
Semidirect Products of Finite

Group Schemes: Gabriel Quivers

and Auslander-Reiten Components

Dissertation zur Erlangung des Doktorgrades der
Mathematisch-Naturwissenschaftlichen Fakultät der

Christian-Albrechts-Universität zu Kiel

vorgelegt von

Jan-Niclas Thiel

Kiel, Juli 2021





Betreuer und erster Gutachter: Prof. Dr. Rolf Farnsteiner

Zweiter Gutachter: Prof. Dr. Jörg Feldvoss

Tag der mündlichen Prüfung: 15.6.2021





ZUSAMMENFASSUNG

Zusammenfassung

SeiG eine zusammenhängende algebraische Gruppe über einem algebraisch abgeschlosse-

nen Körper k. Gilt char(k) = 0, so spiegelt sich die Darstellungstheorie von G sehr gut in

derer ihrer Lie-Algebra g wider. Im Falle char(k) = p > 0 hingegen ist dies nicht mehr der

Fall. Es hat sich hier als nützlich erwiesen, G durch die aufsteigende Folge (Gr)r≥1 von

ihren sogenannten Frobeniuskernen zu studieren. Gr ist ein sogenanntes infinitesimales

Gruppenschema, welches nicht mehr eindeutig durch seine k-wertigen Punkte bestimmt

ist, es gilt sogar Gr(k) = {1} für alle r. Seine Darstellungstheorie ist äquivalent zu der

Darstellungstheorie der dualen Hopf-Algebra kGr := k[Gr]
∗ des endlich-dimensionalen

Koordinatenrings k[Gr]. Ist r = 1, so ist kGr isomorph zur universellen restringierten

Einhüllenden U0(g) von g. Somit ist die Darstellungstheorie von G1 zur Darstellungs-

theorie der restringierten Lie-Algebra g äquivalent. Die Darstellungstheorie von g selbst

kann grob gesprochen durch dessen Familie {Uχ(g) : χ ∈ g∗} reduzierter einhüllender

Algebren approximiert werden.

Viele Resultate sind bekannt im Fall von reduktiven Gruppen (siehe beispielsweise [41,

II]). Im Allgemeinen ist jede Gruppe G eine Erweiterung einer reduktiven Gruppe H

durch eine unipotente Gruppe U . Ist U nicht trivial, so ist der ’nächstbessere’ Fall jener

einer spaltenden Erweiterung. Dies führt zu einem semidirekten Produkt G = U o H.

Da der Funktor G 7→ Gr linksexakt ist, ist der r-te Frobeniuskern von G dann auch das

semidirekte Produkt Ur o Hr der r-ten Frobeniuskerne von U und H. Dies ist genau

der Blickwinkel, auf dem diese Arbeit aufbaut. Einfache Gr-Moduln korrespondieren

dann zu einfachen Hr-Moduln mittels dem durch die Projektion Gr → Hr definierten

Inflations-Funktor mod(Hr) → mod(Gr) und die projektiv unzerlegbaren Gr-Moduln

sind genau von den projektiv unzerlegbaren Hr-Moduln induziert. Wir werden eine

konkrete Formel für den Gabriel-Köcher der Hopf-Algebra kGr herleiten sowie den In-

flationsfunktor im Hinblick auf Auslander-Reiten-Folgen untersuchen. Des Weiteren

werden wir zeigen, dass der stabile Auslander-Reiten-Köcher von kGr keine Kompo-

nenten von euklidischem Typ aufweisen kann. Diese Resultate werden wir allgemeiner

für endliche Gruppenschemata beziehungsweise für gewisse reduzierte Einhüllende von

restringierten Lie-Algebren formulieren.

Als Beispiel werden wir die Schrödinger-Gruppe S := H o SL(2), das semidirekte

Produkt von der reduktiven Gruppe SL(2) mit der Heisenberg-Gruppe H ⊆ SL(3),

und ihren Quotient S ∼= G2
a o SL(2) modulo des Zentrums studieren. Die Gruppe S

wurde bereits näher über dem Körper der komplexen Zahlen untersucht und entspringt

aus der Physik. Wir werden zeigen, dass die Gabriel-Köcher der Hopf-Algebren der

Frobeniuskerne von S und S stets zusammenhängend sind und uns reduzierte einhüllende

Algebren Uχ(s) der Lie-Algebra s von S näher ansehen.
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ABSTRACT

Abstract

Let G be a connected algebraic group over an algebraically closed field k. If char(k) = 0,

then there is a strong correspondence between representations of G and those of its

Lie algebra g. This changes dramatically in the situation char(k) = p > 0 of positive

characteristic. In this case, it turned out to be useful to approximate G by the ascending

sequence (Gr)r≥1 consisting of its so-called Frobenius kernels. Each Gr is an infinitesimal

group scheme, it is not uniquely determined by its group of k-rational points anymore;

in fact, the latter are trivial. Its representation theory is equivalent to that of the dual

Hopf algebra kGr := k[Gr]
∗ of its finite-dimensional coordinate ring k[Gr]. The Hopf

algebra kG1 is isomorphic to the restricted universal enveloping algebra U0(g) of g which

shows that the representation theory of G1 is equivalent to that of g as a restricted Lie

algebra. The representation theory of g itself can be approximated by studying the

family {Uχ(g) : χ ∈ g∗} of its reduced enveloping algebras.

Many results are known in case of reductive groups (see for instance [41, II]). In

general, every group G is an extension of a reductive group H by a unipotent group

U . If U is non-trivial, then the ’next best’ case is that this extension splits, which in

turn leads to a semidirect product G = U o H. Since the functor G 7→ Gr is left

exact, the rth Frobenius kernel of G is then the semidirect product Ur o Hr of the

Frobenius kernels of U and H. It is exactly this point of view on which this thesis

is build upon. Simple Gr-modules correspond to simple Hr-modules via the inflation

functor mod(Hr) → mod(Gr) defined by pullback along the projection Gr → Hr and

the principal indecomposable Gr-modules are induced by principal indecomposable Hr-

modules. We will also establish a formula for the Gabriel quiver of the Hopf algebra

kGr and analyze the behaviour of the inflation functor in terms of Auslander-Reiten

sequences. Furthermore, we will show that the stable Auslander-Reiten quiver of kGr

does not admit components of Euclidean type. We will formulate these results more

general for finite group schemes and certain reduced enveloping algebras of restricted

Lie algebras.

As a major example, we will consider the Schrödinger group S := H o SL(2), the

semidirect product of the reductive group SL(2) with the Heisenberg group H ⊆ SL(3),

along with its quotient S ∼= G2
a o SL(2) by the center. The group S has already been

considered over the field of complex numbers and is related to physics. We will show

that the Gabriel quivers of the Hopf algebras of the Frobenius kernels of S and S are all

connected and take a closer look at reduced enveloping algebras Uχ(s) of the restricted

Lie algebra s = Lie(S).
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1 OUTLINE AND NOTATION

1 Outline and Notation

We fix the following notation:

� The set of natural numbers N does not include 0. We put N0 := N ∪ {0}.

� Given n,m ∈ N0, we denote by δn,m =

{
1, n = m

0, n 6= m
the Kronecker delta.

� Throughout, k denotes a field of positive characteristic p > 0 with prime field Fp.
Sometimes k is assumed to be perfect or algebraically closed; we will make explicit

in the relevant sections, when we require these additional properties.

� Every vector space V is understood to be defined over the field k. Moreover, we

denote its dual space Homk(V, k) by V ∗.

� The word algebra means associative k-algebra with a unit element.

� If A is an algebra (G an affine group scheme), we denote by mod(A) (mod(G))

the category of finite-dimensional left A-modules (G-modules). The unit of A will

always act as the identity operator.

� Given a commutative ring R, we denote by CommR the category of commutative

R-algebras.

In chapter 2 we introduce everything which is needed to understand this thesis. This

also includes a proof of the fact that modules of a smash product A#H correspond

to coherent A-H-modules. Moreover, we sketch a proof of the fact that that the Hopf

algebra kG of a semidirect product G = N oH of finite group schemes is isomorphic to

the smash product kN#kH of the Hopf algebras of N and H, respectively.

The main result of chapter 3 is stated in 3.1.8: The presence of a (non-trivial) unipo-

tent normal subgroup N E G of some finite group scheme G over a perfect field k of

characteristic p ≥ 3 entails the non-existence of Euclidean components of the stable

Auslander-Reiten quiver Γs(G) of the finite-dimensional Hopf algebra kG = k[G]∗. The

proof uses a certain invariant of AR-components of Γs(G) introduced by Farnsteiner in

[23] which relies on the Noetherian topological space Π(G) defined by Friedlander and

Pevtsova in [29]. Afterwords, we will show that this invariant and others, analogous to

those defined in [23], are also valid in the context of reduced enveloping algebras Uχ(g) of

restricted Lie algebras g over algebraically closed fields. Here, the space Π(G) is replaced

by the nullcone V (g) := {x ∈ g : x[p] = 0} of g. We will then formulate 3.3.11, a version

of 3.1.8 in the abovementioned context. Finally, we finish the chapter by giving various
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1 OUTLINE AND NOTATION

applications of our theorem we just developed. In particular, we will see that trigonal-

izable finite group schemes do not admit components of Euclidean type, we will show

(with additional general theory) that the presence of the latter inside the AR-quiver of

a Frobenius kernel of a connected algebraic group G readily forces G being reductive of

a very special form. In addition, we will give an alternative proof of Okuyama’s theorem

[49] in case k is algebraically closed.

In chapter 4, we consider an extension G of H by N in the category of finite group

schemes. The results of section 4.1 are stated more generally, but mainly we are inter-

ested in the case where N is unipotent and G = N oH is a split extension. Here simple

G-modules are precisely the images of the simple H-module under the inflation functor,

which is the pullback along the projection G → H. We will show in 4.1.4 that principal

indecomposables of G are all induced by those of H. Moreover, we will show in 4.1.8 that

the Gabriel quiver of kG is shown to coincide with the generalized McKay quiver ΓV (H),

where V := H1(N , k)∗ is the dual of the first cohomology group of N with coefficients

in k. We will give a more concrete form of the H-module structure of V in case N is just

a vector group on which H acts linearly. Finally, we will show that the inflation functor

usually not sends almost split sequences to almost split sequences. In section 4.2 we

will consider the special case of infinitesimal group schemes of height ≤ 1, the restricted

Lie algebras. All of the results of section 4.1 will be stated more generally for reduced

enveloping algebras Uχ(g), where the defining linear form χ ∈ g∗ vanishes on n. In sec-

tion 4.3 we will develop a tool for finding simple modules of reduced enveloping algebras

Uχ(g), where g is again a certain extension of h by n (g = Lie(G), n = Lie(N ). Finally,

we will prove in section 4.4 a certain ’BGG reciprocity formula’ (similar to [41, 11.2/4])

for the category of (Va o G)rT -modules, where G is a reductive group with maximal

torus T and V a G-module with certain additional properties. The latter properties do

not seem too contrived, we will also give an example where these are satisfied.

In our last chapter, we wish to give an application of 4.1.8. As a testing ground,

we will consider in section 5.1 semidirect products of closed subgroups G ⊆ GL(2)

with the three-dimensional Heisenberg group H ⊆ SL(3) and show that the Gabriel

quivers of their Frobenius kernels coincide with those of the (Frobenius kernels of the)

group G2
a o G with G acting naturally on G2

a. We will then explicitly show in section

5.2 that the mentioned quivers are all connected in case G = SL(2). In section 5.3,

we will determine reduced enveloping algebras of the Lie algebras g, s of the groups

G := G2
a o GL(2),S := G2

a o SL(2) up to Morita equivalence, where the defining linear

form does not vanish on Lie(G2
a). This will also tell us that all Gabriel quivers of reduced

enveloping algebras of g and s will be connected, no matter how the defining linear form

looks like. In the final section 5.4 we then compute the Gabriel quivers explicitly in

the remaining cases for G = SL(2) and for G = GL(2), where, by way of example, the

defining linear form is entirely zero in the latter case.
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2 PRELIMINARIES

2 Preliminaries

2.1 Finite dimensional algebras

Throughout this section, vector spaces are understood to be finite-dimensional over k

if not otherwise mentioned. We briefly recall standard facts from the representation

theory of finite-dimensional k-algebras. These will be used frequently (and mostly)

without further reference in this thesis. The reader may consult [2] for more information.

Throughout, Λ denotes such an algebra.

Definition 2.1.1. A module (0) 6= M ∈mod(Λ) is called

� simple, provided (0),M are the only submodules of M .

� indecomposable, provided (0),M are the only direct summands of M .

Theorem 2.1.2. (Krull-Remak-Schmidt)

A module M =
⊕n

i=1 aiMi decomposes into multiples of pairwise non-isomorphic inde-

composable modules Mi. If
⊕m

i=1 biNi is another such decomposition, then m = n and

there is a permutation σ ∈ Sn such that Ni
∼= Mσ(i) and bi = aσ(i) for all i ∈ {1, . . . , n}.

In order to give a classification of mod(Λ), one therefore needs to determine all

indecomposable modules and and the morphisms between them. By work of Drozd [8]

and Crawley-Boevey [6], finite-dimensional algebras over algebraically closed fields may

be divided into three disjoint classes:

Definition 2.1.3. Let k be algebraically closed. The algebra Λ is called

� representation-finite, provided there exist only finitely many iso-classes of inde-

composable Λ-modules.

� tame, provided Λ is not representation-finite and given d > 0, there exist (Λ, k[X])-

bimodules Q1, . . . , Qm(d) that are finitely-generated free right k[X]-modules such

that all but finitely many d-dimensional indecomposable Λ-modules are of the form

Qi ⊗k[X] S for some simple k[X]-module S and i ∈ {1, . . . ,m(d)}.

� wild, provided there exists a full embedding mod(k〈x, y〉) ↪→ mod(Λ), where

k〈x, y〉 is the free algebra in two generators x, y.

In the wild case, the classification of mod(Λ) is a hopeless endeavour.

Definition 2.1.4. Two finite-dimensional algebras Λ and Γ are Morita-equivalent, pro-

vided there exists an equivalence mod(Λ) ∼= mod(Γ) of categories (with the defining

functor being additive).

3



2 PRELIMINARIES

Example 2.1.5. Let n ∈ N be a natural number, then the algebras Matn(Λ) and Λ are

Morita-equivalent. To see this, one may check that the functors F : mod(Matn(Λ)) →
mod(Λ), X 7→ E11.X and G : mod(Λ) → mod(Matn(Λ)), X 7→ Xn are mutually

inverse to each other (in the sense that their composites are naturally equivalent to the

relevant identities). Here E11 denotes the matrix with entry 1 at index (1, 1) and all

other entries zero. Note that Λ acts on E11.X via (ΛE11).X for all X ∈mod(Matn(Λ)).

Lemma 2.1.6. (Schur’s Lemma)

Let S, T ∈mod(Λ) be simple. Then HomΛ(S, T ) = (0) provided S � T and EndΛ(S) is

a division algebra over k. If k is algebraically closed, then EndΛ(S) = k · idS.

Definition 2.1.7. Let M be a Λ-module.

(i) A filtration of M is an ascending sequence (0) = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M of

submodules.

(ii) A composition series of M is a filtration (0) = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M such

that Mi/Mi−1 is simple for 1 ≤ i ≤ n.

Theorem 2.1.8. (Jordan-Hölder)

Let (0) = M0 ⊆M1 ⊆ · · · ⊆Mn = M be a composition series of some Λ-module M . Let

S ∈ mod(Λ) be simple. The numbers n and |{i ∈ {1, . . . , n} : Mi/Mi−1 ' S}| do not

depend on the choice of the composition series.

In view of the above theorem, the following definition makes sense.

Definition 2.1.9. Let (0) = M0 ⊆M1 ⊆ · · · ⊆Mn = M be a composition series of some

Λ-module M . Then n is called the length `(M) of M and [M : S] := |{i ∈ {1, . . . , n} :

Mi/Mi−1
∼= S}| the multiplicity of S in M .

An induction on the length shows:

Lemma 2.1.10. Let (0) = M0 ⊆M1 ⊆ · · · ⊆Mn = M be a filtration of some Λ-module

M . Then [M : S] =
∑n

i=1[Mi/Mi−1 : S] for all simple Λ-modules S.

Definition 2.1.11. Let M be a Λ-module.

(i) The radical, top and socle of M are defined as follows:

Rad(M) =
⋂

N⊆M maximal

N, Top(M) := M/Rad(M), Soc(M) =
∑

S⊆M simple

S

(ii) The free Λ-module Λ is also called the regular Λ-module and we call J(Λ) := Rad(Λ)

the Jacobson radical of Λ.

4



2 PRELIMINARIES

(iii) M is called semi-simple, provided M = Soc(M).

(iv) M is called local, provided Top(M) is simple.

(v) The algebra Λ is called semi-simple or local, provided the regular module has this

property.

(vi) M is called projective, provided the functor HomΛ(M,−) : mod(Λ)→ Abelian Groups

is exact.

(vii) M is called injective, provided the functor HomΛ(−,M) is exact.

The following characterizes the abovementioned properties.

Theorem 2.1.12. Let M be a Λ-module and denote by J := Rad(Λ) the Jacobson

radical of Λ.

(1) J E Λ is a two-sided ideal.

(2) We have Rad(M) = J.M .

(3) M is semi-simple if and only if Rad(M) = (0) if and only if there exist simple

submodules S1, . . . , Sn of M such that M = S1 ⊕ · · · ⊕ Sn.

(4) Λ is semi-simple if and only if every Λ-module is semi-simple if and only if J = (0).

(5) M is local if and only if M possesses a unique maximal submodule. In particular,

local modules are indecomposable.

(6) M is projective if and only if M is a direct summand of a free Λ-module.

(7) Let S ∈mod(Λ) be simple. Then [Top(M) : S] = dimk HomΛ(M,S)
dimk EndΛ(S)

.

Definition 2.1.13. Let M be a Λ-module. Put Rad0(M) = M and Radi(M) :=

Rad(Radi−1(M)) for all i ∈ N. The descending sequence (Radi(M))i∈N0 is called the

Loewy series of M . The minimal n such that Radn(M) = 0 is called the Loewy length

``(M) of M . We call M uniserial, provided the Loewy series is in fact a composition

series of M .

Definition 2.1.14. Let M be a Λ-module.

(i) A pair (P (M), εM) of a projective module P (M) and a surjective Λ-linear map

ε : P � M such that ker(εM) is superfluous, i.e., we have ker(εM) ⊆ Rad(P (M)),

is called a projective cover of M .

(ii) We put ΩΛ(M) := ker(εM) and call ΩΛ : mod(Λ) → mod(Λ) the Heller operator

of Λ (see also [36]).

5



2 PRELIMINARIES

(iii) A pair (IM , ιM) consisting of an injective Λ-module IM and an injection ιM : M ↪→
IM of Λ-modules is called an injective envelope of M provided im(ιM) ⊆ IM is

essential, i.e., it meets every non-zero submodule of IM .

We take for granted that projective covers and injective envelopes always exist in

mod(Λ) and that they are unique up to isomorphism.

Lemma 2.1.15. Let (P (M), εM) be a projective cover of M ∈mod(Λ) and P a projec-

tive Λ-module. Then we have P ∼= P (M) if and only if Top(P ) ∼= Top(M).

Definition 2.1.16. Let M ∈mod(Λ).

(i) A projective resolution (Pn, δn)n≥0 of M is an exact sequence

. . . −→ P1
δ1−→ P0

δ0−→M −→ 0

such that Pn is projective for all n ≥ 0. If (Pn, δn) is a projective cover of im(δn)

for all n ≥ 0, then (Pn, δn)n≥0 is called minimal.

(ii) An injective resolution (In, δn)n≥0 of M is an exact sequence

0 −→M
δ0

−→ I0 δ1

−→ I1 δ2

−→ I2 −→ . . .

such that In is injective for all n ≥ 0. If (I0, δ0) is an injective envelope of M and

(In, δ
n
) is an injective envelope of coker(δn−1) for all n ≥ 1 (here δ

n
: coker(δn−1) =

In−1/im(δn−1)→ In, x+ im(δn−1) 7→ δn(x)), then (In, δn)n≥0 is called minimal.

(iii) Let (Pn, δn)n≥0 be a minimal projective resolution of M , then the complexity

cxΛ(M) of M is defined as

cxΛ(M) := min{c ∈ N0 ∪ {∞} | ∃λ > 0 : ∀n ≥ 1 : dimk Pn ≤ λnc−1}

Remark 2.1.17. (a) The complexity cxΛ(M) of M can also be defined via a minimal

injective resolution.

(b) If (Pn, δn)n≥0 is a minimal projective resolution of M , then Ωn+1
Λ (M) ∼= ker(δn) for

all n ≥ 0.

The regular module Λ =
⊕n

i=1miPi decomposes into projective indecomposable mod-

ules (Pi � Pj for i 6= j). The modules Pi give rise to a complete list of representatives

for the isomorphism classes of projective indecomposable Λ-modules and therefore also

called principal indecomposable Λ-modules (short: PIM’s). Simple modules correspond

to the latter:

6



2 PRELIMINARIES

Lemma 2.1.18. Let P1, . . . , Pn and m1, . . . ,mn be as above.

(1) Pi is a local module for 1 ≤ i ≤ n.

(2) Si := Pi/Rad(Pi) for 1 ≤ i ≤ n is a full set of representatives for the iso-classes of

simple Λ-modules.

(3) We have mi = dimk Si
dimk EndΛ(Si)

.

(4) We have [M : Si] = dimk HomΛ(Pi,M)
dimk EndΛ(Si)

for all M ∈mod(Λ) and all 1 ≤ i ≤ n.

Definition 2.1.19. Let P1, . . . , Pn and m1, . . . ,mn be as above. Then Λ is called basic,

provided mi = dimk Si
dimk EndΛ(Si)

= 1 for all 1 ≤ i ≤ n.

Remark 2.1.20. Two basic algebras Λ and Γ are Morita-equivalent if and only if Λ ∼= Γ.

There exists a unique decomposition Λ =
⊕m

i=1 Bi into two-sided indecomposable

ideals Bi E Λ, the block decomposition of Λ. Given i ∈ {1, . . . ,m}, there exists a central

primitive idempotent ei ∈ C(Λ) (the center of Λ) such that Bi = Λei. Each Bi is itself

a finite-dimensional k-algebra with identity ei. Given an indecomposable Λ-module M ,

there exists exactly one i ∈ {1, . . . ,m} such that ei.M 6= (0) and we say that M belongs

to the block Bi. The category mod(Λ) decomposes into the direct sum of the categories

mod(Bi).

Given M,N ∈ mod(Λ) and n ∈ N0, we let ExtnΛ(M,N) denote the nth extension

group of M by N . By definition, it coincides with the nth cohomology group of the

complex HomΛ(M,EN) where EN is a ’deleted’ injective resolution of N (one simply

cuts of the morphism originating in N in an injective resolution E of N , see also [59, Def.

2.52]). It can also be defined as the nth cohomology group of the complex HomΛ(PM , N),

where PM is a ’deleted’ projective resolution of M (see [59, Theorem 2.7.6]). We have

Ext0
Λ(M,N) ∼= HomΛ(M,N) and Ext1

Λ(M,N) can be identified with equivalence-classes

of extensions of M by N , where the latter are by definition exact sequences 0 → N →
E →M → 0 (see [59, Theorem 3.4.3]).

Definition 2.1.21. Let S(Λ) be a full set of representatives for the iso-classes of sim-

ple Λ-modules. The Gabriel quiver QΛ of Λ has S(Λ) as vertex set and there are

dimk Ext1
Λ(S, T ) arrows [S] → [T ]. We say that Λ is connected, provided the under-

lying graph of QΛ enjoys this property.

The connected components of QΛ correspond to blocks of Λ:

Lemma 2.1.22. Λ is connected if and only if Λ has exactly one block.

The following type of algebras is very important.

7



2 PRELIMINARIES

Definition 2.1.23. Let Q = (Q0, Q1) be a quiver, i.e., a directed graph with set of

vertices Q0 and set of arrows Q1.

(i) We denote by kQ the vector space with basis the set of all paths in Q; here we

also interpret vertices e ∈ Q0 as paths of length zero. Given two paths p, q with

starting points s(p), s(q) and endpoints t(s), t(p), we define their product pq to be

the concatenation if t(q) = s(p) and zero otherwise. Extending this multiplication

linearly to all of kQ, one obtains an associative algebra with identity element

1 :=
∑

e∈Q0
e, the path algebra kQ relative to Q.

(ii) If kQ is as above, we denote by kQ≥n the subspace generated by all paths of length

≥ n for all n ∈ N0.

Remark 2.1.24. kQ is finite-dimensional if and only if Q0, Q1 are finite and Q does

not contain an oriented circle. If kQ is finite-dimensional, then it is a basic algebra.

Moreover, its Jacobson radical is given by kQ≥1 and {kQe : e ∈ Q0} is a complete set

of principal indecomposable modules.

It turns out that, over an algebraically closed field, every algebra can be described by

some (quotient of a) path algebra. More precisely:

Theorem 2.1.25. Let k be algebraically closed and P1, . . . , Pn be a complete set of

principal indecomposable Λ-modules. Put P :=
⊕n

i=1 Pi ∈ mod(Λ) and consider the

algebra B := EndΛ(P )op.

(1) B is a basic algebra.

(2) The algebras Λ and B are Morita-equivalent.

(3) Denote by Q the Gabriel quiver of Λ and let n := ``(Λ). Then there exists an ideal

I E k[Q] of the path algebra k[Q] relative to Q such that k[Q]≥n ⊆ I ⊆ k[Q]≥2 and

B ∼= k[QΛ]/I.

Remark 2.1.26. Part (2) is due to K. Morita, while (3) is due to P. Gabriel. In view

of 2.1.20, any other basic algebra B′, which is Morita equivant to Λ, is isomorphic to B.

We call B the basic algebra of Λ.

Homomorphisms between algebras induce certain exact functors between their module

categories.

Definition 2.1.27. Let ϕ : Γ→ Λ be a homomorphism of algebras and N a Λ-module.

(i) N obtains the structure of a Γ-module via a.n := ϕ(a).n ∀ a ∈ Γ, n ∈ N . The

corresponding Γ-module is denoted ϕ∗(N). In this way, we obtain an exact functor

ϕ∗ : mod(Λ)→mod(Γ), the pullback along ϕ.

8
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(ii) If Γ ⊆ Λ is a subalgebra and ϕ is the inclusion Γ ↪→ Λ, we put ResΛ
Γ := ResΓ := ϕ∗

and call this functor the restriction to Γ.

(iii) If Γ = Λ and ϕ is bijective, we put Nϕ := (ϕ−1)∗(N) and call this module the twist

of N by ϕ.

In view of (iii) from above, the automorphism group Aut(Λ) of Λ acts on the category

mod(Λ) by auto-equivalences. In particular, twisting will commute with the Heller

operator, takes projectives to projectives, simples to simples, and indecomposables to

indecomposables.

Lemma 2.1.28. Let ϕ : Γ→ Λ be a homomorphism of algebras with kernel I := ker(ϕ).

(1) If ψ : Λ→ Υ is another homomorphism, then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

(2) If ϕ is surjective, then ϕ∗ induces an equivalence mod(Λ) −→ modI(Γ), where

modI(Γ) denotes the full subcategory of mod(Γ) consisting of all M ∈ mod(Γ)

such that I.M = (0).

There are two important constructions which enable us to construct modules in a

natural way out of modules of subalgebras.

Lemma 2.1.29. Let Γ ⊆ Λ be a subalgebra and N a Γ-module.

(1) The vector space Λ⊗Γ N obtains the structure of a Λ-module via

a.(b⊗ n) := ab⊗ n, ∀a, b ∈ Λ, n ∈ N

The module is denoted IndΛ
Γ(N) and called an induced module. In this way, we

obtain a functor IndΛ
Γ(−) : mod(Γ)→mod(Λ), the induction functor.

(2) There is a natural equivalence HomΛ(IndΛ
Γ(N),−) ∼= HomΓ(N,−)◦ResΓ of functors.

For any M ∈ mod(Λ), this assignment is defined via ϕ 7→ (n 7→ ϕ(1 ⊗ n)) for all

ϕ ∈ HomΛ(IndΛ
Γ(N),M) (Frobenius reciprocity or Adjoint Isomorphism

Theorem). In particular, induction takes projectives to projectives.

(3) The vector space HomΓ(Λ, N) obtains the structure of a Λ-module via

(a.ϕ)(b) = ϕ(ba) ∀a, b ∈ Λ, ϕ ∈ HomΓ(Λ, N).

The module is denoted CoindΛ
Γ(N) and called a coinduced module. In this way,

we obtain a functor CoindΛ
Γ(−) : mod(Γ)→mod(Λ), the coinduction functor.

(4) There is a natural equivalence HomΛ(−,CoindΛ
Γ(N)) ∼= HomΓ(−, N) ◦ResΓ of func-

tors. For any M ∈mod(Λ), this assignment is defined via ϕ 7→ (m 7→ ϕ(m)(1)) for

all ϕ ∈ HomΛ(M,CoindΛ
Γ(N)) (Frobenius reciprocity II). In particular, coin-

duction takes injectives to injectives.

9
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Lemma 2.1.30. Let Λ and Γ be algebras and denote by ∆ := Λ⊗kΓ their tensor product.

(1) Let M be a Λ-module, N a Γ-module. Then the vector space M ⊗k N obtains the

structure of a ∆-module via

(λ⊗ γ).(m⊗ n) := λ.m⊗ γ.n, ∀m ∈M,n ∈ N, λ ∈ Λ, γ ∈ Γ

(2) Let S1, . . . , Sn and T1, . . . , Tm be complete sets of representatives for the iso-classes

of simple Λ and Γ-modules, respectively. Then {Si ⊗k Tj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is

a complete set of representatives for the iso-classes of simple ∆-modules.

Proof. (1) Follows from the universal property of ∆ (the actions of Λ and Γ on M ⊗kN
clearly commute).

(2) See [7, Section 10.E].

An important class of algebras is the following.

Definition 2.1.31. An algebra Λ is called self-injective, provided the regular module is

injective.

Theorem 2.1.32. Let Λ be self-injective and M a Λ-module.

(1) M is injective if and only if M is projective.

(2) The Nakayama functor NΛ : mod(Λ) → mod(Λ), M 7→ HomΛ(M,Λ)∗ per-

mutes the simple Λ-modules. We have S ∼= NΛ(Soc(P (S))) for every simple Λ-

modules S.

(3) The Heller operator ΩΛ induces a bijection ind(Λ)pf → ind(Λ)pf on the set ind(Λ)pf

of iso-classes of non-projective indecomposable Λ-modules. The inverse of this as-

signment is given by ind(Λ)pf → ind(Λ)pf , [M ] 7→ coker(ιM), where (IM , ιM) is an

injective hull of M .

Lemma 2.1.33. Let Λ be self-injective and M ∈ mod(Λ) projective free (no non-zero

projective direct summands). Then ExtnΛ(M,S) ∼= HomΛ(Ωn(M), S) for all n ∈ N0 amd

every simple Λ-module S. In particular, we have

Ext1
Λ(S, T ) ∼= HomΛ(Rad(P (S))/Rad2(P (S)), T )

for all simple modules S, T .

10
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We now introduce the following class of self-injective algebras. All algebras, that play

a role in this thesis, are of this kind.

Definition 2.1.34. An algebra Λ is called Frobenius (symmetric), provided there exists

a non-degenerate, bilinear (symmetric) form (·, ·) : Λ×Λ→ k, which is associative, i.e.,

we have (ab, c) = (a, bc) ∀ a, b, c ∈ Λ.

Let Λ be Frobenius. The departure from symmetry is measured by the Nakayama

automorphism µ : Λ → Λ, which is given by (b, a) = (µ(a), b) ∀ a, b ∈ Λ. By [50,

Satz 1], passage to another non-degenerate, associative form changes the Nakayama

automorphism by an inner automorphism (conjugation by a unit c ∈ Λ×). As twisting

by inner automorphisms reproduces modules (in the sense that a twist results in an

isomorphic module), all Nakayama automorphisms act on mod(Λ) in the same fashion.

For this reason, one speaks of ’the’ Nakayama automorphism of Λ.

Remark 2.1.35. Let Λ be Frobenius.

(1) Some authors define a Nakayama automorphism ν via (b, a) = (a, ν(b)). Then we

have ν = µ−1.

(2) The map a 7→ (·, a) is an isomorphism Λ ∼= Λ∗ of Λ-modules, where Λ∗ is the dual

relative to the right regular representation of Λ. In particular, Λ is self-injective.

Example 2.1.36. The following are examples of Frobenius algebras.

(1) Let G be a finite group. Then the form (below we only describe its values on basis

vectors)

kG× kG→ k, (g, h) 7→ δgh,e

renders kG a symmetric algebra.

(2) Let n ∈ N, consider the truncated polynomial ring Λn := k[X]/(Xn) along with its

canonical basis {1, X + (Xn), . . . , Xn−1 + (Xn)}. Then the form

Λn × Λn → k, (X i + (Xn), Xj + (Xn)) 7→ δn−1,i+j

renders Λn a symmetric algebra.

(3) Let n ∈ N, then Λ := Matn(k) is a symmetric algebra with corresponding form

(x, y) 7→ tr(xy) for all x, y ∈ Λ. Here tr(x) = x11 + · · · + xnn is the trace of

x = (xij) ∈ Matn(k).

(4) Let g be a finite-dimensional restricted Lie algebra (soon more details on that) and

χ ∈ g∗ a linear form. Then [25, V.4.3] shows that the reduced enveloping algebra

Uχ(g) is a Frobenius algebra. Since J. Schue’s computation in [54, Lemma 3] remains

11
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true for arbitrary linear forms, the Nakayama automorphism µ : Uχ(g) → Uχ(g) is

uniquely determined by µ(x) = x+ tr(ad(x)) for all x ∈ g.

(5) We will later see in 2.3.9, that every finite-dimensional Hopf algebra is Frobenius.

One should note that associative forms of an arbitrary algebra Λ correspond to linear

forms λ ∈ Λ∗. Each such λ is mapped to the form (·, ·)λ : Λ × Λ → k, (x, y) 7→ λ(xy).

For instance, the corresponding linear forms in 2.1.36 (1),(2),(3) are the elements e∗ :

kG→ k, g 7→ δg,e, (Xn−1 + (Xn))∗ : Λn → k, X i + (Xn) 7→ δi,n−1 and tr : Matn(k)→ k,

respectively.

In the following, all material we need is covered in 1.

Definition 2.1.37. A finite-dimensional algebra Λ is called a Nakayama algebra, pro-

vided all projective and injective indecomposable modules are uniserial (that is, their

Loewy series is a composition series).

Lemma 2.1.38. Let Λ be a Nakayama algebra, M an indecomposable Λ-module. Then

there is a principal indecomposable module P and 1 ≤ t ≤ ``(P ), such that M ∼=
P/Radt(P ). In particular, M is uniserial and Λ is representation-finite.

