be the
key to exploit strategies and specific agents against different facing challenges, such as chronic and
infectious diseases, hunger crisis, pollution, and sustainability.

Abstract: Microorganisms are present in nearly every niche on Earth and mainly do not exist solely
but form communities of single or mixed species. Within such microbial populations and between
the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing
environment. Those microbial interactions are crucial for a successful establishment and maintenance
of a microbial population. The basic unit of interaction is the gene expression of each organism in
this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for
producing exchangeable molecules involved in the interactions, ultimately leading to community
behavior. Cooperative and competitive interactions within bacterial communities and between
the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell
communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze
the complex genomic information of microbial communities and the functional role of different
microbes within a community and to identify novel biomolecules for biotechnological applications.

Keywords: microorganisms; interaction; symbiosis; metaorganism; metagenomics; biofilms; quorum
sensing; quorum quenching

1. Introduction—Microbial Interactions at a Glance

Microorganisms, or short microbes, are speciesism of microscopic scale, including
the highly diverse group of unicellular organisms belonging to the three domains of life,
comprising bacteria, archaea, protozoa, microalgae, fungi, and viruses. Microorganisms
are present in nearly every niche on Earth and their global distribution is striking, ranging
from the human gut to deep subsurface in terrestrial and marine environments and the
upper atmosphere [1]. Prokaryotes (bacteria, archaea) and viruses form the majority of mi-
croorganisms and, consequently, represent the review’s focus. Exemplarily, bacteria reach
abundances of 1 × 108 cells/g and viruses even of 5 × 109 particles/g in dry soil; in oceans,
bacteria achieve densities of 5 × 105 cells/mL and viral particles 1 × 1011 viruses/mL [2].
Microbes mainly do not exist solely but form communities of single or mixed species [3].
Within such microbial populations, and between the microbes and a eukaryotic host or the
environment, a huge variety of microbial interactions occur, ranging from bacteria–bacteria,
bacteria–fungus, bacteria–virus, to bacteria–host (plant, animal) interactions [4].
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Those microbial interactions are crucial for successfully establishing and maintaining
a microbial population in various environments and on various hosts [5]. The many years
of coevolution of the different species led to interdependent adaptation and specialization
and resulted in various symbiotic relationships facilitating commensal, mutualistic, and
parasitic interactions [5] (as illustrated in Table 1). Mutualism describes a win-win situation
for both partners, such as for Rhizobium spp., which colonizes the plant’s roots to fix
nitrogen in exchange for nutrients [6]. Moreover, human gut bacteria synthesize the
essential vitamin K in the lower gastrointestinal tract to exchange carbon sources [7].
Relationships in which only one partner benefits, but the other is not affected, is defined as
commensalism, in contrast to parasitism, in which the benefiting partner harms the other
partner. The evidence is increasing that commensal bacteria, which reside in the human
gut and airways, profoundly affect the regulation of immunophysiological functions,
including metabolism, ontogeny, and pathogen defense [8,9]. Contrarily, parasitic bacteria,
better known as pathogens, harm their host in various ways, such as invading tissues,
producing toxins, or causing direct damage to host cells. Pathogens causing diseases are
well studied and broadly recognized by the public, such as Bacillus anthracis, the cause
of anthrax [10]; Borrelia spp., the cause of Lyme disease [11]; Campylobacter jejuni, a cause
of gastroenteritis [12], and Haemophilus influenza, an agent of bacterial meningitis and
respiratory tract infections [13]. The list of parasitic interactions, particularly focusing on
human diseases, could be expanded indefinitely; however, mechanistic understanding
of commensal and mutualistic interactions, especially between prokaryotes, lags [14].
Microbial interactions occur through the transfer of molecular and genetic information,
including the exchange of secondary metabolites, signaling molecules, cellular transduction
signals, siderophores, or genetic elements [5]. The basic unit of the interaction is the
gene expression of each organism in response to biotic or abiotic stimuli, responsible for
producing exchangeable molecules involved in these interactions [15].

Table 1. Types of microbial interactions adapted from [16].

Interaction Characteristic Species A Species B Example

Mutualism
Symbiosis needed for
survival in a specific

habitat
Benefits Benefits Root nodules [6]

Synergism Another improves the
growth of one partner Benefits Benefits Crossfeeding of acetate between

bacteria [17]

Commensalism
One partner benefits
and the other is not

harmed nor improved
Benefits Not affected Nitrification with Nitrosomonas

and Nitrobacter [18]

Parasitism Host is compromised Benefits Harmed
Bdellovibrio sp. and BALO require

Gram-negative bacterium for
growth [19]

Competition Rivalry for space and
nutrients Harmed Harmed Soil bacteria compete with fungi

for nutrients [20]

Antagonism Product(s) of one
partner impact another

Not affected or
benefits Harmed Production of antibiotics [21]

In the following, examples of microorganism–microorganism and microorganism–
host interactions are presented in more detail to demonstrate the variety and diversity of
microbial interactions in different habitats.

2. Microbial Community Interactions

Microbes respond to their chemical environment and interact with other microbes in
their vicinity [22]. The nature and significance of interactions depend on the abundance
and types of microorganisms present, which possess different sensory systems [23]. Cell–
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cell interactions can cause cooperative effects, where one or more individuals benefit, or
competition between microbes occurs with an adverse effect on one or more partners.
Microbes are not limited to a single type of interaction, and their response is transient and
influenced by the chemical and/or physical environment, resulting in a highly complex
microbial community [5].

2.1. Fungal Interactions

Fungi inhabit a broad range of environmental niches and account for at least 25% of
the global biomass. In their natural environment, fungi interact with other microorganisms,
such as other fungi and bacteria (as illustrated in Figure 1). Both intra- and interspecific
fungal interactions are mediated upon contact and/or signaling molecules leading to,
e.g., mating, alterations in growth and development, and pathogenicity [24]. For instance,
Burkholderia acts as an endosymbiotic partner of Rhizopus microspores, causing rice seedling
blight disease. The bacterium produces the rice-killing toxin rhizoxin and enables the
fungus to produce infecting spores [25]. Additionally, fungi must compete with other
organisms and among each other for resources, such as nutrients and space. Competition
occurs, for instance, by secretion of secondary metabolites or by direct interaction, such
as overgrowth and mycoparasitism [26]. Mycoparasitism, where one fungus attacks and
invades another, significantly contributes to the suppression of pathogens. Mycopara-
site Trichoderma is therefore applied in the biological control of fungal plant diseases [27].
Moreover, it was shown that fungal–bacterial interactions enable the production of specific
fungal secondary metabolites [28]. It was demonstrated that exclusively close physical
interaction between Aspergillus nidulans and Streptomyces rapamycinicus activates the pro-
duction of specific aromatic polyketides [29]. The actinomycete thus triggers alterations
in histone acetylation to affect fungal gene regulation [30]. In general, Actinomycetes are
producers of many natural products with a wide range of bioactivities [31]. A study on
soil-dwelling Streptomyces coelicolor interacting with other Actinobacteria showed that most
of the compounds produced in each interaction were unique for the respective partner-
ship. Many novel bioactive molecules and an extended family of acyl-desferrioxamine
siderophores were identified. In total, over 200 differentially synthesized compounds were
identified, including prodiginines possessing immunosuppressive and anticancer activi-
ties, actinorhodin antibiotics, and siderophores coelichelin and acyl-desferrioxamines [32].
Thus, Actinobacteria interspecies interactions seem to be very specific and complex, and
harbor enormous potential to identify novel biotechnologically and medically relevant
compounds [31].

Within the last decades, it became clear that fungal interactions are crucial to nat-
ural and anthropogenic ecosystems, including human health. On the one hand, fungal
interactions represent a great potential to be utilized in sustainable agriculture. It is fre-
quently suggested that arbuscular mycorrhizal may improve phosphor nutrition, enhance
nitrogen uptake, or improve disease resistance in their host plants. Other microbes, e.g.,
nitrogen-fixing bacteria or phosphor-solubilizing bacteria, synergistically interact with
those fungi and benefit plant development and growth [33]. The mycorrhizal symbiosis
becomes important in sustainable agricultural systems where nutrient inputs are low and
play an essential role in nutrient mobilization from crop residues [34].

On the other hand, recognizing fungal interactions with harmful properties, for
instance, in human health, could lead to improved therapeutics [35].
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Figure 1. Fungal interactions. Examples of fungal interactions are illustrated with their respective consequences, adapted
from [36].

2.2. Archaeal Interactions

Although archaea may be the most ancient organisms on Earth [37], only recently
researchers became aware of the multiple ways in which archaea may interact with each
other and with organisms of other kingdoms (as illustrated in Figure 2). In particular,
methanogens take part in essential steps of the global methane cycle, which are partially
conducted in a symbiotic interaction with different partners, such as herbivorous animals
or sulfate-reducing bacteria [38]. No archaeal pathogen was identified until now, though
some archaeal commensals may be indirectly involved in bacterial infections [39]. Mutual-
istic symbioses with archaeal partners were described, some of them with high relevance to
global environmental cycles and others of unknown ecological significance related to highly
specific mechanisms (reviewed in [38]). However, the identification and study of archaeal
interactions are challenging because interactions between predominantly uncultivable or
at least complicated cultivable organisms are problematic to detect [40]. Nevertheless, the
archaeal symbiosis between the host Ignicoccus hospitalis and Nanoarchaeum equitans is well
described even at the structural level [41]. Ignicoccus (Crenarchaeota, Desulfurococcales)
is an anaerobic, hyperthermophilic obligate chemolithoautotrophic hydrogen oxidizing
archaeon. The symbiont N. equitans directly attaches to the specialized outer membrane
of Ignicoccus and obligatorily depends on the Ignicoccus host because the highly reduced
genome lacks genes for essential biosynthetic pathways, such as lipid, amino acid, and
nucleotide biosynthesis [42]. Consequently, biological macromolecules must be provided
by Ignicoccus [43] (as illustrated in Figure 2). Another study observed stable archaeal aggre-
gates formed by Pyrococcus furiosus and Methanopyrus kandleri, while hydrogen produced
by Pyrococcus is utilized by Methanopyrus [44]. Such interspecies hydrogen transfer is
also prominent for syntrophic archaea–bacteria consortia. For example, the consortium
of “Methanobacillus omelianskii” comprises a methanogenic archaeon and a Gram-negative
bacterium, which in syntrophy convert ethanol to acetate and methane [45,46]. A multi-
tude of such syntrophic associations was described for hydrogenotrophic methanogens,
for example, with the fermentative Acetobacterium and Syntrophobacter [47,48], Desulfovib-
rio under low sulfate concentrations [49], and Thermoanaerobacter, Desulfotomaculum, and
Pelotomaculum under thermophilic conditions [50–52]. In addition, an essential process of
methane oxidation in anoxic sediments is conducted by consortia of Euryarchaeota (ANME,
anaerobic methanotroph) and sulfate-reducing bacteria (SRB), like Desulfovibrio and Desulfo-
coccus. The partners often form small aggregates up to voluminous mats [53] (as illustrated
in Figure 2). Recently, cell–cell interaction between the giant filamentous Thaumarchaeote
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candidatus, Giganthauma karukerense, and a sulfur-oxidizing Gamma-Proteobacterium was
described. Here, the bacteria build a monolayer, which covers the surface of the large
Thaumarchaeote filament and most likely reduces the sulfide concentration around the host
cell [54].

Biology 2021, 10, x FOR PEER REVIEW 5 of 38 
 

 

giant filamentous Thaumarchaeote candidatus, Giganthauma karukerense, and a sulfur-oxidiz-
ing Gamma-Proteobacterium was described. Here, the bacteria build a monolayer, which 
covers the surface of the large Thaumarchaeote filament and most likely reduces the sulfide 
concentration around the host cell [54]. 

Furthermore, methanogenic archaea are essential in the degradation of organic sub-
strates under anaerobic conditions to methane and carbon dioxide within the guts of ani-
mals as anaerobic niches of nutrient decomposition [55] (as illustrated in Figure 2). Re-
markably, a single methanogenic representative, Methanobrevibacter smithii, is the predom-
inant archaeon in human gut microflora [56]. A syntrophic interaction between Methano-
brevibacter and Bacteroides thetaiotaomicron, as studied in gnotobiotic mice, may affect the 
energy balance of the host. Methanobrevibacter utilizes the Bacteroides fermentation product 
formate. This syntrophy further determines the expression of Bacteroides enzymes [57]. 
Symbioses between archaea and eukaryotes, however, are not restricted to the gut anaer-
obic food chain. Symbioses between methanogens and protists are also well known (as 
illustrated in Figure 2). Here, the archaea are directly attached to the hydrogenosomes of 
anaerobic protozoa and ciliates [58]. Archaea are also ubiquitous in marine sponges, 
sometimes even dominant [59], though their ecological role is almost unknown, but were 
recently correlated to sponge nitrogen metabolism [60–62] (as illustrated in Figure 2). In-
teractions between archaea and other organisms are definitely as specific and widespread 
as bacterial interactions, but so far, the underlying mechanisms are still poorly under-
stood. The findings mentioned above give just an impression on the abundance and di-
versity of archaeal interactions. Future studies with archaeal model organisms might lead 
to insights comparable with that of those achieved with bacterial models like E. coli and 
Pseudomonas aeruginosa [38]. 

 
Figure 2. Archaeal interactions; examples of archaeal interactions adapted from [38]. 

2.3. Virus–Bacteria Interactions 
Viral interactions are ecologically fundamental since viruses are responsible for 

many diseases in various eu- and prokaryotic hosts [63]. The present review focuses on 
the viruses infecting bacteria and the modulation of bacterial communities through those 
(bacterio) phages. Phages are the most abundant microorganisms in the biosphere, with 
an estimated 4.8 × 1031 particles [64]. Phages are present in all areas, coexisting parallel to 
their bacterial hosts in the majority of ecosystems [65]. Phages are well known as drivers 
of microbial diversity, vectors of horizontal gene transfer, sources of diagnostic and ge-
netic tools, and therapeutics [65]. Bacteriophages are natural killers of bacteria and can be 

Figure 2. Archaeal interactions; examples of archaeal interactions adapted from [38].

Furthermore, methanogenic archaea are essential in the degradation of organic sub-
strates under anaerobic conditions to methane and carbon dioxide within the guts of
animals as anaerobic niches of nutrient decomposition [55] (as illustrated in Figure 2).
Remarkably, a single methanogenic representative, Methanobrevibacter smithii, is the pre-
dominant archaeon in human gut microflora [56]. A syntrophic interaction between
Methanobrevibacter and Bacteroides thetaiotaomicron, as studied in gnotobiotic mice, may
affect the energy balance of the host. Methanobrevibacter utilizes the Bacteroides fermen-
tation product formate. This syntrophy further determines the expression of Bacteroides
enzymes [57]. Symbioses between archaea and eukaryotes, however, are not restricted
to the gut anaerobic food chain. Symbioses between methanogens and protists are also
well known (as illustrated in Figure 2). Here, the archaea are directly attached to the
hydrogenosomes of anaerobic protozoa and ciliates [58]. Archaea are also ubiquitous in
marine sponges, sometimes even dominant [59], though their ecological role is almost
unknown, but were recently correlated to sponge nitrogen metabolism [60–62] (as illus-
trated in Figure 2). Interactions between archaea and other organisms are definitely as
specific and widespread as bacterial interactions, but so far, the underlying mechanisms
are still poorly understood. The findings mentioned above give just an impression on
the abundance and diversity of archaeal interactions. Future studies with archaeal model
organisms might lead to insights comparable with that of those achieved with bacterial
models like E. coli and Pseudomonas aeruginosa [38].

2.3. Virus–Bacteria Interactions

Viral interactions are ecologically fundamental since viruses are responsible for many
diseases in various eu- and prokaryotic hosts [63]. The present review focuses on the
viruses infecting bacteria and the modulation of bacterial communities through those
(bacterio) phages. Phages are the most abundant microorganisms in the biosphere, with an
estimated 4.8 × 1031 particles [64]. Phages are present in all areas, coexisting parallel to
their bacterial hosts in the majority of ecosystems [65]. Phages are well known as drivers of
microbial diversity, vectors of horizontal gene transfer, sources of diagnostic and genetic
tools, and therapeutics [65]. Bacteriophages are natural killers of bacteria and can be
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classified according to their genome, morphology, biological cycle, or provenance [66]. A
prominent distinguishing feature of phages is their biological cycle [67]. There are two
main types, the lytic and lysogenic cycle (as illustrated in Figure 3). During the lytic
cycle, phages attach to the host cell’s surface to inject their nucleic acids into the cell.
Subsequently, the host cell DNA is degraded, and the host metabolism is directed to initiate
phage biosynthesis. The phage nucleic acids replicate inside the bacterium. Accordingly,
entire viral phage particles are assembled, which are released from the infected cell through
lysis of the bacterial cell. In contrast, the lysogenic cycle is based on the integration of the
genetic material of the phage into the genome of the host cell to produce a prophage (or
temperate phage). When the bacterium reproduces, the prophage is also copied and passed
to each daughter cell. The daughter cells can continue to replicate with the prophage, or the
prophage can exit the bacterial chromosome to initiate the lytic cycle [68]. The initiation of
phage infection is triggered by the specific recognition between the phage-binding protein
located at the tip of the tail or the capsid envelope and a receptor located on the host cell’s
surface [69]. Cell surface receptors recognized by the phage may include protein receptors
(OmpA and OmpC), lipopolysaccharide (LPS) receptors, receptors located in capsular
polysaccharides (Vi-antigen), and pili and flagella [70].

Figure 3. Phage proliferation. (Left) Infection by lytic phages like E. coli phage T4 leads to the
multiplication of virus and subsequent lysis of bacterial host cell. (Right) In lysogenic cycle, phage
genome (e.g., of E. coli phage Lambda) is integrated into bacterial chromosome, and an inactive
prophage is replicated as part of host chromosome. Environmental triggers cause excision of phage
genome and entry into lytic cycle.

Interactions with phages can cause benefit or harm to individual cells or entire commu-
nities because interactions range from mutualistic to commensal up to parasitic, including
the transmission of novel bacterial phenotypes, modulation of bacterial gene expression
and evolution, and killing of bacteria [71]. Some temperate phages can modulate bacterial
physiology, such as E. coli phage Mu, which integrates randomly within the bacterial
genome, mutagenizing an infected population and eliminating those cells with insertions
in essential genes [72]. Lytic phages modulate microbial communities by simply lysing in-
fected cells. There is increasing evidence from aquatic habitats that phages massively affect
bacterial diversity, bacterial virulence, bacterial evolvability, and even shape the stability of
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ecosystems [73]. Phages also alter the structure and function of microbial communities via
horizontal gene transfer mediated by generalized transduction and transformation [74].
Prophages enhance bacterial defenses against invading phages by blocking almost every
step of viral infection and replication, including adsorption, DNA injection, transcription,
or even induction of altruistic suicide of the hosts. Moreover, phages modulate eukaryotic
physiology [71]. Phage-conditioned changes in microbial community compositions were
associated with various diseases, including Crohn’s disease and ulcerative colitis (expan-
sion in phage richness) and type I diabetes (diminished phage richness and diversity) [75].
Bacteriophage research nowadays increasingly focuses on the potential of phages to treat
bacterial infections and contaminations [76,77]. The worldwide increase of pathogenic bac-
teria resistant to antibiotics requires alternative strategies to combat this threat [78]. Phage
therapy has a tradition dating back almost a century, but further development slowed
down in Western countries when antibiotics were discovered [77]. The therapeutic use of
bacteriophages is one promising strategy in the medical field, food industry, and agri- and
aquaculture. Many attributes of phages suggest a positive outcome in therapy, both by pre-
venting contaminations and treating ongoing infections, particularly biofilm infections [79].
As demonstrated, phage–bacteria interactions are manifold, but their study, particularly
for interactions with archaea and fungi, lags. Similarly, less knowledge is available about
phage–phage interactions, which can affect the course of bacteria–phage interactions, with
implications for the microbial community and associated multicellular organisms. Novel
technologies, such as sequencing viromes from nature, imaging of viruses, and genetic
engineering for a molecular understanding of the underlying interactions, direct future
research and ultimately enable gaining insights into those fundamental relationships [65].