Lemma 2.1.39. Let Λ be a connected Nakayama algebra of Loewy length ``(Λ) = m

and with exactly n simple modules up to isomorphism. Then Λ is self-injective if and

only if Λ is Morita-equivalent to the bound quiver algebra kÃn,0/(kÃn,0)≥m, here Ãn,0
denotes the circle with n vertices (see also p.14 for a more general definition).

Easiest examples of Nakayama algebras are truncated polynomial rings Λn := k[X]/(Xn)

for n ∈ N. The algebra Λn is a local symmetric algebra with unique maximal ideal

(X + (Xn)) E Λn. There is a bijection between Λn-modules and pairs (V, f) consisting

of a finite-dimensional vector space V and a linear map f : V → V such that fn = 0.

The theory of Jordan canonical forms of nilpotent endomorphisms then shows that the

modules

[i] := Λn/(X
i + (Xn)) ∀ 1 ≤ i ≤ n

give rise to a complete list of indecomposable Λn-modules up to isomorphism. Here

k = [1] is the trivial module and [n] = Λn is the regular module. Given a Λn-module V ,

one just has to determine the Jordan decomposition of the nilpotent operator

lX+(Xn) : V → V, v 7→ (X + (Xn)).v,

each Jordan block of size k corresponds to one summand of type [k] in the Krull-Remak-

Schmidt decomposition of V .

1https://www.math.uni-bielefeld.de/ sek/select/Nakayama-alg1.pdf
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Lemma 2.1.40. Let n ∈ N and put Λn := k[X]/(Xn).

(1) We have Ω([i]) ∼= [n− i] for all 1 ≤ i ≤ n− 1.

(2) We have ExtmΛn(k, k) ∼= k for all m ≥ 1.

Proof. (1) Let i ∈ {1, . . . , n}. Clearly, Λn → [i] is a projective cover of [i]. It follows

easily from the definition (see the above discussion), that the kernel (X i+(Xn))EΛn

is isomorphic to [n− i].

(2) We have ExtmΛn(k, k) ∼= HomΛn(Ωm(k), k) (see Lemma 2.1.33). By (1), Ωm(k) is

isomorphic to k if m is even and isomorphic to the local Λn-module [n−1] otherwise.

The assertion follows.

2.2 Auslander-Reiten theory

Let Λ be a finite-dimensional self-injective algebra. We denote by Γs(Λ) the (valued)

stable Auslander-Reiten quiver of Λ. The vertices are given by the iso-classes of non-

projective indecomposable modules and there is an arrow [M ]→ [N ] if and only if there

is an irreducible map f : M → N , that is,

(i) f is neither a split epimorphism nor a split monomorphism.

(ii) If f can be written as g◦h, then h is a split monomorphism or g a split epimorphism.

The quiver Γs(Λ) is equipped with a certain automorphism, the Auslander-Reiten trans-

lation τ = τΛ which is given by Ω2
Λ ◦ NΛ, where Ω = ΩΛ and N = NΛ denote the Heller

operator and the Nakayama functor of Λ, respectively. If Λ is Frobenius with Nakayama

automorphism µ, then the functor N is equivalent to (−)µ
−1

, the twist by µ−1 (see 2 for

instance). If M is a non-projective indecomposable Λ-module, we will denote by

EM : 0 −→ τΛ(M) −→ EM
πM−→M −→ 0

the unique (up to isomorphism) Auslander-Reiten sequence terminating in M ; by defini-

tion, EM does not split and every morphism Y →M , which is not a split epimorphism,

factors through πM (see also [2, V.1.14]). If X → M is an arrow and k is algebraically

closed, then it carries the valuation (m,m) if and only if X occurs in EM with multiplicity

m (see [2, V.1.3]).

Given a quiver Q = (Q0, Q1) with no multiple arrows and loops, where Q0 is the set

of vertices and Q1 ⊆ Q0 × Q0 the set of arrows, respectively, we let Z[Q] be the stable

2https://www.math.uni-bielefeld.de/ sek/select/rf2.pdf
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translation quiver with vertex set Z×Q0 and arrows

(n, s)→ (n, t) (n, t)→ (n+ 1, s)

for every arrow s → t in Q and all n ∈ Z. The translation τ is given by τ(n, x) =

(n − 1, x) for all n ∈ Z, x ∈ Q0. According to Riedtmann’s structure theorem (cf. [52,

Struktursatz]), every connected component Θ ⊆ Γs(Λ) is isomorphic to Z[TΘ]/Π, where

Π ⊆ Aut(Z[TΘ]) is an admissible subgroup and TΘ is a directed tree. The undirected

tree TΘ is uniquely determined by Θ and called the tree class of Θ.

Given (p, q) ∈ N2
0 \ {(1, 1), (0, 0)}, we let Ãp,q denote the quiver, whose underlying

graph is the circle with p + q vertices and with exactly p consecutive arrows being

clockwise oriented and the remaining q arrows being counterclockwise oriented.

Lemma 2.2.1. Let (p, q) ∈ N2
0 \{(1, 1), (0, 0)}, then the stable translation quiver Z[Ãp,q]

is isomorphic to Z[Q]/〈αp,q〉, where Q is the quiver with underlying graph A∞∞ and re-

peated orientation

· · · − (p+ q) −→ . . . −→ −q ←− . . .←− 0 −→ 1 −→ . . . −→ p←− . . .←− p+ 1 . . . ,

and αp,q ⊆ Aut(Z[Q]) is induced by the automorphism Q→ Q, x 7→ x+ (p+ q) given by

translation by p+ q. In particular, the tree class of Z[Ãp,q] is A∞∞.

Definition 2.2.2. Let Λ be self-injective. A component Θ ⊆ Γs(Λ) is called

� of Euclidean type provided its tree class is a Euclidean diagram (see [58, p.98]) or

Θ ∼= Z[Ãp,q] for (p, q) ∈ N2
0 \ {(1, 1), (0, 0)}.

� regular, provided the middle-terms of the almost split sequences terminating in the

vertices of Θ have no non-zero projective summands.

If Θ ⊆ Γs(Λ) is not regular, there is a non-simple principal indecomposable module P

such that Θ contains the standard almost split sequence

EP/Soc(P ) : 0 −→ Rad(P ) −→ P ⊕ (Rad(P )/Soc(P )) −→ P/Soc(P ) −→ 0

involving P . If M ∈ Γs(Λ) such that P |EM (P is a direct summand of EM), then

EM ∼= EP/Soc(P ) are isomorphic Auslander-Reiten sequences (see [2, V.5.5]). We record

the following well-known result.

Lemma 2.2.3. Let Λ be self-injective. If Θ ⊆ Γs(Λ) is of Euclidean type, then Θ is not

regular.
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Proof. Assume that Θ ∼= Z[TΘ]/Π is regular. Then the length-function Θ → N, M 7→
`(M) is positive, additive, of bounded growth and unbounded (cf. [4, p.153-154]). Com-

position with the projection Z[TΘ]→ Θ then yields a positive, additive and unbounded

function on Z[TΘ]. By assumption, TΘ is either a Euclidean tree or TΘ = A∞∞ and

Π 6= {1}. In the former case, [58, Corollary 2.4] yields a contradiction and in the latter

one, [4, Proposition p. 155] does the same. Thus, Θ is not regular.

For the following fact, we refer to [2, X.1.3] for more details (Ω defines a stable auto-

equivalence of the category mod(Λ)).

Lemma 2.2.4. Let Λ be self-injective, Θ ⊆ Γs(Λ) be a component. Then Ω(Θ) is

another component, which is isomorphic to Θ.

Definition 2.2.5. Let Λ be a finite-dimensional self-injective algebra. A Λ-module

M is called Ω-periodic (τ -periodic), provided there is n ∈ N such that Ωn
Λ(M) ∼= M

(τnΛ(M) ∼= M).

If Λ is Frobenius and the Nakayama automorphism µ has finite order (which will be

the case for the algebras we are interested in), the notions of periodicity relative to τ

and Ω obviously coincide and one just speaks of ’periodic modules’.

In [44], a generalization of Webb’s theorem [58, Theorem A] has been proven for

self-injective algebras over algebraically closed fields:

Theorem 2.2.6. Let Λ be a finite-dimensional self-injective algebra over an algebraically

closed field. If Θ ⊆ Γs(Λ) is a component of the stable Auslander Reiten quiver, such

that

(a) Every [M ] ∈ Θ has finite complexity.

(b) Every [M ] ∈ Θ is not τ -periodic.

Then Θ ∼= Z[T ], where T ∈ {A∞, D∞, A∞∞, Ã12, Ãp,q ((p, q) 6= (1, 1), (0, 0)), D̃n (n ≥
4), Ẽr (6 ≤ r ≤ 8)} (see again [58] for a definition of the latter trees).

Definition 2.2.7. Let Θ be a component of the stable Auslander-Reiten quiver of a

finite-dimensional self-injective algebra Λ. Let M ∈ Θ be a vertex.

(1) M is located at the end of Θ, provided M has exactly one predecessor in Θ.

(2) If TΘ = A∞, then there exists a unique path from the end of Θ towards M . The

number of vertices on that path is referred to as the quasi-length ql(M) of M . We

call M quasi-simple, provided ql(M) = 1 (equivalently, M is located at an end of

Θ).
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2.3 Hopf algebras and smash products

Given an algebra A, an A-module M and linear maps ϕ : V → A,ψ : W →M for some

vector spaces V,W , we denote by

ϕ⊗̂ψ : V ⊗k W →M, v ⊗ w 7→ ϕ(v).ψ(w)

the k-linear map given by composition of the usual tensor product ϕ⊗ψ and the structure

map A ⊗k M → M of the A-module M . Recall that an algebra A is given by a linear

map mA : A ⊗k A → A (associative multiplication) and a homomorphism ηA : k →
A, α 7→ α.1A of k-algebras (unit). There is a dual concept to that and also one which

combines both:

Definition 2.3.1. Let H be a vector space over the field k.

(i) H is called a k-coalgebra provided there are linear maps ∆ : H → H ⊗kH (comul-

tiplication) and ε : H → k (counit) such that the following identities hold

(∆⊗ idH) ◦∆ = (idH ⊗∆) ◦∆ (1)

idH⊗̂ε = idH = ε⊗̂idH (2)

(ii) If H is both, a k-algebra and a k-coalgebra such that one of the following two

(equivalent) conditions

� ∆H and εH are homomorphisms of k-algebras.

� mH and ηH are homomorphisms of k-coalgebras.

holds, then H is called a bialgebra.

(iii) A bialgebra H is called a Hopf algebra provided there is a k-linear map S : H → H

(usually called antipode) such that

(S⊗̂idH) ◦∆ = ε.1 = (idH⊗̂S) ◦∆ (3)

Remark 2.3.2. Expressions like idH⊗̂ε fit into the situation explained above: We con-

sider H as a k-module.

We will use the Sweedler notation for coproducts and their iterates:

∆(h) =
∑
(h)

h(1)⊗ h(2), ((∆⊗ idH) ◦∆)(h) =
∑
(h)

h(1)⊗ h(2)⊗ h(3) = ((idH ⊗∆) ◦∆)(h).
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Identities (2) and (3) then read as follows:∑
(h)

h(1)ε(h(2)) = h =
∑
(h)

ε(h(1))h(2),
∑
(h)

S(h(1))h(2) = ε(h).1 =
∑
(h)

h(1)S(h(2))

The Hopf algebras we are interested in, shall all have the following property:

Definition 2.3.3. A coalgebra H is called cocommutative provided τH ◦ ∆H = ∆H .

Here we denote, for any vector space V , by τV : V ⊗k V → V ⊗k V, v ⊗ w 7→ w ⊗ v the

flip.

Let H be a Hopf algebra over k and M,N be H-modules. One advantage of a Hopf

algebra is, that there are two additional module constructions available. The vector

spaces M ⊗k N and Homk(M,N) obtain the structure of H-modules via

h.m⊗ n =
∑
(h)

h(1).m⊗ h(2).n (h.ϕ)(m) =
∑
(h)

h(1).ϕ(S(h(2)).m)

Lemma 2.3.4. Let M,N be finite-dimensional H-modules. Then the standard k-linear

isomorphism M∗ ⊗k N ∼= Homk(M,N), ϕ ⊗ n 7→ (m 7→ ϕ(m).n) is an isomorphism of

H-modules.

As ε : H → k is an algebra homomorphism, the ground field k is an H-module, the

action given by h.1 := ε(h).1. The resulting module is often called trivial module, we will

also denote it by k. If M is an H-module, then (2) implies that the standard k-linear

isomorphism M⊗kk ∼= M,m⊗α 7→ α.m is H-linear. Given n ∈ N0, we can also consider

the cohomology groups

Hn(H,M) := ExtnH(k,M)

of the augmented algebra (H, ε). Let P be another H-module. We know from standard

(bi)linear algebra that there is a natural equivalence Homk(P ⊗kM,−) ∼= Homk(P,−) ◦
Homk(M,−) of functors (of type mod(H)→mod(k)) which amounts to thinking about

a bilinear map P ×M → N as a family of linear maps M → N indexed by elements of

P . A direct computation shows that this induces an equivalence HomH(P ⊗k M,−) ∼=
HomH(P,−) ◦ Homk(M,−). Since Homk(M,−) is an exact functor, this implies that

HomH(P ⊗k M,−) enjoys this property if HomH(P,−) does. We have proven the first

part of the following lemma:

Lemma 2.3.5. Let H be a finite-dimensional Hopf algebra and M,N ∈mod(H).

(1) If P ∈mod(H) is projective, so is P ⊗k M .

(2) There are natural isomorphisms Hn(H,Homk(M,N)) ∼= ExtnH(M,N) for all n ∈ N0.

Proof.
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(2) Let P be a projective resolution of the trivial H-module k. By (1) and the exactness

of ⊗k, we get that P ⊗k M is a projective resolution of k ⊗k M ∼= M . In view of our

remarks above, the two complexes HomH(Pk ⊗k M,N) ∼= HomH(Pk,Homk(M,N)) are

isomorphic. Hence there result isomorphisms in cohomology.

Remark 2.3.6. The Lemma is still valid if the modules or even the Hopf algebra is

infinite-dimensional.

We define H† := ker(ε), the augmentation ideal of H. When H is finite-dimensional,

the block B0(H) to which the trivial module k belongs is called the principal block of H.

Let ϕ, ψ : H → Λ be two linear maps whose codomain is some k-algebra Λ. Then we

define their convolution ϕ ∗ ψ : H → Λ via

(ϕ ∗ ψ)(h) =
∑
(h)

ϕ(h(1))ψ(h(2)) ∀h ∈ H

Recall that the Hopf algebra H is determined by structure maps

η : k → H (unit), m : H ⊗k H → H (multiplication), ε : H → k (counit)

∆ : H → H ⊗k H (comultiplication) S : H → H (antipode),

which have to fulfill laws that can be expressed in commutative diagrams. Let H be

finite-dimensional. Dualizing all these structure maps, we obtain after the usual identi-

fications k∗ → k, ϕ 7→ ϕ(1), H∗ ⊗k H∗ → (H ⊗k H)∗, ϕ ⊗ ψ 7→ (h ⊗ k 7→ ϕ(h).ψ(k))

linear maps

η∗ : H∗ → k, m∗ : H∗ → H∗ ⊗k H∗, ε∗ : k → H∗

∆∗ : H∗ ⊗k H∗ → H∗, S∗ : H∗ → H∗

Dualization of the abovementioned diagrams then shows that H∗ = Homk(H, k) also

obtains the structure of a finite-dimensional Hopf algebra with multiplication ∆∗, unit

ε∗, comultiplication m∗ =: ∆′, counit η∗ and antipode S∗. The multiplication coincides

with the convolution product ∗; the identity element of the algebra H∗ is given by the

counit ε : H → k of H. Explicitly, we have

(ϕ ∗ ψ)(h) =
∑
(h)

ϕ(h(1))ψ(h(2)) ∀ h ∈ H,

∆′(ϕ) =
∑
(ϕ)

ϕ(1) ⊗ ϕ(2) ⇐⇒ ϕ(ab) =
∑
(ϕ)

ϕ(1)(a)ϕ(2)(b) ∀a, b ∈ H.

Remark 2.3.7. Let H be a Hopf algebra.
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(1) Even if H is infinite-dimensional, the dual space H∗ still becomes a k-algebra with

multiplication given by convolution.

(2) As the dual of the flip is given by τ ∗H = τH∗ , we see that H∗ is commutative (cocom-

mutative) if and only if H is cocommutative (commutative).

Definition 2.3.8. Let H be a Hopf algebra, then the space
∫
H

:= {x ∈ H | ∀h ∈ H :

hx = ε(h)x} is called the space of left integrals of H.

Part (1) of the following has been proven by Sweedler [56], part (2) can be found in

[27, Lemma 1.5].

Theorem 2.3.9. Let H be a finite-dimensional Hopf algebra.

(1) We have dimk

∫
H

= 1. In particular, there exists an algebra homomorphism ζ :

H → k such that xh = ζ(h)x for all h ∈ H, x ∈
∫
H

. We call ζ the left modular

function of H.

(2) H is a Frobenius algebra with Nakayama automorphism (of finite order) given by

µ := S−2 ◦ (idH ∗ ζ).

Until the end of this section, we fix a Hopf algebra H.

Definition 2.3.10. (i) A k-algebra (coalgebra, bialgebra) A, which is an H-module

such that the multiplication mA : A ⊗k A → A and the unit ηA : k → A (co-

multiplication and counit, (co)multiplication and (co)unit) are homomorphisms of

H-modules is referred to as an H-module algebra (coalgebra, bialgebra).

(ii) If B is another H-module algebra (coalgebra, bialgebra), then AlgH(A,B) denotes

the set of all morphisms of H-module algebras (coalgebras, bialgebras). By defini-

tion, it consists of H-linear algebra (coalgebra, bialgebra)-homomorphisms.

Let A be a k-algebra. By [47, Proposition 2.5 (a)], every algebra homomorphism

f : H → A turns A into an H-module algebra with operation given by

h.a =
∑
(h)

f(h(1)) · a · f(S(h(2))).

The corresponding H-module algebra is denoted by Af and we will call the corresponding

action adjoint action of H on A with respect to f . In particular, taking f = idH , we see

that H itself is an H-module algebra, the adjoint representation of H.

Some details of the following fact can be found in [45, p.50 below], [47, 2.9].
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Theorem 2.3.11. Let A be an H-module algebra. Then the vector space A⊗kH obtains

the structure of a k-algebra with multiplication determined by

(a⊗ h) ∗ (b⊗ h′) =
∑
(h)

a(h(1).b)⊗ h(2).h
′

and identity element 1⊗ 1. The corresponding algebra is called the smash product of

A and H.

The smash product will be denoted by A#H and one writes a#h for a ⊗ h. There

are injective algebra homomorphisms

ιA : A ↪→ A#H, a 7→ a#1, ιH : H ↪→ A#H, h 7→ 1#h

and a direct computation reveals that ιA ∈ AlgH(A, (A#H)ιH ).

We proceed by proving a universal property of the smash product.

Lemma 2.3.12. Let A be an H-module algebra. If B is any k-algebra with maps g ∈
Alg(H,B) and f ∈ AlgH(A,Bg), then there exists a unique map f#g ∈ Alg(A#H,B)

such that f = (f#g) ◦ ιA and g = (f#g) ◦ ιH .

Proof. Using the universal property of the tensor product, we obtain a linear map defined

through

f#g : A#H → B, a#h 7→ f(a)g(h)

which clearly has the required properties. To check that this map is an algebra homo-

morphism, we only need to consider products of simple tensors. We have

(f#g)((a#h) ∗ (b#k)) =
∑
(h)

f(a)f(h(1).b)g(h(2))g(k)

= f(a)

∑
(h)

g(h(1))f(b)g(S(h(2)))g(h(3))

 g(k) as f ∈ AlgH(A,Bg)

= f(a)

∑
(h)

g(h(1))ε(h(2))f(b)

 g(k) as g ∈ Alg(H,B), (3)

= f(a)g(h)f(b)g(k) = (f#g)(a#h)(f#g)(b#k) by (2)

Uniqueness: Let ϕ be another algebra homomorphisms satisfying the two mentioned

conditions. Then

ϕ(a#h) = ϕ((a#1) ∗ (1#h)) = ϕ(a#1)ϕ(1#h) = f(a)g(h) = (f#g)(a#h)

Hence ϕ = f#g.
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Definition 2.3.13. Let A be an H-module algebra and let M be an H-module and an

A-module. If the structure map A ⊗M → M is a homomorphism of H-modules, then

M is called a coherent A-H-module.

We define the category cohmod(A,H) as follows:

� The objects are the coherent A-H-modules.

� We put Homcohmod(A,H)(M,N) := HomA(M,N) ∩ HomH(M,N) for given M,N ∈
cohmod(A,H).

The universal property tells us exactly, which conditions a vector space M needs to be

a module for the smash product A#H. We shall see below, that this is the one we just

defined.

Theorem 2.3.14. Let A be an H-module algebra.

(1) If M is a coherent A-H-module, then M obtains the structure of an A#H-module,

denoted F (M), via (a#h).m := a.(h.m).

(2) If M is an (A#H)-module, then M obtains the structure of a coherent A-H module,

denoted G(M), via a.m := (a#1).m and h.m := (1#h).m.

(3) The functors F : cohmod(A,H)→mod(A#H) and G : mod(A#H)→ cohmod(A,H),

defined as above, are inverse to each other. In particular, the categories mod(A#H)

and cohmod(A,H) are equivalent.

Proof. An (A#H)-module M corresponds to an algebra homomorphism ρ : A#H →
Endk(M). Thus, taking B as the algebra Endk(M) consisting of endomorphisms of the

k-vector space M , we use Lemma 2.3.12 to see that this is equivalent to

(i) M is an H-module via ρH := ρ ◦ ιH .

(ii) M is an A-module via ρA := ρ ◦ ιA.

(iii) ρA ∈ AlgH(A,BρH ).

We are left to show that (iii) is equivalent to A ⊗M → M, a ⊗m 7→ ρA(a)(m) being

H-linear, which means

(iv) ρH(h) ◦ ρA(a) =
∑
(h)

ρA(h(1).a) ◦ ρH(h(2)) ∀h ∈ H, a ∈ A

Writing out (iii) means

ρA(h.a) = h.ρA(a) =
∑
(h)

ρH(h(1)) ◦ ρA(a) ◦ ρH(S(h(2))) ∀h ∈ H, a ∈ A
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(iii) =⇒ (iv): We have∑
(h)

ρA(h(1).a) ◦ ρH(h(2)) =
∑
(h)

h(1).ρA(a) ◦ ρH(h(2)) (iii)

=
∑
(h)

ρH(h(1)) ◦ ρA(a) ◦ ρH(S(h(2))) ◦ ρH(h(3))︸ ︷︷ ︸
=ρH(S(h(2))h(3))

(iii)

=
∑
(h)

ρH(h(1)) ◦ ρA(a) ◦ ε(h(2))idB by (3)

= ρH(h) ◦ ρA(a) by (2)

(iv) =⇒ (iii): In that case, we have

h.ρA(a) =
∑
(h)

ρH(h(1)) ◦ ρA(a) ◦ ρH(S(h(2)))

=
∑
(h)

ρA(h(1).a) ◦ ρH(h(2)) ◦ ρH(S(h(3))) (iv)

= ρA(h.a) by (3) and (2)

The assertions follow directly from this discussion.

So far, we didn’t require A to be a Hopf algebra. If we add this (and some other)

condition, then [47, Theorem 2.13] shows:

Theorem 2.3.15. Let H be a cocommutative Hopf algebra and A a Hopf algebra, which

is an H-module bialgebra. Then the smash product A#H obtains the structure of a Hopf

algebra with structure maps

ε : A#H −→ k, a#h 7→ εA(a).εH(h)

∆ : A#H −→ A#H ⊗k A#H, a#h 7→
∑

(a),(h)

a(1)#h(1) ⊗ a(2)#h(2)

S : A#H −→ A#H, a#h 7→
∑
(h)

SH(h(2)).SA(a) # SH(h(1))

The natural maps ιH , ιA are maps of Hopf algebras.

We finish this section with the following useful observation. One may recall that if A

is commutative, then every left A-module X obtains the structure of a right A-module

via setting x.a := a.x for all a ∈ A, x ∈ X and vice versa.

Lemma 2.3.16. The following statements holds:

(a) A is an A#H-module via the left regular representation of A and the given H-module

structure.
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(b) If M is an A#H-module and N an H-module, then the H-module M ⊗k N obtains

the structure of an A#H-module via a.(m⊗ n) := a.m⊗ n.

(c) We have a natural transformation

τ : A⊗k − −→ (A#H)⊗H −, τN(a⊗ n) = ιA(a)⊗ n

If A is finite-dimensional and the extension A#H : ιH(H) is free of rank dimk A,

then τ is a natural equivalence (The relevant functors are considered as functors

mod(H) −→mod(A#H)).

(d) Let M,N be (A#H)-modules. If A is commutative, then M ⊗AN has the structure

of an (A#H)-module, where A acts via a.(m ⊗ n) := a.m ⊗ n(= m ⊗ a.n) and the

H-module structure is induced by the tensor product M ⊗k N .

Proof. (a) If we let A act via the left regular representation, then the structure map is

the multiplication mA, which is H-linear as A is an H-module algebra.

(b) Both, the given structure map µ : A ⊗k M → M and idN : N → N , are H-linear.

Thus, their tensor product

µ⊗ idN : A⊗k M ⊗k N →M ⊗k N

is H-linear as well.

(c) By (a) and (b), the transformation τ is well-defined. Given N ∈mod(H), the map

ϕ : A⊗k N → (A#H)⊗H N, a⊗ n 7→ ιA(a)⊗ n

is k-linear and surjective. Moreover, it is clearly A-linear so that we need to show

the H-linearity. We have

ϕ(h.a⊗ n) =
∑
(h)

ιA(h(1).a)⊗ h(2).n

=
∑
(h)

ιH(h(1)) ∗ ιA(a) ∗ ιH(S(h(2)))⊗ h(3).n ιA ∈ AlgH(A, (A#H)ιH )

=
∑
(h)

ιH(h(1)) ∗ ιA(a)⊗ ιH(S(h(2))h(3)).n

= ιH(h) ∗ ιA(a)⊗ n = h.ϕ(a⊗ n) (3), (2)

The additional condition ensures that both spaces have the same dimension so that

ϕ must be an isomorphism in that case.

If now f : N → N ′ is H-linear, then idA ⊗ f : A ⊗ N → A ⊗ N is also H-linear
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and obviously A-linear. Consequently, A ⊗k − : mod(H) −→ mod(A#H) defines

a functor and it is easily seen now that τ is a natural transformation.

(d) Let ν : A ⊗k N → N and µ : M ⊗k A → M be the corresponding structure maps

of the left A-module N and the right A-module M (recall that A is commutative).

Then M ⊗A N , the cokernel of the H-linear map

(µ⊗ idN − idM ⊗ ν) : M ⊗k A⊗k N →M ⊗k N,

is itself an H-module in a natural way. As in (a), we see that we obtain a coherent

A-H-module in this way.

Remark 2.3.17. The proofs of (b) and (d) are taken from [45, Lemma 2.2, 2.6].

2.4 Affine group schemes

We will mainly use the books [41, 57] written by J.Jantzen and W.Waterhouse, respec-

tively, as a standard reference for group schemes and their representations.

A k-functor is a functor from the category Commk of commutative k-algebras to the

category Sets of sets. Given A ∈ Commk, we will denote the functor B 7→ Hom(A,B)

by Speck(A). A functor F : Commk → Sets is called representable, provided there is

A ∈ Commk and a natural equivalence F ∼= Speck(A). In this case, F is also called an

affine scheme over k and, if (additionally) A is finitely generated as an algebra, then F

is called algebraic. The following is also known as Yoneda’s Lemma (cf. [57, Theorem

1.3]):

Theorem 2.4.1. Let A,B ∈ Commk and put F := Speck(A), G := Speck(B). The

assignments

Γ : Mor(F,G)→ Hom(B,A), τ 7→ τA(idA),

Φ : Hom(B,A)→ Mor(F,G), Φ(ϕ)C : F (C)→ G(C), f 7→ f ◦ ϕ ∀ C ∈ Commk,

are inverse to each other. In this way, natural equivalences correspond to isomorphisms

and composites go over to composites in the reverse direction.

Let F,A be as above. Yoneda’s Lemma implies that the algebra A is uniquely deter-

mined by F up to isomorphism. We write A = k[F ] and call A the coordinate ring of F .

If G is another affine scheme represented by B and τ : F → G a natural transformation,

then we denote the corresponding homomorphism Γ(τ) : B → A by τ ∗ and call it the

comorphism of τ .
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Definition 2.4.2. A representable functor G : Commk −→ Sets is called an affine

group scheme over k, provided G takes values in the category Groups of groups.

If G is an affine group scheme, then the coordinate ring k[G] is a commutative Hopf

algebra (cf. [57, 1.4]).

Given n ∈ N, we denote by An : Commk → Sets, A 7→ An the full affine space

of dimension n with coordinate ring given by the polynomial ring k[X1, . . . , Xn] in n

variables. Every vector space V gives rise to a k-functor

Va = V ⊗k − : Commk −→ Sets, Va(A) = V ⊗k A, Va(λ) = idV ⊗ λ.

If V = kn, then of course Va ∼= An.

Lemma 2.4.3. Let V be a finite-dimensional vector space.

(1) The functor Va is an affine algebraic scheme with coordinate ring S(V ∗), the sym-

metric algebra of the dual space V ∗.

(2) Every linear map f : V → W of finite-dimensional vector spaces induces a morphism

τf : Va → Wa of affine schemes. Moreover, f is an isomorphism if and only if τf
enjoys this property.

(3) If B = {b1, . . . , bn} is a basis of V , then the coordinate isomorphism CB : V →
kn,

∑n
i=1 λibi 7→ (λ1, . . . , λn) induces an isomorphism Va ∼= An of schemes.

Proof. (1) Since V is finite-dimensional, there are natural equivalences (the last one

being the universal property of the symmetric algebra over V ∗)

V ⊗k − ∼= (V ∗)∗ ⊗k − ∼= Homk(V
∗,−) ∼= Speck(S(V ∗))

As any basis of V ∗ generates S(V ∗) as an algebra, the claim follows.

(2) The collection of maps f ⊗ idA : V ⊗k A → W ⊗k A for all A ∈ Commk gives rise

to a natural transformation Va → Wa which coincides with f at k. The additional

statement is clear.

(3) We clearly have (kn)a ∼= An, now apply (2).

Remark 2.4.4. (1) The lemma shows that (−)a : mod(k) → {affine schemes over k}
is a functor.

(2) Equipped with addition, each Va is clearly an affine algebraic group scheme. In

particular, (−)a takes values in the category of (commutative) affine algebraic group

schemes.
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Let G be an affine group scheme. If A ∈ Commk, we will denote the extended scheme

CommA → Groups, B 7→ G(B), λ 7→ G(λ) by GA (cf. [57, 1.6]). Its coordinate ring is

given by k[GA] = k[G] ⊗k A. If H is a group scheme over A such that H = GA, we will

say that H is defined over k.

Definition 2.4.5. Let G be an affine group scheme.

(i) Let X be an affine scheme. A (left) action of G on X is a morphism G ×X −→ X

of affine schemes such that each G(A) ×X(A) → X(A) is an action of the group

G(A) on the set X(A) for all A ∈ Commk.

(ii) A vector space V is called a G-module, provided there exists an action G×Va → Va
such that the group G(A) acts on the A-module Va(A) = V ⊗kA via A-linear maps

for all A ∈ Commk.

Every G-module V corresponds to a homomorphism G → GL(V ). If V is finite-

dimensional, then of course GL(V ) ∼= GL(dimk V ) after choice of a basis. Thus, one-

dimensional G-modules correspond to homomorphisms G → GL(1) = Gm, the characters

of G. Here Gm denotes the multiplicative group:

Gm : Commk → Groups, A 7→ A× = {a ∈ A | There is b ∈ A such that ab = 1}

The collection of all characters X(G) forms an abelian group with pointwise multiplica-

tion. One writes this group additively and it is easy to see that (identifying characters

with their corresponding one-dimensional G-module) λ ⊗k µ = λ + µ for λ, µ ∈ X(G).

Consequently, the group X(G) acts on mod(G) with auto-equivalences, each λ corre-

sponds to the equivalence Fλ : mod(G)→mod(G), V 7→ V ⊗k λ.

Definition 2.4.6. A homomorphism ϕ : G → H of affine group schemes is referred to

as a closed embedding, provided the comorphism ϕ∗ : k[H]→ k[G] is surjective.

In fact, for every algebraic group scheme G exists n ∈ N and a closed embedding

G → GL(n) (cf. [57, Theorem 3.4]).

Mainly, we are interested in the following type of group schemes. A survey, which

elaborates more on representation theoretical background, can be found in [21].

Definition 2.4.7. An affine group scheme G is called finite (infinitesimal), provided

k[G] is finite-dimensional (finite-dimensional and local). We call kG := k[G]∗ the Hopf

algebra of G.

The assignment G 7→ kG is in fact an equivalence

{finite group schemes over k} −→ {finite-dimensional cocommutative Hopf algebras over k}
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of categories. Given a finite group scheme G, the categories mod(G) and mod(kG)

are also equivalent. Basic module constructions for G as in [41, I.2.7] will yield the

corresponding Hopf-theoretic constructions for kG as explained in the section before

(see [41, I.8]).

Example 2.4.8. The following are two important examples of finite group schemes, the

second one will be discussed in more detail later on.

(a) Let G be a finite group. Then the group algebra kG is a finite-dimensional Hopf

algebra. Given a basis-element g ∈ G ⊆ kG, the co-multiplication, co-unit and

antipode are determined by ∆(g) = g ⊗ g, ε(g) = 1 and S(g) = g−1, respectively.

Thus, GG := Speck(kG
∗) is a finite group scheme which is uniquely determined by

G, the constant group scheme of G (cf. [57, 2.3]).

(b) Let g be a d-dimensional restricted Lie algebra defined over the field k of characteris-

tic p > 0. Then the restricted universal enveloping algebra U0(g) is a pd-dimensional

Hopf algebra. Given an element x ∈ g ⊆ U0(g), the co-multiplication, co-unit and

antipode are determined by ∆(x) = 1⊗ x + x⊗ 1, ε(x) = 0 and S(x) = −x. Thus,

Gg := Speck(U0(g)∗) is a finite group scheme which is uniquely determined by g.

Using the PBW-theorem, one can show that U0(g)∗ ∼= k[X1, . . . , Xd]/(X
p
1 , . . . , X

p
d)

is a local algebra. Hence Gg is infinitesimal.

Definition 2.4.9. A finite group scheme G is called linearly reductive, provided the

algebra kG is semi-simple.