2.4. Bacteria–Bacteria Interactions

Interactions between bacteria, either between cells of the same species or between
different bacterial species, are manifold and ubiquitous in nature [23] (as illustrated in
Figure 4). Bacterial interactions got into focus by case studies on communication and
cooperative behavior among myxobacteria, Quorum Sensing (QS), and biofilm formation
of Pseudomonas [80]. Recently, cooperative behaviors among bacteria were increasingly con-
sidered in evolutionary biology [4]. Extracellular signal molecules produced by bacterial
cells can be detected by other cells and regulate the expression of genes. In some bacteria,
siderophores are synthesized for microbial community interactions [23,81]. In Pseudomonas
spp., pyoverdine siderophores are essential for infection and biofilm formation, and may
potentially help to regulate bacterial growth [82]. In the marine environment, exogenous
siderophores act as signaling compounds that influence the growth of marine bacteria
under iron-limited conditions. Many marine bacteria were reported to produce iron-
regulated outer membrane proteins exclusively in the presence of exogenous siderophores
produced by other species, such as N, N’-bis (2,3-dihydroxy benzoyl)-O-serylserine from
Vibrio sp. [83]. Various cooperative and competitive bacterial interactions rely on synthesiz-
ing and detecting small chemical signaling molecules in a communication process called QS
(QS). Several social behaviors of bacteria are triggered or affected by QS, such as virulence,
pathogenicity, and biofilm formation [84]. Although the molecular structures of the signal-
ing molecules, the organization of the sensing machinery, and the functional consequences
of the signaling process show significant diversity among different bacteria, the biological
similarity of these processes is undeniable [85]. In the following, biofilms are examined
in more detail as the most common form of syntrophic microbial consortium in nature.
Moreover, QS as a fundamental and universal communication strategy of bacteria within
the domain of bacteria and among different domains is considered and QS-regulated behav-
iors are highlighted. Finally, interference with bacterial cell–cell communication (Quorum
Quenching, QQ) is discussed as a natural mechanism for recycling own QS signals and in
the context of a competitive relationship. Further, QQ is considered a natural occurring
strategy to prevent and inhibit colonization of (antibiotic-resistant) bacteria, particularly
those embedded in a biofilm, with promising potential for future applications.
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Figure 4. Bacteria–bacteria interactions; examples of positive and negative interactions among bacterial species.

2.4.1. Biofilms

Biofilms are one of the most widely distributed and successful modes of microbial
life [86]. A biofilm is defined as an aggregate of microorganisms in which cells are em-
bedded in a self-produced matrix of extracellular polymeric substances (EPS) [87]. The
interaction of cells initiates biofilm formation with a surface or with each other. It is
supposed that the planktonic bacteria adhere to the surface initially through reversible
adhesion via van der Waals forces. Attached cells proliferate and produce an extracellular
matrix to form microcolonies, in which communication among the cells through biochemi-
cal signals and a genetic exchange is facilitated. The matrix contains exopolysaccharides,
extracellular DNA, RNA, and proteins. Cells further proliferate, and spatial structuring
occurs in all dimensions, resulting in a mature three-dimensional biofilm. Over time, micro-
colonies undergo cell death and lysis along with active dispersal of motile bacteria [88] (as
illustrated in Figure 5). A biofilm is assumed to maintain an equilibrium through growth
and dispersal [89]. Biofilms are complex systems typically comprising many species of
high cell densities, ranging from 108 to 1011 cells/g wet weight [90]. Biofilms drive bio-
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geochemical cycling processes of most elements in water, soil, sediment, and subsurface
environments. All higher organisms are colonized by biofilms, which can be correlated
with persistent infections in plants and animals, including humans [1]. Furthermore,
biofilms cause contamination of medical devices and implants, biofouling, contamination
of process water or even drinking water, and corrosion [91]. In contrast, biofilms are used
in biotechnological applications, including filtration of drinking water, degradation of
waste (water), and biocatalysis of biotechnological processes, such as producing bulk and
fine chemicals as well as biofuels [92].

Figure 5. Biofilm development. (Upper panel) Free-swimming bacteria initially attach to a solid surface, and colonizing
bacteria further form structured aggregates called microcolonies. Biofilms are composed of numerous microcolonies, which
are encased in an extracellular polymeric matrix. Biofilms permanently undergo composition/decomposition. (Lower
panel) Confocal Laser Scanning Micrographs of Klebsiella oxytoca M5aI biofilm formation.

The biofilm lifestyle is distinct from that of free-living bacterial cells. Biofilm commu-
nities have emergent properties, like physical, metabolic, and social interactions, including
enhanced gene exchange and increased tolerance to antimicrobials [93]. Tolerance in
biofilms can result from both the biofilm matrix acting as diffusion barrier and inactivation
zone of antimicrobials and slowed growth of biofilm cells, even leading to the dormancy
of cells. Further, a high proportion of stationary cells (persisters) with changed metabolic
performance were detected in biofilms [93]. Resistance of cells in the biofilm to antimicro-
bials can also occur by the uptake of resistance genes through horizontal gene transfer,
since genetic competence and accumulation of mobile genetic elements is increased in
biofilms [94]. The organization in biofilms allows and promotes interactions for a myriad
of organisms due to the created proximity. Proximity enables the exchange of metabo-
lites, signaling molecules, and genetic material between organisms [86] (as illustrated in
Figure 4). Furthermore, heterogeneity, such as cells with different metabolic capacities or
physiological gradients, provides opportunities for cooperation [95]. The heterogeneous
physiological activity in biofilms produces vertical gradients of electron acceptors and
donors, pH value, and redox conditions [96]. One of the most important external triggers
of the establishment of gradients is the availability of electron acceptors such as oxygen,
resulting in aerobic microcolonies in the upper layer of the biofilm and the formation of
anaerobic zones in deep layers [97]. Heterogeneity in biofilms also enables spatial orga-
nization of mixed species such as in microbial mats. Here, phototrophic microorganisms,
e.g., algae, cyanobacteria, and anoxygenic phototrophic bacteria generate and release or-
ganic substrates as exudates, which are used from neighboring heterotrophic species in
close proximity, thus enhancing their metabolic activity [98] (as illustrated in Figure 4).
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Metabolic interactions between different species in biofilms can also be observed in the
process of nitrification, in which ammonia-oxidizing bacteria convert ammonium into
nitrite, which is subsequently oxidized by nitrite-oxidizing bacteria [18] (as illustrated in
Figure 4). Examples of cometabolism or metabolic sharing lead to more efficient resource
partition between community members, further supporting the concept of coevolution
of biofilm members [86]. Cooperation does not necessarily occur in all biofilms, and it
was even suggested that most species–species interactions in biofilms are negative, since
cells are competing with each other [23]. Competition mechanisms in biofilms include
antibiotics, bacteriocins, extracellular membrane vesicles, and type VI secretion systems.
This ultimately causes inhibition of initial adhesion of the biofilm, surface colonization
(e.g., swimming and swarming of P. aeruginosa cells on the surface, thereby preventing
the adhesion of competing Agrobacterium tumefaciens cells [99]), or the production of bio-
surfactants with antimicrobial properties [100] (as illustrated in Figure 4). Furthermore,
invaders can inhibit the maturation of a biofilm and promote its dispersal through down-
regulation of adhesin synthesis, inhibition of cell–cell communication, or degradation of
matrix polysaccharides, nucleic acids, and proteins [101].

In conclusion, numerous biofilm studies identified fundamental principles that under-
lie many of the key properties and phenotypes of biofilms, e.g., cell–cell interactions, spatial
structuring, and heterogeneity. Although studies of microbial consortia in natural settings
were revolutionized by metagenomics, most insights were gained with less complex biofilm
communities in the laboratory, often neglecting spatial and temporal scales of microbial
interactions in the assemblages [3]. Understanding how to disrupt or promote the function
of biofilm communities, which are recognized as the primary form of bacterial life in nature,
is a priority for modern microbiology [95]. Consequently, extensive knowledge gain on QS,
which plays a crucial role in biofilm formation for various bacterial species, is essential and
would have immense implications for an improved understanding of microbial ecology
and the treatment of microbial infections.