Infinitesimal group schemes arise from the following construction:

Definition 2.4.10. Let G = Speck(A) be an algebraic group scheme over our field k of

positive characteristic p > 0. Given r ≥ 0, the quotient

Ar := A/({xpr : x ∈ A†})

is a commutative local finite-dimensional Hopf algebra. The infinitesimal group scheme

Gr := Speck(Ar) is called the rth Frobenius kernel of G.

In view of the equivalent definition [41, I.9.4] as the kernel of the rth Frobenius

morphism F r : G → G(r), we see that G 7→ Gr is clearly a left exact functor. If G is

infinitesimal, there exists r ∈ N0 such that Gr = G and the minimal such r is called the

height of G.

Given an affine group scheme G, the space

Derk(k[G], k) = {d ∈ Homk(k[G], k) | d(fg) = ε(f)d(g) + ε(g)d(f) ∀ f, g ∈ k[G]}
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of ε-derivations is a restricted Lie subalgebra of the commutator algebra (k[G]∗)− and

called the Lie algebra g := Lie(G) of G (cf [57, § 12]). Given a morphism ϕ : G → H of

affine group schemes, the map Lie(ϕ) : Lie(G)→ Lie(H), d 7→ d◦ϕ∗ is a homomorphism

of restricted Lie algebras. We thus have a functor

Lie : {affine group schemes over k} → {restricted Lie algebras over k}.

Remark 2.4.11. Let G be an affine group scheme.

(1) If N E G is an normal subgroup, then Lie(N )E Lie(G) is an ideal.

(2) If G is algebraic, then Lie(Gr) ∼= Lie(G) for all r ≥ 1 (see [41, I.9.6(3)]).

(3) If G is finite, then g coincides with the space {f ∈ kG | ∆(f) = 1 ⊗ f + f ⊗ 1} of

primitive elements of the Hopf algebra kG.

We let dimG := dim k[G] be the Krull-dimension of its coordinate ring.

Lemma 2.4.12. Let k be perfect and G be an affine group scheme over k. Then Lie(G) =

(0) if and only if G is finite and reduced.

Proof. This follows on one hand from the fact that dimG ≤ dimk g (cf. [57, p.99 exercise

7]) and on the other hand, we have dim(G) = 0 if and only if G is finite ([1, Exercise

8.3]), so that we can apply [57, 11.3, 11.2 (e), Theorem 6.2 (6)] in this case.

If G is algebraic, then G1 corresponds to g: there is an isomorphism kG1
∼= U0(g) of

Hopf algebras (cf. [41, I.9.6(4)]). In particular, restricted Lie algebras correspond to

infinitesimal group schemes of height ≤ 1.

Remark 2.4.13. This also implies that the functor Lie is left exact provided its ’domain

of definition’ is the category of affine algebraic group schemes.

Definition 2.4.14. An affine group scheme G is called trigonalizable, provided all simple

G-modules are one-dimensional.

Two important classes of trigonalizable group schemes are the following:

Definition 2.4.15. An affine group scheme G is called

� unipotent, provided the trivial module k is (up to isomorphism) the only simple

G-module.

� diagonalizable, provided k[G] ∼= kX(G) (the group algebra of the character group).

Remark 2.4.16. Let G be an affine group scheme.
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(1) If G is algebraic and unipotent (diagonalizable), every closed subgroup enjoys the

same property (cf. [57, Corollary 8.3, 2.2]).

(2) If G is finite, then G is unipotent if and only if kG is a local algebra. In particular,

the scheme GG (Gg) corresponding to a finite group G (finite-dimensional restricted

Lie algebra g) is unipotent if and only if G is a p-group (g is unipotent, proven later

in 2.5.10).

We denote by ek the trivial group scheme, whose coordinate ring is the field k.

Definition 2.4.17. Let G be an affine algebraic group scheme. Then G admits a unique

maximal, closed, connected, unipotent, normal subgroup Ru(G), the unipotent radical of

G. We call G reductive, provided Ru(G) = ek.

Remark 2.4.18. If G is infinitesimal of height ≤ 1, then Ru(G) corresponds to the

p-radical Radp(g), the largest unipotent p-ideal of the Lie algebra g (see [25, p.68]).

One may recall thatIf ϕ : G → H is a homomorphism of group schemes, then the

kernel ker(ϕ) (defined in the obvious fashion) is a closed, normal subgroup of G. In

contrast, the image of ϕ is defined for A ∈ Commk by means of (see [41, p. 85], [57,

Theorem 15.5] and [41, p.67] for the term ’fppf-A-algebra’)

im(ϕ)(A) := {h ∈ H(A) | There is an fppf-A-algebra B and g ∈ G(B) such that hB = ϕB(g)}

It coincides with the so-called associated k-group faisceaux to the k-group functor A 7→
im(ϕA).

Given a closed, normal subgroup N E G of an affine algebraic group scheme G, there

exists a quotient G/N which itself is affine algebraic (cf. [41, I.6.5(1)]). Every homomor-

phism ϕ : G → H such that N ⊆ ker(ϕ) will factor through G/N and if N = ker(ϕ),

the map ϕ will induce an isomorphism G/N ∼= im(ϕ). In particular, im(ϕ) is affine

algebraic whenever G enjoys this property (for more details, see [41, I.5/6]).

If G is a group scheme and V a G-module, then

V G := {v ∈ V | g.v ⊗ 1 = v ⊗ 1 ∀g ∈ G(A), A ∈ Commk}

is the space of fixed points of G on V .

Lemma 2.4.19. If NEG is a closed, normal subgroup and V a G-module, then V N ⊆ V

is a G-submodule. In particular, if N is unipotent, then V N = V provided V is simple.

Proof. The first assertion follows from [41, Lemma I.3.2]. For the second, we combine

the first with [41, I.2.14(8)].
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We denote by modN (G) the full subcategory of all finite-dimensional G-modules V

with V N = V . Thus, we have a functor, the fixed point functor :

(−)N : mod(G) −→modN (G).

We now give a proof of the fact that algebraic trigonalizable groups are in fact extensions

of diagonalizable groups by unipotent ones.

Lemma 2.4.20. The following statements are equivalent for an algebraic group scheme

G:

(a) G is trigonalizable.

(b) The image of every representation ρ : G → GL(n) can be conjugate into Tn, the

group of upper triangular matrices.

(c) There exists a closed embedding G ↪→ Tn.

(d) There exists a unipotent normal subgroup U E G such that G/U is diagonalizable.

Proof. (a) =⇒ (b): Consider a composition series (0) = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V of

the corresponding G-module V = kn (cf. [41, p.34]). By assumption, Vi/Vi−1 is one-

dimensional for all 1 ≤ i ≤ n. Hence, there exists a basis {v1, . . . , vn} of V such that

{v1, . . . , vi} is one of Vi for all 1 ≤ i ≤ n. Denoting by S ∈ GL(n, k) the matrix sending

ei to vi, the representation ρ′ := ρ ◦ κS−1 : G → GL(n) has image in Tn (base change).

Here κS−1 : GL(n) → GL(n) is the automorphism of the group scheme GL(n) given by

conjugation with S−1.

(b) =⇒ (c): Apply (b) to a faithful representation of G, which exists by [57, Theorem

3.4] because G is algebraic.

(c) =⇒ (d): We may assume G ⊆ Tn. Denote by Un E Tn the unipotent, normal

subgroup consisting of unitriangular matrices. Put U := Un ∩ G, this is a unipotent

normal subgroup of G. As the canonical homomorphism G → Tn/Un ∼= Dn (diagonal

matrices) has kernel U , we get (d).

(d) =⇒ (a). By Lemma 2.4.19, U acts trivially on any simple G-module V . Hence V

is a simple G/U -module, which is one-dimensional by [41, I.2.11].

Let ϕ : G → H be a morphism of group schemes. Then ϕ induces an exact functor

ϕ∗ : mod(H)→mod(G), V 7→ ϕ∗(V ),

the pullback along ϕ (composition of the structure homomorphism with ϕ). One defines

H•(G,−) = (Rn(−)G)n∈N0 to be collection of the right derived functors of the fixed point

functor. As H•(G,−) is a cohomological δ-functor (see [59, §2]), so is H•(G,−) ◦ ϕ∗ :=

(Rn(−)G ◦ ϕ∗)n∈N0 by exactness of ϕ∗.
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Lemma 2.4.21. Let ϕ : G → H be a morphism of affine group schemes.

(a) ϕ induces a morphism ϕ• : H•(H,−)→ H•(G,−) ◦ ϕ∗ of cohomological δ-functors.

(b) Let ψ : N → G be another morphism. Then (ϕ ◦ ψ)• = ψ• ◦ ϕ•.

(c) id•H = idH•(H,−).

(d) If there exists a homomorphism γ : H → G such that ϕ ◦ γ = idH, then the maps

ϕn : Hn(H, X)→ Hn(G, X) are injective for all n ∈ N0, X ∈mod(H).

Proof. (a) We have a natural transformation given by inclusion

(−)H → (−)G ◦ ϕ∗, MH 7→MH ⊆ ϕ∗(M)G

As (Hn(H,−))n∈N0 is universal, this lifts to a morphism of cohomological δ-functors

(a natural transformation at each stage n ∈ N0, commuting with connecting homo-

morphisms)

ϕ• : H•(H,−)→ H•(G,−) ◦ ϕ∗.

(b) As (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗, the morphisms (ϕ ◦ ψ)• and ψ• ◦ ϕ• are equal at stage 0.

Hence they are equal at any stage by the uniqueness of the lifting.

(c) Use the same argument as in (b).

(d) This follows from (b), (c).

If we apply the above to an inclusion N ⊆ G of group schemes, then we get restriction

morphisms Resn(M) : Hn(G,M) → Hn(N ,M |H) for every G-module M and n ∈ N0.

If N E G is a normal subgroup and π : G → G/N is the canonical projection, then

we get inflation homomorphisms Infn(M) : Hn(G/N ,M) → Hn(G, π∗(M)) for each

G/N -module M and n ∈ N0.

The cohomology H•(G, V ) of an affine group scheme G with V being a G-module can

be computed using the Hochschild complex C•(G, V ) (cf. [41, I.4.14]). Here, we just

give the corresponding form of the first cohomology group H1(G, V ). It is the quotient

of the space of crossed homomorphisms

{f ∈ Mor(G, Va) | f(gh) = g.f(h) + f(g), ∀g, h ∈ G(A), A ∈ Commk}

by the space of principal crossed homomorphisms

{f ∈ Mor(G, Va) | ∃v ∈ V : f(g) = g.v ⊗ 1− v ⊗ 1, ∀g ∈ G(A), A ∈ Commk}.

31



2 PRELIMINARIES

We denote by DG the derived subgroup of G. It is a closed, normal subgroup of G (cf. [57,

10.1]) and coincides with the k-group faisceaux associated to the k-group-functor that

maps each A ∈ Commk to the ordinary derived subgroup [G(A),G(A)] of the abstract

group G(A). In the following, given a finite-dimensional vector space V and r ≥ 1, Va(r)

denotes the rth Frobenius kernel of the algebraic group scheme Va (recall Lemma 2.4.3).

Lemma 2.4.22. Let V be a finite-dimensional G-module on which G acts trivially.

(1) There are isomorphisms H1(G, V ) ∼= Hom(G, Va) ∼= Hom(G/DG, Va).

(2) If G is infinitesimal of height r, then H1(G, V ) ∼= Hom(G, Va(r)). In particular, if

r = 1, we have H1(G, k) ∼= (g/[g, g] + 〈g[p]〉)∗, where g = Lie(G).

Proof. (1) The isomorphism H1(G, V ) ∼= Hom(G, Va) is clear from the above description

of H1(G, V ). As Va being abelian implies that every homomorphism f : G → Va
factors through G/DG, we get the second isomorphism.

(2) As each homomorphism ϕ : G → Va maps Gr to Va(r), we get Hom(G, Va) ∼=
Hom(G, Va(r)) by assumption. For r = 1 and V = k, we get Hom(G,Ga(1)) ∼=
HomLiep(g, e1) ∼=

(
g/[g, g] + g[p]

)∗
. Here e1 = Lie(Ga) denotes the elementary abelian

Lie algebra of dimension 1.

Remark 2.4.23. If G/DG is affine (for instance when G is algebraic), then the above

lemma also shows H1(G, V ) ∼= H1(G/DG, V ) for every trivial G-module V .

Lemma 2.4.24. Let V be a G-module and N E G a closed, normal subgroup and n ∈
N0. Then the G/N -module structure on V N = H0(N , V ) can be lifted (in some sense

explained below) to Hn(N , V ) for all n ∈ N.

Proof. Given A ∈ Commk, each g ∈ G(A) yields an endomorphism of the functor

(−)N (A) = (−⊗k A) ◦ (−)N ◦ ResGN : mod(G)→mod(A)

The theory of δ-functors thus yields a unique endomorphism of each Rn((− ⊗k A) ◦
(−)N ◦ ResGN ) for all n ∈ N0 that specializes for n = 0 to the above endomorphism. A

consecutive application of [41, I.4.1(2)] and [41, I.4.1(3)] shows

Rn((−⊗k A) ◦ (−)N ◦ ResGN ) ∼= (−⊗k A) ◦Rn((−)N ◦ ResGN )

∼= (−⊗k A) ◦Hn(N ,−) ◦ ResGN .

Hence G acts on each Hn(N , V ) if V is a G-module. Moreover, N must act trivially

because the identity on stage 0 lifts to the identity at each stage n ∈ N0.
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Remark 2.4.25. Given the situation of the above lemma, the group G acts on the

Hochschild complex C•(N , V ): IfA ∈ Commk and f : Nm
A → (V⊗kA)a ∈ Mor(Nm

A , (V⊗k
A)a) ∼= Mor(Nm, V )⊗k A, then each g ∈ G(A) acts via

(g.f)B(n1, . . . , nm) := gB.fB(g−1
B .n1, . . . , g

−1
B .nm) ∀B ∈ CommA

Thus, we get an action on each Hm(N , V ). By [41, I.6.7], this action coincides with the

action of G in the above lemma.

Fix an action G ×X → X of an affine group scheme G on another affine scheme X.

Let A ∈ Commk and g ∈ G(A). Let B ∈ CommA, then the structure map i : A → B

is a homomorphism of k-algebras. We put gB := G(i)(g). In this way, each g ∈ G(A)

gives rise to an automorphism

g : XA −→ XA, x 7→ gB.x ∀x ∈ X(B), B ∈ CommA

of the affine scheme XA which gives rise to a comorphism λ(g) : k[X]⊗kA −→ k[X]⊗kA.

Letting each g act via λ(g−1), k[X] obtains the structure of a G-module. Recalling that

k[X] ⊗k A = Mor(XA,A1
A) is the algebra of natural transformations from XA into the

affine line A1
A, the action is given via (cf. [41, p. 26])

(g.f)(x) = f(g−1
B .x) ∀f ∈ k[X]⊗k A, x ∈ X(B), B ∈ CommA.

Remark 2.4.26. If A→ B is injective, then G(A)→ G(B) enjoys the same property by

left exactness of Speck(k[G]). This is of course true when A = k, but also more generally

when B is an fppf-A-algebra (take M = A in [57, 13.1 (3)]).

Let H and N be group schemes. Assume that there is an action τ : H × N −→ N
of H on the affine scheme N such that each τA(h,−) : N (A) −→ N (A) is a group

automorphism for all h ∈ H(A) and all A ∈ Commk, then we say H acts on N via

automorphisms. If this is case, then we can form the semi-direct product

N oτ H : Commk −→ Groups, A 7→ N (A)oH(A), λ 7→ N (λ)×H(λ)

of N and H. The underlying k-functor is the direct product of the two k-functors N
and H. One usually drops the action τ , when it is clear from the context. If G is an

affine group scheme and H,N ⊆ G are closed subgroups such that N is normal, then

we define the product subgroup NH to be the image of the morphism µ : N oH → G
given by multiplication. Its kernel is isomorphic to H ∩ N under h 7→ (h, h−1) for all

h ∈ H(A), A ∈ Commk. If µ is an isomorphism, we call G the (inner) semi-direct

product of N and H and write G = N oH.
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Recall that ek = Speck(k) denotes the trivial group scheme. If there exists an exact

sequence

ek −→ N
ι−→ G π−→ H −→ ek

of affine group schemes, then we call G an extension of H by N . Note that ι is necessarily

a closed embedding (see [57, 15.3]) and π induces an isomorphism G/im(ι) ∼= H. We say

that the above extension splits, provided there exists a morphism ϕ : H → G such that

π ◦ ϕ = idH.

Lemma 2.4.27. Split extensions correspond to semi-direct products.

Proof. Let

ek −→ N
ι−→ G π−→ H −→ ek

be a split extension. By definition, there is ϕ : H → G such that π ◦ ϕ = idH. In view

of [57, Theorem 15.3], ϕ is a closed embedding. Let g ∈ G(A), then

g = (g · ϕA(πA(g))−1) · ϕA(πA(g)) ∈ ker(π)(A) · im(ϕ)(A)

Thus, G = ker(π) · im(ϕ). Let g ∈ (ker(π) ∩ im(ϕ))(A). Then gB = ϕB(h) for some

fppf-A-algebra B and h ∈ H(B). Thus

h = πB ◦ ϕB(h) = πB(gB) = πB ◦ G(ιA)(g) = H(ιA) ◦ πA(g) = H(ιA)(e) = e

Hence gB = ϕB(e) = e, so that g = e as g 7→ gB is injective. Thus, ker(π) ∩ im(ϕ) = ek.

Hence G = ker(π)o im(ϕ) ∼= N oH.

If conversely G = N oτ H, we can put ι(n) = (n, e), π(n, h) = h, ϕ(h) = (e, h) to

obtain a split-exact sequence.

Let G = N o H. The action of H on N induces an action of H on k[N ]. Since H
acts on N via automorphisms, it follows that each λ(h) : k[N ]⊗k A→ k[N ]⊗k A is an

automorphism of the A-Hopf algebra k[N ]⊗k A for all h ∈ H(A). We also say, that H
acts on k[N ] via automorphisms of Hopf algebras. A consequence is the following: All

the structure maps

ε : k[N ]→ k, η : k → k[N ], m : k[N ]⊗k k[N ]→ k[N ]

∆ : k[N ]→ k[N ]⊗k k[N ], S : k[N ]→ k[N ]

are maps of H-modules, where we consider k as the trivial H-module. If N and H are

finite, this implies that k[N ] is a kH-module bialgebra. Dualizing, we see that kN is

also a kH-module bialgebra. Hence we can form the smash product kN#kH which has

the structure of a Hopf algebra by Theorem 2.3.15. Next, we give an (almost) complete

proof of the following well-known fact.
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Theorem 2.4.28. Let G = N oH be a semidirect product of finite group schemes, then

the Hopf algebras kG and kN#kH are isomorphic.

Proof. We consider the natural emdeddings i := d(ιN ) : kN → kG, j := d(ιH) : kH →
kG. The group H acts on G and N via conjugation. As discussed before, this yields

actions on k[G], k[N ]. Moreover, by [41, I.7.18] the induced action of H on kG is given

by restriction of the adjoint representation of the Hopf algebra kG to kH.

The comorphism k[G] −→ k[N ] of the inclusion N → G is given by the restriction of

functions. This clearly defines an H-linear map. Consequently, its dual i : kN → kG
enjoys the same property. As an upshot of the above, we obtain i ∈ AlgkH(kN , (kG)j).

The universal property of the smash product thus provides a homomorphism

ϕ : kN#kH → kG, u#v 7→ i(u) · j(v).

By definition of the semidirect product, the multiplicationN×H → G is an isomorphism

of schemes and thus induces an isomorphism kN ⊗k kH → kG of vector spaces given

by multiplication. Consequently, ϕ is surjective, hence an isomorphism of k-algebras for

dimension reasons.

We are left to show that ϕ is a Hopf algebra map. By way of example, we show that

ϕ respects the comultiplication, that is, (ϕ ⊗ ϕ) ◦∆kN#kH = ∆kG ◦ ϕ. In the following

computation, we will suppress the embeddings i, j for notational reasons. We have

(ϕ⊗ ϕ) ◦∆kN#kH(u#v) =
∑

(u),(v)

u(1)v(1) ⊗ u(2)v(2)

=
∑
(u)

u(1) ⊗ u(2) ·
∑
(v)

v(1) ⊗ v(2) (multiplication inside kG ⊗k kG)

= ∆kG(u) ·∆kG(v)

= ∆kG(uv) = ∆kG(ϕ(u#v)).

As extensions of finite-dimensional Hopf algebras are known to be free (see [48]), an

application of 2.3.16 yields

Corollary 2.4.29. Let G = N o H be a semidirect product of finite group schemes.

Then G-modules correspond to coherent kN -kH-modules. Moreover,

(a) kN is a G-module via the left regular representation of kN and the given H-module

structure.

(b) If M ∈mod(G) and N ∈mod(H), then the H-module M ⊗kN is a G-module with

kN acting via u.(m⊗ n) := u.m⊗ n.
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(c) The transformation τ : kN ⊗k − −→ kG ⊗kH − given by τN(a⊗ n) = d(ιN )(a)⊗ n
for all N ∈ mod(H) is a natural equivalence (the relevant functors are considered

as functors mod(H)→mod(G)).

(d) Let M,N ∈ mod(G). If N is commutative, then M ⊗kN N has a natural structure

of a G-module. The H-module structure is induced by the tensor product M ⊗k N
and kN acts via a.(m⊗ n) := m⊗ a.n.

Let k be algebraically closed. An algebraic group G is an affine variety over k which

has a group structure such that the multiplication mG : G × G → G and inversion

ιG : G → G are morphisms of affine varieties. The assignments V 7→ Speck(k[V ]) and

V 7→ V(k) are ’inverse’ to each other and therefore yield an equivalence

{Affine varieties over k} → {Reduced affine algebraic schemes over k},

of categories, which in turn induces an equivalence

{Algebraic groups over k} → {Reduced affine algebraic group schemes over k},

cf. [57, §4]. A k-vector space V together with a homomorphism G→ GL(V ) of algebraic

groups is referred to as a rational representation of G or a G-module. Then G-modules

correspond to modules of the affine algebraic group scheme G = Speck(k[G]) (see [41,

p.28]).

Let V be an affine variety with coordinate ring k[V ], x ∈ V a point and denote by

kx the one-dimensional k[V ]-module corresponding to the evaluation homomorphism

k[V ]→ k at x. Then the vector space

Tx(V ) := Derk(k[V ], kx) = {d ∈ Homk(k[V ], k) | d(fg) = g(x)d(f)+f(x)d(g) ∀f, g ∈ k[V ]}

is called the tangent space of V at x. Given a morphism ϕ : V → W , its differential

dx(ϕ) at x is defined as the linear map

dx(ϕ) : Tx(V )→ Tϕ(x)(W ), d 7→ d ◦ ϕ∗.

Taking differentials is functorial in the following sense:

Lemma 2.4.30. Let ϕ : V → W be a morphism of affine varieties. If ψ : W → X

is another morphism, then dx(ψ ◦ ϕ) = dϕ(x)(ψ) ◦ dx(ϕ). Moreover, we have dx(idV ) =

idTx(V ).
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Lemma 2.4.31. Let G be an algebraic group with inversion ιG : G→ G. Then dg(ιG) =

−de(rg−1)◦dg(lg−1), where we denote by lg and rg the left and right multiplication effected

by g ∈ G, respectively.

Proof. Using the functorial property 2.4.30 of taking differentials, this follows from the

identity ιG = rg−1 ◦ ιG ◦ lg−1 and the fact that de(ιG) = −idTe(G) (see [55]).

Let G be an algebraic group with corresponding reduced group scheme G, then the

vector spaces Te(G) and Lie(G) coincide. We put Lie(G) := Lie(G) and call this the

Lie algebra of G. If ϕ : G → H is a homomorphism of algebraic groups, then d(ϕ) :=

de(ϕ) : Lie(G) → Lie(H) coincides with the homomorphism Lie(ψ) : Lie(G) → Lie(H)

associated to the morphism ψ : Speck(k[G]) → Speck(k[H]) of group schemes with the

property that ψk = ϕ. In particular, if G → GL(V ) is a rational representation of G,

then its differential g→ gl(V ) is a restricted representation of its Lie algebra g.

We take the following facts for granted.

Lemma 2.4.32. Let G be an algebraic group with Lie algebra g. Given g ∈ G, we

denote by κg : G→ G the automorphism given by conjugation effected by g.

(1) We have dimG = dimk g.

(2) The map AdG : G→ Autp(g), g 7→ de(κg) is a rational representation, the adjoint

representation of G on g. Its differential coincides with the adjoint representa-

tion ad : g → gl(g) of the Lie algebra g. Given an element g ∈ G and x ∈ g, we

write g.x := AdG(g)(x).

(3) Let ρ : G→ GL(V ) be a rational representation. Then we have (g.x).(g.v) = g.(x.v)

for all g ∈ G, x ∈ g, v ∈ V .

(4) If G ⊆ GLn is a closed subgroup, then the differential of the natural representation

G→ GLn is the natural representation g→ gln of its Lie algebra g ⊆ gln.

(5) If G ⊆ GLn is a closed subgroup, then the differential of the determinant det : G→
GL(1) =: Gm is the trace tr : g→ k, x 7→ tr(x).

Let N E G be a closed normal subgroup of some algebraic group G. If H ⊆ G is a

closed subgroup such that NH = HN = G and H ∩ N = {1}, then G is isomorphic

to the semidirect product N o H if and only if Lie(N) ∩ Lie(H) = (0). This follows

from the fact that the multiplication N o H → G is an isomorphism if and only if its

differential

Lie(N)⊕ Lie(L)→ Lie(G), (x, y) 7→ x+ y

is bijective (see [55][Corollary 5.3.3(ii)]).
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Definition 2.4.33. Let G be an algebraic group.

� There exists a unique maximal closed connected unipotent normal subgroupRu(G) ⊆
G, the unipotent radical of G.

� We call G reductive, provided Ru(G) = {e}.

Lemma 2.4.34. Let G be a connected algebraic group with Lie algebra g and put G :=

Speck(k[G]).

(a) If G is reductive, then Gr := Gr is reductive for all r ≥ 1.

(b) The following statements are equivalent:

(1) G is reductive.

(2) G is reductive.

Proof. (a) In view of [38, Proposition 11.8], we have Radp(g) = (0). If U E Gr was a

non-trivial closed connected unipotent normal subgroup then (0) 6= Lie(U)ELie(Gr)

would be a unipotent p-ideal of Lie(Gr) ∼= g (see remark 2.4.11, Lemma 2.4.12),

which is a contradiction.

(b) (2)⇒ (1): If {e} 6= U EG was a closed, connected, unipotent, normal subgroup of

G, then its reduced scheme ek 6= U would be a closed connected unipotent normal

subgroup of G.

(1) ⇒ (2): Assume that ek 6= U E G is a closed, connected, unipotent, normal

subgroup of G. Then (0) 6= Lie(U)Eg would be a a unipotent p-ideal of g (see again

2.4.11, 2.4.12). In view of (a), this is a contradiction.

Definition 2.4.35. Let G be an algebraic group with Lie algebra g.

� A closed subgroup T ⊆ G is called a torus, provided its associated reduced group

scheme T is diagonalizable and connected.

� A maximal closed connected solvable subgroup B of G is called a Borel subgroup

of G. Moreover, Lie(B) ⊆ g is called a Borel subalgebra of g.

Lemma 2.4.36. Let G be a connected algebraic group and U := Ru(G). Suppose that

there is a connected, closed subgroup K ⊆ G such that G = U oK.

(1) Any Borel subgroup of G is of the form U o BK, where BK is a Borel subgroup of

K.

(2) Maximal tori of K are maximal tori of G.
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Proof. Throughout, we denote by

π : G� K, u · k 7→ k

the corresponding surjective morphism of algebraic groups with kernel U .

(1) In view of [31, 2.4.6], the product UBK is clearly a closed, connected solvable sub-

group of G. Now suppose UBK is contained in some Borel subgroup B ⊆ G. Then

BK = π(UBK) ⊆ π(B)

Hence BK = π(B) by maximality, so that

UBK = π−1(BK) = π−1(π(B)) = UB = B, (∗)

as every Borel of G contains the unipotent radical U . Now [39, 21.3 C] shows that

the map

π∗ : {Borels of G} → {Borels of K}, B 7→ π(B)

is surjective. If π(B) = π(B′), then the same argument as in (∗) implies B = B′.

Consequently, π∗ is bijective and hence (1).

(2) Let TK be a maximal torus of K and let T be a torus of G such that TK ⊆ T . Hence

TK = π(TK) ⊆ π(T ) and therefore, by maximality of TK , we arrive at π(TK) = π(T ).

This means for all t′ ∈ T there is t ∈ TK such that t′t−1 ∈ ker(π) = U . It follows

that t′t−1 ∈ T ∩ U = {e} (see [57, p.65 Corollary (b)]). Hence t = t′ and therefore

T ⊆ TK .
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2.5 Restricted Lie algebras and reduced enveloping algebras

The reader may consult [25] for standard facts concerning restricted Lie algebras. We

briefly recall some of these, beginning with the definitions.

Let g be a finite-dimensional Lie algebra over k and T be an indeterminate over k.

Then the tensor product g[T ] := g⊗kk[T ] has the structure of a Lie algebra with bracket

determined by

[x⊗ f, y ⊗ g] := [x, y]⊗ fg ∀x, y ∈ g, f, g ∈ k[T ].

Given x, y ∈ g, we let the elements si(x, y) ∈ g be defined via the equation

ad(x⊗ T + y ⊗ 1)p−1(x⊗ 1) =

p−1∑
i=1

i · si(x, y)⊗ T i−1

inside the Lie algebra g[T ].

Definition 2.5.1. A map [p] : g→ g is called a p-map, provided

ad(x[p]) = ad(x)p ∀x ∈ g (1)

(αx)[p] = αpx[p] ∀α ∈ k, x ∈ g (2)

(x+ y)[p] = x[p] + y[p] +

p−1∑
i=1

si(x, y) ∀x, y ∈ g (3)

We then call the pair (g, [p]) a restricted Lie algebra.

Example 2.5.2. Given an associative algebra A, we can consider its (restricted) com-

mutator Lie algebra A− with bracket and p-map determined by [a, b] := ab−ba, a[p] := ap

for all a, b ∈ A.

From now on, we assume that g is restricted.

Definition 2.5.3. Let χ ∈ g∗ be a linear form. A representation ρ : g → gl(V ) is said

to have character χ provided the identity ρ(x)p−ρ(x[p]) = χ(x)p · idV holds for all x ∈ g.

We denote by modχ(g) the full subcategory of finite-dimensional g-modules with

character χ. The algebra

Uχ(g) := U(g)/(xp − x[p] − χ(x)p · 1 | x ∈ g)

is called a reduced enveloping algebra of g. Every such algebra Uχ(g) satisfies a universal

property, which can roughly be described by means of

HomAlg(Uχ(g), A) ∼= {f ∈ HomLie(g, A
−) | f(x)p − f(x[p]) = χ(x)p.1A ∀x ∈ g}

40



2 PRELIMINARIES

for every (associative) algebra A with corresponding commutator (Lie) algebra A−. This

property induces an equivalence modχ(g) −→ mod(Uχ(g)) of categories. The algebra

U0(g) is also called the restricted enveloping algebra of g.

The following can be seen as a motivation to study reduced enveloping algebras. If

k is algebraically closed and S a simple g-module, then [25, Theorem 2.5] implies that

there exists χ ∈ g∗ such that S is a simple module for the (in view of 2.5.4(1) below)

finite-dimensional algebra Uχ(g). This also implies that S is finite-dimensional.

Here are some standard properties of reduced enveloping algebras, the reader may

consult [25, p.210ff] for more information.

Lemma 2.5.4. Let χ ∈ g∗ be a linear form and l ⊆ g be a restricted subalgebra.

(1) (’PBW’ Poincaré-Birkhoff-Witt) The algebra Uχ(g) is a finite-dimensional algebra

of dimension pdimk(g).

(2) The inclusion l ↪→ g lifts via universal properties to an embedding (Uχ|l(l) =)Uχ(l) ↪→
Uχ(g). We will identify Uχ(l) with its image in Uχ(g).

(3) Uχ(g) is a free left (resp. right) module over Uχ(l) of rank pdimk g/l.

(4) The restriction functor

ResUχ(l) : mod(Uχ(g)) −→mod(Uχ(l))

takes projectives to projectives.

(5) If N ∈mod(Uχ(l)), then the induced module (see also 2.1.29)

Indg
l (N,χ) := Uχ(g)⊗Uχ(l) N ∈mod(Uχ(g))

is (pdimk g/l · dimk N)-dimensional. The induction functor

Indg
l (−, χ) : mod(Uχ(l)) −→mod(Uχ(g))

is exact and sends projectives to projectives.

(6) If M ∈ mod(Uχ(g)) and N ∈ mod(Uχ′(g)), then M ⊗k N ∈ mod(Uχ+χ′(g)),

M∗ ∈mod(U−χ(g)) and Homk(M,N) ∈mod(Uχ′−χ(g)). Moreover, if M is Uχ(g)-

projective, then M ⊗k N is Uχ+χ′(g)-projective.

(7) There are natural isomorphisms ExtnUχ(g)(M,N) ∼= Hn(U0(g),M∗⊗kN) for all n ≥ 0

(cf. [11, Corollary 2.5]).
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In general, different linear forms can give rise to the same algebra (up to isomorphism).

Denote by Autp(g) the automorphism group of the restricted Lie algebra g. It is in fact

an algebraic group as a closed subgroup of GL(g).

Lemma 2.5.5. Let G ⊆ Autp(g) be a subgroup. Then G acts on g∗ via

f.χ := χ ◦ f−1, ∀f ∈ G,χ ∈ g∗.

Moreover, every f ∈ Autp(g) induces an isomorphism Uχ(g) ∼= Uf.χ(g) of algebras.

In particular, if g = Lie(G) for an algebraic group G, then one can consider the

so-called coadjoint orbits, which are the orbits under the subgroup Ad(G) ⊆ Autp(g)

corresponding to the above action. The name of these orbits comes from the fact that

theG-module g∗ corresponds to the dual of the adjoint representation Ad : G→ Autp(g).

Lemma 2.5.6. Let χ ∈ g∗ be a linear form.

(1) One-dimensional Uχ(g)-modules correspond to linear forms λ ∈ g∗ with λ([g, g]) = 0

and λ(x)p − λ(x[p]) = χ(x)p for all x ∈ g.

(2) If Uχ(g) admits a one-dimensional module, then Uχ(g) ∼= U0(g) as algebras.

Proof. (1) Since a linear map λ : g→ k− is a homomorphism of Lie algebras if and only

if λ([g, g]) = 0 and one-dimensional Uχ(g)-modules correspond to homomorphisms

Uχ(g)→ End(k) ∼= k of algebras, this follows from the universal property of Uχ(g).

(2) We consider the homomorphism ϕ : g → U0(g)−, x 7→ x + λ(x).1 of Lie algebras.

Given x ∈ g, we have

ϕ(x)p − ϕ(x[p]) = (x+ λ(x).1)p − (x[p] + λ(x[p]).1)

= xp + λ(x)p.1− x[p] − λ(x[p]).1 char(k) = p

= λ(x)p.1− (λ(x)p.1− χ(x)p.1) xp = x[p] inside U0(g)

= χ(x)p.1

Hence ϕ lifts to a homomorphism Uχ(g) → U0(g). For similar reasons, the map

ψ : g→ Uχ(g), x 7→ x−λ(x).1 lifts to a homomorphism U0(g)→ Uχ(g) of algebras.

Since the image of g generates any reduced enveloping algebra, it readily follows

that these homomorphisms of algebras are inverse to each other.

For details of the following, we refer to [28]. Let again g be a finite-dimensional

restricted Lie algebra and k be algebraically closed. The set

V (g) := {x ∈ g | x[p] = 0}
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is a closed, conical subset of the full affine space g, the so-called nullcone of g. Let

χ ∈ g∗ be a linear form and M ∈mod(Uχ(g)). Then we can consider the rank variety

V (g)M := {x ∈ V (g) |M |Uχ(kx) is not projective} ∪ {0}

which is always a closed, conical subvariety of V (g). Note that

k[X]/(Xp)→ Uχ(kx) = k[x], X + (Xp) 7→ x− χ(x) · 1

is an isomorphism of k-algebras for every x ∈ V (g) \ {0}, so that the module M |Uχ(kx)

is uniquely determined by the Jordan canonical form of the linear operator

xM : M →M,m 7→ x.m− χ(x).m.

We denote by Ω := ΩUχ(g) the Heller operator of Uχ(g) and by cxg(M) the complexity

of the Uχ(g)-module M . Recall that M is called periodic, provided there exists n ∈ N
such that Ωn(M) ∼= M . We now list some important properties concerning rank varieties

(cf. [28, p.1081 ff]).

Lemma 2.5.7. The following statements hold:

(1) We have V (g)M = {0} if and only if M is a projective Uχ(g)-module.

(2) V (g)M⊕N = V (g)M ∪ V (g)N .

(3) V (g)M⊗kN = V (g)M ∩ V (g)N .

(4) (J.Carlson) If M is indecomposable, then the projectivization P(V (g)M) is connected.

In particular, if dimV (g)M = 1, then V (g)M is a line.

(5) We have dimV (g)M = cxg(M) (recall Definition 2.1.16). Moreover, M is periodic

if and only if dimV (g)M = 1 and, if M is indecomposable, in the latter case we

already have Ω2(M) ∼= M (see [12, Theorem 2.5]).

Remark 2.5.8. Periodic modules of finite-dimensional algebras always have complexity

1, but the converse is not true in general: Example 2.3 in [53] provides a counterexample.

Next, we introduce the following two important classes of restricted Lie algebras.

Definition 2.5.9. A restricted Lie algebra g is called

(i) a torus, provided g is abelian and every x ∈ g is semisimple, that is, there exist

α1, . . . , αn ∈ k such that x =
∑n

i=1 αix
[p]i .

(ii) unipotent, provided every x ∈ g is [p]-nilpotent, that is, there exists r ∈ N such

that x[p]r = 0.
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(iii) elementary abelian, provided g is abelian and p-trivial, that is, [p] : g → g is

identically zero.

The lemmas below will be used later on.

Lemma 2.5.10. Let g be a finite-dimensional restricted Lie algebra.

(1) g is unipotent if and only if the corresponding infinitesimal group scheme Gg =

Speck(U0(g)∗)) is unipotent (that is, U0(g) is local).

(2) Let G be a unipotent, affine algebraic group scheme. Then g := Lie(G) is unipotent.

(3) Let g be unipotent. If χ ∈ g∗ is a linear form, then Uχ(g) possesses exactly one

simple module up to isomorphism.

(4) The infinitesimal group scheme Gg is linearly reductive if and only if g is a torus.

Proof. (1) Recall that the augmentation ideal U0(g)† = ker(ε : U0(g)→ k) = U0(g)g of

the Hopf algebra U0(g) is necessarily maximal. Hence U0(g) is local if and only if

U0(g)† is the unique maximal ideal of U0(g).

If g is unipotent, then [25, Corollary I.3.7] implies that U0(g)† is nilpotent, hence

U0(g) is local. If conversely U0(g) is local, then U0(g)† must be the unique maximal

ideal and is therefore nilpotent since it coincides with the Jacobson radical of U0(g).

Since g ⊆ U0(g)†, it follows easily that g is unipotent.

(2) The first Frobenius kernel G1 E G is unipotent, now apply (1).

(3) Let S, T be simple Uχ(g)-modules. Consider the U0(g)-module M := Homk(S, T ).

Its socle SocU0(g)(M) = M g = Homg(S, T ) is non-zero. Hence S ∼= T by Schur’s

Lemma.

(4) See [25, Proposition II.3.3, Theorem V.5.8].

Remark 2.5.11. In case of (3), each Uχ(g) is isomorphic to a matrix algebra over a

local ring.

Lemma 2.5.12. Let uEg be a p-ideal of a restricted Lie algebra g, χ ∈ g∗ a linear form

and S a Uχ(g)-module.

(a) The space Su := {s ∈ S | x.s = 0 ∀x ∈ u} of u-invariants is a Uχ(g)-submodule of

S.

(b) If χ(u) = 0, u is unipotent and S is simple, then Su = S.
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Proof. (a) Let s ∈ Su, u ∈ u and x ∈ g, then we have (using that u is an ideal)

u.(x.s) = x.(u.s) + [x, u].s = 0 + 0 = 0

so that x.s ∈ Su.

(b) As u is unipotent, Uχ(u) = U0(u) is a local algebra with unique simple module being

the trivial module k. Hence Su = SocU0(u)(S) is non-zero. The assertion follows from

(a) and the simplicity of S.

Lemma 2.5.13. Let d ∈ {1, . . . , dimk g}, then

E(d, g) := {e ⊆ g | e is a d-dimensional elementary abelian subalgebra}

is a closed subset of the (projective) Grassmannian variety

Grd(g) := {V ⊆ g | V is a d-dimensional subspace of g}.

The group Autp(g) of p-automorphisms operates naturally on the varieties E(d, g) and

V (g). In particular, if g = Lie(G) is the Lie algebra of an algebraic group G, then G

acts via the adjoint representation Ad : G→ Autp(g) (see 2.4.32).

We proceed with a discussion involving semidirect products. Recall that if A is a (not

necessarily Lie or associative) k-algebra, then

Derk(A) = {D ∈ Homk(A,A) | D(ab) = D(a)b+ aD(b) ∀a, b ∈ A}

denotes the space of derivations of A. In particular, if g is a Lie algebra, then we put

Der(g) = {d ∈ Endk(g) | d([x, y]) = [d(x), y] + [x, d(y)] ∀x, y ∈ g},

which in fact is a p-subalgebra of gl(g).

Definition 2.5.14. Let g be a restricted Lie algebra. A derivation d : g → g is called

restricted provided

d(x[p]) = ad(x)p−1(d(x)) ∀x ∈ g

We denote the space of such derivations by Derp(g). Note that (1) of Definition 2.5.1

implies that every inner derivation is restricted.

Recall that for every associative algebra A, we can consider its (restricted) commutator

Lie algebra A− with bracket and p-map determined by [a, b] := ab− ba, a[p] := ap for all

a, b ∈ A.
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Lemma 2.5.15. Let D ∈ Derk(A) be a derivation of an associative k-algebra A. Then

the following statements hold:

(1) We have D(xm) =
∑m−1

j=0 xjD(x)xm−1−j for all x ∈ A,m ∈ N.

(2) D : A− → A− is a restricted derivation of the commutator algebra A−.

Proof. (1) This can be shown inductively.

(2) It is easy to see, that D is a derivation of A−. The assertion now follows from (1)

in conjunction with the Cartan-Weyl formula [25, Proposition I.1.3(a)] and the fact

that
(
p−1
j

)
≡ (−1)p−1−j mod(p) for all 0 ≤ j ≤ p− 1.

It is well known that derivations of Lie algebras can be uniquely lifted to derivations

of their enveloping algebras (see [25, Theorem I.8.1(5)]). We now show that restricted

ones can be lifted to restricted enveloping algebras. It turns out to be enough to modify

the proof of [25, Theorem I.8.1(5)] a little.

Lemma 2.5.16. Let g be a restricted Lie algebra and let d : g → g ∈ Derk(g) be a

derivation. The following statements are equivalent:

(1) d is a restricted derivation.

(2) There exists a unique derivation D ∈ Derk(U0(g)) of the restricted enveloping algebra

U0(g) such that D ◦ ι = ι ◦ d. Here we denote by ι : g ↪→ U0(g) the canonical

embedding.

Proof. (1)⇒ (2): Denote the algebra of upper triangular (2× 2)−matrices with entries

in U0(g) by A. Now consider

f : g→ A−, x 7→
(
ι(x) ι(d(x))

0 ι(x)

)
Direct computation shows that f is a homomorphism of Lie algebras and

f(x[p]) =

(
ι(x[p]) ι(d(x[p]))

0 ι(x[p])

)
=

(
ι(x)p ι(ad(x)p−1(d(x)))

0 ι(x)p

)
=

(
ι(x)p ad(ι(x))p−1(ι(d(x)))

0 ι(x)p

)
f(x)p =

(
ι(x)p

∑p−1
j=0 ι(x)j · ι(d(x)) · ι(x)p−1−j

0 ι(x)p

)
.
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Using that
(
p−1
j

)
≡ (−1)p−1−j mod(p), we conclude

ad(ι(x))p−1(ι(d(x))) =

p−1∑
j=0

(−1)p−1−j
(
p− 1

j

)
ι(x)j · ι(d(x)) · ι(x)p−1−j [25, I.1.3]

=

p−1∑
j=0

ι(x)j · ι(d(x)) · ι(x)p−1−j.

Hence f is a homomorphism of restricted Lie algebras and we can proceed as in [25,

I.8.1(5)].

(2) ⇒ (1): Let D ∈ Der(U0(g)) be a derivation such that D ◦ ι = ι ◦ d. Recall that

ι : g→ U0(g)− is a homomorphism of restricted Lie algebras. Let x ∈ g, then

ι(d(x[p])) = D(ι(x[p])) = D(ι(x)p) = adU0(g)(ι(x))p−1(D(ι(x)) Lemma 2.5.15(2)

= adU0(g)(ι(x))p−1(ι(d(x)))

= ι(adg(x)p−1(d(x))).

It now follows from the injectivity of ι, that d is a restricted derivation.

Remark 2.5.17. Using that [D,D′], Dp are derivations of U0(g) if D,D′ are, one can

conclude from the above that Derp(g) is in fact a restricted subalgebra of Der(g).

Let n be a Lie algebra and consider a homomorphism τ : h→ Derk(n) of Lie algebras.

Then the vector space n⊕ h obtains the structure of a Lie algebra with bracket

[(x, y), (x′, y′)] := ([x, x′]n + τy(x
′)− τy′(x), [y, y′]h) ∀x, x′ ∈ n, y, y′ ∈ h.

It is called the semidirect product of n and h (with respect to τ) and denoted by noτ h

or simply no h when the homomorphism τ is clear from the context.

Lemma 2.5.18. The following statements hold:

(1) Let n be a restricted Lie algebra and τ : h→ Derp(n) be a homomorphism of restricted

Lie algebras. Then noτ h admits a unique p-map with the property that the canonical

embeddings ιn : n → n oτ h, x 7→ (x, 0) and ιh : h → n oτ h, y 7→ (0, y) are

homomorphisms of restricted Lie algebras. This p-map is given by

(x, y)[p] =

(
x[p]n +

p−1∑
i=1

si((x, 0), (0, y)), y[p]h

)
∀x ∈ n, y ∈ h.

(2) Let g be a restricted Lie algebra. If nE g is a p-ideal and h ⊆ g a p-subalgebra, then
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h acts on n via restricted derivations. Moreover, if n ∩ h = (0) and g = n + h, then

g is isomorphic to the semidirect product no h.

Proof. (1) This follows from the proof of [25, II, Theorem 2.5], which is based on Ja-

cobson’s theorem [25, II, Theorem 2.3].

(2) Clearly h acts on n via derivations, we have to show that these derivations are

restricted. Let y ∈ h and x ∈ n, then

[y, x[p]] = −[x[p], y] = −adg(x)p−1([x, y]︸︷︷︸
∈n

) = adn(x)p−1([y, x]).

The requirements g = n + h and n ∩ h = (0) imply that g is the direct sum n⊕ h of

vector spaces. A desired isomorphism is now given by the map g→ noτ h, x+ y 7→
(x, y).

Remark 2.5.19. Let g = n oτ h be a semidirect product of restricted Lie algebras.

Recall that V (g) := {x ∈ g : x[p] = 0} is the nullcone of g.

(1) If n is elementary abelian, then n is nothing but a restricted h-module.

(2) We clearly have V (h) ∪ V (n) ⊆ V (g) ⊆ n× V (h).

(3) The restricted homomorphism τ : h→ Derp(n) induces a restricted homomorphism

τ ′ : h → Der(U0(n)), where τ ′(x) ∈ Derk(U0(n)) is the unique derivation of U0(n)

which lifts τ(x) (see Lemma 2.5.16). Hence, U0(n) is a U0(h)-module.

By way of example, and for later reference, we discuss two cases where the p-map on

a semidirect product can be written down more explicitly.

Lemma 2.5.20. Let g = noτ h be a semidirect product of restricted Lie algebras.

(1) If τ ≡ 0 (leading to a direct product g = n ⊕ h), then (x, y)[p] = (x[p], y[p]) for all

x ∈ n, y ∈ h. In particular, V (g) = V (n)× V (h).

(2) If n is an abelian Lie algebra, then we have (x, y)[p] = (x[p] + τ(y)p−1(x), y[p]) for all

x ∈ n, y ∈ h.

Proof. (1) The assumption τ ≡ 0 implies easily that si((x, 0), (0, y)) = 0 for all x ∈
n, y ∈ h. The assertion follows from the definition of the p-map on g.

(2) Using that n is abelian, a direct computation shows that s1((x, 0), (0, y)) = (τ(y)p−1(x), 0)

as well as 0 = si((x, 0), (0, y)) for 2 ≤ i ≤ p− 1. Hence, the assertion again follows

from the definition of the p-map on g.
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Lemma 2.5.21. Let g be a restricted Lie algebra and σ : g→ g be an automorphism of

the ordinary Lie algebra g.

(1) If the center C(g) is zero, then σ is restricted.

(2) If g = no h is a semidirect product of restricted Lie algebras and the restriction of

σ to n and h induces restricted automorphisms of n and h, respectively, then σ is

restricted.

Proof. (1) The elements σ(x[p]) − σ(x)[p] for x ∈ g are contained in the kernel of ad :

g→ gl(g), which is exactly the center C(g) of g.

(2) This follows from 2.5.18 and [25, Exercise 4 on p.69].

Given an exact sequence

0 −→ n
ι−→ g

π−→ h −→ 0

of restricted Lie algebras, we call g an extension of h by n. This extension is then

referred to as a split extension, provided there is a homomorphism of restricted Lie

algebras ϕ : h→ g such that π ◦ ϕ = idh. Note that ϕ is automatically injective so that

im(ϕ) ∼= h. In analogy to Lemma 2.4.27, one can show

Lemma 2.5.22. Split extensions correspond to semidirect products of restricted Lie

algebras.

As a consequence, we can easily obtain the following fact:

Lemma 2.5.23. If G = N oH is a semidirect product of affine algebraic group schemes,

then (denoting their Lie algebras with gothic letters) g is isomorphic to the semidirect

product no h.

Proof. Consider the corresponding exact sequence

ek −→ N −→ G
π−→ H −→ ek.

By definition, there is ϕ : H → G such that π ◦ϕ = idH. Consequently, Lie(π)◦Lie(ϕ) =

idh. In particular, Lie(π) is surjective. Since G is algebraic (hence N and H are), we

obtain a split-exact sequence

0 −→ n −→ g
Lie(π)−→ h −→ 0

of restricted Lie algebras.
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Recall that a direct sum Z := X ⊕ Y of finite-dimensional vector spaces induces

a direct sum decomposition Z∗ = X∗ ⊕ Y ∗ of its dual, where X∗ is identified with

{λ ∈ Z∗ : λ(Y ) = (0)} and Y ∗ with {λ ∈ Z∗ : λ(X) = (0)}. Recall that every algebraic

group acts on its Lie algebra via the adjoint representation (cf. 2.4.32(2)).

Lemma 2.5.24. Let G = N oH be a semidirect product of algebraic groups. Then the

following statements hold:

(a) The H-module g (g∗) is the direct sum n⊕ h (n∗ ⊕ h∗) of H-modules. Moreover, N

acts on n ⊆ g (n∗ ⊆ g∗) via AdN (its dual).

(b) Let n ∈ N . Consider the left translation ln : N → N effected by n and the morphism

ηn : H → N, h 7→ h.n. Put

ϕ : N × h −→ n, (n, x) 7→ AdN(n) ◦ dn(ln−1) ◦ de(ηn)(x)

ψ : N × n∗ −→ h∗, (n, λ) 7→ λ ◦ ϕ(n,−).

Then

n.x = (−ϕ(n, x), x) ∀n ∈ N, x ∈ h.

Moreover, if χ = (χn, χh) ∈ g∗ is a linear form, then

n.χ = (n.χn, χh − ψ(n−1, χn)) ∀n ∈ N.

Proof. We only determine the action of N on elements of h ⊆ g (using this, all others

can be obtained via direct computation): Denote the conjugation effected by n ∈ N as

κn : H → N oH = G; h 7→ nhn−1 = (n(h.n)−1, h)

The second coordinate function of this morphism is the identity idH on H and the first

is the composite ln ◦ ιN ◦ ηn, where ιN : N → N denotes the inversion of the group

N and the maps ln, ηn are from above. Then, using the functorial property of taking

differentials (Lemma 2.4.30), we obtain

de(ln ◦ ιN ◦ ηn) = d(ιN◦ηn)(e)(ln) ◦ de(ιN ◦ ηn)

= dn−1(ln) ◦ dn(ιN) ◦ de(ηn)

= dn−1(ln) ◦ (−de(rn−1) ◦ dn(ln−1)) ◦ de(ηn) Lemma 2.4.31

= −de(ln ◦ rn−1) ◦ dn(ln−1) ◦ de(ηn)

= −AdN(n) ◦ dn(ln−1) ◦ de(ηn).
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Remark 2.5.25. If H ′EH is a closed, normal subgroup, then G′ := N oH ′ is a closed,

normal subgroup of G = NoH. The algebraic group G therefore acts on g′ = noh′ with

p-automorphisms. Thus, also every element of H gives rise to an automorphism of the

restricted Lie algebra g′. This will be used later on in case H = GL(2), H ′ = SL(2) and

N is the three-dimensional Heisenberg group or G2
a, the direct product of the additive

group Ga = (A1,+) with itself.

We want to record a version of the above lemma in a special case. Recall that, equipped

with addition, we can view any finite-dimensional vector space V as an algebraic group

and that linear maps V → W are morphisms (see 2.4.3). We record the following

well-known fact, which essentially states that linear maps can be identified with their

differentials.

Lemma 2.5.26. Let V be a finite-dimensional vector space and x ∈ V . Then the

map ΓV,x : V → Derk(S(V ∗), kx) = Tx(V ) described below is an isomorphism of vector

spaces. If W is another finite-dimensional vector space and f : V → W a linear map,

then dx(f) ◦ ΓV,x = ΓW,f(x) ◦ f .

Proof. In view of 2.4.3(3), we may after a choice of a basis assume that V = kn. Then

k[V ] = k[X1, . . . , Xn] is the polynomial ring in n variables. Given x = (x1, . . . , xn) ∈ V ,

the asserted map ΓV,x is now given as follows: starting with a vector v = (v1, . . . , vn) ∈
V , we obtain a derivation dv :=

∑n
j=1 vj

∂
∂Xj
∈ Derk(k[V ], k[V ]) and then composi-

tion with the evaluation homomorphism k[V ] → k at x yields the desired derivation

ΓV,x(v) ∈ Derk(k[V ], kx). For the additional claim, one may also assume W = km by

picking a basis of W and observe that the linear map f : V → W is then given by left

multiplication with the representing matrix relative to these bases. Then it is enough

to show (dx(f)(ΓV,x(v))(Yk) = (ΓW,f(x)(f(v))(Yk) for all 1 ≤ k ≤ m, which is direct

computation.

Let now V be a restricted representation of some restricted Lie algebra g, then we

can consider the semidirect product V o g (see 2.5.19(1)). If g is the Lie algebra of an

algebraic group G, we say that V is integrable to G, provided there is some rational

G-module V ′ such that V ′ ∼= V as g-modules.

Lemma 2.5.27. Let g = Lie(G) be the Lie algebra of an algebraic group G and V a

finite-dimensional restricted g-module.

(1) If V is integrable to G, then V o g = Lie(V oG).

(2) If (1) holds, then

(a) The G-module V og ((V og)∗) is the direct sum V ⊕g (V ∗⊕g∗) of G-modules.
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(b) The group V acts on V ⊆ V o g trivially and we have

v.x = (−x.v, x) ∀v ∈ V, x ∈ g.

(c) If χ = (χV , χg) ∈ (V o g)∗ is a linear form, then we have

v.χ = (χV , χg − ψ(v, χV ))

for all v ∈ V , where ψ : V × V ∗ → g∗, (v, λ) 7→ (x 7→ (x.λ)(v) = −λ(x.v)).

Proof. This is a special case of 2.5.23 and 2.5.24. It is not hard to see, that the differential

of left translation lv : V → V, w 7→ v + w by some vector v can be identified with the

identity idV (see also 2.5.26). Moreover, the map ηv : G → V, g 7→ g.v is nothing but

the composite of the structure homomorphism G → GL(V ) and the restriction of the

evaluation map γv : Endk(V ) → V, f 7→ f(v) to GL(V ). Since γv is linear, it follows

from 2.5.26 and 2.4.30 that the differential of ηv at the identity element e of G can be

identified with g→ V, x 7→ x.v.

Remark 2.5.28. The mapping ψ is bilinear. Moreover, 2.4.32(3) implies that ψ is

G-invariant.

Given a finite group scheme G, we let δG ∈ X(G) be the character corresponding to

the left modular function of its Hopf algebra kG.

Lemma 2.5.29. Let G be an algebraic group. Assume that G acts on some unipotent

algebraic group H and denote by ρ : G → GL(h) the corresponding action of G on

h = Lie(H). Let r ≥ 1.

(a) The modular function δHroGr of the infinitesimal group HroGr is the restriction of

the character

X(H oG) 3 δ : H oG→ Gm, (h, g) 7→ (det(AdG(g)) · det(ρ(g)))p
r−1

to Hr oGr, where AdG denotes the adjoint representation of G on g.

(b) If G is reductive, then δ(h, g) = det(ρ(g))p
r−1 for all (h, g) ∈ H oG.

(c) Let ρ : G→ GL(V ) be a rational representation. The modular function δGV,r of the

infinitesimal group GV,r = Vr oGr is the restriction of the character

X(GV ) 3 δ : V oG→ Gm, (v, g) 7→ (det(AdG(g)) · det(ρ(g)))p
r−1

to GV,r. If G is reductive, then δ(v, g) = det(ρ(g))p
r−1 for all (v, g) ∈ GV .
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Proof. Combining [41, I.8.19, I.9.7], we see that the modular function of GV,r is given

by restricting the character

δ : H oG→ Gm, (h, g) 7→ det(AdHoG(h, g))p
r−1

of H oG to Hr oGr, where AdHoG denotes the adjoint representation of H oG on its

Lie algebra ho g (see also 2.5.23, 2.5.24). Since H is unipotent, we have δ(h, 1) = 1 for

all h ∈ H. Claim (a) now follows directly from the fact that the G-module ho g is the

direct sum h⊕g. Part (b) follows from the fact that det ◦ AdG = 1 for reductive G (see

the proof of [41, Proposition II.3.4 a)]) and (c) is a special instance of (a) and (b).
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3 Existence of Euclidean components

3.1 Relationship to the existence of unipotent, normal subgroups

Given a finite group scheme G over k, we denote by Γs(G) the stable Auslander-Reiten

quiver of its Hopf algebra kG. Recall from 2.3.9, that kG is a Frobenius algebra with

Nakayama automorphism given by µG := idkG ∗ζG (kG being cocommutative implies that

its antipode has order 2), the convolution product of the identity with the left modular

function ζG of G. The following will be used later on.

Lemma 3.1.1. Let N E G be a normal subgroup of some finite group scheme G. Then

µG|kN = µN .

Proof. See the proof of [20, Lemma 3.1.1].

In [29], Friedlander and Pevtsova introduced the noetherian topological space Π(G) of

equivalence classes of π-points and attached to every G-module M its Π-support

Π(G)M := {[αK ] ∈ Π(G) : α∗K(MK) is not projective}.

These subsets of Π(G) are precisely the closed subsets. Here k ⊆ K is a field-extension,

MK := M ⊗k K and, if Ap,K := K[t]/(tp) and KG := KGK , a π-point αK : Ap,K → KG
is a left flat map of k-algebras which factors through some abelian unipotent subgroup

U ⊆ GK . If βL is another π-point, then αK and βL are equivalent, provided the following

equivalence holds for any G-module M :

α∗K(MK) is projective⇐⇒ β∗L(ML) is projective.

Theorem 3.1.2. Let M be a finite-dimensional module of some finite group scheme G.

(1) We have dim(Π(G)M) = cxG(M) − 1, where cxG(M) denotes the complexity of the

kG-module M (recall Definition 2.1.16).

(2) M is projective if and only if Π(G)M = ∅.

(3) Let M be non-projective indecomposable, then dim(Π(G)M) = 0 if and only if M is

periodic.

Proof. For (1) and (2), we refer to [29, Corollary 5.5, Proposition 5.8]. Part (3) can be

shown analogously to [18, Theorem 3.3(2)].

Given M ∈mod(G) and [αK ] ∈ Π(G), we write

α∗K(MK) ∼=
p⊕
i=1

αK,i(M)[i],
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where [i] ∈ mod(Ap,K) denotes the unique indecomposable module of dimension i (see

p.13).

Definition 3.1.3. Let αK : Ap,K → KG be a π-point and M ∈mod(G).

(i) The iso-class
⊕p

i=1 αK,i(M)[i] ∈mod(Ap,K) is called the Jordan type Jt(M,αK) of

M with respect to αK.

(ii) The iso-class
⊕p−1

i=1 αK,i(M)[i] ∈mod(Ap,K) is called the stable Jordan type StJt(M,αK)

of M with respect to αK.

(iii) The set suppαK (M) := {i ∈ {1, . . . , p− 1} | αK,i(M) 6= 0} is called the αK-support

of M .

Recall that a finite group scheme G is called linearly reductive, provided its Hopf

algebra kG is semi-simple. We record the following trivial observation.

Lemma 3.1.4. Let G be a finite group scheme. Then the following statements are

equivalent:

(a) G is linearly reductive.

(b) The trivial module k is a projective G-module.

(c) Π(G) = ∅.

In particular, if G is unipotent and non-trivial, then there exists a π-point αK : K[t]/tp →
KU .

Proof. By 3.1.2, we have Π(G) = Π(G)k = ∅ if and only if k is a projective kG-module.

This shows (b)⇐⇒ (c). The implication (a) =⇒ (b) is clear. If (b) holds, then kG being

a Hopf-algebra implies that M ⊗k k ∼= M is projective for any M ∈ mod(G). Thus,

kG is semi-simple. As G is unipotent if and only if the Hopf algebra kG is local, which

means that the regular kG-module is the projective cover of k, the additional statement

is also clear.

Definition 3.1.5. A component Θ ⊆ Γs(G) is called locally split, provided the exact

sequence α∗K(EM ⊗k K) splits for every [αK ] ∈ Π(G) and every module M ∈ Θ.

Analogously to [18, Lemma 3.1] one can show that the Π-support is constant inside

Auslander-Reiten components Θ ⊆ Γs(G). Thus, we shall speak of the Π-support Π(G)Θ

of Θ.

Lemma 3.1.6. If Θ ⊆ Γs(G) is a Euclidean component, then dim Π(G)Θ ≥ 1. In

particular, Θ is locally split.
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Proof. If dim Π(G)Θ = 0, then Theorem 3.1.2(3) implies that every module in Θ is peri-

odic. In view of [35, 4.16.2], this is a contradiction. It now follows from [23, Proposition

2.3(2)] that Θ is locally split.

In [23, §3], Farnsteiner attached some invariants to locally split components Θ ⊆
Γs(G), which help to decide whether two given modules belong to the same component

or not (having the same Π-support is in general not enough for a positive answer).

Lemma 3.1.7. Let M ∈mod(G) be a G-module and αK : Ap,K → KG a π-point. Then

αK,i(Ω
n(M)) =

{
αK,i(M), n is even

αK,p−i(M), otherwise

for all 1 ≤ i ≤ p− 1.

Proof. By [42, Corollary 3.5 (c)], the Heller-operator commutes with base extensions.

As α∗K is exact and sends projectives to projectives, general properties of the Heller

operator yield

α∗K(Ωn
G(M)K) ∼= α∗K(Ωn

GK (MK)) ∼= Ωn
Ap,K

(α∗K(MK))⊕ (proj)

As ΩAp,K ([i]) = [p− i] for 1 ≤ i ≤ p− 1 (see Lemma 2.1.40), the lemma follows.

As the author states in the introduction of [18], the main results of the first three

sections are still valid, when the ground field k is perfect. With this in hand, we can

now verify the following theorem.

Theorem 3.1.8. Let G be a finite group scheme over a perfect field k of characteristic

p ≥ 3. If the stable Auslander-Reiten quiver Γs(G) admits a component of Euclidean

type, then G has no non-trivial normal, unipotent subgroups.

Proof. Let UEG be a non-trivial unipotent, normal subgroup. By Lemma 3.1.4, there is

[αK ] ∈ Π(U) which we treat as an element of Π(G) under the natural map Π(U)→ Π(G)

(cf. [29, Corollary 2.7]). As αK(t) ∈ KU is nilpotent, the image of αK is contained in

the augmentation ideal of KU . In view of Lemma 2.4.19, U acts trivially on any simple

G-module S. Hence, for all simple G-modules S:

Jt(S, αK) = dimk S · [1] (∗).

Now assume Θ ⊆ Γs(G) is a component of Euclidean type. In view of Lemma 3.1.6, Θ is

locally split. Moreover, Lemma 2.2.3 shows that P/Soc(P ) belongs to Θ for some princi-

pal indecomposable G-module P . Hence the simple module S = Soc(P ) = Ω(P/Soc(P ))

belongs to the component Ω(Θ). In particular Ω(Sµ) belongs to τG(Θ) = Θ. As Ω(Θ)
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is isomorphic to Θ (see 2.2.4), it is therefore also attached to some projective inde-

composable module Q. Hence, the simple module T := Ω(Q/Soc(Q))µ also belongs to

τG(Θ) = Θ. A consecutive application of [23, Corollary 3.2.3] and Lemma 3.1.7 then

yields

{1} (∗)
= suppαK (T ) = suppαK (Ω(Sµ)) = {p− 1},

which contradicts the assumption p ≥ 3.

Remark 3.1.9. (1) If G is infinitesimal, then the theorem shows that if G admits a

Euclidean component, then G is reductive.

(2) If the characteristic of k equals p = 2, our theorem fails. Here the restricted en-

veloping algebra of the two-dimensional elementary abelian Lie algebra e2 is known

to have components of type Z[Ã12] (Ã12 = • (2,2)−→ •) in that case (cf. [10, Theorem

2]).

(3) The converse of our theorem is also not true. In view of Lemma 2.4.34(1) and

Corollary 3.2.2 below, one could take a Frobenius kernel of the simple reductive

group SL(n) as a counterexample, where n ≥ 3 does not divide p.

3.2 Some consequences

As a first consequence of our theorem, the characterization of trigonalizable group

schemes 2.4.20 now yields

Corollary 3.2.1. Let G be a finite trigonalizable group scheme over a perfect field k of

characteristic p ≥ 3. Then Γs(kG) does not afford components of Euclidean type.

In the following, we will again consider the Euclidean tree Ã12 = • (2,2)−→ •. Recall from

2.4.34, that an algebraic group G is reductive of and only if its reduced group scheme

G = Speck(k[G]) enjoys this property.

Corollary 3.2.2. Let G be an affine algebraic group scheme over a field k of positive

characteristic p ≥ 3 and let r ≥ 1 be an arbitrary natural number. Then the following

statements hold:

(1) If k is perfect and there exists a unipotent, normal subgroup UEG, which is not finite

and reduced, then the stable Auslander-Reiten quiver Γs(Gr) of the rth Frobenius

kernel Gr does not afford components of Euclidean type.

(2) If k is algebraically closed, G is reduced and Γs(Gr) admits a component of Euclidean

type, then G is reductive.
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(3) If k is algebraically closed of characteristic p > 3 and G is connected and reduced,

then the following statements are equivalent for a component Θ ⊆ Γs(Gr) of the

stable Auslander-Reiten quiver of the rth Frobenius kernel of G:

(a) Θ is a component of Euclidean type.

(b) Θ is isomorphic to Z[Ã12], the group G is reductive and SL(2) or PSL(2) =

SL(2)/± E2 is a direct factor of G.

Proof. (1) As U EG is a normal subgroup, G stabilizes all its Frobenius kernels. By our

current assumption, 2.4.12 implies that the first Frobenius kernel U1 is a non-trivial,

unipotent normal subgroup of Gr. Now apply Theorem 3.1.8.

(2) By (1), every unipotent, normal subgroup of G is finite and reduced. Thus, this

holds for the unipotent radical Ru(G). Since Ru(G) is connected, we get Ru(G) = ek.

Hence G is reductive.

(3) The implication (b)⇒ (a) is clear.

(a)⇒ (b) : In view of (2), G is reductive. The statement now follows from the proof

of [15, Theorem 4.1] (here we need p > 3).

We denote by K the quotient of the path algebra of the quiver

1 2

a

b

c

d

by the relations

ad = bc, da = cb, ac = bd = ca = db = 0.

The algebra K is isomorphic to the trival extension (kQ)∗okQ of the path algebra of the

Kronecker quiver Q = •−→−→•. It is known to be a domestic algebra that affords exactly

two components of type Z[Ã12] and infinitely many homogeneous tubes Z[A∞]/(τ).

Given a finite group scheme G, we denote by C(G) its center (see [57, p.27] for the

definition). Since C(G) is abelian, we have a decomposition C(G) = M(G)× U(G) into

a multiplicative group M(G), the multiplicative center, and a unipotent group U(G)

(see [57, Theorem 9.5]). Since G acts trivially on its center, both M(G) and U(G) are

necessary normal subgroups of G.
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Corollary 3.2.3. Let G be an infinitesimal group scheme of height r over an algebraically

closed field k of characteristic p ≥ 3 such that the principal block B0(G) is tame.