2.4.2. Bacterial Communication—Quorum Sensing

Many bacteria use a cell–cell communication system called Quorum Sensing to co-
ordinate population density-dependent behaviors [80]. QS is based on the synthesis and
perception of low molecular weight molecules, so-called autoinducers (AI), which either
diffuse over the cytoplasmic membrane or are actively transported and detected explicitly
by a specific receptor (as illustrated in Figure 6). When the AI binds its corresponding
receptor, the subsequent signal transduction is activating the transcription of target genes,
often including those encoding the respective AI synthase (autoregulation) [102]. When
the population density increases, the concentration of the signaling molecule is passing
a threshold (“quorum”), thus causing more autoinducers to be synthesized through the
induction of AI synthase. This forms a positive feedback loop, and the receptor becomes
fully activated. Activation of the receptor changes the regulation of target genes, leading to
synchronized transcription in the population [103]. Thus, cell density-dependent behaviors
are coordinated (for review, see [104]), e.g., colonization, virulence, pathogenicity, and
biofilm formation as mentioned above [105,106].

QS systems were found in both Gram-negative and Gram-positive bacteria [107].
Gram-negative bacteria communicate via acylated homoserine lactones (AHLs) (as illus-
trated in Figure 6A) [104]. The first description of QS was on the bioluminescent marine
bacterium Vibrio fischeri. At high cell densities, in symbiotic association with the Hawai-
ian bobtail squid Euprymna scolopes, V. fischeri activates bioluminescence through QS and
supports the squid in masking its shadow during predator avoidance. Two components,
LuxI and LuxR, impact the expression of target genes, e.g., the lux operon (luxICDABE)
responsible for bioluminescence in V. fischeri [108]. Similar AHL QS systems were since
shown to be widely distributed in Gram-negative bacteria controlling diverse behaviors,
such as the production of secreted toxins and virulence factors, biofilm formation, and
conjugation. Many bacteria harbor more than one signal-receptor combination [109]. For
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example, P. aeruginosa has two complete LuxRI-type homologs, LasRI and RhlRI, which
operate in a hierarchy [110]; and B. thailandensis has even three LuxRI homologs [111].
It was proposed that energy-costly resourcing of different AHL communication systems
might provide specific benefits in different environments [112]. Gram-positive bacteria
communicate using modified oligopeptides and two-component regulatory systems (as
illustrated in Figure 6B). Briefly, the signaling molecules are either unmodified or posttrans-
lationally modified small peptides secreted via ABC exporter proteins. Phosphorylation of
the receptor kinase due to peptide binding activates the regulatory protein, which acts as a
QS target gene transcription factor [113]. Virulence factor production in Bacillus cereus and
Staphylococcus aureus, the competence of B. subtilis, and the biofilm formation of Streptococ-
cus pneumonia are only a few examples of QS-dependent gene regulation in Gram-positive
bacteria [114,115]. QS allows bacteria not only to communicate within their own, but
also between different bacterial species. Therefore, autoinducer-2 (AI-2) is synthesized
and recognized by many different bacterial species. Thus AI-2 appears to be an almost
universal signal (as illustrated in Figure 6C) [116]. The AI-2 system was first described in
V.harveyi [117]. The AI-2 synthase, called LuxS, produces the AI-2 precursor, 4,5-dihydroxy-
2,3-pentadione (DPD) [117]. DPD can spontaneously cyclize to generate some isoforms,
collectively referred to as AI-2 [118–120]. Different isoforms bind different signal receptors;
for instance, the S-form binds to the signal receptor LuxP in V. harveyi, whereas the R-form
binds to the LsrB receptor protein in Salmonella enterica serovar Typhimurium or E. coli [121].
For instance, it was reported that AI-2 is involved in the regulation of bacteriocin pro-
duction and biofilm formation in S. mutans, biofilm formation of S. anginosus and Listeria
monocytogenes, virulence regulation of S. pneumonia and S. pyogenes, and toxin production
in Clostridium (reviewed in [122]). In general, the bacterial response to certain autoinducers
is manifold and adaptable. Vastly different bacterial genera can detect the same compound
as in the case of AI-2. Slightly modified molecules of the same chemical class even activate
different responses among different species of the same genus [123]. Correspondingly, a
number of chemically different QS molecules act jointly in a particular organism [124].

Recent studies further focused on the role of QS in cooperative and competitive
microbial interactions, thus concentrating on QS as a social behavior [80]. Many QS-
regulated products are secreted or excreted products, such as secreted proteases, and can
thus be used by any community member, although its synthesis implies a metabolic cost for
only one individual cell [125]. QS-dependent cooperation was for instance demonstrated
for regulated production of elastase in P. aeruginosa, a protease required for growth when
populations are cultivated on casein as the sole source of carbon and energy [126,127].
In addition, bacterial swarming is a social trait due to the joint production of secreted
surfactants in several bacterial species, including P. aeruginosa and B. subtilis [128–130].
In contrast, various bacterial species use QS to control the production of secreted or
cell-targeted toxins, for example, bacteriocins in Streptococcus species [131,132] and type
VI secretion effectors in B. thailandensis [133]. In soil communities, P. fluorescens and P.
aureofaciens use QS-regulated phenazines to fight the fungus Gaeumannomyces graminis
and colonize the plant [134]. AHL-dependent competition was likewise observed for P.
aeruginosa and S. aureus mixed communities, which commonly coculture in chronic wound
infections. P. aeruginosa usually surpasses or decreases the S. aureus population by QS-
regulated synthesis of compounds, which block S. aureus oxidative respiration, such as
4-hydroxy-2-heptylquinoline N-oxide or pyocyanin. Subsequently, P. aeruginosa induces S.
aureus cell lysis by the QS-regulated protease LasA [135].
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Figure 6. Quorum sensing (QS) systems and Quorum quenching (QQ) strategies. (A) Gram-negative bacteria produce
diffusible autoinducers (AI, triangles) by a LuxI homologous synthase. AIs diffuse into the cell and bind to cognate receptor
(LuxR homolog). This complex binds at target gene promoters and activates their transcription. (B) A precursor peptide
(loop) is produced and modified (circles) by Gram-positive bacteria and then secreted via an ATP-binding cassette (ABC).
A two-component system detects signaling molecules, and phosphorylated response protein binds to specific promoter
genes to modulate their expression. (C) The QS system of V. harveyi combines Gram-negative and Gram-positive QS
elements, in which acyl-homoserine lactones (AI-1, triangles) are synthesized by LuxLM, and a second universal AI (AI-2,
pentagons) is synthesized by the enzyme LuxS. AIs are detected by two-component systems whose signals are transduced
by phosphorelay and end in the expression of the luciferase structural operon (luxCDABE). (D) Examples of QQ strategies.
(1) inhibition of AI biosynthesis; (2) inhibition of signal transport; (3) degradation, modification, or antagonism of AIs, and
(4) inhibition of signal recognition.

Moreover, recent evidence shows that QS is not restricted to the domain of bacteria,
but also shows that QS is not restricted to bacteria and allows communication between
bacteria and their hosts. In the meantime, scientists comprehended that these bacterial
signals modulate mammalian cell signal transduction [136], and that host hormones can
crosstalk with QS signals to modulate bacterial gene expression [137]. These observations
are not surprising since prokaryotes and eukaryotes coexisted for millions of years, and the
development of eukaryotes depended on bacterial communities [138]. The research field of
“interkingdom signaling” is still in its infancy, but the increasing number of publications in
this area demonstrates that microbial–host communication is in the spotlight. Prominent
examples of microbial–host communication are presented in the following, which disclose
their importance for bacteria–host interactions. The first example of QS between bacteria
and plants was found in the relationship between the marine bacterium V. anguillarum
and the green seaweed Enteromorpha [139]. Biofilm-forming Vibrio cells release AHLs and
attract zoospores, the motile reproductive stage of the seaweed, which subsequently settle
to establish and develop in a certain habitat. In the meantime, several QS-dependent
seaweed-microbe interactions are known (for review, see [140]). The first demonstration
of a specific response of a plant to bacterial AHLs was shown for the legumes Phaseolus
vulgaris [141] and Medicago truncatula [142]. Here, AHLs from both symbiotic (Sinorhizobium
meliloti) and pathogenic (P. aeruginosa) bacteria caused significant changes in the plants’
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gene expression. In addition, Gao et al. have shown that M. truncatula responds to bacterial
communication by producing its small molecule AHL-mimics [143]. The most studied
plant–bacteria interaction in the marine environment is the red alga Delisea pulchra, which
secretes brominated furanones to protect from fouling microorganisms. The algae release
those brominated furanones, which inhibit multiple AHL-dependent processes, including
swarming motility in Serratia liquefaciens and bioluminescence in Vibrio spp. as well as
AI-2-based QS in Vibrio spp. [144,145]. Due to their QS inhibitory effects, halogenated fura-
nones showed practical potential for treating disease in shrimp aquaculture and reduced
the virulence of P. aeruginosa in mouse models [146]. Moreover, one of the best-studied
interkingdom signaling mechanisms with plant hosts is the relationship between Rhizobium
spp. and their symbiotic legume host. In this symbiosis, complex exchange of signals
between bacteria and the plant leads to the successful formation of root nodules, in which
bacteria reside and fix atmospheric nitrogen [147]. Plants evolved multiple mechanisms to
interpret bacterial QS signals and initiate attraction/defense responses in a tissue-specific
manner, which are even signal-specific [142,148]. Fungi also communicate by small signal-
ing molecules and even talk to bacteria in their vicinity [149]. However, fungi were not
shown to produce bacterial autoinducer analogs [150]. The most prominent example is
the yeast Candida albicans, whose QS molecule farnesol acts in a cell density-dependent
manner and causes a morphological switch between yeast and hyphae [151]. Since the
discovery of farnesol, QS was described in several other fungal species and was shown
to be involved in regulating growth, stress resistance, morphogenesis, and biofilm forma-
tion [149,152]. So far, identified fungal QS molecules include peptides, e.g., of Cryptococcus
neoformans [153], oxylipins in A. nidulans [154], and alcohols and their derivatives such as
tyrosol in C. albicans [155]. Furthermore, there is increasing experimental evidence that
bacteria can recognize mammalian hormones. Here, research mostly focuses on pathogens,
which turn on their production of virulence factors to respond to mammalian hormones.
The AI-3/epinephrine/norepinephrine signaling system is a prime example. The enteric
pathogen E. coli senses AI-3 produced by the microbial gastrointestinal (GI) community
to activate virulence genes resulting in colon lesions. Eukaryotic hormones epinephrine
and norepinephrine present in the GI tract activate the expression of the virulence genes in
enterohemorrhagic E. coli (EHEC) [137]. Thus, EHEC captures the eukaryotic hormones,
subsequently promoting colonization of the human colon mucosa that causes colon lesions.
Such an adrenergic regulation of virulence seems not to be restricted to EHEC. In silico
analyses observed this form of interaction in other bacterial species such as Salmonella spec.,
Shigella flexneri, Francisella tularensis, H. influenzae, Erwinia carotovoa, Pasteurella multocida,
Ralstonia eutropha, Chromobacterium violaceum, and V. parahaemolyticus [156,157]. In addition,
opioids such as endorphin and dynorphin are known as novel hormones hijacked by
pathogenic bacteria like P. aeruginosa. The bacteria recognize those opioids to enhance
their virulence by increasing the production of their QS systems leading to persistent P.
aeruginosa colonization in the lungs of cystic fibrosis patients [158]. Besides the mentioned
involvement of AIs in bacterial pathogenesis, likewise the effects of AIs on eukaryotic cells
should not be dismissed. There is increasing evidence that AIs, i.e., 3-oxo-C12 homoserine
lactone (HSL), are able to modulate signal transduction and immune responses of the eu-
karyotic host [159]. In addition, high concentrations of 3-oxo-C12-HSL induced apoptosis
due to calcium mobilization from the endoplasmic reticulum [160]. In contrast to the detri-
mental effects caused by the QS signals of P. aeruginosa, a study by Fujiya et al. suggests
a cooperative bacteria–host relationship mediated by bacterial QS [161]. Gram-positive
B. subtilis synthesize a pentapeptide (competence and sporulation factor, CSF) to regulate
expression of competence and sporulation. Nevertheless, CSF also activates two crucial
kinase-dependent survival pathways in intestinal epithelial cells by preventing cell injury
and loss of barrier function [161].