(1) If Γs(G) admits a component of Euclidean type, then B0(G) is domestic and G/M(G) ∼=
SL(2)1Tr, where T ⊆ SL(2) denotes the torus of diagonal matrices.

(2) If Γs(G) admits a component Θ of Euclidean type and r = 1, then every block

B ⊆ kG is either simple, or Morita-equivalent to Λ, where Λ ∈ {k[X]/(X2),K}. In

particular, Θ ∼= Z[Ã12]. Moreover, Uχ(Lie(G)) is tame or representation-finite for

all χ ∈ g∗.

Proof. Part (1) directly follows from [20, Proposition 3.2.1] in conjunction with Theorem

3.1.8. The second part then follows from (1) and [24, Theorem 8.10, Corollary 8.12].

Recall that every finite group G corresponds to a reduced finite group scheme GG (cf.

2.4.8(a)). In [49], Okuyama has shown that G does not admit components of Euclidean

tree class unless the characteristic p of the base field k equals p = 2. We want to give

an alternative proof in case of an algebraically closed field, which combines 3.1.8 and

Kawata’s theorem [43, 4.6]. Therefore, we need to recall the definition of a vertex and

some properties of these.

Definition 3.2.4. Let H ⊆ G be a subgroup of some finite group G and M a G-module.

(i) If M is a direct summand of kG⊗kHM |H , then M is called relatively H-projective.

(ii) If M is indecomposable and H is a minimal subgroup having the property that M

is relatively H-projective, then H is called a vertex of M . We denote by vx(M)

the set of all vertices of M .

Lemma 3.2.5. Let M be an indecomposable module of some finite group G over k.

(1) Each vertex H ∈ vx(M) is a p-group and if H ′ ∈ vx(M) is another vertex of M ,

then there exists g ∈ G such that gHg−1 = H ′.

(2) M is projective if and only if vx(M) = {e}.

Proof. Part (1) has been proven by J.A. Green, see [34, p.435 above].

(2): It is obvious that kG ⊗ke M |e ∼= kG ⊗k M , where the tensor product is build

with M considered as a trivial G-module. If vx(M) = {e}, then M is a direct summand

of kG ⊗k M ∼= dimkM · kG. Hence M is projective as a direct summand of some free

G-module. If conversely M is projective, then the surjective G-linear map kG⊗k M →
M, a⊗m 7→ a.m is split surjective. Hence vx(M) = {e}.
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If Q is a stable translation quiver, then the orbit graph Q/〈τ〉 is given by (Q/〈τ〉)0 :=

Q0/〈τ〉 and there is a bond between [x] and [y] if and only if there exists x0 ∈ [x] such

that y ∈ x−0 ∪ x+
0 if and only if there exists y0 ∈ [y] such that x ∈ y−0 ∪ y+

0 .

Lemma 3.2.6. Let Q be a quiver with no multiple arrows and no loops.

(1) The graphs Q and Z[Q]/〈τ〉 are isomorphic.

(2) Every (injective) morphism f : Z[Q] → Z[Q′] induces a (an injective) morphism

f : Q→ Q′.

Proof. (1) The map Q → Z[Q]/〈τ〉, x 7→ [(0, x)] is readily checked to be an isomor-

phism.

(2) We define f : Z[Q]/〈τ〉 → Z[Q′]/〈τ ′〉, [(n, x)] 7→ [f(n, x)]. As f ◦ τ = τ ′ ◦f , the map

f is well defined. Moreover, it is clearly a homomorphism. Now assume that f is

injective and let [(n, x)], [(m, y)] ∈ (Z[Q]/〈τ〉)0 such that [f(n, x)] = [f(m, y)]. Then

there is z ∈ Z such that (τ ′)z(f(n, x)) = f(m, y). As (τ ′)z(f(n, x)) = f(τ z(n, x)),

we obtain τ z(n, x) = (m, y) by injectivity. Hence we obtain [(n, x)] = [(m, y)]. This

shows that f is injective as well. Now apply (1).

Given a finite group G, we denote by Γs(G) := Γs(GG) = Γs(kG) the stable Auslander-

Reiten quiver of the reduced finite group scheme GG = Speck(kG) which is associated

to G. Recall that the Auslander-Reiten translation is given by τ = Ω2 (cf. 2.1.36(1)).

Theorem 3.2.7. Let G be a finite group and assume that k is an algebraically closed field

of positive characteristic p ≥ 3. Then Γs(kG) does not admit components of Euclidean

type.

Proof. Let Θ ⊆ Γs(kG) be a component. Consider the set vx(Θ) :=
⋃
M∈Θ vx(M),

choose a minimal element H ∈ vx(Θ) and denote by N := NG(H) its normalizer. Then

Kawata’s theorem [43, Theorem 4.6] yields a component ∆ ⊆ Γs(kN), a valued subquiver

Λ ⊆ ∆ and an isomorphism

ψ : Λ→ Θ

of valued quivers such that ψ−1 is given by the Green correspondence on vertices. As

the latter commutes with the Heller operator (cf. [9, V.1.4]), we thus obtain an injective

homomorphism f : Θ→ ∆ of valued stable translation quivers.

Now assume that Θ is of Euclidean type. Then Lemma 3.1.6 in conjunction with

3.1.2(1) implies that cxG(M) ≥ 2 for all M ∈ Θ. Upon application of the generalization

of Webb’s theorem 2.2.6, we obtain Θ ∼= Z[S] where S ∈ {Ã12, Ãp,q, D̃n (n ≥ 4), Ẽr (6 ≤
r ≤ 8)}. We proceed in several steps.
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(i) We have cxN(X) ≥ 2 for all X ∈ ∆: Indeed, if L ∈ Λ ⊆ ∆, then ψ(L) ∈ Θ is (by

definition) a direct summand of the induced module kG⊗kN (L|N). Thus, we have

2 ≤ cxG(ψ(L)) ≤ cxG(kG⊗kN (L|N)) ≤ cxN(L).

(ii) We have ∆ ∼= Z[T ], where T is a directed tree such that T ∈ {A∞, D∞, A∞∞}:
In view of 3.2.5(1), H E N is a non-trivial, normal p-subgroup of N . Thus, an

application of Theorem 3.1.8 to the constant group scheme GN shows that ∆ is

not Euclidean (see also 2.4.16(2)). Now apply Theorem 2.2.6 again in conjunction

with (i) and 3.1.2(3).

(iii) We now arrive at a contradiction: By the Lemma above, f induces an injective

homomorphism S → T of (valued) graphs. But the trees A∞, D∞, A
∞
∞ do (obvi-

ously) neither contain any Euclidean tree of type Ã12, D̃n (n ≥ 4), Ẽr (6 ≤ r ≤ 8)

nor a circle (which is the underlying graph of any quiver of type Ãp,q).

3.3 An analogous result for reduced enveloping algebras

We want to prove the analogue of Theorem 3.1.8 for reduced enveloping algebras, where

the role of Π-supports is here taken by rank varieties (as introduced before). Let g be a

finite-dimensional restricted Lie algebra over an algebraically closed field k and χ ∈ g∗

a linear form. Recall from 2.1.36(4), that the algebra Uχ(g) is a Frobenius algebra with

Nakayama automorphism given by

µ : Uχ(g)→ Uχ(g), g 3 x 7→ x+ tr(ad(x)).

Lemma 3.3.1. Let nEg be a p-ideal of some restricted Lie algebra g. Then tr(adg(x)) =

tr(adn(x)) for all x ∈ n. In particular, the restriction of the Nakayama automorphism

µ : Uχ(g) → Uχ(g) to Uχ(n) coincides with the Nakayama automorphism of Uχ(n) for

all linear forms χ ∈ g∗.

We denote by Γs(g, χ) the stable Auslander-Reiten quiver of Uχ(g). Recall that Uχ(g)

being Frobenius implies that the Auslander-Reiten translation τ is given by Ω2 ◦ (−)µ
−1

,

where Ω denotes the Heller operator of Uχ(g).

The structure of components Θ ⊆ Γs(g, χ) has been studied in [12, §5]. We recall

some facts which have been proven in the latter reference. For instance, we have

V (g)M = V (g)N , ∀[M ], [N ] ∈ Θ,

so that we can speak of the rank variety V (g)Θ. The periodic components are precisely

those having a one-dimensional rank variety.
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Theorem 3.3.2. Let Θ ⊆ Γs(g, χ) be a component.

(1) If Θ is finite, then Θ is periodic and there exists a block B ⊆ Uχ(g) such that

Θ = Γs(B). This block B is a Nakayama algebra and we have Θ ∼= Z[A``(B)]/(τ
k),

where k = ord(µ) ∈ {1, p}.

(2) If Θ is an infinite component containing a periodic module, then Θ ∼= Z[A∞]/(τ k)

is a k-tube, where k = ord(µ) ∈ {1, p}. Moreover, Θ is regular.

We let x ∈ V (g) \ {0} and denote by

[i] := k[x]/(xi) 1 ≤ i ≤ p− 1

the unique indecomposable k[x]-module of dimension i. As k[x] is local, the regular

module [p] := k[x] is the only projective indecomposable indecomposable module. If

M ∈ mod(Uχ(g)), then we can write (corresponding to the Jordan canonical form of

the nilpotent linear operator xM)

M |k[x]
∼=

p⊕
i=1

aM,i(x)[i]

Definition 3.3.3. Let x ∈ V (g) \ {0}.

(i) The isoclass
⊕p

i=1 aM,i(x)[i] ∈ mod(k[x]) is called the Jordan type Jt(M,x) of M

at x.

(ii) The stable Jordan type StJt(M,x) of M at x is defined to be the isoclass of⊕p−1
i=1 aM,i(x)[i] ∈mod(k[x]).

(iii) The set suppx(M) := {i ∈ {1, . . . , p−1} : aM,i(x) 6= 0} is referred to as the support

of M at x.

Our goal is to make sure, that suppx(M) = suppx(N) for all M,N ∈ Θ.

Definition 3.3.4. A component Θ ⊆ Γs(g, χ) is called locally split, provided EM |k[x]

splits for every M ∈ Θ and x ∈ V (g).

Lemma 3.3.5. Let χ ∈ g∗ be a linear form, h ⊆ g be a p-subalgebra.

(1) We have V (g)Indg
h(N,χ) ⊆ V (h) for all N ∈mod(Uχ(h).

(2) If M is a non-projective indecomposable Uχ(g)-module such that V (g)M * V (h),

then the exact sequence EM |Uχ(h) splits.

Proof. (1) This follows from [13, Proposition 3.4].
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(2) We consider the surjective Uχ(g)-linear map

µ : Indg
h(M,χ)→M,u⊗m 7→ u.m

which corresponds to idM ∈ EndUχ(h)(M) under adjoint isomorphism (see 2.1.29).

If µ would be split surjective, then standard properties of rank varieties (see 2.5.7)

and (1) yield

V (g)M ⊆ V (g)Indg
h(M,χ) ⊆ V (h),

contradicting the assumption. Consequently, µ is not split surjective and the almost

split property of EM provides ϕ ∈ HomUχ(g)(Indg
h(M,χ), EM) such that µ = πM ◦ϕ,

where πM : EM → M denotes the corresponding projection of the exact sequence

EM . Frobenius reciprocity then yields idM = η ◦ πM for η ∈ HomUχ(h)(M,EM)

corresponding to ϕ, so that EM |Uχ(h) splits.

Corollary 3.3.6. If Θ ⊆ Γs(g, χ) is a component with dimV (g)Θ ≥ 2, then Θ is locally

split.

Proof. Given x ∈ V (g) \ {0}, we consider the one-dimensional elementary abelian sub-

algebra kx ⊆ g. As V (kx) = kx is one-dimensional, the assertion is now a direct

consequence of 3.3.5.

The following can be proven analogous to 3.1.7.

Lemma 3.3.7. Let M ∈ mod(Uχ(g)), i ∈ {1, . . . , p− 1} and x ∈ V (g) \ {0}. Then, if

N := Ωn
Uχ(g)(M), we have

aN,i(x) =

{
aM,i(x), n ≡ 0 mod 2

aM,p−i(x), n ≡ 1 mod 2

We now trace through the main arguments of [23, §2,3] and we will see, that they still

work in our context. In particular, we will see, that supports at points of V (g) give rise

to invariants of AR-components of reduced enveloping algebras.

Theorem 3.3.8. Let Θ ⊆ Γs(g, χ) be a component with dimV (g)Θ ≥ 2 and x ∈ V (g) \
{0}.

(a) For every i ∈ {1, . . . , p− 1}, the map

a−,i(x) : Θ→ N0, M 7→ aM,i(x)

is an additive function on Θ such that a−,i(x) ◦ τUχ(g) = a−,i(x).
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(b) The map

a−,<p(x) : Θ→ N0, M 7→ dimkM − p · aM,p(x)

is an additive function on Θ such that a−,<p(x) ◦ τUχ(g) = a−,<p(x).

(c) There are functions dΘ : V (g) → Np0, fΘ : Θ → N0 such that for all [M ] ∈ Θ and

x ∈ V (g) \ {0}

aM,i(x) = dΘ
i (x)fΘ(M) 1 ≤ i ≤ p− 1, aM,<p(x) = dΘ

p (x)fΘ(M).

Proof. By Corollary 3.3.6, Θ is locally split. Moreover, Lemma 3.3.7 in conjunction with

the fact that µ(x) = x + tr(ad(x)) = x implies that a−,i(x) ◦ τUχ(g) = a−,i(x). The first

two statements follow completely analogous to the proof of [23, Thm 2.4]. For the third

one note that Θ is infinite by 2.2.6, so that we can use the same proof as in [23, Theorem

3.1.1].

Corollary 3.3.9. Let Θ ⊆ Γs(g, χ) be a component with dimV (g)Θ ≥ 2 and M,N ∈ Θ.

(a) |Jt(M)| = |Jt(N)|

(b) If Θ � Z[A∞], then |{StJt(M,x);M ∈ Θ}| = |imfΘ| ≤ 6 for all x ∈ V (g).

(c) We have suppx(M) = suppx(N) for all x ∈ V (g) \ {0}.

Proof. (a) Owing to part (c) of the foregoing theorem we have |Jt(M)| = |im(dΘ)|.

(b) Owing to part (c) of the foregoing theorem we have |{StJt(M,x) | M ∈ Θ}| =

|imfΘ|.

(c) Owing to part (c) of the foregoing theorem we have |suppx(M)| = {i ∈ {1, . . . , p−1} |
dΘ
i (x) 6= 0}.

Remark 3.3.10. The functions fΘ are well-known and only depend on the tree class

TΘ. For instance, if TΘ = A∞, then fΘ(M) = ql(M) is the quasi-length of M (see 2.2.7)

or if TΘ = A∞∞, then fΘ ≡ 1. We refer to [35, p.326-328] for the other cases.

We now have collected all ingredients making it possible to adopt the arguments of

3.1.8 and arrive at the following result.

Theorem 3.3.11. Let g be a finite-dimensional restricted Lie algebra over an alge-

braically closed field of characteristic p ≥ 3 and χ ∈ g∗ a linear form vanishing on some

non-zero unipotent p-ideal uEg. Then Γs(g, χ) does not afford components of Euclidean

type.
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4 Further Results on Extensions and Semidirect

Products

Throughout this chapter, vector spaces are understood to have finite-dimension over our

field k of positive characteristic p > 0.

4.1 Finite group schemes

We consider an extension

ek −→ N
ι−→ G π−→ H −→ ek

in the category of finite group schemes and for ease of notation:

� We treat ι as an inclusion N ⊆ G and π : G → H = G/N as the canonical

projection. Moreover, I†EkN denotes the augmentation ideal of the Hopf algebra

kN and I E kG denotes the ideal generated by I† inside kG.

� If G is a split extension, then we pick a (necessarily mono)morphism i : H → G
with the property that π ◦ i = idH and write ResH := i∗ (see 2.4.27).

Recall that a flat morphism ψ : L → M of finite group schemes induces a map

ψ∗ : Π(L)→ Π(M), [αK ] 7→ [ψK ◦ αK ] on the spaces of equivalence-classes of Π-points

(cf. [29, Corollary 2.7, Theorem 3.6]). In particular, we can consider the subset ι∗(Π(N ))

and, if G is a split extension, the subset i∗(Π(H)) of Π(G).

Lemma 4.1.1. Pullback along the projection π : G → H induces an equivalence

Inf := InfGH := π∗ : mod(H)→modN (G) ( Inflation)

If G is a split extension, then we have ResH ◦ Inf = idmod(H). If N is not linearly

reductive, then Inf(M) is not G-projective for all M ∈mod(H).

Proof. For the first assertion, we refer to [41, I.6.3]. The identity ResH ◦ Inf = idmod(H)

follows from the analogue of Lemma 2.1.28(1). Finally, since N acts trivially on Inf(M)

for all M ∈ mod(H), we have that ι∗(Π(N )) ⊆ Π(G)Inf(M). Now apply Lemma 3.1.4

and Theorem 3.1.2.

Remark 4.1.2. The morphism π induces a surjective homomorphism kG → kH of

Hopf algebras with kernel I. Hence, on the level of Hopf algebras, the above equiva-

lence is given as an equivalence mod(kH) → modI(kG), where modI(kG) is the full

subcategory of all finite-dimensional kG-modules V such that I.V = (0).
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Lemma 4.1.3. Let i : H ↪→ G be a closed subgroup of some arbitrary finite group scheme

G. Then the following statements hold:

(1) We have Π(G)M = Π(G)M⊗kkλ for every character λ ∈ X(G) and every M ∈
mod(G).

(2) We have Π(G)kG⊗kHM ⊆ i∗(Π(H)M) for all M ∈mod(H).

Proof. (1) This follows from the fact that π-points factor through unipotent subgroups

which all have trivial character group.

(2) This follows from (1) in conjunction with [30, Lemma 4.12] and [41, Proposition

I.8.17].

We let S(1), . . . , S(n) be a complete set of isoclasses of simple H-modules and denote

by P (1), . . . , P (n) the corresponding projective covers over H. Recall that, if G is a split

extension, then the induction functor

mod(H)→mod(G), N 7→ kG ⊗kH N

is equivalent to the functor N 7→ kN ⊗k N (cf. 2.4.29).

Theorem 4.1.4. Let G be an extension of H by some unipotent group N . Then the

following statements hold:

(1) The groups G and H have the same simple modules, i.e., the modules T (i) :=

Inf(S(i)) for 1 ≤ i ≤ n form a complete set of iso-classes of simple G-modules.

(2) If G is a split extension, then the following additional statements hold:

(a) If M = kN ⊗kN for some H-module N , then Top(M) ∼= Inf(TopH(N)). More-

over, Π(G)M = i∗(Π(H)N).

(b) The induced module Q(i) := kN ⊗k P (i) is the projective cover of the simple

module T (i) over G for all 1 ≤ i ≤ n.

(c) If M ∈mod(G), then we have [M : T (i)] = [M |H : S(i)] for all 1 ≤ i ≤ n

(d) Let i ∈ {1, . . . , n}, then we have Rad(Q(i)) = (I†⊗kP (i))+(k.1⊗kRadkH(P (i))).

Moreover, ΩG(Inf(P (i))) ∼= I† ⊗k P (i).

(e) We have Rad(kG) = I† ⊗k kH + kN ⊗ Rad(kH).

Proof. (1) This follows from Lemma 2.4.19.

(2) Now let G be a split extension.
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(a) Let M = kN ⊗k N . We have HomG(M,T (i)) ∼= HomH(N,S(i)) by Frobenius

reciprocity 2.1.29. It now follows from Lemma 2.1.12(7), that [Top(M) : T (i)] =

[Top(N) : S(i)], thereby implying the first assertion. Applying Lemma 4.1.3, we

get Π(G)M ⊆ ι∗(Π(H)N). For the reverse inclusion, we note that H acting on

kN by automorphisms of Hopf algebras forces a decomposition kN = k.1 ⊕ I†
of H-modules. Thus, M ∼= N ⊕ (I†⊗k N) as H-modules. Now [29, Proposition

3.3(4)] implies that

Π(H)N ∪ Π(H)I†⊗kN = Π(H)M ,

so that i∗(Π(H)N) ⊆ Π(G)M .

(b) Let i ∈ {1, . . . , n}. Since induction takes projectives to projectives, the module

Q(i) = kN ⊗k P (i) is G-projective. Moreover, Q(i) has simple top T (i) by (a).

Hence it is isomorphic to the projective cover of T (i) over G (see Lemma 2.1.15).

(c) Let again i ∈ {1, . . . , n} and put d := dimk EndG(T (i)) = dimk EndH(S(i)) ∈ N.

According to (b), Lemma 2.1.18(4) and Frobenius reciprocity imply that

d · [M : T (i)] = dimk HomG(Q(i),M) = dimk HomH(P (i),M |H)

= d · [M |H : S(i)].

The assertion follows.

(d) For ease of notation, we put

P := P (i), Q := Q(i), R := I† ⊗k P + k.1⊗k RadkH(P ).

As R is a kG-submodule of Q, the first claim follows if we can show that Q/R ∼=
T (i). Let ε : kN → k and π : P −→ P/Rad(P ) be the co-unit of the Hopf-

algebra kN and the canonical projection of kH-modules, respectively. As both

maps are H-linear and surjective, so is their tensor product

f : Q −→ k ⊗k P/Rad(P ) ∼= S(i), u⊗ p 7→ ε(u)⊗ π(p).

Clearly, R ⊆ ker(f), hence this induces a surjective kH-linear map

f : Q/R −→ k ⊗k P/Rad(P ).
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As R = (I† ⊗k P )⊕ (k.1⊗k RadkH(P )) as vector spaces, we get

dimkQ/R = dimkQ− dimk R = dimkQ− (dimk I
† · dimk P + dimk RadkH(P ))

= (dimk I
† + 1) · dimk P − (dimk I

† · dimk P + dimk RadkH(P ))

= dimk P − dimk Rad(P ).

It follows that f is an isomorphism of H-modules. Upon application of the

inflation functor, we obtain the desired isomorphism.

For the second assertion, we let f : Q(i) → Inf(P (i)) be the G-linear map

corresponding to the identity map idP (i) : P (i)→ P (i) = ResH(Inf(P (i))) under

adjoint isomorphism. Then f is surjective and ker(f) = I† ⊗k P (i) (as can be

seen by an easy dimension argument) is contained in Rad(Q(i)) by the above.

(e) Put J := I†⊗k kH+kN ⊗Rad(kH) ⊆ kG. By (1), J annihilates any simple kG-

module, therefore J ⊆ Rad(kG). Moreover, for every projective indecomposable

kG-module Q = kN ⊗k P , we have (observing Theorem 2.1.12(2) and k.1 ⊗
Rad(P ) = k ⊗k Rad(P ) ∼= Rad(P ) as kH-modules)

k.1⊗ Rad(P ) = Rad(kH).(k.1⊗k P ) ⊆ J.Q, I† ⊗k P = I†.(kN ⊗k P ) ⊆ J.Q.

Hence Rad(Q) ⊆ J.Q by (d). Consequently, Q/J.Q is a semisimple kG/J-

module. Hence

kG/J ∼=
n⊕
i=1

ni ·Q(i)/J.Q(i)

is a semi-simple algebra, so that Rad(kG) ⊆ J .

Let G be a split extension and consider the composite of ResH : modN (G)→mod(H)

(’the’ inverse of the inflation functor) and the fixed point functor relative to N :

F := ResH ◦ (−)N : mod(G)→mod(H)

Consider the G-module kN . Then

(kN )N =

∫
kN

= {x ∈ kN | ux = εkN (u).x ∀u ∈ kN}.

is the space of (left) integrals of the Hopf algebra kN . By Theorem 2.3.9, this space

is one-dimensional. We denote by λN ∈ X(H) the character corresponding to the one-

dimensional H-module F(kN ).
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Corollary 4.1.5. Let G be a split extension of H by N . Then the composite

F ◦ (kN ⊗k −) = ResH ◦ (−)N ◦ (kN ⊗k −) : mod(H)→mod(H)

is naturally equivalent to λN ⊗k −. In particular, the functor F takes projective inde-

composables to projective indecomposables.

Proof. Let N be an H-module. It follows directly from the definition of the N -action,

that the N -invariants of kN ⊗kN are given by
∫
kN ⊗kN . As all projective indecompos-

able kG-modules are - (by 4.1.4) - induced by projective indecomposable kH-modules,

the additional statement follows.

Suppose, we know the Gabriel quiver QH of the Hopf algebra kH. We are interested in

a formula involving QH for computing the full subquiver of QG whose vertices correspond

to simple H-modules. It turns out that the following definition is the right one for this

intention. It is inspired by [46], [17, p.38].

Definition 4.1.6. Let H be a finite group scheme and V be a finite-dimensional H-

module. We then define the generalized McKay quiver ΓV (H) of H relative to V as

follows:

� The edges are labelled by the simple H-modules S(1), . . . , S(n).

� There are dimk HomH(V ⊗k S(i), S(j)) + dimk Ext1
H(S(i), S(j)) arrows S(i) −→

S(j).

Remark 4.1.7. IfH is linearly reductive and V is a faithfulH-module, then [17, Lemma

3.1] shows that the opposite quiver of Q := ΓV (H) is connected, hence so is Q.

Recall that H1(N , k) has the structure of an H-module (see Lemma 2.4.24).

Theorem 4.1.8. Let G be an extension of H by N and consider the H-module V :=

H1(N , k)∗. Then the following statements hold:

(1) We have

dimk Ext1
H(M,N) ≤ dimk Ext1

G(Inf(M), Inf(N)) ≤ dimk HomH(V⊗kM,N) + dimk Ext1
H(M,N)

for all M,N ∈mod(H). If the second inflation map Ext2
H(M,N) −→ Ext2

G(Inf(M), Inf(N))

is injective, then the right-hand inequality is in fact an equality.

(2) If G is a split extension or there exists a G-module Q such that Q|N is projective

and QN = QG = k, then

Ext1
G(Inf(M), Inf(N)) ∼= HomH(V ⊗k M,N)⊕ Ext1

H(M,N)
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for all M,N ∈ mod(H). In particular, if N is unipotent, then the Gabriel quiver

of G is the generalized McKay quiver ΓV (H) of H relative to V .

Proof. (1) Let M,N ∈mod(H) and consider the G-module W := Inf(M)∗⊗k Inf(N) =

Inf(M∗ ⊗k N). In view of Lemma 2.3.5, we have a natural isomorphism

ExtnG(Inf(M), Inf(N)) ∼= Hn(G,W ).

Hence the five-term exact sequence associated to the Lyndon-Hochschild-Serre spec-

tral sequence involving G and N (cf. [41, I.4.1(4)] and [41, I.6.6(3)]) yields an exact

sequence

δM,N : (0) −→ Ext1
H(M,N) −→ Ext1

G(Inf(M), Inf(N)) −→ H1(N ,W )H −→ Ext2
H(M,N)

−→ Ext2
G(Inf(M), Inf(N)).

The maps of this sequence are known (cf. [41, I.6.6/6.10]):

� The maps ExtnH(M,N) −→ ExtnG(Inf(M), Inf(N)) for n ∈ {1, 2} are the infla-

tion maps. We note that, considering Ext1 as equivalence classes of extensions,

the first inflation map is given by just applying Inf to an extension in mod(H).

� Ext1
G(Inf(M), Inf(N)) −→ H1(N ,W )H = Ext1

N (M,N)H is the restriction map.

Considering again Ext1 as equivalence classes of extensions, this map is given

by applying ResN to an extension in mod(G).

As N acts trivially on W , we have isomorphisms of H-modules

H1(N ,W ) ∼= H1(N , k)⊗k W ∼= Homk(H
1(N , k)∗,W ) = Homk(V,W ).

Consequently, the H-invariants are given by

HomH(V,W ) = HomH(V,M∗ ⊗k N) ∼= HomH(V ⊗k M,N).

The assertion now follows from the exactness of δM,N .

(2) Return to the above proof. By [41, Remark (1) on p.91], the existence of a G-

module Q with the abovementioned properties ensures that the second inflation map

is injective. By Lemma 2.4.21(d), this also happens, when G is a split extension.

Thus, in both cases, δM,N induces a short exact sequence

(0) −→ Ext1
H(M,N) −→ Ext1

G(Inf(M), Inf(N)) −→ HomH(V ⊗k M,N) −→ 0

of k-vector spaces, which necessarily splits (If G is a split extension, then one could

take ResH : Ext1
G(Inf(M), Inf(N))→ Ext1

H(M,N) to get such a splitting).
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Remark 4.1.9. Let G be an extension of H by N .

(1) If N is unipotent, then kN is the projective cover of k. Then (see Lemma 2.1.33)

H1(N , k) = Ext1
N (k, k) ∼= HomkN/I†(I

†/(I†)2, k) = Homk(I
†/(I†)2, k) = (I†/(I†)2)∗,

so that H1(N , k)∗ ∼= I†/(I†)2 as H-modules.

(2) If G is a split extension and H acts trivially on the left integral
∫
kN of the Hopf

algebra kN , then the G-module Q := kN satisfies the mentioned conditions in part

(2) of the above theorem.

(3) If k is perfect, then every finite group scheme G can be written as a semidirect

product G0oGred of an infinitesimal, normal subgroup G0 and a reduced group Gred
(see [57, Theorem 6.8]), hence our theorem applies.

(4) If G = N × H is a direct product (that is, H acts trivially on N ), we have the

Künneth-formula available: Let M,N ∈mod(H) and V,W ∈mod(N ), then (here

the expressions in the braces on the LHS are tensor products of inflated modules)

Ext1
G(M ⊗k V,N ⊗k W ) ∼= (Ext1

H(M,N)⊗k HomN (V,W ))

⊕ (HomH(M,N)⊗k Ext1
N (V,W )).

Taking V = W = k, we get

Ext1
G(M,N) ∼= Ext1

H(M,N) ⊕ (HomH(M,N)⊗H1(N , k)).

As H acts trivially on H1(N , k), we observe

HomH(M,N)⊗H1(N , k) = Homk(M,N)H ⊗k H1(N , k) = (Homk(M,N)⊗k H1(N , k))H

∼= Homk(H
1(N , k)∗ ⊗k M,N))H = HomH(H1(N , k)∗ ⊗k M,N).

Hence, we recover our above result.

We have shown that the determination of the Gabriel quiver of a split extension G of

H by some unipotent group N rests on the following data:

� The Gabriel quiver QkH of kH.

� The top of every tensor product H1(N , k)∗ ⊗k S of H-modules for every simple

H-module S.

Next, we give an example, where the H-module-structure of the cohomology group

H1(N , k)∗ can be written down more explicitly.
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Let H be an arbitrary affine group scheme and V a finite-dimensional H-module. By

definition, H acts on the algebraic group scheme Va via automorphisms, so that we can

form the semidirect product HV := Va oH. This is not a finite group scheme, but its

rth Frobenius kernel HV,r = Va(r)oHr enjoys this property. In what follows, we denote

by V (i) the H-module with underlying scalar multiplication (see [41, I.2.16])

a.v := ap
−i
.v ∀a ∈ k, v ∈ V.

Since the H-module structure of H1(Va(r), k) is obtained by its GL(V )-module struc-

ture via pullback along the structure homomorphism H → GL(V ) of V , and pullback

commutes with the functor (−)(i), an application of [41, Proposition I.4.27(a)] yields:

Lemma 4.1.10. Let k be a perfect field, then there is an isomorphism H1(Va(r), k) ∼=⊕r−1
i=0 (V ∗)(i) of H-modules.

Remark 4.1.11. In the above setting:

(1) If H as well as the H-module V are defined over Fp and F : H → H denotes a

Frobenius endomorphism of H, then V (i) is isomorphic to V [i], the twist of V by the

i-th power of F (see [41, I.9.10]). Since pullback commutes with taking duals, we

get H1(Va(r), k)∗ ∼=
⊕r−1

i=0 V
[i] in that case.

(2) If H is reductive and V = L(λ) is a simple H-module (soon more details on that),

then we get H1(Va(r), k)∗ ∼=
⊕r−1

i=0 L(piλ), a completely reducible module. This fol-

lows from the first part of this remark (which we can apply because of [41, Corollary

II.2.9]) in conjunction with [41, Proposition II.3.16].

We return to the case of an extension G of H by N and finish this section by investi-

gating the behaviour of the inflation functor Inf : mod(H)→mod(G) when applied to

almost split sequences. It seems to be a natural question to ask, whether Inf transforms

almost split sequences into almost split sequences or not. Intuitively, one would expect

a negative answer and we will show that this will mostly be the case, when G is a split

extension. First, we prove a lemma.

Lemma 4.1.12. Let i : H ↪→ G be a closed subgroup of some finite group scheme G.

(1) If M ∈ mod(G) is a non-projective indecomposable such that Π(G)M * i∗(Π(H)),

then the exact sequence EM |H splits.

(2) If M,N ∈ mod(G) are non-projective indecomposables, which lie in the same AR-

component, then Π(H)M = i−1
∗ (Π(G)M) = Π(H)N .

(3) If G is a split extension of H by N , then
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(a) The map i∗ : Π(H)→ Π(G) is injective.

(b) ι∗(Π(N )) ∩ i∗(Π(H)) = ∅.

Proof. (1) We consider the surjective G-linear map

µ : kG ⊗kHM |H →M,u⊗m 7→ u.m

which corresponds to idM ∈ EndH(M) under adjoint isomorphism. If µ was split

surjective, then [29, Proposition 3.3] and Lemma 4.1.3 would imply

Π(G)M ⊆ Π(G)kG⊗kHM ⊆ i∗(Π(H)M |H) ⊆ i∗(Π(H)),

contradicting the assumption. Consequently, µ is not split surjective and we can

proceed as in the proof of Lemma 3.3.5.

(2) Using that Π(G)M = Π(G)N , this follows from [29, Proposition 5.6].

(3) (a) We let αK : K[t]/(tp) → KH and βL : L[t]/(tp) → LH be π-points of H
such that [iK ◦ αK ] = [iL ◦ βL] as elements of Π(G). Let M be an H-module

and consider the pullback π∗(M) ∈ mod(G) along the projection π : G → H.

Taking into account that the equation π ◦ i = idH remains true after base field

extension, we conclude

(iK ◦ αK)∗(π∗(M)K) = (iK ◦ αK)∗(π∗K(MK)) = (πK ◦ iK ◦ αK)∗(MK)

= α∗K(MK).

It now easily follows [αK ] = [βL] from the definition of the underlying equivalence

relation.

(b) Consider a projective H-module P as well as its inflation π∗(P ) = Inf(P ) ∈
mod(G). Let αK : K[t]/tp → KN and βL : L[t]/tp → LH be π-points of N and

H, respectively. Since N acts trivially on π∗(P ), the action of K[t]/tp on

(ιK ◦ αK)∗(π∗(P )K) = (ιK ◦ αK)∗(π∗K(PK)) = α∗K(ι∗K(π∗K(PK)))

is trivial as well, while (iL◦βL)∗(π∗(P )L) = β∗L(PL) is a projective L[t]/tp-module.