The numerous examples of QS involvement within the bacterial domain and among
domains leading to cooperative and competitive interactions point to the importance of this
fundamental communication system. Since many bacteria use QS to control the expression
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of virulence factors, regulate pathogenicity and biofilm formation, the interference with
this cell–cell communication mechanism further constitutes a novel and promising strategy
to control bacterial infectious diseases [162–165].

2.4.3. Interference with Bacterial Communication–Quorum Quenching

The term “Quorum Quenching” (QQ) describes all processes that interfere with bac-
terial cell–cell communication [166]. In a polymicrobial community, some bacteria are
communicating with neighboring cells by QS, while others are interrupting the commu-
nication due to QQ mechanisms; thus, long time thought of as primarily operating as a
defense mechanism against competitors [84,90,167]. The different QQ mechanisms operate
by blocking different steps involved in QS, comprising (i) blocking signal generation and
accumulation, (ii) preventing signal reception, and (iii) inhibiting autoinduction and activa-
tion [109] (as illustrated in Figure 6D). (i) Firstly, inhibition of signal molecule biosynthesis
can be achieved by inhibiting involved enzymes as the acyl chain (acyl-acyl carrier protein)
(ACP) and S-adenosylmethionine synthase, or interfering with the synthases themselves
as LuxI homologs and LuxS [165]. (ii) Secondly, several small molecules that mimic or
deactivate the complex interactions between the signaling molecule and their protein recep-
tors were identified [168]. A distinction is made between an agonist, implying a function
like the native AHL based on the mimic structure and an antagonist blocking the receptor
binding site prevents binding of the signaling molecule [169]. For instance, an AHL agonist
for P. aeruginosa was identified, which shows no obvious structural connection to the AHL
(3-oxo-C12-HSL) but was predicted to bind in the same protein pocket of the receptor pro-
tein as the AHL [170]. In addition, a series of naturally occurring bromo-furanones exhibit
potent antagonistic QS inhibition and appear to function by disturbing the dimerization of
the receptor protein and not by competitive binding at the ligand site [171]. Further, dike-
topiperazines (DKP) are cyclic dipeptides, which share structural similarities to signaling
peptides in mammalian tissues. They are produced by various bacteria such as P. aeruginosa,
Proteus mirabilis, Citrobacter freundii, and Enterobacter agglomerans [172], and yeast, fungi,
and lichens [173]. DKP act as AHL antagonists in LuxR-based QS and as agonists in oth-
ers [172]. Also, cross-inhibition by autoinducing peptides (AIPs) of Gram-positive bacteria
in S. aureus represents an example of QQ mechanism by inhibitors because each of the
four AIPs present in S. aureus specifically inhibits QS in competitive S. aureus groups [174].
Each AIP specifically activates its cognate receptor but inhibits activation of all others by
competitive binding to the noncognate receptors. Thus, each AIP inhibits activation of the
virulence cascade in the other three groups of S. aureus. Coinfection with two different S.
aureus groups results in intraspecies competition; the S. aureus group that first establishes
its QS cascade suppresses the other group [175]. Based on the importance of S-ribosyl-
homocysteine (SRH) in synthesizing the precursor DPD for the generation of universal
signaling molecule AI-2, several research groups found substrate analogs of SRH potential
inhibitors that target AI-2 synthesis. SRH analogs, S-anhydroribosyl-L-homocysteine and
S-homoribosyl-L-cysteine, exhibited inhibitory activities against LuxS [176]. Several SRH
analogs were further reported as potential LuxS inhibitors. Kinetic studies indicate that
these compounds act as reversible, competitive inhibitors against LuxS [177]. As SRH is
the most important intermediate for the synthesis of DPD, 5-methylthioadenosine nucle-
osidase (MTAN) is also important as an enzyme during the synthesis process. MTAN
is encoded by the pfs gene in bacteria and catalyzes the hydrolytic deadenylation of its
substrates to form adenine and S-ribosylhomocysteine. According to the mechanism of
the reaction catalyzed by MTAN, several transition state analogs, e.g., But-DADMe-ImmA,
were designed and synthesized, inhibiting AI-2 synthesis [178]. Moreover, several agonist
ligands were reported for V. harveyi receptor protein LuxP, most of which are DPD or AI-2
(S-THMF-borate) analogs competing for binding to LuxP with natural AI-2 [179,180]. Ren
et al. found that the natural furanone compound (5Z)-4-bromo-5-(bromomethylene)-3-
butyl-2(5H)-furanone could inhibit the AI-2-mediated QS in V. harveyi and E. coli [181]. A
screening of many samples from plants, ursolic acid, and 7-hydroxy indole was found as
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inhibitors for enterohemorrhagic E. coli biofilms by blocking the AI-2 pathway [182,183].
Previous research showed that certain food components inhibit AI-2 signaling using re-
porter strain V. harveyi BB170 [184]. AI-2 QS inhibitors in poultry meat wash samples were
characterized by identifying several quenching fatty acids. Linoleic acid, oleic acid, palmitic
acid, and stearic acid expressed AI-2 inhibition ranging from approximately 25–99% [185].
(iii) Thirdly, modification or degradation of the QS signaling molecules prevent them from
accumulating. QS signal degradation can be mediated by chemical, metabolic, and enzy-
matic mechanisms [186]. The chemical degradation was reported primarily at alkaline pH,
leading to the opening of the lactone ring of AHLs [187]. However, at acidic pH, the ring
recyclizes, and the activity is restored. A few organisms such as Variovorax paradoxus and P.
aeruginosa can metabolize AHLs as the sole carbon source, thus suppressing competitive
QS bacteria parallel to energy generation [188,189]. Enzymatic degradation of QS signaling
molecules was observed in a wide range of prokaryotes and eukaryotes. AHL-lactonases
hydrolyze the ester bond of the homoserine lactone ring of AHL molecules [190]. The first
reported AHL-lactonase encoded by the aiiA gene was characterized from Bacillus isolate
240B1 [191]. Homologs were identified in a range of bacteria, including Gram-positive and
Gram-negative species. AHL-lactonases can be grouped into two clusters based on their se-
quence homologies. The first one is the AiiA cluster with representatives from Bacillus [192].
The second one is the AttM cluster with Gram-negative members, e.g., A. tumefaciens and
Klebsiella pneumoniae [193,194]. AHL-lactonases are by far the most specific AHL-degrading
enzymes among known QQ enzymes. They hydrolyze both short- and long-chain AHLs
but show no residue activity to other small molecules [195]. Paraoxonases (PON) were
identified in mammals, other vertebrates, and invertebrates [196,197] and are also capable
of hydrolyzing the homoserine lactone ring of AHLs [173]. PON enzymes seem to be
most active with long-chain AHL molecules, often used by eukaryotic pathogens, e.g., P.
aeruginosa [198]. PONs are well known for their broad-spectrum enzyme activities, unlike
lactonases [199]. AHL-acylases inactivate AHL signals by cleaving the amide bond of
AHL, thus producing the corresponding fatty acids and homoserine lactone [188]. These
enzymes are widely conserved in several bacteria, including Variovorax, Ralstonia, and P.
aeruginosa [200,201]. There are notable differences in the substrate specificities among AHL-
acylases, which are demonstrated in the effectiveness of degrading long-chain AHLs [202].
AHL-oxidoreductases do not degrade AHLs but modify the 3-oxo group of the molecule
to generate corresponding 3-hydroxy derivates [203]. Depending on the specificity of
the AHL receptor, the modification may or may not affect the signaling activity of the
respective AHL [204]. Quenching of Gram-positive signaling is, for instance, enabled by
NADPH oxidases located in the membranes of phagocytes, which are responsible for the
generation of bactericidal reactive oxygen species during host defense and essential for the
innate immune system [205]. The enzyme inactivates autoinducing peptides (AIP) through
its enzymatic products [206]. For instance, the inactivation of the AIP signal of S. aureus is
caused by oxidation of the C-terminal methionine sulfanyl group of the signal to the corre-
sponding sulfoxide form resulting in the loss of AIP activity [207]. In contrast to various
AHL-quenching mechanisms and compounds, only very few AI-2 interfering mechanisms,
in particular AI-2 QQ enzymes, were reported so far. E. coli AI-2 kinase LsrK was used
in vitro to phosphorylate AI-2, resulting in reduced QS response when added ex vivo to
E. coli populations as well as Salmonella typhimurium and V. harveyi cultures [208]. Highly
effective inhibition of AI-2 regulated biofilm formation of Klebsiella spp. was demonstrated
by the first metagenome-derived AI-2 Quenching enzyme. Here, AI-2 signals were most
likely modified by the identified oxidoreductase QQ-2 [209].

QQ is considered as a natural mechanism evolved either by organisms regulating
behaviors via QS for the recycling or clearing of their QS signals or by QQ organisms in
the context of a competitive relationship with QS signal-producing organisms [166]. QQ
was found to be related to the fine-tuning of QS functions, e.g., clearing of the QS-signal
regulated the transfer of the Ti-plasmid in A. tumefaciens, which is crucial for plant infection
with crown gall disease [210]. Recycling of QS signals mainly occurs in microorganisms that
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produce QS molecules [166]. For example, in P. aeruginosa, the amidase HacB and PvdQ,
and QuiP contribute to AHL recycling by converting AHLs into fatty acids and homoserine
lactone (HSL) further assimilated by the bacterium [211]. Likewise, LsrF and LsrG are
involved in the degradation of AI-2, thereby terminating the induction of the lsr operon
and closing the AI-2 signaling cycle in E. coli [212]. In microorganisms that do not produce
QS but are sensitive to the toxicity of QS signals, QQ enzymes play a significant role in
detoxification [213]. In Gram-positive Bacillus strains, which communicate via peptides and
not AHLs, the AiiA lactonase was identified. Bacillus spp. protect themselves from AHLs by
degrading those signaling molecules, which express a bactericidal activity against several
Gram-positives [166,214]. Moreover, QS signaling is interfered with by an organism, which
does not produce QS signals, but takes advantage of QQ processes [166]. Several eukaryotes,
including plants, animals, and hosts of QS-emitting pathogens, express enzymes that can
inactivate QS signals [106]. As mentioned above, several studies evaluated the implication
of highly conserved paraoxonases (PON1, PON2, and PON3) [173,215,216], for instance,
in defense against the pathogen P. aeruginosa. The serum and tracheal epithelial cells of
mammals could efficiently inactivate long-chain AHLs of this pathogen [196,197]. Most
natural environments harbor diverse microorganisms, and within these communities,
bacteria compete with their neighbors for space and resources. Therefore, competitors
also evolved several mechanisms to disarm QS systems to avoid bacterial colonization
and competence. Inhibitors and antagonists of signal reception [166,217] or enzymatic
inactivation were identified among bacteria in natural environments, as already pointed
out above [166,218–220]. However, the number of models investigated under natural
conditions is low, and efforts towards deciphering QQ functions in a rational biological
context at the cell-, population-, microbiota- and metaorganism level are underrepresented.

Investigations on QQ also extended to applied domains for developing antibacterial
and antidisease strategies that target pathogens and biofilm-forming bacteria in medicine,
agronomy, and industry [221]. The development of treatments based on QS interference
is largely driven by alternative or complementary approaches to often ineffective an-
tibiotics [222–224]. Conceivable biotechnological applications are manifold, and several
examples are published to date, but their application is still only a potential, and studies
have to be conducted to direct the potential to real use. In aquaculture, effective alternatives
to antibiotics are urgently needed since it is significantly affected by disease outbreaks of
often antibiotic-resistant pathogens [225]. Counteracting resistance development, antibi-
otic administration gets more and more restricted in aquaculture. Known opportunistic
pathogens such as Vibrio sp., Aeromonas sp., and Pseudomonas sp. often regulate patho-
genesis through QS; consequently, disruption of QS as a new anti-infective approach has
great potential for application in aquaculture [226]. Brominated furanones were found
to be effective in neutralizing the growth retarding effect of V. harveyi strains. They im-
proved the survival and growth of rotifers [227,228] and further protected brine shrimp
Artemia franciscana and rainbow trout Oncorhynchus mykiss from pathogenic Vibrio spp.
infections [229,230]. Several bacterial metabolites were also able to block QS-regulated
phenotypes in aquaculture pathogens, among those Shewanella sp. [231,232], Halobacillus
salinus [217], and various gut bacteria from marine eukaryotes [233]. By incorporating kojic
acid from Aspergillus spp. into a nontoxic paint, bacterial and diatoms colonization and
growth were successfully controlled by QS interference in artificial marine settings [234].
In industry, QQ is applied in wastewater treatment, where membrane bioreactors used
for reclamation and desalination of brackish and seawater are constrained by biofoul-
ing of the membrane filters [235]. Fouling biofilms formed by Aeromonas hydrophila and
P. putida [236] are prevented by small-signal interfering compounds added to antifouling
coatings or by immobilizing QQ enzymes or marine organisms engineered to secrete QS
inhibitors [237–240]. QQ also finds the way into plant cultivation. Epiphytic bacteria
are exploited for controlling diseases by interfering with the QS-regulated virulence of
plant pathogens like P. syringae [241,242]. Engineering the production of QQ enzymes
into plants and plant-associated microbes is expected to help crop protection, as already
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demonstrated for transgenic tobacco and potato plants, which heterologously expressed
Aiia lactonase, resulting in reduced pathogenicity of Erwinia carotovora [190,191]. Finally,
QQ is also contemplated to be applied in medicine. The use of garlic as a QS inhibitor
against P. aeruginosa, which is intrinsically resistant to many antibiotics and causes chronic
infections, was demonstrated by Rasmussen et al. [243]. This treatment made the biofilm
susceptible to antibiotics, such as tobramycin, and phagocytosis by neutrophils [244]. The
first clinical trial on the usage of garlic oil macerate as a QS inhibitor for treating human
patients suffering from cystic fibrosis was reported in 2010 [245] and resulted in a slight
improvement of lung function, weight, and symptoms score of cystic fibrosis patients.
Moreover, Hentzer et al. demonstrated that biofilm formation and virulence factor pro-
duction in P. aeruginosa was reduced in the presence of synthetic furanones, which have
the potential to be incorporated as QS inhibitors on the surfaces of surgical implants and
catheters [240,246]. However, they later showed toxic side effects [228].

One of the most important prerequisites to finding effective QQ compounds is their
detection with biosensors. AHL and AI-2 reporters were developed throughout by different re-
searchers based on fusing a QS-controlled promoter to a reporter gene [128,144,184,236,247–254].
These biosensors allow for sensitive, quantitative, and real-time detection of QS signals.
The reporter strains cannot often produce native QS signals; however, they can respond
to exogenous autoinducers, often with a detectable phenotype, such as violacein pigment
production in Chromobacterium violaceum CV026 [249] and bioluminescence production
in V. harveyi [255] or A. tumefaciens A136 [256]. Most reporters were initially designed
to identify new signaling molecules. The QS-promoter is induced by signal molecules
possibly present in the environment, leading to the expression of the respective phenotype.
By simultaneous addition of defined amounts of promoter-inducing autoinducers in the
assay, these biosensors can also be used to identify QQ compounds, interfering with these
signal molecules. In brief, they mimic the natural QS system with easily identifiable phe-
notypes [257]. Remarkably, there are mostly AHL-QS-based reporters published, which
allow the identification of AHL-interfering compounds such as AHL-degrading [218] or
-modifying [203] compounds as well as AHL agonists [258] and antagonists [259]. V. harveyi,
a reporter for detecting QQ compounds against Gram-negative and interspecies-specific
QS, was developed to identify potential QQ active compounds by the absence of lumines-
cence [260]. Based on this type of system, a screen will indicate a QS-interfering compound
by the disappearance of the reporter signal. One crucial problem of this procedure is
that factors other than QQ compounds can also cause a reduction in the signal, e.g., by
reducing cell growth. Thus, it can be difficult to obtain reliable information regarding
the specificity of a QS-interfering compound that shows additional pleiotropic effects
because the decrease in reporter signal is not necessarily proportional to the decrease in
monitored out read [243]. Rasmussen et al. designed another type of screening system
termed Quorum Sensing Inhibitor Selector (QSIS) to circumvent these problems. The QSIS
system is based on E. coli, which comprises an AHL-inducible lethal gene encoding a toxic
protein. When the strain senses AHLs in the surrounding environment, the lethal gene
is expressed and consequently growth will be inhibited. In contrast, the presence of a
QS-interfering compound rescues the bacteria, since expression of the lethal gene is not
induced and the bacteria are able to grow [261]. This method of positive selection for
growth has proven powerful for isolation of both, synthetic compounds and extracts of
plants and fungi with AHL-quenching activities [98]. As already mentioned, in contrast to
AHLs, only a few AI-2 QQ compounds were identified to date, probably due to the lack of
appropriate reporter systems [165,262]. A few reporter systems for the detection of AI-2
like compounds can reportedly be used, in principle, for identification of AI-2 quenching
activities. One example is the above mentioned V. harveyi-based reporter system with a
mutated autoinducer synthase (LuxS) that can be used to detect external accumulation of
AI-2, leading to bioluminescence [263]. A second reporter system is based on lacZ fusion
to the E. coli AI-2 inducible promoter lsrA [264]. Moreover, reporter strain AI2-QQ.1 was
established based on the innovative strategy of Rasmussen and collaborators, which now
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allows identifying for novel, nontoxic biomolecules interfering with AI-2-based QS using
positive selection [254]. Nowadays, bacterial isolates, extracts, and metagenomic and syn-
thetic libraries can be rapidly screened for QQ compounds with such biosensors, and the
compounds further tested for their application. However, finding new QQ strategies and
their effective application in controlling pathogens and bacterial biofilms raised questions
about the potential for resistance development against QQ agents. This has become a
controversial discussion [265]. The lack of direct effects on the viability of bacteria resulted
in the hypothesis that selection for and the appearance of resistant mutants might be less
frequent than traditional antibiotic treatment. However, Defoirdt et al. controverted the
assumption that QS disruption is not leading to resistance and suggested that the fitness of
bacteria can be affected through variability in QS core genes [266]. Additionally, a study has
demonstrated that QQ compounds can indeed generate QQ resistance in P. aeruginosa [267].
Bacteria could easily escape from QQ approaches by altering the expression of core genes
in the targeted QS signaling pathway, such as the genes involved in the signal synthesis,
detection, and transduction. It is thus likely that bacteria may develop resistance to QQ;
however, it was suggested that the chances of developing resistance are smaller than for
conventional antibiotics [225].