Thus, it follows - again from the definition - that [ιK ◦ αK ] 6= [iL ◦ βL].

We denote by S and E the almost split sequences terminating in a non-projective H
or G-module, respectively. If M is such a G-module and G is a split extension, then N
acting trivially on τG(M), EM and M will force the identity ResH(EM) = SResH(M) by

definition of an almost split sequence. For the following, one may recall Definition 2.2.7

of a quasi-simple module and Definition 2.2.2 of a regular component of the AR-quiver.
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Theorem 4.1.13. Let G be an extension of H by some non-linearly reductive group

scheme N over a perfect field k of characteristic p ≥ 3. Let M ∈ mod(H) be indecom-

posable and denote by ΘM the AR-component of the (in view of 4.1.1) non-projective

indecomposable G-module Inf(M).

(1) If there exists a unipotent, normal subgroup scheme U E G such that N ∩ U 6= ek,

then the component ΘM is regular.

(2) If G is a split extension, then the following statements hold:

(i) The inflation functor Inf = π∗ : mod(H)→mod(G), M 7→ π∗(M) will never

transform AR-sequences into AR-sequences.

(ii) We have Π(H)M = Π(H)X|H for all X ∈ ΘM . In particular, X is H-projective

if and only if M enjoys this property.

(iii) If there exists a unipotent, normal subgroup U E G such that U ∩ N 6= ek and

if ΘM
∼= Z[A∞], then the following statements hold:

� Inf(M) ∈ ΘM is quasi-simple.

� The set ΘM,N := {X ∈ ΘM | XN = X} is finite. Moreover, if X ∈ ΘM,N ,

then dimkX = dimkM and there exists n ∈ Z such that τnG (Inf(M)) ∼= X.

If |ΘM,N | ≥ 2, then dim Π(N ) = 0.

(iv) If M is not H-projective, then N does not act trivially on the Auslander-Reiten

shift τG(Inf(M)).

Proof. (1) Let j : U ↪→ G be the corresponding inclusion. Then Lemma 3.1.4 yields a

π-point βK of the group N ∩ U . We denote by [αK ] the image of [βK ] under the

natural map Π(U ∩ N ) → Π(G). Now assume that ΘM is not regular. Then, by

definition, Rad(Q) ∈ ΘM for some principal indecomposable G-module Q with top

S. As K(U ∩ N ) = KU ∩ KN inside KG, we have αK(t) ∈ KN ∩ KU . Hence,

as αK(t) is nilpotent, it is contained in the augmentation ideals KN † and KU †,
respectively. As MN = M and SU = S, [23, Corollary 3.2.3] and Lemma 3.1.7 yield

{1} = suppαK (Inf(M)) = suppαK (Rad(Q)) = suppαK (ΩG(S)) = {p− 1},

which contradicts the assumption p ≥ 3. Hence ΘM is regular.

(2) (i) Let M ∈ mod(H) be non-projective and assume that EInf(M)
∼= Inf(SM). In

view of Lemma 3.1.4, our assumption yields an element [αK ] ∈ Π(N ). Then

Jt(Inf(M), ιK ◦ αK) = dimkM · [1]. It follows, that ι∗(Π(N )) ⊆ Π(G)Inf(M). In

view of Lemma 4.1.12(3b), this yields Π(G)Inf(M) * i∗(Π(H)). Hence Lemma

4.1.12(1) implies that ResH(EInf(M)) = (ResH ◦ π∗)(SM) = SM splits, which

contradicts the definition of an AR-sequence.
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(ii) This follows from Lemma 4.1.12(2) and Theorem 3.1.2(2).

(iii) Assume that ql(Inf(M)) > 1. As ΘM is regular by (1), arrows pointing towards

infinity are injective. Hence we find X ∈ Θ with XN = X and ql(X) = 2.

There results an almost split sequence

EY : 0→ τG(Y )→ X → Y → 0.

Consequently, τG(Y )N = τG(Y ) and as Y is a factor module of X, we also

have Y N = Y . Hence EY ∼= Inf(SResH(Y )), which is impossible by (i). Hence

ql(Inf(M)) = 1, so that Inf(M) ∈ ΘM is quasi-simple.

Let now X ∈ ΘM be a G-module such that XN = X. Then the above shows

that X is quasi-simple. Hence there is n ∈ Z such that X ∼= τnG (Inf(M)). Now

let [βK ] ∈ Π(N ) and consider the π-point αK := ιK ◦βK of G. As AR-shifts do

not change the local stable Jordan type (cf. [23, Proposition 2.3(1)]), we get

dimkX · [1] = StJt(X,αK) = StJt(τnG (Inf(M)), αK)

= StJt(Inf(M), αK) = dimkM · [1]

so that dimkX = dimkM . Now [15, Theorem 3.2] implies that there are at

most finitely many such X in ΘM . Put d := dimkM . Observing Lemma 3.1.1,

basic properties of the Heller operator yield isomorphisms of N -modules

d · k ∼= X|N ∼= τnG (Inf(M))|N ∼= Ω2n
G (Inf(M)µ

−n
G )|N

∼= Ω2n
N (Inf(M)µ

−n
G |N ) ⊕ (proj) ∼= Ω2n

N (d · kµ
−n
N ) ⊕ (proj)

∼= d · τnN (k) ⊕ (proj).

Thus, if n 6= 0 (X � Inf(M) as G-modules), then the trivial N -module k is

periodic, so that Theorem 3.1.2(1) implies dim(Π(N )) = 0.

(iv) We consider the almost split sequence EInf(M) terminating in Inf(M). We

clearly have ∅ 6= i∗(Π(H)M) ⊆ Π(G)Inf(M). In view of Lemma 4.1.12(3b), this

yields Π(G)Inf(M) * ι∗(Π(N )). Hence Lemma 4.1.12(1) implies that EInf(M)|N
splits. Then N acting trivially on τG(Inf(M)) would imply EInf(M)

∼= Inf(SM),

which is again impossible by (i).

4.2 Restricted Lie algebras

Throughout, we let k be an algebraically closed field of positive characteristic p > 0.

Making use of the fact that tensoring U0(g)-modules with Uχ(g)-modules yields Uχ(g)-
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modules (see 2.5.4(6)), as well as the description 2.5.4(7) of cohomology groups of re-

duced enveloping algebras and the results of Section 5.2, we will be able to formulate

the results of the last section in the context of reduced enveloping algebras, where the

defining linear form is not necessary entirely zero. Let

0 −→ n
ι−→ g

π−→ h −→ 0

be an extension of restricted Lie algebras n, h. As before, we have the same conventions:

� We treat ι as an inclusion n ⊆ g and take π to be the canonical projection g →
g/n = h.

� If g is a split extension, then we pick a (necessarily mono)morphism i : h→ g such

that π ◦ i = idh and identify h with its image i(h) in g. Note that this renders g a

semidirect product no h.

If g is a split extension, then a vector space M is a g-module if and only if M is a

module for both constituents and additionally

x.(y.m) = (x.y).m+ y.(x.m) ∀x ∈ h, y ∈ n.

Since g∗ = n∗ ⊕ h∗, where we identify h∗ = {χ ∈ g∗ : χ(n) = (0)} and n∗ = {χ ∈ g∗ :

χ(h) = (0)}, we can write any linear form χ ∈ g∗ as a tuple (χn, χh) with each component

being a linear form for the corresponding Lie algebra.

Lemma 4.2.1. Let g be a split extension of h by n, M be a g-module and χ = (χn, χh) ∈
n∗ ⊕ h∗ = g∗ a linear form. The following two statements are equivalent:

(a) M has character χ.

(b) M |l has character χl for l ∈ {n, h}.

Proof. (a)⇒ (b): This is clear.

(b)⇒ (a): We have to show that

(x+ y)p.m = (x+ y)[p].m+ χ(x+ y)p.m ∀x ∈ n, y ∈ h,m ∈M

According to Jacobsons formula, we have (inside U(g)) (x+y)p = xp+yp+
∑p−1

i=1 si(x, y),
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hence (note that si(x, y) ∈ g ⊆ U(g))

(x+ y)p.m = xp.m+ yp.m+

p−1∑
i=1

si(x, y).m

= (x[p] + χn(x)p).m+ (y[p] + χh(y)p).m+

p−1∑
i=1

si(x, y).m

= (x[p] + y[p] +

p−1∑
i=1

si(x, y)).m+ (χn(x)p + χh(y)p).m

= (x+ y)[p].m+ χ(x+ y)p.m

Given a linear form χ ∈ g∗ such that χ(n) = 0, we denote by I† the augmentation

ideal of the Hopf algebra U0(n) and by IEUχ(g) the ideal generated by I† inside Uχ(g).

Then χ induces a linear form χ̂ ∈ h∗ = (g/n)∗ (if g = n o h, then χ̂ = χh). Using the

universal property of a reduced enveloping algebra, the projection π induces a surjective

homomorphism Uχ(g) → Uχ̂(h) of algebras (by abuse of notation, we will denote this

homomorphism also by π) with kernel I. Hence (see 2.1.28 and recall that tori correspond

to linearly reductive infinitesimal group schemes of height ≤ 1, see 2.5.10):

Lemma 4.2.2. Let g be an extension of h by n and χ ∈ g∗ a linear form such that

χ(n) = (0).

(1) The pullback along π : Uχ(g)→ Uχ̂(h) induces an equivalence

Inf := Infgh(−, χ) := π∗ : mod(Uχ̂(h))→modI(Uχ(g)),

the inflation from h to g.

(2) If n is not a torus, then Inf(M) is not Uχ(g)-projective for all M ∈mod(Uχ̂(h)).

(3) If g is a split extension, then the composite ResUχ(h) ◦ Inf is the identity idmod(Uχ(h)).

Let g be a split extension. Since restricted Lie algebras correspond to infinitesimal

group schemes of height ≤ 1, it follows that the finite group scheme Spec(U0(g)∗) is a

split extension of Spec(U0(h)∗) by Spec(U0(n)∗). Thus, Lemma 2.4.27 implies

Spec(U0(g)∗) ∼= Spec(U0(n)∗)o Spec(U0(h)∗),

so that U0(g) ∼= U0(n)#U0(h). The corresponding representation

U0(h)→ Endk(U0(n))
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which turns U0(n) into an U0(h)-module algebra is described in 2.5.19(3). Viewing

U0(n) ⊆ U0(g), the action of x ∈ h is given by the commutator [x,−]: We have

x.u = xu− ux ∀u ∈ U0(n).

Lemma 4.2.3. Let g be a split extension of h by n and χ ∈ g∗ be a linear form such that

χ(n) = 0. Given N ∈mod(Uχ(h)), the space U0(n)⊗k N has the structure of a Uχ(g)-

module via the tensor product of h-modules and U0(n) acts via u.(v ⊗ m) := uv ⊗ m.

Moreover, the induction functor

Indg
h(−, χ) : mod(Uχ(h))→mod(Uχ(g))

is naturally equivalent to U0(n)⊗k −.

Proof. By Lemma 2.3.16(a), U0(n) is a U0(g)-module. Thus, U0(n) ⊗k Infgh(N,χ) =

U0(n) ⊗k N is a Uχ(g)-module and the g-action is exactly the one described as above.

For the remaining statements, we can argue as in 2.3.16(c).

Let Sχ(1), . . . , Sχ(n) be a complete list of simple Uχ̂(h)-modules (up to isomorphism)

and denote by Pχ(i) the corresponding projective covers over Uχ̂(h). If n is unipotent,

then 2.5.12 shows that all simple Uχ(g)-modules lie in the essential image of the inflation

functor. We will now collect the corresponding results for Lie algebras, all proofs can be

easily adopted.

Theorem 4.2.4. Let g be an extension of h by some unipotent restricted Lie algebra n

and let χ ∈ g∗ be a linear form such that χ(n) = (0). Then the following statements

hold:

(1) The algebras Uχ(g) and Uχ̂(h) have the same simple modules, i.e. the modules

Tχ(i) := Inf(Sχ(i)) for 1 ≤ i ≤ n form a complete set of iso-classes of simple

Uχ(g)-modules.

(2) If g is a split extension, then the following additional statements hold:

(a) If M = Indg
h(N,χ) for some Uχ(h)-module N , then Top(M) ∼= Inf(Top(N)).

Moreover, we have V (g)M = V (h)N .

(b) Let i ∈ {1, . . . , n}, then the induced module Qχ(i) := U0(n) ⊗k Pχ(i) is the

projective cover of the simple module Tχ(i) over Uχ(g).

(c) If M ∈ mod(Uχ(g)), then we have [M : Tχ(i)] = [M |Uχ(h) : Sχ(i)] for all

i ∈ {1, . . . , n}.
(d) Denote by I† the augmentation ideal of U0(n). We have for all i ∈ {1, . . . , n}

Rad(Qχ(i)) = (I† ⊗k Pχ(i)) + (k.1⊗k RadUχ(h)(Pχ(i))).
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Moreover, ΩUχ(g)(Inf(Pχ(i))) = I† ⊗k Pχ(i).

(e) If Jh E Uχ(g) is the ideal generated by Jac(Uχ(h)), then Jac(Uχ(g)) = I + Jh.

If M ∈mod(Uχ(g)), then the space of n-invariants Mn = {m ∈M | x.m = 0 ∀x ∈ n}
is by Lemma 2.5.12(a) a Uχ(g)-submodule. Composition with ResUχ(h) (the inverse of

the inflation) thus provides a functor

F := ResUχ(h) ◦ (−)n : mod(Uχ(g))→mod(Uχ̂(h)).

If g is a split extension, then U0(n) is a U0(g)-module and U0(n)n =
∫
n

is the (left) integral

of the Hopf algebra U0(n). We denote by λn : U0(h) → k the algebra homomorphism

corresponding to this operation.

Corollary 4.2.5. Let g be a split extension of h by n and χ(n) = 0. The composite

F ◦ U0(n)⊗k − : mod(Uχ(h))→mod(Uχ(h))

is naturally equivalent to λn ⊗k −. In particular, F takes projective indecomposables to

projective indecomposables.

Definition 4.2.6. Let h be a finite-dimensional restricted Lie algebra, χ ∈ h∗ be a linear

form and V a restricted representation. We then define the generalized McKay quiver

ΓV (h, χ) of Uχ(h) relative to V as follows:

� The edges are labelled by the simple Uχ(h) modules S1, . . . , Sn.

� There are dimk HomUχ(h)(V ⊗kSi, Sj) + dimk Ext1
Uχ(h)(Si, Sj) arrows from Si → Sj

Theorem 4.2.7. Let g be an extension of h by n and χ ∈ g∗ a linear form such that

χ(n) = 0. Consider the U0(h)-module V := n/([n, n] + 〈n[p]〉).

(1) Let M,N be Uχ̂(h)-modules, then

dimk Ext1
Uχ̂(h)(M,N) ≤ dimk Ext1

Uχ(g)(Inf(M), Inf(N)) ≤

≤ dimk HomUχ̂(h)(V ⊗k M,N) + dimk Ext1
Uχ̂(h)(M,N).

If the second inflation map

(Ext2
Uχ̂(h)(M,N) ∼=) H2(U0(h),M∗ ⊗k N) −→ H2(U0(g), Inf(M∗ ⊗k N))

is injective, then the right-hand inequality is in fact an equality.
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(2) If there exists a U0(g)-module Q such that Q|U0(n) is projective and Qn = Qg = k or

if g is a split extension, then we have isomorphisms

Ext1
Uχ(g)(Inf(M), Inf(N)) ∼= HomUχ̂(h)(V ⊗k M,N)⊕ Ext1

Uχ̂(h)(M,N)

for all Uχ̂(h)-modules M,N . In particular, if n is unipotent, then the Gabriel quiver

of Uχ(g) is the generalized McKay quiver ΓV (h, χ̂).

Proof. By Lemma 2.4.22(2), we get an isomorphism H1(U0(n), k) ∼= V ∗ of U0(h)-

modules. Using the description 2.5.4(7) of cohomology groups of reduced enveloping

algebras, we can now adopt the arguments of the proof of Theorem 4.1.8.

For the following, one may recall the definition of the induced p-map of a semidirect

product of restricted Lie algebras (see 2.5.18).

Lemma 4.2.8. Let g be a split extension of h by n and χ ∈ g∗ be a linear form such

that χ(n) = (0).

(1) If M is a Uχ(h)-module, then

V (g)Inf(M) = V (g) ∩ (n× V (h)M).

In particular, M is projective if and only if V (g)Inf(M) = V (n)× {0}.

(2) If n is an abelian Lie algebra and Jt(y, n) = StJt(y, n) for all y ∈ V (h) (recall

Definition 3.3.3) holds, then we have V (g) = V (n) × V (h). In particular, we have

V (g)Inf(M) = V (n) × V (h)M for all M ∈ mod(Uχ(h)) in that case. Moreover, if

dimV (n) ≥ 2, then every block B ⊆ Uχ(g), which contains a simple Uχ(g)-module

on which n acts trivially and whose restriction to Uχ(h) is non-projective, is of wild

representation type.

Proof. (1) Let 0 6= (x, y) ∈ V (g) ⊆ n×V (h). As n acts trivially on Inf(M), we conclude

that

Jt(Inf(M), (x, y)) =

{
dimkM · [1] y = 0

Jt(M, y) otherwise.

This implies V (g)Inf(M) = V (g)∩ (n× V (h)M). Recall that M is Uχ(h)-projective if

and only if V (h)M = {0} (see Lemma 2.5.7(1)). Since V (g)∩(n×{0}) = V (n)×{0},
the additional statement follows.

(2) Denote by τ : h→ Derp(n) the corresponding representation of h on n. Recall that,

if n is abelian, then we have

(x, y)[p] = (x[p] + τ(y)p−1(x), y[p]) (∗)
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for all x ∈ n, y ∈ h (see 2.5.20). Given y ∈ V (h), we have 0 = τ(y[p]) = τ(y)p. But

then the condition Jt(y, n) = StJt(y, n) for all y ∈ V (h) implies that τ(y)p−1 = 0 for

all y ∈ V (h), so that (∗) implies V (g) = V (n) × V (h). The equation V (g)Inf(M) =

V (n)× V (h)M (for all M ∈mod(Uχ(h))) now follows from (1).

Now assume dimV (n) ≥ 2 and let T = Inf(S) ∈ mod(Uχ(g)) be the inflation of

a non-projective simple Uχ(h)-module S. Using Lemma 2.5.7(1) and the above, we

conclude dimV (g)T = dimV (n)×V (h)S ≥ 2 + 1 = 3. Now apply [19, Theorem 4.1].

Remark 4.2.9. If dimk n ≤ p− 1, then clearly Jt(y, n) = StJt(y, n) for all y ∈ V (h).

Theorem 4.2.10. Let g be an extension of h by a non-toral restricted Lie algebra n

over an algebraically closed field k of characteristic p ≥ 3 and χ ∈ g∗ a linear form

such that χ(n) = (0). Given an indecomposable Uχ̂(h)-module M , we denote by ΘM

the AR-component of Γs(g, χ), which contains the (in view of 4.2.2(2)) non-projective

indecomposable Uχ(g)-module Inf(M).

(1) If n ∩ Radp(g) 6= 0, then the component ΘM is regular.

(2) If g is a split extension, then the following additional statements hold:

(a) The inflation functor Inf : mod(Uχ(h)) → mod(Uχ(g)) will never transform

AR-sequences into AR-sequences.

(b) If n ∩ Radp(g) 6= (0) and if ΘM
∼= Z[A∞], then

� Inf(M) is quasi-simple.

� The set ΘM,n := {X ∈ ΘM | Xn = X} is finite. If X ∈ ΘM,n, then

dimkX = dimkM and there exists n ∈ Z such that τnUχ(g)(Inf(M)) ∼= X. If

|ΘM,n| ≥ 2, then dimV (n) = 1.

(c) If M is not Uχ(h)-projective, then n.τUχ(g)(Inf(M)) 6= 0.

(d) If M is Uχ(h)-projective, then |Jt(Inf(M))| = 2. Moreover, N is Uχ(h)-projective

and N |U0(n) has constant Jordan type for all N ∈ ΘM .

Proof. Using 3.3.1 and 3.3.5, the assertions (1), (2)(a) - (c) can be shown analogous to

Theorem 4.1.13(2).

(2)(d): Let N ∈ ΘM . As obviously |Jt(Inf(M))| = 2, it follows that |Jt(N)| = 2

for all N ∈ ΘM (see Corollary 3.3.9(a)). Moreover, we have V (g)Inf(M) = V (n) × {0}
(see Lemma 4.2.8), so that N is Uχ(h)-projective (we have V (h)N = V (h)Inf(M) = {0}).
Hence we must have Jt(N, x) = Jt(N, y) for all x, y ∈ V (n) by the above.

Remark 4.2.11. If dimV (n) = 1, then every U0(n)-module is periodic (cf. 2.5.7(5)).

In view of [12, Theorem 3.2(2)], U0(n) is representation-finite and then [12, Theorem

4.3(2)] tells us exactly, how n looks like. In particular, if n is unipotent, then there exists

a [p]-nilpotent element x ∈ n such that n = (kx)p is a nil-cyclic Lie algebra.
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Since AR-components of reduced enveloping algebras with at least three-dimensional

rank variety are known to be isomorphic to Z[A∞] (see [14, Theorem 2.1]), we get the

following corollary:

Corollary 4.2.12. Let k be an algebraically closed field of characteristic char(k) = p ≥ 3

and g be a split extension of h by n. Moreover, let χ ∈ g∗ a linear form such that

χ(n) = (0) and assume that the following conditions hold:

� n is abelian and unipotent,

� dimV (n) ≥ 2,

� Jt(y, n) = StJt(y, n) for all y ∈ V (h).

If M is a non-projective indecomposable Uχ(h)-module, then the component Θ ⊆ Γs(g, χ)

containing Inf(M) ∈ mod(Uχ(g)) is isomorphic to Z[A∞]. Moreover, Inf(M) is quasi-

simple and if N is a non-projective indecomposable Uχ(h)-module such that Inf(N) ∈
ΘM , then N ∼= M .

Proof. As M is non-projective, we have dimV (h)M ≥ 1 (see 2.5.7(1)). Then Lemma

4.2.8(2) implies that V (g)Inf(M) = V (n)×V (g)M is at least three-dimensional. Hence Θ ∼=
Z[A∞] by the above remark, so that the assertion follows from Theorem 4.2.10(2b).

Remark 4.2.13. The conditions of the above corollary are given whenever n is just a

restricted representation of h such that 2 ≤ dimk n ≤ p− 1. For instance (since p ≥ 3),

one may consider semidirect products V o g, where g ⊆ gl(2) and V is the natural

representation.

Lemma 4.2.14. Let k be an algebraically closed field of characteristic char(k) = p ≥ 3,

V be a two-dimensional restricted module of some restricted Lie algebra g and χ ∈
(V o g)∗ a linear form such that χ(V ) = (0). If S is a projective simple Uχ(g)-module,

then the component Θ ⊆ Γs(V o g, χ) containing Inf(S) is either isomorphic to Z[D∞]

or to Z[A∞]. Moreover, if

� V ⊗k S is (projective) indecomposable or

� if Θ ∼= Z[D∞] and 2 does not divide dimk S or

� if Θ ∼= Z[A∞],

then Inf(S) is located at an end of Θ.

Proof. Let {r, s} be a basis of V and identify U0(V ) = k[r, s]/(rp, sp) with a truncated

polynomial ring in the variables r, s. We put

I† := U0(V )†,

∫
V

:=

∫
U0(V )

= k(rp−1sp−1),
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the augmentation ideal and the left integral of the Hopf algebra U0(V ), respectively.

Moreover, we denote by Q the projective cover of the simple Uχ(V o g)-module Inf(S).

In view of 4.2.4 we have Q ∼= U0(V )⊗k S and Rad(Q) = I† ⊗k S. Since
∫
V
⊆ U0(V ) is

a one-dimensional U0(h)-submodule (cf. 2.3.9(1)), we get Soc(Q) =
∫
V
⊗kS. We denote

by

M := ht(Q) = Rad(Q)/Soc(Q) = I† ⊗ S / (

∫
V

⊗ S)

the heart of Q.

� In view of 4.2.8(2), V (V o g)Θ = V is two-dimensional. Combining Theorem 3.1.8

and 2.2.6, we get that Θ ∼= Z[T ], where T ∈ {A∞, A∞∞, D∞}. We proceed by

showing Θ � Z[A∞∞] : Consider the component Θ̃ := Ω(Θ) ∼= Θ. By the above, we

have M ∈ Θ̃. We compute the Jordan type of M at r ∈ V . First, we clearly have

an isomorphism

M |U0(kr)
∼= dimk S · I† /

∫
V

.

We clearly have Jt(r, I†) = [p − 1] ⊕ (p − 1)[p] = Jt(r,U0(V )/
∫
V

). Since the

standard almost split sequence

0 −→ I† −→ U0(V )⊕ (I†/

∫
V

) −→ U0(V )/

∫
V

−→ 0

of the local algebra U0(V ) splits upon restriction to U0(kr) (see Corollary 3.3.6),

we get

(I† /

∫
V

)|U0(kr)
∼= 2[p− 1]⊕ (p− 2)[p− 1].

Hence

Jt(M, r) = 2 dimk S [p− 2]⊕ dimk S (p− 2)[p− 1].

Analogous, one can determine the Jordan type of Rad(Q) = I† ⊗k S ∈ Θ̃ at r, we

have

Jt(Rad(Q), r) = dimk S [p− 1]⊕ dimk S (p− 1)[p].

Hence |{StJt(N, r) | N ∈ Θ̃}| ≥ 2, so that 3.3.9(b) implies Θ � Z[A∞∞].

� We now show that Inf(S) is located at an end provided V ⊗k S is indecomposable:

Let I be the ideal generated by I† inside Uχ(V o g). It is enough to show that the

heart

M := ht(Q) = Rad(Q)/Soc(Q) = I† ⊗ S/
∫
V

⊗S.

is a local Uχ(V og)-module (hence indecomposable). To that end, we need to show

that its top is simple. Since I is contained in the Jacobson radical of Uχ(V o g),

it suffices to show that M/I.M has a simple top. We clearly have I.M = (I†)2 ⊗
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S/
∫
V
⊗S, so that there results a sequence of canonical isomorphisms of Uχ(V og)-

modules

M/I.M ∼= (I† ⊗ S /
∫
V

⊗ S) / ((I†)2 ⊗ S /
∫
V

⊗ S)

∼= I† ⊗ S / ((I†)2 ⊗ S)

∼= I† / (I†)2 ⊗ S ∼= V ⊗ S.

Thus, if V ⊗k S is indecomposable, we get that ht(Q) is local.

� If Θ ∼= Z[D∞], then im(fΘ) = {1, 2}. Since Jt(Inf(S), r) = dimk S[1] and 2 does

not divide dimk S, we get fΘ(Inf(S)) = 1 (see 3.3.8(c)). Hence the picture in [35,

p. 328] implies that Inf(S) is located at an end of Θ.

� If Θ ∼= Z[A∞], then it follows from [14, Proposition 4.1] that Inf(S) is located at

an end of Θ (i.e. quasi-simple).

Remark 4.2.15. The result can be applied in the case where g = sl(2) and V = k2 is

the natural representation. For instance, if χ = 0, then the Steinberg module L(p − 1)

is the unique projective simple U0(sl(2))-module and the modular Clebsch-Gordan rule

(see [26, Kap. 5]) implies that V ⊗L(p−1) ∼= P (p−2) is the projective cover of L(p−2)

(see also 5.3.2 for the case of a non-zero linear form).

For any restricted Lie algebra g, we denote by ng the p-ideal generated by the nullcone

V (g) and, given j ∈ {1, . . . , p − 1}, we denote by EIPj(g) ⊆ mod(U0(g)) the full

subcategory consisting of all M ∈ mod(U0(g)) having the equal j-images property, i.e.

im(xjM) = im(yjM) for all x, y ∈ V (g) \ {0}. The following can be seen as a corollary of

[5, Proposition 5.2.3], but will not play an important role later on.

Lemma 4.2.16. Let p ≥ 3 and let s = u o g be a semidirect product of restricted Lie

algebras. If there is an elementary abelian subalgebra e ∈ E(2, u) on which g acts such

that ng.e 6= (0), then the following statements hold:

(1) The restricted Lie algebra s contains a three-dimensional p-trivial Heisenberg algebra.

(2) Given j ∈ {1, . . . , p− 1}, the category EIPj(s) is equivalent to mod(U0(s/ns)).

(3) If u is elementary abelian, then s/ns ∼= g/ng.

Proof. (1) It suffices to show that the subalgebra ge = eo g ⊆ s contains a Heisenberg

subalgebra. Since ng acts non-trivially on e, there necessarily exists an element
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x ∈ V (g) \ {0} such that x.e 6= (0). Thus, there exists v0 ∈ e \ {0} such that

x.v0 6= 0. Since x acts nilpotently on the two-dimensional space e, we observe that

x2.v = 0 for all v ∈ e. Hence x.v0 = λv0 for some λ ∈ k \ {0} is not possible. Thus,

h := kx⊕ kv0 ⊕ k(x.v0) ⊆ ge

is clearly isomorphic to the three-dimensional Heisenberg Lie algebra and p-trivial

by 4.2.8(2) (here we use p ≥ 3).

(2) Using (1), [5, Proposition 5.2.3] implies that ns acts trivially on every M ∈ EIPj(gV ).

Conversely, if ns acts trivially on M ∈mod(U0(g)), then M has the equal j-images

property for all 1 ≤ j ≤ p− 1, as all relevant images are zero.

(3) The assumption means, that u is just a restricted representation of g. Hence, 4.2.8(2)

and p ≥ 3 imply ns = uo ng. Now the composition

s→ g→ g/ng, u+ x 7→ x+ ng

of projections is a surjective homomorphism of restricted Lie algebras with kernel

uo ng. This implies the result.

Remark 4.2.17. The requirements of the above lemma are given, whenever u is (iso-

morphic to) the two-dimensional elementary abelian Lie algebra and g acts faithfully on

u.

4.3 Simple modules of reduced enveloping algebras of certain

extensions

An application of the results in [25, § 5.7] will provide a tool to find simple Uχ(g)-

modules in some special case for an extension g of h by n. Given a linear form λ ∈ n∗

with λ([n, n]) = 0, we consider the stabilizer gλ := {x ∈ g | λ([x, y]) = 0 ∀y ∈ n} of λ

inside the g-module n∗. Moreover, if M is a Uχ(g)-module, then we put

Mλ := {m ∈M | x.m = λ(x).m ∀x ∈ n}.

Theorem 4.3.1. Let g be an extension of h by a unipotent restricted Lie algebra n and

χ ∈ g∗ a linear form such that χ([n, n]p) = 0 (here [n, n]p is the smallest p-ideal of n that

contains [n, n]). Then the following statements hold:

(a) There exists a linear form λ ∈ n∗ with λ([n, n]p) = 0 such that the one-dimensional

module kλ is the only simple Uχ(n)-module up to isomorphism. If n is p-trivial, then

λ = χ|n.
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(b) Let λ be as in (a). Denote by AχS, B
χ
S the sets of isomorphism classes of simple Uχ(g)

and simple Uχ(gλ)-modules, respectively. Then the map

Γ : Bχ
S −→ AχS, [S] 7→ [Indg

gλ
(S, χ)]

is a bijection. In particular, if gλ is unipotent, then Uχ(g) admits exactly one simple

module.

(c) Let λ ∈ n∗ with λ([n, n]) = (0). If g is a split extension, then gλ = n o hλ, where

hλ is the stabilizer of λ inside the h-module n∗. In particular, gλ is unipotent if and

only if hλ has this property.

Proof. (a) By Lemma 2.5.10(3), the algebra Uχ(n) possesses a unique simple module

S. As χ([n, n]p) = 0, we can apply 4.2.2 to see that S is a simple module for the

commutative algebra Uχ̂(n/[n, n]p). Hence dimk S = 1 and the first assertion follows.

The second assertion follows from the (in view of Lemma 2.5.6(1) necessary) equation

λ(x)p − λ(x[p])− χ(x)p = 0 for all x ∈ n.

(b) Let λ ∈ n∗ be the linear form of (a). Then Sλ = SocUχ(n)(S) 6= 0 for every simple

Uχ(g)-module S, so that S has eigenvalue function λ in the sense of [25, p.234]. As

λ([n, n]) = 0, we have n E gλ, so that - by the same token - λ is also an eigenvalue

function for every simple Uχ(gλ)-module. Now apply [25, §5, Theorem 7.7]. The

additional statement now follows from Lemma 2.5.10(3).

(c) The equation gλ = n o hλ is clear. The additional statement follows from the fact

that an extension of affine algebraic group schemes is unipotent if and only if the

corresponding extreme terms both enjoy this property.

The conditions above are satisfied when n is abelian and unipotent; for instance when

n is elementary abelian. We record a corollary pertaining to the case of a split extension.

Recall from Lemma 2.4.3(1), that a finite-dimensional Lie algebra (as well as its dual

space) can be viewed as a full affine space.

Corollary 4.3.2. Let g be the Lie algebra of an algebraic group G, 0 6= V a G-module

and consider the restricted Lie algebra V o g = Lie(V o G). Consider the open subset

OV := {χ ∈ (V o g)∗ : χ(V ) 6= 0} of the dual space (V o g)∗.

(1) If there is µ ∈ OV such that the stabilizer gµV = {x ∈ g : µ(x.v) = 0 ∀v ∈ V } of

the element µ|V ∈ V ∗ inside the g-module V ∗ is unipotent, then Uµ(V o g) admits

exactly one simple module up to isomorphism.

(2) If (1) holds and G acts on V ∗ \ {0} transitively, then
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(a) Uχ(V og) admits exactly one simple module up to isomorphism for any χ ∈ OV .

(b) Uχ(V o g) is connected for any linear form χ ∈ (V o g)∗.

Proof. The first assertion is a consequence of 4.3.1 (c).

(a) Let χ = (χV , χg) ∈ OV ⊆ V ∗ ⊕ g∗ = (V o g)∗ be arbitrary. As G acts transitively

on V ∗ \ {0}, we can assume χV = µV after some G-conjugation (cf. 2.5.27(2a) and

2.5.5). Hence gχV = gµV is unipotent, so that we can apply Theorem 4.3.1(b).

(b) As OV ⊆ (V og)∗ is non-empty and open, this follows from Lemma 4.3.3 below and

(a).

We have used a geometric argument:

Lemma 4.3.3. Let O ⊆ g∗ be a non-empty open subset. If Uχ(g) is connected for all

χ ∈ O, then Uχ(g) is connected for all χ ∈ g∗

Proof. Put C := {χ ∈ g∗ : Uχ(g) is connected}. Owing to [12, Theorem 4.5], C ⊆ g∗ is

a closed subset. By assumption, we have O ⊆ C. As O ⊆ g∗ is non-empty and open, it

is dense. Hence g∗ = O ⊆ C = C.

4.4 Split extensions of a reductive group by a vector group

We first explain some terminology. Let G be an algebraic group and T ⊆ G a (not

necessarily maximal) torus whose (free abelian) character group is denoted by X(T ).

Let r ≥ 1, then T acts on kGr via the adjoint representation which turns kGr into

a X(T )-graded algebra. In particular, one can study the category modX(T )(kGr) of

finite-dimensional X(T )-graded kGr-modules and degree zero homomorphisms. We have

M ∈modX(T )(kGr) if and only if

(i) M is a Gr-module.

(ii) M is a T -module.

(iii) The compatibility condition t.(u.m) = (t.u).(t.m) holds for all t ∈ T, u ∈ kGr,m ∈
M .

In fact, the latter category is equivalent to the module category of the algebraic group

Gr o T . We are interested in modules of the product subgroup GrT . Since the latter

is isomorphic to (Gr o T )/Tr, where the image of Tr consists of ’elements’ of the form

(t, t−1), we may identify the category mod(GrT ) with the full subcategory of mod(Gro
T ) consisting of all M such that (in addition to (i)-(iii)):
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(iv) ResTTr(M) = ResGrTr (M).

The group GroT affords a block decomposition (see [41, II.7.1]) and then the arguments

of [16, Lemma 2.1] show that the full subcategory mod(GrT ) is a sum of blocks of GroT .

We denote by F : mod(GrT ) → mod(Gr) the restriction functor, it simply forgets the

X(T )-grading. Then

(a) M ∈mod(GrT ) is indecomposable (resp. projective, simple)⇐⇒ F(M) ∈mod(Gr)

is indecomposable (resp. projective, simple). Since kGr is self-injective, this also

shows that mod(GrT ) is a Frobenius category, i.e., the notions of projectivity and

injectivity coincide (see also [41, Lemma II.9.4]).

(b) If M,N ∈ mod(GrT ) are indecomposable, then F(M) ∼= F(N) ⇐⇒ M ∼= N ⊗k kλ
for some λ ∈ prX(T ) (the shifts sending mod(GrT ) onto itself are precisely those

which belong to the subgroup prX(T )). Here kλ is viewed as a (GrT )-module via

the projection GrT → T .

(c) Every projective or simple Gr-module has a GrT -structure extending the given Gr-

structure.

(d) Projective covers exist in mod(GrT ) and if Q̂ is the projective cover of a simple

module Ŝ, then Q := F(Q̂) is the projective cover of the simple object S := F(Ŝ) in

mod(Gr).

These properties have first been discovered in [32, 33] in the context of Z-graded artin

algebras and later in [40] it has been observed that these results are valid, when Z is

replaced by Zn for some n ∈ N. Many results are known in case G is reductive and T a

maximal torus (see [41, II]) and we want to show that the ’BGG reciprocity formulas’

[41, Proposition II.11.2/4] still hold in a certain way when considering a split extension

of G by some vector group on which G acts linearly. Below, we will use the following

notation:

� If G is an algebraic group and V a G-module, then we put GV := Va o G as well

as GV,r := (GV )r = Va(r) oGr for all r ≥ 1.

Definition 4.4.1. Let X be a torsion-free abelian group. A submonoid P ⊆ X is called

pointed, provided x,−x ∈ P implies x = 0 for every x ∈ X.

As the union of an ascending collection of pointed submonoids is pointed, Zorn’s

Lemma shows that maximal (w.r.t. inclusion) pointed submonoids exist. By the same

token, given a pointed submonoid P , there will exist a maximal one containing P .
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Lemma 4.4.2. Given a maximal, pointed submonoid P ⊆ X of a torsion-free abelian

group X, the rule

x ≤ y :⇐⇒ y − x ∈ P

turns X into a totally ordered group.

Proof. See the answer of David E. Speyer in 3

Let now G be a reductive algebraic group with Lie algebra g and T ⊆ G a maximal

torus. Its character group X(T ) is a free abelian group and the weights R ⊆ X(T ) of

the adjoint action of T on g are called roots. After choice of a positive system R+ ⊆ R

with corresponding set S of simple roots, there is a partial order 4 on X(T ) (see [41,

II.1.5])

λ 4 µ :⇐⇒ µ− λ ∈ P :=
∑
α∈S

N0α ∀ λ, µ ∈ X(T ).

Let x ∈ P and assume that −x ∈ P . Then 0 4 −x 4 0, so that −x = 0 and hence

x = 0 by the antisymmetry of 4. Hence, P ⊆ X(T ) is a pointed submonoid, so that we

can turn X(T ) into a totally ordered group (X(T ),≤) such that ≤ extends 4.

Let V be a G-module and let Λ := ΛV ⊆ X(T ) be the set of weights of T on V . Put

Λ+ := {λ ∈ Λ : λ > 0}, V + :=
⊕
λ∈Λ+

Vλ

Λ− := {λ ∈ Λ : λ < 0}, V − :=
⊕
λ∈Λ−

Vλ.

We denote by B± = U±oT the corresponding Borel subgroups of G with their unipotent

radicals U± (see [41, II.1.8]) and make the following assumptions

� 0 /∈ Λ.

� The Borel subgroup B± stabilizes the subspace V ±.

We shall consider V as well as V ± as algebraic groups, isomorphic to d± copies of the

additive group Ga where d± := dimk V
±. Then we have a decomposition Va = V +

a ×V −a
(Va(r) = V +

a(r) × V
−
a(r) for all r ≥ 1) of algebraic groups. Put

U+
V := U+

V + = V +
a o U+ (U−V := U−V −) B+

V := B+
V + = U+

V o T (B−V := B−V − = U−V o T ).

Then B+
V ⊆ GV = Va oG (B−V ) is a closed, connected solvable algebraic subgroup with

unipotent radical U+
V (U−V ).

3https://math.stackexchange.com/questions/108165/why-do-torsion-free-abelian-groups-admit-
linear-orders
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Remark 4.4.3. The group B±V is not a Borel subgroup of GV . In fact, every Borel of

GV is of the form BV = V oB for B ⊆ G being a Borel of G (see Lemma 2.4.36).

Let r ≥ 1 and denote by GV,r = (GV )r = Va(r) o Gr the rth Frobenius kernel of the

group GV = Va o G. Note that our torus T ⊆ GV is still maximal and gives rise to

the category mod(GV,rT ) as explained above. General theory (see [41, Lemma II.3.2])

implies that the morphism

ψ = ψG,r : U+
r × Tr × U−r −→ Gr

given by multiplication is an isomorphism of schemes. We now show that we will get a

similar decomposition of our group GV,r.

Lemma 4.4.4. Given r ≥ 1, the morphism µ : U+
V,r × Tr × U−V,r −→ GV,r given by

multiplication is an isomorphism of schemes. In particular, we have an isomorphism

kGV,r
∼= kU+

V,r ⊗k kTr ⊗k kU
−
V,r given by multiplication such that

kU−V,r ⊆ k.1 + (kGV,r)<0, kTr ⊆ (kGV,r)0, kU+
V,r ⊆ k.1 + (kGV,r)>0.

Proof. Let A ∈ Commk and (v±, x±) ∈ U±V,r(A) = V ±(A)r o U±r (A), t ∈ Tr(A) be

arbitrary. Then we have

µA((v+, x+), t, (v−, x−)) = (v+ + (x+t.v−), ψA(x+, t, x−))

by definition. Let (w, g) ∈ GV,r(A) = Vr(A) o Gr(A) be arbitrary. As ψA is surjective,

there exist x± ∈ U±r (A) and t ∈ Tr(A) such that g = ψA(x+, t, x−). We write w = w+ +

w− with w± ∈ V ±r (A) and put b := x+t ∈ B+
r (A). Moreover, we write b−1.w− = z+ + z−

with z± ∈ V ±r (A). It follows that

w = w+ + w− = w+ + b.(b−1.w−) = (w+ + b.z+) + b.z−.

Consequently, setting v+ := w+ + b.z+ ∈ V +
r (A), v− := z− ∈ V −r (A), we get (w, g) =

µA((v+, x+), t, (v−, x−)). Hence, µA is surjective. Let now (w±, y±), (v±, x±) ∈ U±V,r(A)

and s, t ∈ Tr(A) be such that

µA((v+, x+), t, (v−, x−)) = µA((w+, y+), s, (w−, y−)).

As ψA is injective, we get x± = y±, s = t. Hence, again for b := x+t = y+s ∈ B+
r (A):

v+ + b.v− = w+ + b.w− =⇒ b−1.v+ + v− = b−1.w+ + w−,

so that b−1.v+ = b−1.w+ and v− = w−. As b−1 : Vr(A) → Vr(A) is bijective, we get

v+ = w+. Consequently, µA is injective and hence bijective. It follows that µ is an
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isomorphism of schemes.

As T is commutative, the action of T is trivial on Tr so that kTr ⊆ (kGV,r)0. As the

dual space (V +)∗ ((V −)∗) generates the coordinate ring S((V +)∗) = k[V +] (S((V −)∗) =

k[V −]) and as T acts via algebra automorphisms, we conclude that all non-zero weights of

T on k[V +] (k[V −]) are negative (positive) and that the zero weight space is k.1 ⊆ k[V ±].

Consequently, the weights on the dual kV + (kV −) are all positive (negative). As our

total order ≤ extends 4, it also follows that all weights of T on kU+
r (kU−r ) are positive

(negative), see [41, II.4.8(2)]. Combining these observations with U±V,r = V ±a(r)oU
±
r , this

finishes our proof.

Remark 4.4.5. In view of [41, II.1.9], one can adopt the proof of [41, Lemma II.3.2] to

get an isomorphism Gr
∼= U−r × Tr ×U+

r of schemes given by multiplication. Our above

arguments then also give rise to an isomorphism kGV,r
∼= kU−V,r ⊗k kTr ⊗k kU

+
V,r.

We have for all r ≥ 1 an exact sequence

0 −→ prX(T ) −→ X(T ) −→ X(Tr) −→ 0

of abelian groups. Denote by Λr a full set of representatives for elements of the factor

group X(T )/prX(T ). Since B±V,r
∼= U±V,r o Tr, every simple B±V,r-module corresponds to

some λ ∈ Λr. We put

Zr(λ) := kGV,r ⊗kB+
V,r
λ, Z−r (λ) = HomkB−V,r

(kGV,r, λ).

The module Zr(λ) is referred to as a (baby) Verma module with highest weight λ. We

have

dimk Zr(λ) = pr(d
− + |R+|) dimk Z

−
r (λ) = pr(d

+ + |R+|).

Given a character λ′ ∈ X(T ), we can (in the obvious way) turn the simple Tr-module

defined by λ into a Tr o T = (Tr × T )-module λ̂ which extends the given Tr-structure.

We can define a T -module structure on Zr(λ) and Z−r (λ) as follows:

t.(u⊗ α) := Ad(t)(u)⊗ λ′(t) · α ∀t ∈ T, u⊗ α ∈ Zr(λ)

(t.ϕ)(u) := λ′(t) · ϕ(Ad(t−1)(u)) ∀t ∈ T, ϕ ∈ Z−r (λ), u ∈ kGV,r.

These T -structures are clearly induced by the T -structures on kGr⊗kλ′ and Homk(kGr, λ
′),

Zr(λ) is a quotient of the first and Z−r (λ) a submodule of the latter. Using that T acts

on kGr via automorphisms, a direct computation shows that this in fact renders Zr(λ)

as well as Z−r (λ) being GV,r o T -modules, denoted by Ẑr(λ̂) and Ẑ−r (λ̂), respectively.

Then

Ẑr(λ̂) ∈mod(GV,rT )⇐⇒ λ̂ ∈mod(TrT )⇐⇒ λ′|Tr = λ
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The second equivalence is clear, while the non-trivial direction of the first follows from

[41, Proposition I.8.20], which then even implies that Zr(λ) has the structure of a

(GV,rB
+
V )-module and Z−r (λ) that of a (GV,rB

−
V )-module. So, given λ ∈ X(T ), we denote

the GV,rT -modules introduced above by Ẑr(λ) and Ẑ−r (λ), respectively. By definition,

we have

F(Ẑr(λ)) = Zr(λ), F(Ẑ−r (λ)) = Z−r (λ),

where F denotes the restriction to GV,r. We say that M ∈ mod(GV,rT ) (mod(GV,r))

has a Ẑ-filtration (Z-filtration), provided there exists a filtration of M whose filtration

factors are isomorphic to various Ẑr(λ) (Zr(λ)). Below, we will see that the number

of times a Verma module Ẑr(λ) (Zr(λ)) occurs up to isomorphism as a filtration factor

does not depend on the choice of the filtration.

Theorem 4.4.6. Let V be a rational representation of a reductive algebraic group G

and T ⊆ G a maximal torus. Let Λr ⊆ X(T ) be a full set of representatives for elements

of the factor group X(T )/prX(T ) and denote by ΛV ⊆ X(T ) the set of weights of T on

V . Assume that 0 /∈ ΛV and that the Borel subgroup B+ (B−) stabilizes the subspace

V + =
⊕

λ∈ΛV ,λ>0 Vλ (V − =
⊕

λ∈ΛV ,λ>0 Vλ) of V .

(1) The following statements hold:

� {Ŝr(λ) := Top(Ẑr(λ)) : λ ∈ X(T )} is a full set of representatives for the

iso-classes of simple (GV,rT )-modules.

� M ∈mod(GV,rT ) has a Ẑ-filtration if and only if the restriction of M to B−V,r
is projective.

� If M has a Ẑ-filtration, then

[M : Ẑr(λ)] = dimk HomGV,rT (M, Ẑ−r (λ)).

(2) The following statements hold:

� {Sr(λ) := Top(Zr(λ)) : λ ∈ Λr} is a full set of representatives for the iso-

classes of simple GV,r-modules.

� If M ∈ mod(GV,r) has a Z-filtration, then the restriction of M to B−V,r is

projective. If there exists a (GV,rT )-module M̂ such that F(M̂) ∼= M , then the

converse holds.

� If M has a Z-filtration, then

[M : Zr(λ)] = dimk HomGV,r(M,Z−r (λ)).

(3) Every projective indecomposable GV,rT -module Q̂ with top Ŝ (GV,r-module Q with
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top S) admits a Ẑ-filtration (Z-filtration) and we have [Q̂ : Ẑr(λ)] = [Ẑ−r (λ) : Ŝ]

([Q : Zr(λ)] = [Z−r (λ) : S]).

Proof. As kU±V,r · kTr = k(U±V,r o Tr) = kTr · kU±r (also the multiplication Tr × U±r →
U±r o Tr, (t, u) 7→ (t, 1) ∗ (1, u) = (t.u, t) is an isomorphism of schemes), it follows from

[41, I.9.6(2)] that the triangular decomposition 4.4.4 satisfies the requirements of [37,

2.1]. Recalling that mod(GV,rT ) is a sum of blocks of mod(GV,roT ), the assertion thus

follows from our above discussion and the results [37, Lemma 3.2, Theorem 4.4/5] (they

are formulated for Z-graded algebras, but also generalize to Zn-graded algebras).

The Verma modules of Gr are defined analogously. Given λ ∈ X(T ), we put

ZGr(λ) := kGr ⊗kB+
r
λ, Z−Gr(λ) = HomB−r

(kGr, λ).

Both modules also have structures of GrT -modules, which we indicate by using the

symbol Ẑ and in analogy to the above, one defines simple GrT -modules L̂r(λ) :=

Top(ẐGr(λ)). Then we have L̂r(λ) ∼= Ŝr(λ)|GrT since Va(r) is unipotent. The mean-

ing of a GrT -module having a ẐGr -filtration or a Gr-module having a ZGr -filtration is

then the obvious one and we can use the results [41, Proposition II.11.2/4] by Jantzen.

Lemma 4.4.7. Let λ ∈ X(T ), then the restriction of Ẑr(λ) to GrT admits a ẐGr-

filtration and [Ẑr(λ) : ẐGr(µ)] equals the multiplicity [kV −a(r) : µ− λ] of µ− λ inside the

T -module kV −a(r) for all µ ∈ X(T ).

Proof. By [37, Lemma 4.1], the restriction of Ẑr(λ) to B−V,rT is the projective cover of

the simple (B−V,rT )-module λ. Thus, the restriction of Ẑr(λ) to the closed subgroup B−r T

of B−V,rT is projective as well and [41, Proposition II.11.2] implies that Ẑr(λ) admits a

ẐGr -filtration such that

[Ẑr(λ) : ẐGr(µ)] = dimk HomGrT (Ẑr(λ), Ẑ−Gr(µ)) = dimk HomB−r T
(Ẑr(λ), µ)

for all µ ∈ X(T ). Next, we note that Ẑr(λ) ∼= k(U−V,r)⊗k λ with T acting via the tensor

product and the action of B−V,r = U−V,roTr is the one given by 2.4.29 (see also 4.1.4(2b)).

Since the multiplication U−r × V −a(r) → U−V,r is an isomorphism of schemes, we get an

isomorphism of vector spaces kU−V,r
∼= kU−r ⊗k kV −a(r) given by multiplication. Since T

acts via automorphisms of Hopf algebras on kU−V,r, it follows that

kU−V,r ⊗k λ ∼= kU−r ⊗k (kV −a(r) ⊗k λ)

as (B−V,rT )-modules, with T acting via tensor product and the action of B−r = U−r o Tr
given by 2.4.29. Since the projective cover of the simple B−r T -module µ ∈ X(T ) is

isomorphic to kU−r ⊗k µ (follows by using similar arguments as above), the assertion

follows by combining all our observations.
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Let W be the Weyl group associated to R and denote by w0 ∈ W the unique element

that sends R+ to −R+. The dot action of W on X(T ) ⊗Z R, defined by means of

w • λ := w(λ+ ρ)− ρ, maps (the image of) X(T ) onto itself.

Lemma 4.4.8. Put ρ := 1
2

∑
α∈R+ α ∈ X(T ) ⊗Z R and ρ± :=

∑
µ∈Λ± µ ∈ X(T ), then

the following statements hold for all λ ∈ X(T ):

(1) We have isomorphisms of GV,rT -modules

Ẑr(λ) ∼= HomkB+
V,r

(kGV,r, λ+ (pr − 1)(ρ− − 2ρ))

Ẑ−r (λ) ∼= kGV,r ⊗kB−V,r (λ+ (pr − 1)(ρ+ − 2ρ)).

(2) Zr(λ) has simple socle Sr(λ
′), where λ′ ∈ Λr represents w0 • (λ+ (pr − 1)ρ−).

(3) Ẑ−r (λ) has simple socle Ŝr(λ) and Z−r (λ) has simple top Sr(λ
′), where λ′ ∈ Λr

represents w0 • (λ+ (pr − 1)ρ+).

Proof. (1) In view of [41, Proposition I.8.20], we have isomorphisms of GV,rT -modules

Ẑr(λ) ∼= HomkB+
V,r

(kGV,r, λ+ χ|T − χ′)

where χ ∈ X(GV ) resp. χ′ is the character through which GV resp. T acts on

the space of left integrals of the Hopf algebra kGV,r resp. kB+
V,r. Combining [41,

Proposition I.8.19, II.3.4] and Lemma 2.5.29, we have χ|T = (pr − 1)
∑

µ∈ΛV
µ and

χ′ = (pr − 1)(
∑

µ∈Λ+ µ + 2ρ), as desired. The assertion concerning Ẑ−r (λ) follows

similarly.

(2) Let µ ∈ Λr be another weight. Our above alternative description of Zr(λ) =

F(Ẑr(λ)) yields

HomGV,r(Sr(µ), Zr(λ)) ∼= HomGV,r(Sr(µ),HomkB+
V,r

(kGV,r, λ+ (pr − 1)(ρ− − 2ρ)))

∼= HomB+
V,r

(Sr(µ), λ+ (pr − 1)(ρ− − 2ρ))

∼= HomB+
r

(Sr(µ), λ+ (pr − 1)(ρ− − 2ρ)) (V +
a(r) acts trivially)

∼= HomGr(Lr(µ),HomkB+
r

(kGr, λ+ (pr − 1)(ρ− − 2ρ))

∼= HomGr(Lr(µ), ZGr(λ+ (pr − 1)ρ−)) by [41, II.3.5(2)].

As ZGr(λ) is known to have simple socle Lr(w0 • λ) (see [41, Corollary II.3.12]), we

get (2).
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(3) Graded Frobenius reciprocity (see also [40, 1.11(3)(4)]) implies:

HomGV,rT (Ŝr(µ), Ẑ−r (λ)) ∼= HomB−V,rT
(Ŝr(µ), λ)

∼= HomB−r T
(L̂r(µ), λ) (V −a(r) acts trivially)

∼= HomGrT (L̂r(µ), Ẑ−Gr(λ)).

As Ẑ−Gr(λ) has simple socle L̂r(λ) (see [41, Proposition II.9.6]), the first assertion

follows. For the second, our above alternative description of Z−r (λ) = F(Ẑ−r (λ))

yields for all µ ∈ Λr

HomGV,r(Z
−
r (λ), Sr(µ)) ∼= HomGV,r(kGV,r ⊗kB−V,r (λ+ (pr − 1)(ρ+ − 2ρ)), Sr(µ))

∼= HomB−V,r
(λ+ (pr − 1)(ρ+ − 2ρ), Sr(µ))

∼= HomB−r
(λ+ (pr − 1)(ρ+ − 2ρ)), Lr(µ)) (V −a(r) acts trivially)

∼= HomGr(kGr ⊗kB−r (λ+ (pr − 1)(ρ+ − 2ρ)), Lr(µ))

∼= HomGr(ZGr(λ+ (pr − 1)ρ+), Lr(µ)) by [41, II.3.5(2)].

As Z−Gr(λ) is known to have simple top Lr(w0 • λ) (see [41, II.3.12]), we get (3).

Remark 4.4.9. In view of [41, II.9.7], we could also describe the socle of Ẑr(λ) (top of

Ẑ−r (λ)) with the above methods. Since we do not really need this later and this involves

further notation, we won’t go into this.

As an example, we consider the reductive group GL(n) along with its maximal torus

T of diagonal matrices whose character group X(T ) is identified with the free abelian

group Zn. Denoting by ei ∈ Zn the i-th unit vector, the corresponding set of simple roots

is S = {ei− ei+1 : 1 ≤ i ≤ n− 1}. The set of weights of T on the natural representation

V = kn is {ei : 1 ≤ i ≤ n}. If we consider the group SL(n) along with its standard

torus T ′ := T ∩ SL(n), whose character group X(T ′) we shall identifiy with Zn−1, the

restriction map corresponding to the inclusion T ′ ⊆ T is given by

π : Zn → Zn−1, (x1, . . . , xn) 7→ (x1 − xn, . . . , xn−1 − xn)

Then e′i := π(ei) for 1 ≤ i ≤ n − 1 is a basis of X(T ′), π(R) is the set of roots and

π(S) = {e′i − e′i+1 : 1 ≤ i ≤ n − 2} ∪ {v := (1, . . . , 1, 2)} is a set of simple roots, and e′i
for 1 ≤ i ≤ n − 1 as well as π(en) = (−1, . . . ,−1) ∈ Zn−1 are the weights of T ′ on kn

(see [41, II.1.21] for more details).

Lemma 4.4.10. Let n ≥ 2. With the notation of the previous paragraph, the following

statements hold:
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(a) Given k ∈ {1, . . . , n−1}, there exists a total ≤ order on X(T ), that extends the par-

tial order 4 and ei

{
> 0, 1 ≤ i ≤ k

< 0, k + 1 ≤ i ≤ n
. Moreover, (X(T ),≤) is a totally ordered

group.

(b) Given k ∈ {1, . . . , n − 1}, there exists a total ≤ order on X(T ′), that extends the

partial order 4 such that e′i

{
> 0, 1 ≤ i ≤ k

< 0, k + 1 ≤ i ≤ n
and v < 0. Moreover, (X(T ′),≤)

is a totally ordered group.

Proof. (a) If we can show that the submonoid

P :=
k∑
i=1

N0ei +
n∑

i=k+1

N0(−ei) +
n−1∑
i=1

N0(ei − ei+1)

is pointed, our claim will follow from the discussion before by taking a maximal

pointed submonoid containing P . As ei = (ei − ei+1) + ei+1 for 1 ≤ i ≤ k − 1 and

−ei+1 = (ei − ei+1)− ei for k + 1 ≤ i ≤ n− 1, it follows that

P = N0ek + N0(−ek+1) +
n−1∑

i=1,i 6=k

N0(ei − ei+1)

Let x ∈ P , then there exist integral coefficients a, b, αi ∈ N0 such that

x = (α1, α2 − α1, . . . , a− αk−1, αk+1 − b, αk+2 − αk+1, . . . ,−αn−1).

If −x ∈ P , then there are integral coefficients c, d, βi ∈ N0 such that

−x = (β1, β2 − β1, . . . , c− βk−1, βk+1 − d, βk+2 − βk+1, . . . ,−βn−1)

= (−α1,−α2 + α1, . . . ,−a+ αk−1,−αk+1 + b,−αk+2 + αk+1, . . . , αn−1).

As βn−1 and αn−1 are natural numbers, it follows that they must be zero. Then

αn−2 = −αn−1 + αn−2 = βn−1 − βn−2 = −βn−2,

so that the same argument gives 0 = αn−2 = βn−2. Continuing in this fashion, we

get 0 = αi = βi for k + 1 ≤ i ≤ n − 1 and then also 0 = b = d. If now k = 1, we

get 0 = a = c with the same argument again. Otherwise, we get 0 = α1 = β1 and

successively 0 = αi = βi for 1 ≤ i ≤ k − 1, 0 = a = c. Thus, x = 0 in any case. It

follows that P is pointed.

(b) If n = 2, then X(T ′) = Z and the natural order on Z is the desired total order. Let
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n ≥ 3. As above, it suffices to show that the submonoid

P ′ := N0e
′
k + N0(−e′k+1) +

n−2∑
i=1,i 6=k

N0(e′i − e′i+1) + N0v

of X(T ′) is pointed. If x ∈ P ′ and −x ∈ P ′, it follows that integral coefficients

corresponding to v in expressions to form x and −x (as in a)) must be zero. But

then it follows as in a), that x = 0. Thus, P ′ is pointed.

For both G = GL(n), SL(n) and any choice of total order on X(T ), X(T ′) as above,

the Borel subgroup of upper (lower) triangular matrices clearly stabilizes the subspace

V + (V −) and 0 is not a weight of T, T ′ on V = kn.
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5 Applications

Throughout this chapter, we assume that k is an algebraically closed field of character-

istic char(k) = p ≥ 3.

5.1 Some semidirect products with the (three-dimensional)

Heisenberg group

We begin with determining the restricted derivations of the three-dimensional p-trivial

Heisenberg algebra h3. Considering its standard basis r, s, z, the bracket is determined

by [r, s] = z, [z, h3] = (0) and the p-map is identically zero. This implies that every

ordinary derivation of the Lie algebra h3 is already restricted and we shall be concerned

with the determination of the former. Using the standard basis, we shall interpret every

linear map h3 → h3 as a (3× 3)-matrix and give a criterion depending on that matrix,

to decide whether such a map is a derivation.

Lemma 5.1.1. Let D : h3 → h3 be a linear map. Then D is a derivation if and only if

D is of the form d11 d12 0

d21 d22 0

d31 d32 d11 + d22


for coefficients dij ∈ k (1 ≤ i ≤ 3, 1 ≤ j ≤ 2). In particular, dimk Der(h3) = 6 and if

g ⊆ gl(2) is a restricted subalgebra, then

g→ Derp(h3), x 7→
(
x 0

0 tr(x)

)
is a homomorphism of restricted Lie algebras.

Proof. If D = (dij) is a derivation, thend13

d23

d33

 = D(z) = D([r, s]) = [D(r), s] + [r,D(s)] =

 0

0

d11 + d22


Thus, D is of the desired form. We finish the proof by showing that any linear map

D : h3 → h3 of the mentioned form is in fact a derivation. Therefore, we let v =
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(
a
b
c

)
, w =

(
α
β
γ

)
∈ h3 be arbitrary. Then

D([v, w]) = D

 0

0

aβ − bα

 =

 0

0

(d22 + d11)(aβ − bα)


=

 0

0

d22aβ − d22bα + d11aβ − d11bα


=

 0

0

aβd11 + bβd12 − aαd21 − bαd22

+

 0

0

aαd21 + aβd22 − bαd11 − bβd12


= [D(v), w] + [D(w), v].

The additional statement can now be obtained from the fact that the natural repre-

sentation of gl(2) on V = k2 as well as the one-dimensional defined by the trace, are

restricted representations of gl(2) (and hence for any restricted subalgebra).

The lemma shows that we can form semidirect products such as h3ogl(2) or h3osl(2).

We now consider the case where some arbitrary restricted Lie algebra g acts on the

three-dimensional p-trivial Heisenberg algebra h3 by restricted derivations and want

to determine the p-map on the semidirect product h3 o g. Clearly g stabilizes the

center [h3, h3] = kz of h3, we let λ : g → k be the corresponding linear form such that

x.z = λ(x)z for all x ∈ g.

Lemma 5.1.2. Assume that a restricted Lie algebra g acts on the Heisenberg algebra

h3 via restricted derivations. The unique p-map on h3 o g, such that (the images of) h3

and g are restricted subalgebras, is given by

(x, y)[p] =

(
1

2

p−3∑
j=0

λ(y)j[x, yp−2−j.x] + yp−1.x , y[p]g

)
∀ x ∈ h3, y ∈ g

Proof. Let x ∈ h3 and y ∈ g. In view of 2.5.18(1), we need to determine the coefficients

si(x, y) for 1 ≤ i ≤ p− 1, which are defined by the equation

ad(x⊗ T + y ⊗ 1)p−1(x⊗ 1) =

p−1∑
i=1

i · si(x, y)⊗ T i−1
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inside the Lie algebra (h3 o g)⊗k k[T ]. Therefore we will show inductively that

ad(x⊗ T + y ⊗ 1)`(x⊗ 1) =
`−2∑
j=0

λ(y)j[x, y`−1−j.x]⊗ T + y`.x⊗ 1 ∀ ` ∈ N.

Our claim then follows by substituting ` = p − 1. The case ` = 1 is trivial. Let ` ∈ N
such that the above formula holds. Then

ad(x⊗ T + y ⊗ 1)`+1(x⊗ 1) = ad(x⊗ T + y ⊗ 1)(ad(x⊗ T + y ⊗ 1)`(x⊗ 1))

= ad(x⊗ T + y ⊗ 1)(
`−2∑
j=0

λ(y)j [x, y`−1−j.x]︸ ︷︷ ︸
∈kz

⊗T + y`.x⊗ 1)

= [x, y`.x]⊗ T +
`−2∑
j=0

λ(y)j+1[x, y`−1−j.x]⊗ T + y`+1.x⊗ 1

= [x, y`.x]⊗ T +
`−1∑
j=1

λ(y)j[x, y`−j.x]⊗ T + y`+1.x⊗ 1

=
`−1∑
j=0

λ(y)j[x, y`−j.x]⊗ T + y`.x⊗ 1 + y`+1.x⊗ 1,

as desired.

It is always useful to know whether a restricted Lie algebra is algebraic, i.e. whether it

is the Lie algebra of an algebraic group. We let H ⊆ SL(3) be the group of unitriangular

(3 × 3)-matrices, the Heisenberg group. Its Lie algebra, consisting of strictly upper

triangular (3×3)-matrices, is isomorphic to the Heisenberg algebra h3. For our purposes,

it will be convenient to use another realization of the algebraic group H: The affine

variety A2 × A obtains the structure of an algebraic group by setting

(∗) (v, c) · (w, d) := (v + w, c+ d+ det(v, w)), ∀(v, c), (w, d) ∈ A2 × A.

Remark 5.1.3. We note at this point, that the multiplication used in the literature is

(v, c) · (w, d) := (v+w, c+ d+ 1
2
· det(v, w)), but the mapping (v, c) 7→ (v, 2c) defines an

isomorphism between these structures (here we use p = char(k) 6= 2).

Then the following map defines an isomorphism between these structures.

(v, c) 7→

1 v1
1
2
(c+ v1v2)

0 1 v2

0 0 1
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As noted above, we will from now on let H be the group defined by (∗).

Lemma 5.1.4. The group GL(2) acts on the Heisenberg group H via

GL(2)×H → H, (g, (v, c)) 7→ (gv, det(g).c).

If g ⊆ gl(2) is the Lie algebra of some closed subgroup G ⊆ GL(2), then the restricted

Lie algebra h3 o g defined via the action of 5.1.1 is the Lie algebra of the semidirect

product H oG, formed with respect to the above action of G on H.

Proof. This follows from direct computation and 2.5.23, 2.4.32.

We can also form semidirect products of the form G2
a o G for closed subgroups G ⊆

GL(2), where we let G act on G2
a naturally. Throughout this chapter, we put

G := H oGL(2), G := G2
a oGL(2), S := H o SL(2), S := G2

a o SL(2)

g := Lie(G), g := Lie(G), s := Lie(S), s := Lie(S).

The group S (considered over the field of complex numbers C) originates from physics.

It is called the Schrödinger group, its Lie algebra s is called the Schrödinger algebra. In

number theory, this group (considered over the reals R) is also called the Jacobi group

(see [3, Abschnitt 8.5]).

Lemma 5.1.5. Assume that a restricted Lie algebra g acts on the Heisenberg algebra h3

via restricted derivations. Then the following statements hold:

(1) We have

V (h3 o g) =

{
{(x, y) ∈ h3 o g | y ∈ V (g) and 0 = 1

2
[x, y.x] + y2.x} p = 3

h3 × V (g). p > 3

(2) If g ⊆ gl(2) is a restricted subalgebra, then either V (g) = V (sl(2)) is an irreducible

two-dimensional variety or there exists x ∈ V (sl(2)) such that V (g) = kx.

(3) Let p = 3. If g ⊆ gl(2) acts on h3 as in 5.1.1, then

V (h3 o g) = {(x, y) ∈ h3 o g | y ∈ V (g) and 0 = [x, y.x]}

equals h3 if and only if g is a torus and otherwise it is an equidimensional variety

of dimension dimV (g) + 2.

Proof. (1) By the foregoing lemma, we have

V := V (h3og) = {(x, y) ∈ h3og | y ∈ V (g) and 0 =
1

2

p−3∑
j=0

λ(y)j[x, yp−2−j.x]+yp−1.x}.
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As h3 is a restricted g-module, we have λ|V(g) ≡ 0. By the same token, y ∈ V (g)

acts p-nilpotently on the three-dimensional space h3. Consequently, yn.x = 0 for all

n ≥ 3 and all x ∈ h3 and hence 1).

(2) The variety V (gl(2)) = V (sl(2)) = {( a b
c −a ) | a2 +bc = 0} is a hypersurface inside the

three-dimensional variety sl(2). As the defining polynomial is irreducible, it follows

that V (sl(2)) is an irreducible, two-dimensional variety. As V (g) ⊆ V (gl(2)), the

assumption dimV (g) = 2 forces V (g) = V (sl(2)). If dimV (g) = 1 then there exists

x ∈ V (sl(2)) such that V (g) = kx is a line (2.5.7(4)). Finally, dimV (g) = 0 forces

x = 0.