In conclusion, QQ strategies have evolved in many pro-and eukaryotes as a mecha-
nism for recycling or clearing their own synthesized QS signals or as a competitive strategy
against QS signal-producing organisms. Moreover, QQ might become an effective alterna-
tive to combat infections and bacterial biofilms, either as single agents or in combination
with antibiotics or other alternative strategies. However, future studies should focus on
the underlying QQ mechanisms at a molecular level, their biological role in microbial
communities, and their use as antibacterial treatment under realistic conditions to exclude
toxic side effects.

2.5. Microbe–Host Interactions

Half a century ago, Lynn Margulis first recognized the importance of bacteria in
the evolution of higher organisms [268–271]. In 2007, the term “hologenome” was in-
troduced by Ilana Zilber–Rosenberg and Eugene Rosenberg to describe the sum of the
host genome and associated microbial genomes [272–274]. This settled the base for a
still ongoing paradigm shift in biology. Nowadays, a new conceptual framework—the
holobiont/metaorganism concept—is established, considering a holobiont/metaorganism
as the sum of a multicellular host and its associated species (as illustrated in Figure 7) [275].
The holobiont theory considers all associated species irrespective of their type of associ-
ation (transient or permanent) or their function. The metaorganism concept focuses on
the function and contribution (beneficial or detrimental) of the host-associated microbiota
in a given environment, which depend on the identity, abundance, and activity of the
microbes (in the following, the term “metaorganism” is primarily used) [272,274,276]. The
growing awareness that multicellular organisms cannot be considered in isolation but
only in the interdependence with their associated microbes led to two important insights.
Firstly, the health and fitness of a host appear to be fundamentally multiorganismal, where
any disturbance within the complex partnership can have drastic consequences for the
members’ health. Secondly, host and microbes intensively interact and coevolve [277–279]
(as illustrated in Figure 7). Several studies already indicate that a specific host-associated
microbiota contributes to host metabolism, development, organ morphogenesis, pathogen
protection and immunity, behavior, environmental sensing and adaptation, developmental
transitions, and reproduction [278,280–294] (as illustrated in Figure 7). A specific microbe
or consortia function is not static because it depends on the host’s developmental stage,
age, reproductive state, or physiological condition [276,278,295]. The vast contribution of
the microbiota to the fitness of its host was unraveled mainly in the last decade. Protection
against pathogens and provision of essential nutrients were identified as the most general
and important contributions of the associated microbiota to the host´s health. In corals,
commensal bacteria protect against the bleaching pathogen V. shiloi [296] and produce
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inhibitors to reduce colonization by pathogens on coral mucus [297]. Several experiments
further reported that sterile animals are considerably more sensitive to infection and death
following administration of a pathogen than conventional animals, e.g., shown for in-
fection of guinea pigs with Shigella flexneri [298], mice with V. cholera [299], and rabbits
with Bacteroides vulgatus [300]. Likewise, in humans, the normal microbiota was shown to
protect against infection by pathogens in the oral cavity, the intestine, the skin, and the
vaginal epithelium [301–304]. Representatives of the genera Pseudomonas, Flavobacteria,
and Bacillus can protect plants from phytopathogens through direct interaction with the
pathogen or by inducing systemic resistance in plant hosts [305,306]. In general, microor-
ganisms residing in a plant’s rhizosphere are essential for plant growth promotion, disease
suppression, removing toxic compounds, and assimilating nutrients to plants [307]. More-
over, utilizing such beneficial microbes for crop productivity presents an efficient way to
modulate the crop yield and productivity by maintaining the health status and quality of
the plants [308–310]. The utilization of beneficial microbe-plant interactions is now turning
into the standard against the chemical-based and synthetic pesticides and fertilizers in
the agriculture industry [307,311,312]. Moreover, the contribution of the microbiota to the
nutrition of the hosts is known for many years. For example, chemoautotrophic bacterial
symbionts, like sulfur-oxidizing bacteria, synthesize organic matter from CO2 and are the
primary source of nutrition for their animal host [313]. In turn, the host, like clams and
mussels, provides its symbionts a habitat, in which they have access to the substrates of
chemoautotrophy (O2, CO2, and reduced inorganic compounds such as H2S) [314]. In
humans, the gut microbiota is a complex ecosystem that plays an essential role in the
catabolism of dietary fiber, production of vitamins and amino acids, and detoxification of
harmful chemicals [315,316]. In recent years, several studies further demonstrated that
the microbiome also contributes to the development of a variety of tissues, functions, and
organs [273,317]. An illustration of bacteria-dependent development can be seen for many
green algae, which develop abnormally in the absence of bacteria [318]. For example, the
marine green alga Ulva lactuca loses its typical leafy morphology in axenic culture and
develops into pincushion-like colonies. However, these abnormal algal colonies can be
restored to their typical morphology by recolonization with appropriate marine bacte-
ria [319]. Also, gut bacteria were shown to shape the tissues, cells, and molecular profile
of the mammalian gastrointestinal immune system during development [320]. Microbes
interact with the host cells through adhesive molecules on their surface, thus promoting
interaction with host cell receptors and triggering host responses among those immune re-
sponses and metabolic and behavioral reactions [321]. For instance, first experiments with
mice demonstrated that gut microbiota affects the brain and, consequently, behavior [322].
It is most likely that during evolution, gut microbiota colonization became integrated into
the programming of brain development affecting the central nervous system and behav-
ior [323]. Bacteria communicate with the brain via changing levels of dietary metabolites
and hormones [324]. The gut microbiota can be a key regulator of mood, cognition, pain,
and obesity [325]. Understanding the microbiota–gut–brain axis can give new insights into
individual variations in cognition, personality, mood, sleep, and eating behavior and how
microbes contribute to a range of neuropsychiatric diseases ranging from affective disorders
to autism and schizophrenia. Understanding such complex host-microbe interactions can
thus be a key for developing therapeutics against diseases, but also finding pre- and probi-
otics to prevent infections and disorders in the future [326]. Besides cooperation between
microbiota and host, there are numerous examples of interactions among different species
of microorganisms within a metaorganism, like cross-feeding between microbes in the
mucus of coral holobionts [327] or sharing of “public goods” in microbial biofilms on the
outer surface of animals or plants as well as the digestive tract of animals [328], ultimately
resulting in a fitness benefit for the metaorganism as a whole. Some cooperative microbial
interactions are so called byproduct mutualistic interactions. For instance, the host benefits
from byproducts of a bacterial metabolism as known for short-chain fatty acids produced
by bacteria in the large intestine of mammals during anaerobic metabolism [329,330]. The
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aphid-Buchnera symbiosis exemplifies that benefits for the host in the end also possess an
advantage for the symbiont, and thus for the whole metaorganism, since energy-costly
overproduction of amino acids by the endosymbiont, which are essential to the insect host,
finally configure the environment for the endosymbiont [331,332]. The manifold examples
of cooperation do not contradict the competition existing within the metaorganism among
different microbial community members, as discussed above (see Section 2.4).

Figure 7. The metaorganism concept; a metaorganism consists of a multicellular host and its associated microbiota located in
a specific environment. Selected factors are presented that might influence bacterial colonization of host surfaces, ultimately
affecting various host functions.

The metaorganism concept leads to the assumption that the evolution of multicellu-
lar host organisms primarily occurred by cooperation with their associated microbiota.
Cooperation among microbes and between microbes and their host coevolved over mil-
lions of years, exemplified by arbuscular mycorrhizal fungi and roots of vascular plants
(ca. 400 million years ago) [333]. Here, fungi of the phylum Glomeromycota penetrate the
cortical cells of the roots of a vascular plant forming arbuscules. The fungus enables its
plant host to capture nutrients such as phosphorus, sulfur, nitrogen, and micronutrients
from the soil. The arbuscular mycorrhizal symbiosis most likely played a crucial role in
the evolution of vascular plants and their initial colonization on land. Arbuscular myc-
orrhizal symbiosis is presumed to be the most prevalent known plant symbiosis and is
found in 80% of vascular plant families [334]. Evolved mutualistic relationships are further
known for endosymbiotic algae and corals (ca. 240 million years ago) [335], ruminants and
their microbiota (ca. 60 million years ago) [336], and the great apes and gut microbiota
(15–20 million years ago) [337,338]. The gut microbiome also demonstrates evolution by
acquiring a microbiota in ruminants and termites, where the microbes degrade cellulose
of plant material, enabling the host to metabolize those nutrients [339,340]. One of the
major advantages of microbiota acquisition is that it allows for rapid adaptation to new
environments. Such an example is shown for the bacterium Burkholderia, which is resistant
to an insecticide, and further led to the resistance of the host insect to the insecticide [341].
The evolution of metaorganisms can also be acquired by the horizontal transfer of microbial
genetic information to the host chromosome [342]. There are numerous known examples of
horizontal gene transfer (HGT) between symbionts and their hosts, e.g., transfer of biosyn-
thetic genes for carotenoid production from a fungus to aphids [343], gene transfer from the
endosymbiont Wolbachia to the arthropod host [344], and transfer of the long interspersed
nuclear element (LINE-1) from human to the pathogen Neisseria gonorrhoeae [345].
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In summary, all animals and plants are inhabited by microbial organisms, which influ-
ence the health and fitness of their hosts, ultimately forming a metaorganism harboring
complex interactions among microbial community members and between the microbes and
their host. Research on host–microbe interactions became an emerging cross-disciplinary
field. A diverse and complex microbiome confers immunological, metabolic, and be-
havioral benefits; its disturbance can contribute to disease development. However, the
molecular and cellular mechanisms controlling interactions within the metaorganisms are
poorly understood, and many key interactions between the associated organisms remain
unknown. Future studies should focus particularly on the functional consequences of
the interactions and the impact of the microbiota on the host’s life history and evolution-
ary fitness.

3. Methods for Studying Microbial Interactions

Microorganisms play a vital role in various ecosystems, and characterizing interactions
between them is an essential step towards understanding the organization and function
of microbial communities [346]. A key for understanding microbial interactions is the
continual development of cutting-edge methods and controlled experimental platforms.
The fact that the vast majority (95–99%) of microbes were not cultivated points to the
urgent need for cultivation-independent approaches and methods, which are summarized
as “metagenomics” [347]. The term metagenomics was first used by Jo Handelsman in
1998 [348]. Metagenomics is defined as the genomic analysis of an assemblage of organisms
in a given habitat by direct extraction and cloning of the whole DNA [349]. Consequently,
metagenomics can unlock the massive uncultured microbial diversity present in an environ-
ment. Metagenomics studies identified many novel microbial genes coding for metabolic
pathways, such as energy acquisition, carbon and nitrogen metabolism, and novel genes,
particles, and compounds applicable to biotechnology [350–354]. Metagenomics allows
the investigation of microbes in their natural environments and complex communities
associated with abiotic and biotic surfaces as in metaorganisms [355]. There are two basic
types of metagenomics studies: (i) sequence-based metagenomics that involves sequencing
and analysis of DNA from environmental samples, and (ii) function-based metagenomics
that comprise screening for a particular function or activity [356]. Sequence-based metage-
nomics can be used to assemble genomes, identify genes, find complete metabolic pathways,
and analyze microbial diversity and abundance, providing information about the ecol-
ogy of the microbes in the community and within a metaorganism [357–362]. Functional
metagenomics is a powerful experimental approach for studying gene function, starting
from the extracted DNA of mixed microbial populations or a whole metaorganism. A func-
tional approach relies on the construction and screening of metagenomic libraries-physical
libraries that contain DNA cloned from environmental metagenomes into vector back-
bones. Cosmid- or fosmid-based libraries are often used due to their large and consistent
insert size and high cloning efficiency [350–353,356,363]. Moreover, metagenomics led to
the discovery and characterization of a wide range of biocatalysts and novel compounds
for clinical, industrial, and biotechnological applications. For instance, the investigation
of symbiotic bacteria by metagenomics led to the identification of a rare type I polyke-
tide synthase, allowing the generation of novel antitumor compounds [364]. Analysis of
metagenomic libraries revealed a high frequency of novel antibiotics present in soil [365].
A novel antibiotic, palmitoylputrescine, was found in the tropical plant (bromeliads) tank
water, and a novel bacterial mechanism for inactivation of tetracycline was found in the
oral metagenome [366]. Metagenomics further identified novel xenobiotic degradation
pathways used by prokaryotes in the environment [367], which can be used in biotechnol-
ogy. One of the main areas of metagenomic research from the beginning was discovering
novel biocatalysts, including esterases, nitrile hydratases, alcohol reductases, amidases,
cellulases, amylases, glycogen-branching enzymes, and pectate lyases [368–374].

Besides metagenomics, advances in sequencing and “omic” technologies improved ef-
fectively tracking microbial community composition and the metabolic activity of microbes,
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further allowing for correlations on microbial functions [375]. Sequencing RNA from both
prokaryotic and eukaryotic cells simultaneously can reveal how the host and its associated
microbiota interact at the gene expression level [376]. Additional in situ methods can also
help to capture microbial interactions [377]. Techniques for quantitative imaging of labeled
bacteria and their surroundings, including fluorescence in situ hybridization labeling of
bacteria and noninvasive imaging of extracellular milieu components, add a critical spatial
dimension to microbial studies [377,378]. Metabolic labeling enables even tracking micro-
bial activity [379]. Nowadays, synthetic approaches also help to explore the complexity
of microbial interactions [380,381]. On the one hand, synthetic microbial communities
offer reduced complexity and can more easily be mathematically modeled [382]. On the
other hand, advances in synthetic biology enabled the engineering of microbes with genet-
ically defined properties [383]. These engineered bacteria were combined with artificial
environments to study microbial interactions in response to environmental cues. Experi-
mentally, microchamber-based methods were developed to mimic the natural environment,
exemplified in a microfluidic assay to assess dynamic root–microbe interactions [384] and
in an in situ chemotaxis assay (ISCA) to study marine microbial behaviors at spatially
relevant scales [385]. However, it should not be neglected that understanding microbial
community interactions, particularly all the complex interactions that take place in metaor-
ganisms, also rely on cultivation-dependent approaches [295]. The cultivation of bacteria
is highly biased toward a few phylogenetic groups. New cultivation concepts were and
will still be developed based on an improved understanding of the ecology of previously
uncultivable bacteria. Here, media that mimic the natural types and concentrations of sub-
strates and nutrients, high-throughput cultivation techniques, and approaches that exploit
biofilm formation and bacterial interactions crucially improved cultivation techniques [386].
Metagenomics and single-cell genomics can further reveal unknown metabolic features, the
information needed for improved cultivation or even cocultivation of microbes [387]. No-
tably, studies on host–microbe interactions rely on the combination of largely (gnotobiotic)
or completely (axenic) germ-free hosts with cultured microbial isolates to gain detailed
insights into the contributions of microbes to metaorganism function [284,388]. Such recolo-
nization experiments enable assigning a function to specific microbes [276,388,389] as well
as to determine the colonization dynamics of microbes [388,390] and to elucidate bacteria–
bacteria interactions [284,391]. All the presented technologies can provide insights into
the complexities of microbial communities, the function of microbes, and the interaction
among these microbes with their hosts. Despite the remarkable advances in the study of
microbial communities, we are still far from understanding the complete picture. Moving
beyond purely observational approaches, experimental and computational methods that
facilitate the interpretation of microbe interactions with each other and their communities
must be enhanced. Computational modeling and analysis tools need to be developed
and implemented to investigate environmental correlations and to understand microbial
dependencies and their coevolution [392].

Besides understanding microbial interactions, research also focused on investigations
to use microbial consortia in biotechnology processes, including fermentation, waste treat-
ment, and agriculture, for millennia [393]. However, only an improved understanding of
natural microbial ecosystems and the development of new tools to construct synthetic and
engineered consortia vastly expanded the possibilities of using microbial consortia for di-
verse applications, including bioproduction of medicines, biofuels, and biomaterials [394].
Microbial communities comprising several partners can often jointly perform complex
processes more efficiently, yielding the desired product at an increased rate than that of
a single species [395]. Interactions between the microbial partners in these mixed com-
munities are expected to significantly impact the microorganisms’ combined performance
and the bioprocess as a whole. Commensal or mutualistic interactions among microbial
members of a consortium can significantly enhance the product outcome of the bioprocess,
ensuring their industrial application and long-term stability [395]. Beyond being simply
positive or negative, beneficial or inhibitory, microbial interactions can involve a diverse set
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of mechanisms, dependencies, and dynamical properties. This complexity of interactions
must be studied by further developing cutting-edge techniques that enable the elucidation
of multidimensional and dynamic relationships among microbes and between microbes
and the host.

4. Conclusions

Microorganisms live in close contact with each other and to multicellular hosts, usually
including many species. Additionally, microbes are exposed to variations in the environ-
ment, which in turn affect the interactions. Microbial interactions are thus highly complex,
and many mechanisms and molecules are involved [5]. Studies on microbial interactions
led to significant findings in microbiology, botany, zoology, and ecology. Research on
microbial interactions also enabled discoveries for clinical, industrial, and biotechnological
applications, e.g., antimicrobial drug development based on natural products like QS inter-
fering compounds. Further, the realization that a germ-free multicellular organism does
not exist in nature led to the holobiont/metaorganism concept and a paradigm shift in life
science. It is now believed that it would be impossible to fully understand a multicellular
organism without considering its associated microbes, but it is possible to study microbes
without knowledge of animals and plants. There is still a lot to understand about the
molecular mechanisms and languages used by microorganisms and the molecules and
signals involved in microbial interactions, in particular with the host. The development
and refinement of tools and methods, including in vitro and in vivo models, are urgently
needed to understand better and characterize microbial interactions with more molecular
details. Elucidating complex microbial interactions in an ever-changing environment in
nature is probably the most challenging endeavor.
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