(3) As the gl(2)-module h3 = k2 ⊕ ktr is a direct sum of the natural representation k2

and the one-dimensional defined by the trace, the same argument as above shows

yn.x = 0 for all n ≥ 2 and all x ∈ h3 and y ∈ V (g). Hence V := V (h3og) is precisely

the fiber at 0 of the morphism of (in view of 2)) irreducible varieties

ψ : h3 × V (g)→ kz, (x, y) 7→ [x, y.x].

We want to show that ψ is dominant if and only if g is not a torus. If g is a torus,

then V (g) = {0} and ψ is the zero map, clearly not dominant. Assume that g is not

a torus. In view of (2), we have to look at the following two cases

� If V (g) = V (sl(2)), then ψ is surjective; we have αz = ψ(y,−αe) for any α ∈ k.

� If V (g) = kx for some x ∈ V (sl(2)) \ {0}, then there exists g ∈ GL(2) such

that x = g.e = geg−1 (Jordan canonical form). It follows that

ψ(g.s, x) = [g.s, (g.e).(g.s)] = [g.s, g.(e.s)] 2.4.32(2)

= [g.s, g.r] = (g.[s, r]) = −g.z = − det(g).z 6= 0.

It is now easy to conclude the surjectivity of ψ.

Our claim follows, since surjective morphisms are (obviously) dominant. Let g not

be a torus. By the above, standard results on fiber dimensions (see the lemma

below) yield for an arbitrary irreducible component Z ⊆ V :

dimZ ≥ dim (h3 × V(g))− dim kz = dimV(g) + 2

As ψ is not identically zero, we have V 6= h3 × V(g). Hence Z is a proper, closed

subset of the (dimV (g) + 3)-dimensional irreducible variety h3 × V (g). It follows

that dimZ = dimV (g) + 2.

Lemma 5.1.6. Let ϕ : V → W be a dominant morphism of irreducible affine varieties
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and put r := dimV − dimW . Then we have dimZ ≥ r for every irreducible component

Z ⊆ ϕ−1({y}) and all y ∈ ϕ(V ).

For the following, one may recall 2.5.13.

Lemma 5.1.7. The variety E(2, s) is irreducible.

Proof. Consider the Borel subalgebra b := L(1)o bsl(2) of s, where bsl(2) ⊆ sl(2) denotes

the Borel subalgebra of upper triangular matrices (see 2.4.36) and L(1) denotes the

natural representation of the Lie algebra sl(2). We compute E(2, b): The subalgebra

u = ke ⊕ ks ⊕ kr is clearly isomorphic to the three-dimensional Heisenberg algebra h3.

By the equality b = t⊕ u, where t = k( 1 0
0 −1 ) is a torus, we deduce

E(2, b) = E(2, u) ∼= P1.

Now [5, Theorem 2.2.2] shows S.E(2, b) = E(2, s), i.e. E(2, s) is the image of the

morphism

S × E(2, b)→ E(2, s), (g, e) 7→ g.e

which originates in an irreducible variety. Thus, E(2, s) is irreducible as well.

Next, we compute the actions of the group G(k) = H o GL(2)(k) on the two Lie

algebras s := h3osl(2) and g := h3ogl(2) via the formulas of 2.5.24. Let h = (v, c) ∈ H
be arbitrary. The differential of the left translation by h−1 = (−v,−c) at h is given by

dh(lh−1) : h −→ h, (w, d) 7→ (w, d− det(v, w))

and the differential of ηh : GL(2) −→ H, g 7→ g.h at e is given by

gl(2) −→ h, x 7→ (x.v, tr(x)).

Now consider the conjugation by h inside H

κh : H −→ H, (w, d) 7→ h(w, d)h−1 = (w, d+ 2 det(v, w)).

The differential at e can be identified with κh for reasons of linearity. As a result, Lemma

2.5.24(b) yields:

Lemma 5.1.8. Let V be the natural representation of GL(2).

(1) The GL(2)-module g is the direct sum h⊕ gl(2) ∼= V ⊕ det⊕ gl(2). Let h = (v, c) ∈
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H, k = (w, d) ∈ h3 and x = ( a b
c d ) ∈ gl(2). Then we have

h.k = (w, d+ 2 det(v, w)) = (w, d+ 2(v1w2 − v2w1))

h.x = ((−x.v,− det(v, x.v)− tr(x)), x)

= ((−x.v,−cv2
1 + bv2

2 + (a− d)v1v2 − a− d), x).

(2) The GL(2)-module s is the direct sum h⊕ sl(2) ∼= V ⊕ det⊕ sl(2) and the action of

H is induced by that of (1).

Lemma 5.1.9. Let (r, s, z) ((r∗, s∗, z∗)) and (h, e, f) ((h∗, e∗, f ∗)) denote the standard

bases of h3 and sl(2) (h∗3 and sl(2)∗), respectively. The GL(2)-module s∗ is isomorphic

to V ∗ ⊕ det−1⊕ sl(2)∗. Let χ = (χh, χsl(2)) ∈ s∗ and write χh = αr∗ + βs∗ + γz∗ with

α, β, γ ∈ k. Then any g ∈ GL(2)(k) will take χh to α′r∗ + β′s∗ + (det(g)−1γ)z∗, where(
α′

β′

)
= (g−1)t ·

(
α

β

)
.

Moreover, given h = (v, c) ∈ H, we have h−1.χ = h−1.χh + (χsl(2) − ψ(h, χh)), where

h−1.χh = (α− 2γv2)r∗ + (β + 2γv1)s∗ + γz∗

ψ(h, χh) = (−v2β + v1α− 2γv1v2)h∗ + (v2
2γ + v2α)e∗ + (v1β − γv2

1)f ∗.

Remark 5.1.10. We will see later, that the GL(2)-module sl(2) is self-dual.

Let now G ⊆ GL(2) be a closed subgroup. We denote by Z = {(0, c) | c ∈ k} the

center of H. The canonical projection H → G2
a, (v, c) 7→ v induces an exact sequence

δ : ek −→ Z −→ H −→ G2
a −→ ek

of algebraic groups, which splits as a sequence of schemes. In view of the left-exactness

of G 7→ Gr, we obtain exact sequences

δr : ek −→ Zr −→ Hr −→ G2
a(r) −→ ek

of rth Frobenius kernels for all r ≥ 1. We will now see that the Gabriel quiver of

k(Hr oGr) = k(H oG)r is the same as that of k(G2
a(r) oGr).

Lemma 5.1.11. Let r ≥ 1 and G ⊆ GL(2) be a closed subgroup. Then the following

statements hold:

(1) We have DH = Z and DHr = Zr.
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(2) The Gabriel quiver of k(HroGr) is canonically isomorphic to that of k(G2
a(r)oGr).

Proof. (1) As G2
a is abelian, we get DH ⊆ Z by the abovementioned exact sequence.

Let A ∈ Commk and a ∈ A, then a direct computation shows that the commutator

[((a, 0), 0), ((0, 1
2
), 0)] equals (0, a). This shows Z ⊆ DH. As δ also induces an exact

sequence on Frobenius kernels, the missing assertion follows analogously.

(2) This follows from (1), the remark below 2.4.22 and 4.1.8.

We note that the projection H → G2
a, (v, c) 7→ v also induces an exact sequence

ek −→ Z −→ H oG −→ G2
a oG −→ ek

of algebraic groups, which (by the same arguments above Lemma 5.1.11) also induces

exact sequences of rth Frobenius kernels

ek −→ Zr −→ Hr oGr −→ G2
a(r) oGr −→ ek

for all r ≥ 1.

5.2 The Gabriel quiver of the Frobenius kernels of the Schrödinger

group

We consider the group S = G2
aoSL(2), it is isomorphic to the quotient of the Schrödinger

group S by its center. As a first step, we observe that the Hopf algebras of the Frobenius

kernels of the group S are symmetric and of wild representation type.

Lemma 5.2.1. The algebra kSr is symmetric and of wild representation type for all

r ≥ 1.

Proof. The symmetry follows from Lemma 2.5.29(c). If r ≥ 2, the algebra kSL(2)r is

of wild representation type (cf. [51, Satz 6 in Abschnitt 4.4]). As the pullback along

the projection Sr → SL(2)r provides a full embedding of mod(SL(2)r) into mod(Sr),
it follows from the definition that kSr enjoys the same property. If r = 1, then we can

apply 4.2.8(2).

We consider the maximal torus T ⊆ SL(2) of diagonal matrices and the Borel subgroup

B of lower triangular matrices. We recall several notions defined earlier for SL(n) and

arbitrary n ∈ N. The character group X(T ) is identified with the group Z of integers.

The roots relative to T are given by R = {±2}, the only positive root is 2. This induces

a partial order on X(T ): if λ, µ ∈ Z, then

λ ≤ µ :⇐⇒ µ− λ ∈ 2N0.
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As B = U o T is a semidirect product of unitriangular matrices and diagonal matrices,

respectively, every λ ∈ X(T ) gives rise to a one-dimensional B-module kλ (also denoted

λ when no confusion is possible). Let λ ∈ X(T )+ = N0 be a dominant weight. Following

[41, II.2.1(5)/2.13(1)], we define

H0(λ) := Ind
SL(2)
B (λ) = {f ∈ k[SL(2)] : f(gb) = λ(b)−1f(g) ∀g ∈ SL(2, k), b ∈ B(k)}

and put V (λ) := H0(λ)∗, the Weyl module with highest weight λ. Then [41, II.2.16(4)]

yields that H0(λ) ∼= k[X, Y ]λ is the space of homogeneous polynomials of degree λ

in the polynomial ring k[X, Y ] with two variables X, Y . The (simple) socle L(λ) of

this module is called the simple SL(2)-module with highest weight λ. All simple SL(2)-

modules arise in this fashion (cf. [41, Proposition II.2.4 a)]) and they are all self-dual

(see [41, Corollary II.2.5]). Moreover, we have H0(λ) ∼= V (λ) ∼= L(λ) for 0 ≤ λ ≤ p− 1

(see [41, II.2.10(2)/2.16(7)]). In particular, L(0) = k is the trivial module L(1) = k2 is

the natural one.

The group SL(2) acts on the restricted (elementary abelian) Lie algebra Lie(G2
a) =

L(1) = k2. This action lifts to an action on the restricted enveloping algebra U0(L(1)).

Lemma 5.2.2. The SL(2)-module U0(L(1)) is completely reducible, we have

U0(L(1)) ∼=
p−2⊕
i=0

2L(i)⊕ L(p− 1).

Proof. Since S := U0(L(1)) ∼= k[X1, X2]/(Xp
1 , X

p
2 ), we clearly have a decomposition

S =

2p−2⊕
k=0

Sk

into homogeneous components. As in the characteristic zero case, the above mentioned

decomposition of S is a decomposition into a direct sum of SL(2)-modules. Moreover

note that S2p−2 = 〈xp−1
1 xp−1

2 〉k = L(0) (xi := Xi + (Xp
1 , X

p
2 )) is the trivial SL(2)-module

and if i ∈ {0, . . . , p− 1}, then Si = L(i) is the unique simple SL(2)-module of dimension

i + 1. Using multi-index notation, any f ∈ S can be written as
∑

j∈N2
0
αjx

j . Now

consider the associative bilinear form

λ : S × S → k ; (a, b) 7→ α(p−1,p−1)(f · g).

Fix i ∈ {0, . . . , p− 1} and consider the restriction λi : Si × S2p−2−i → k. Let g ∈ SL(2)

and a ∈ Si, b ∈ S2p−2−i, then

λi(g.a, g.b) = α(p−1,p−1)(g.a · g.b) = α(p−1,p−1)(g. a · b︸︷︷︸
∈S2p−2

) = α(p−1,p−1)(a · b) = λi(a, b).
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Hence the form λi is SL(2)-stable. Moreover it is non-degenerate and therefore induces

an isomorphism Si → S∗2p−2−i of SL(2)-modules. As Si is selfdual, the result follows.

Lemma 5.2.3. Given 1 ≤ λ ≤ p − 2, the SL(2)-module L(1) ⊗k L(λ) is isomorphic to

L(λ− 1)⊕ L(λ+ 1).

Proof. We have an exact sequence of B-modules

0 −→ k−1 −→ L(1) −→ k1 −→ 0.

Tensoring with kλ and application of the (by [41, Proposition I.3.3(a)] left exact) induc-

tion functor Ind
SL(2)
B (−) in conjunction with the tensor identity [41, Proposition I.3.6]

yields an exact sequence

0 −→ L(λ− 1) −→ L(λ)⊗k L(1) −→ L(λ+ 1)

A direct computation shows that the map on the right-hand side takes the element

Xλ ⊗ (1, 0) ∈ L(λ) ⊗k L(1) to XλY ∈ L(λ + 1). As L(λ − 1) is simple, the above

sequence is in fact a short exact seqence. In view of [41, Proposition II.2.14], we get

Ext1
SL(2)(L(λ+ 1), L(λ− 1)) ∼= HomSL(2)(rad(V (λ+ 1)), L(λ− 1))

∼= HomSL(2)(0, L(λ− 1)) ∼= (0).

Consequently, the above sequence splits.

Given r ≥ 1, we put Λr := {0, . . . , pr − 1} and present elements λ ∈ Λr by expanding

them p-adically: λ =
∑r−1

j=0 λjp
j; sometimes we also write λ = (λ0, . . . , λr−1). We recall

from [41, Proposition II.3.10/3.15], that

{Lr(λ) := L(λ)|SL(2)r
| λ ∈ Λr}

is a complete set of representatives for the iso-classes of simple SL(2)r-modules. For

r = 1, we will occasionally also write L(λ) instead of L1(λ), when no confusion is

possible.

The above implies that every simple SL(2)1-module L1(λ) (0 ≤ λ ≤ p − 1) can be

lifted to an SL(2)r-module isomorphic to Lr(λ). Also the SL(2)1-PIM’s P1(λ) can be

lifted to SL(2)r and, in both cases, this lifting process is unique up to isomorphism (see

[51, Bemerkung 3, Satz 3]).

Given i ≥ 0, we denote by (−)[i] the pullback along the ith power of a Frobenius

endomorphism F : SL(2) → SL(2). Note that F i maps SL(2)r to SL(2)r−i. We then

have Steinberg’s tensor product theorem available for simples and an analogous result for
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PIM’s (see [51, Korollar zu Satz 2]):

Lr(λ) ∼=
r−1⊗
i=0

L1(λi)
[i], Pr(λ) ∼=

r−1⊗
i=0

P1(λi)
[i].

For the following, we introduce some additional notation. Given λ ∈ Λr and 0 ≤ s ≤
r − 1, we put

λ(s) :=
r−1∑

j=0,j 6=s

λjp
j = (λ0, . . . , λs−1, 0, λs+1, . . . , λr−1)

λ(s),± := λ(s) + (λs ± 1)ps = (λ0, . . . , λs−1, λs ± 1, λs+1, . . . , λr−1).

Lemma 5.2.4. Let r ≥ 1, s ∈ {0, . . . , r − 1} and λ ∈ Λr. Then we have isomorphisms

of SL(2)r-modules:

(a)

Lr(1)⊗k Lr(µ) ∼=

{
Lr(µ− 1)⊕ Lr(µ+ 1), µ 6= p− 1

P1(p− 2), µ = p− 1

for all 1 ≤ µ ≤ p− 1.

(b)

Lr(p
s)⊗k Lr(λ) ∼=


Lr(p

s), λ = 0

Lr(λ
(s),+)⊕ Lr(λ(s),−), λs 6= p− 1

X(s, λ) := P1(p− 2)[s] ⊗k Lr(λ(s)), λs = p− 1.

Proof. (a) First consider the case µ 6= p − 1. By 5.2.3, we have isomorphisms L(1) ⊗k
L(µ) ∼= L(µ − 1) ⊕ L(µ + 1) of SL(2)-modules. We thus obtain isomorphisms of

SL(2)r-modules

Lr(1)⊗k Lr(µ) ∼= (L(1)⊗k L(µ))|SL(2)r
∼= (L(µ− 1)⊕ L(µ+ 1))|SL(2)r

∼= Lr(µ− 1)⊕ Lr(µ+ 1).

In the remaining case, the modular Clebsch-Gordan rule (cf. [26, Kapitel 5]) implies

that L1(1)⊗k L1(p− 1) ∼= P1(p− 2) as SL(2)1-modules. Hence L1(1)⊗k L1(µ) is a

lift of the principal indecomposable SL(2)1-module P1(p− 2), so that our first claim

follows from the uniqueness.
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(b) Application of Steinberg’s tensor product theorem yields

Lr(p
s)⊗k Lr(λ) ∼= L1(1)[s] ⊗k

r−1⊗
i=0

L1(λi)
[i]

∼= L1(λ0)⊗k L1(λ1)[1] ⊗k · · · ⊗k (L1(λs)
[s] ⊗k L1(1)[s])⊗k · · · ⊗k L1(λr−1)[r−1]

∼= L1(λ0)⊗k L1(λ1)[1] ⊗k · · · ⊗k (L1(λs)⊗k L1(1))[s] ⊗k · · · ⊗k L1(λr−1)[r−1].

Now apply (a) and the tensor product theorem again.

The block structure of the algebra kSL(2)r has been determined by Pfautsch [51,

Abschnitt 4.2]. We adopt the notation of [22, p.1503] and put B(r)
r := {pr−1}, the block

corresponding to the (projective) Steinberg module Str := Lr(p
r − 1) as well as

B(r)
i,s :=

{
λ =

r−1∑
j=0

λjp
j ∈ Λr | λ0 = λ1 = · · · = λs−1 = p− 1, λs ∈ {i, p− 2− i}

}

for given elements 0 ≤ i ≤ p−3
2

and 0 ≤ s ≤ r − 1. The corresponding block consists of

modules having composition factors of the form Lr(λ) with λ ∈ B(r)
i,s .

We recall from Theorem 4.1.8 and Lemma 4.1.10, that the Gabriel quiver of the algebra

kSr is given by the generalized McKay quiver ΓSL(2)r
(V ), where

V := H1(G2
a(r), k)∗ ∼=

r−1⊕
j=0

Lr(p
j) ∈mod(SL(2)r).

Hence, if Sr(λ) := Inf(Lr(λ)), then there are precisely dr(λ, µ) arrows Sr(λ) → Sr(µ)

inside Q := QkSr where

dr(λ, µ) := dimk HomSL(2)r
(V ⊗k Lr(λ), Lr(µ)) + dimk Ext1

SL(2)r
(Lr(λ), Lr(µ))

for all λ, µ ∈ Λr. Given two blocks B, C of kSL(2)r, we say B is connected with C inside

Q, provided there exist simple modules S ∈ mod(B), T ∈ mod(C) and an unoriented

path between S and T inside Q. Note that this clearly defines an equivalence relation

on the set of blocks of kSL(2)r.

Theorem 5.2.5. The Gabriel quiver Q := QkSr of the algebra kSr is connected for all

r ≥ 1.

Proof. We proceed in several steps.

(a) The block Bi,s is connected with Bi+1,s inside Q for all 0 ≤ i ≤ p−3
2
−1, 0 ≤ s ≤ r−1:
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Indeed, let i, s be as above and λ ∈ Bi,s non-zero with the property that λs = i.

Then 5.2.4 implies that

Lr(p
s)⊗k Lr(λ) ∼= Lr(λ

(s),+)⊕ Lr(λ(s),−)

is a direct summand of V ⊗k Lr(λ), so that we get dr(λ, λ
(s),+) 6= 0. Recalling that

λ(s),± = (p− 1, . . . , p− 1, i± 1, λs+1, . . . , λr−1),

we conclude λ(s),+ ∈ Bi+1,s and therefore the desired statement follows.

(b) B0,s is connected with B0,s+1 for all 0 ≤ s ≤ r − 2:

Let 0 ≤ s ≤ r−2 be arbitrary and λ ∈ B0,s such that λs = p−2 and λs+1 ∈ {0, p−2}.
Then

Lr(p
s)⊗k Lr(λ) ∼= Lr(λ

(s),+)⊕ Lr(λ(s),−)

is a direct summand of V ⊗k Lr(λ), so that dr(λ, λ
(s),+) 6= 0. Since

λ(s),+ = (p− 1, . . . , p− 1, p− 1, λs+1, . . . , λr−1) ∈ B0,s+1,

we observe that B0,s is connected with B0,s+1.

(c) Bi,s is connected with Bj,t for all possible 0 ≤ i, j ≤ p−3
2
, 0 ≤ s, t ≤ r − 1:

W.l.o.g. we assume s ≤ t and recall that our relation on the set of blocks of SL(2)r
is an equivalence relation. Repeated applications of (a) show that Bi,s is connected

with B0,s and Bj,t with B0,t. But then repeated applications of (b) show that B0,t is

connected with B0,s inside Q. Hence Bi,s is connected with Bj,t.

Finally, the block B(r)
r corresponding to the Steinberg module Str is connected with

B0,r−1 since Str is, again by 5.2.4, a direct summand of Lr(p
r−1)⊗k Lr(λ) for λ = (p−

1, . . . , p−1, p−2) ∈ B0,r−1. This in conjunction with (c) shows that Q is connected.

In case r = 1, we can determine the Gabriel quiver completely.

Theorem 5.2.6. We have

dimk Ext1
U0(s)(S(i), S(j)) = 2δi+j,p−2 +


δj,1, i = 0

δ|i−j|,1 1 ≤ i ≤ p− 1

δj,p−2, i = p− 1

for all 0 ≤ i, j ≤ p− 1.
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Proof. Recall that

Ext1
U0(s)(S(i), S(j)) ∼= Homsl(2)(L(1)⊗k L(i), L(j)) ⊕ Ext1

U0(sl(2))(L(i), L(j)).

By 5.2.4, we have isomorphisms of U0(sl(2))-modules

L(1)⊗k L(i) ∼=


L(1), i = 0

L(i− 1)⊕ L(i+ 1), 1 ≤ i ≤ p− 2

P (p− 2), i = p− 1

Combining this with dimk Ext1
U0(sl(2))(L(i), L(j)) = 2δi+j,p−2 (see for instance [26, Kapitel

1]), we get our assertion.

Remark 5.2.7. With the modular Clebsch-Gordan rule in hand ([26, Kap.5]), one can

compute in the same fashion the Gabriel quivers of restricted enveloping algebras of

semidirect products L(i)o sl(2) for i = 0, . . . , p− 1.

We recall some notations introduced in Section 4.4. Denote by B+ ⊆ SL(2) (B−) the

Borel subgroup of upper (lower) triangular matrices with unipotent radical U+ (U−)

consisting of unitriangular (2× 2)-matrices. Consider the closed subgroups V + := Ga×
{0}, V − := {0}×Ga ⊆ G2

a and put U±V := V ±oU± as well as B±V := V ±oB± = U±V oT .

Then, we put for all r ≥ 1 and λ ∈ X(T )

Zr(λ) := kSr ⊗kB+
V,r
λ ∈mod(kSr)

and denote by Ẑr(λ) its (canonical) structure as a SrT -module. We can enhance 4.4.7

and thereby obtain another proof for the fact that kSr is connected:

Lemma 5.2.8. The restriction of Ẑr(λ) (Zr(λ)) to SL(2)rT (SL(2)r) decomposes as

⊕
µ∈Λr

ẐSL(2)r
(λ− µ)

(⊕
µ∈Λr

ZSL(2)r
(µ)

)

In particular, we have [Zr(λ) : Sr(p
r − 1)] = 1 and kSr is a connected algebra.

Proof. The group U−r ⊆ Sr is isomorphic to the r-th Frobenius kernel of the additive

group, its coordinate ring is given by k[T ]/(T p
r
) and there is an isomorphism of k-

algebras

kU−r −→ k[X0, . . . , Xr−1]/(Xp
i : i ∈ {0, . . . , r − 1}) (T p

i

)∗ 7→ Xi.

111



5 APPLICATIONS

As in the proof of 4.4.4, one observes that the weight of Xi relative to T is given by −pi.
We denote the Hopf algebra of the group V −r with the same reason by k[Y0, . . . , Yr−1]/(Y p

i :

i ∈ {0, . . . , r− 1}) and in what follows, we denote by xi and yi the images of Xi and Yi.

By 4.4.5, we have an isomorphism

Ẑr(λ) ∼= kU−V,r ⊗k kB
+
V,r ⊗kB+

V,r
λ ∼= kU−V,r ⊗k λ

of vector spaces. It follows that Ẑr(λ) has a k-basis given by

B :=

{
vn,m :=

r−1∏
i=0

xnii ·
r−1∏
j=0

y
mj
j ⊗ 1 | n,m ∈ Nr0≤···≤p−1

}
.

Given m ∈ Nr0≤···≤p−1, we now consider the vector vm := v0,m. As U−r acts trivially on

V −a(r), the elements of kV −a(r) commute with the elements of kU−r inside kSr, so that U−r
acts trivially on vm. Moreover, the group T acts on vm via λ−m′ ∈ X(T ), where m′ :=∑r−1

l=0 mip
i ∈ Z = X(T ). As Ẑr(λ) is an SrT -module, Tr operates via the restriction

of that character. (Graded) Frobenius reciprocity thus provides a homomorphism of

SL(2)rT -modules

ϕm : ẐSL(2)r
(λ−m′)→ Ẑr(λ)

such that im(ϕm) := 〈vn,m | n ∈ Nr0≤···≤p−1〉. Consequently, the direct sum of all such

ϕm provides a homomorphism

ϕ :
⊕
µ∈Λr

ẐSL(2)r
(λ− µ)→ Ẑr(λ)

which is surjective since B is in its image. As the relevant spaces have the same di-

mension, we conclude that ϕ is an isomorphism. Application of the restriction functor

Res
SL(2)rT

SL(2)r
yields the second assertion. Finally, since Zr(λ) is an indecomposable Sr-

module which has each simple object at least once as a composition factor (see 4.1.4(2c)),

the algebra kSr must be connected.

Remark 5.2.9. Modules (such as Zr(λ)), which have any simple module at least once

as a composition factor, are also called sincere.

Since all Verma modules have the same restriction to SL(2)r, it follows from 4.1.4(2c),

that they all have the same composition factors (along with multiplicities). Moreover,

the knowledge of the composition factors with multiplicities of SL(2)r Verma modules

will yield the ones of Sr Verma modules. However, the first mentioned seems not to be

known yet except for the case r = 1: the U0(sl(2))-module Verma module Zsl(2)(i) for

1 ≤ i ≤ p− 2 is uniserial of length two with composition factors L(i), L(p− 2− i), while
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Zsl(2)(p− 1) = L(p− 1) is projective simple (cf. [26]).

Recall that the first Frobenius kernel S1 corresponds to the restricted Lie algebra

Lie(S) = s = L(1)osl(2). We now take a closer look at the Verma modules Z(i) := Z1(i)

for i ∈ Λ1. Let (h, e, f) and (r, s) denote the standard bases of sl(2) and L(1) = k2,

respectively. Moreover, denote by (vn,m = fnsm ⊗ 1 : 0 ≤ n,m ≤ p − 1) the standard

basis of Z(i). Then the action of r is given by

r.vn,m =

{
0 n = 0 or m = p− 1

−nvn−1,m+1 otherwise.

We denote by S(i) the inflation of the simple U0(sl(2))-module L(i) to U0(s).

Lemma 5.2.10. Let i ∈ Λ0, then the following statements hold:

(a) We have [Z(i) : S(p − 1)] = 1 and [Z(i) : S(j)] = 2 for all 0 ≤ j ≤ p − 2. In

particular, the U0(s)-module Z(i) has length `(Z(i)) = 2p− 1.

(b) We have V (s)Z(i) = ke⊕ kr.

Proof. (a) This follows from 5.2.8 and the abovementioned structure of U0(sl(2)) Verma

modules.

(b) According to [13, Proposition 3.4] we have V (s)Z(i) ⊆ V (kh ⊕ ke ⊕ kr) = ke ⊕ kr.
Since ke = V (sl(2))Zsl(2)(0), we conclude that ke ⊆ V (s)Z(i) by 5.2.8. Denote by

xr : Z(i)→ Z(i), z 7→ r.z

the left multiplication effected by r. If Z(i)|U0(kr) was projective, then rk(xr) =

p(p− 1) = p2 − p. Since the 2p linearly independent vectors

{v0,0, . . . , v0,p−1, vp−1,0, . . . , vp−1,p−1}

lie in the kernel of xr, it follows that rk(xr) ≤ p2 − 2p < p2 − p. Hence Z(i)|U0(kr)

is not projective, so that kr ⊆ V (s)Z(i). By indecomposability, the assumption

dimV (s)Z(i) = 1 would render V (s)Z(i) being a line, which is not possible since

the vectors r, e ∈ s are linearly independent. Hence dimV (s)Z(i) = 2, so that the

assertion follows by irreducibility of the linear variety ke⊕ kr.

We can determine the Cartan matrix of the algebra U0(s):

Lemma 5.2.11. Let M be a d-dimensional U0(s)-module.
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(a) If M admits a Z-filtration, then d must be divisible by p2 and the length of this

filtration is given by d
p2 . Moreover, we have [M : S(j)] = 2d

p2 for all 1 ≤ j ≤ p − 1

and [M : S(p− 1)] = d
p2 .

(b) Let Q(i) ∈mod(U0(s)) be the projective cover of S(i), then we have

[Q(i) : S(j)] =


4p i, j ≤ p− 2

p i = j = p− 1

2p otherwise.

In particular, Q(i) has length 4p2− 2p for all 1 ≤ i ≤ p− 2 and Q(p− 1) has length

2p2 − p.

Proof. (a) Let (0) = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M be a Z-filtration. Then there exist

λ0, . . . , λn−1 ∈ Λ0 such that

d =
n−1∑
i=0

dimkMi+1/Mi =
n−1∑
i=0

dimk Z(λi) = np2.

Thus, d is divisible by p2 and n = d
p2 . An application of 5.2.10(a) then yields

[M : S(j)] =
n−1∑
i=0

[Mi+1/Mi : S(j)] =
n−1∑
i=0

[Z(λi) : S(j)] =

{
2n j ≤ p− 2

n j = p− 1
,

as desired.

(b) Consider first 0 ≤ i ≤ p − 2. Since the projective cover P (i) of L(i) over U0(sl(2))

is 2p-dimensional (see [26, p.15 Satz]), it follows that Q(i) ∼= U0(L(1)) ⊗k P (i)

is p2 · 2p = 2p3-dimensional (see 4.2.4(2b)). Since L(p − 1) is projective, we get

dimkQ(p− 1) = p3 by the same token. Now apply (a).

We can also enhance the reciprocity formula 4.4.6 for principal indecomposables. It

will have the same type as the one [41, II.11.4] in the classical context of GrT -modules.

Theorem 5.2.12. Put b+ := kh⊕ ke⊕ kr as well as b− := kh⊕ kf ⊕ ks.

(a) The k-linear map τ : s→ s induced by

e 7→ − f f 7→ − e h 7→ h

r 7→ s s 7→ r
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is a restricted, involutive, antigraded antiautomorphism of s such that τ(b+) = b−

and λτ ∼= λ for each simple U0(kh)-module λ.

(b) Every projective indecomposable S1T -module Q̂ with top Ŝ (S1-module Q with top

S) admits a Ẑ-filtration (Z-filtration) and we have [Q̂ : Ẑ(λ)] = [Ẑ(λ) : Ŝ] ([Q :

Z(λ)] = [Z(λ) : S]) for all λ ∈ Z = X(T ).

(c) We have [Q(i) : Z(j)] =

{
2 1 ≤ i ≤ p− 2

1 i = p− 1
for all 1 ≤ j ≤ p− 1.

Proof. (a) Clearly τ is an antiautomorphism of the Lie algebra s. We need to show that

τ is restricted. This follows from 2.5.21(1),(2) applied to σ := −τ , but we can also

compute it directly: Denote by E2 the unit-matrix. Inductively, one can show the

following equation

x2n = (−1)n · det(x)n · E2 ∀x ∈ sl(2), n ∈ N (1)

which holds inside the algebra of (2×2)-matrices. Next, note that τ is sl(2)-invariant

and det(τ(x)) = det(x) for all x ∈ sl(2). Using that p ≥ 3 and (1), we therefore

conclude, denoting by · matrix-vector multiplication,

τ(xp) = τ(x)p τ(x)p−1 · τ(v) = τ(xp−1 · v) ∀x ∈ sl(2), v ∈ L(1) (2)

Recall from 2.5.20 that the p-map on s = L(1) o sl(2) is given by (v, x)[p] =

(xp−1.v, xp) for all x ∈ sl(2), v ∈ L(1). Let now y = (v, x) ∈ s. Then we have

τ(y[p]) = (τ(xp−1 · v), τ(xp)) = (τ(x)p−1 · τ(v), τ(x)p) by (2)

= τ(y)[p].

(b) The map τ of (a) induces an antiautomorphism U0(s)→ U0(s), which enables us to

apply [37, Theorem 5.1].

(c) Apply (b) and our above lemma.

5.3 Reduced enveloping algebras where the linear form does not

vanish on the unipotent radical

Recall that k is algebraically closed of characteristic p ≥ 3. Our aim is to investigate

the structure of reduced enveloping algebras of the restricted Lie algebras g = V o gl(2)

and s = V o sl(2), where V denotes the natural representation. It turns out that the

structure of algebras, whose defining linear form does not vanish on V , will provide useful
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information for the block structure in the arbitrary case: all algebras will be connected.

We first collect the following lemma.

Lemma 5.3.1. Let g = n ⊕ h be a direct product of restricted Lie algebras (that is, a

semidirect product noτ h such that τ ≡ 0) and χ ∈ g∗ a linear form.

(1) The algebras Uχ(g) and Uχ(n)⊗k Uχ(h) are isomorphic.

(2) Given M ∈ mod(Uχ(n)), N ∈ mod(Uχ(h)), the rank variety of the Uχ(g)-module

T := M ⊗k N (see (1) and 2.1.30(1)) is given by V (g)T = V (n)M × V (h)N . In

particular, T is Uχ(g)-projective if and only if M is Uχ(n)-projective and N is Uχ(h)-

projective.

Proof. (1) Denote by ι : Uχ(n) ↪→ Uχ(g) and i : Uχ(h) ↪→ Uχ(g) the canonical embed-

dings. Since h acts trivially on n, the elements of the images of i and ι commute.

Thus, the universal property of the tensor product yields a homomorphism

ψ := ι⊗̂i : Uχ(n)⊗k Uχ(h)→ Uχ(g), u⊗ v 7→ uv

of algebras. Since the generating set n ⊕ h of the algebra Uχ(g) is contained in

the image of ψ, it follows that ψ is surjective. By the PBW-theorem for reduced

enveloping algebras (cf. 2.5.4(1)), the relevant algebras have the same dimension.

Thus, ψ is bijective and hence an isomorphism (One can also show that Θ : Uχ(g)→
Uχ(n)⊗k Uχ(h), n⊕ h 3 (x, y) 7→ x⊗ 1 + 1⊗ y is the inverse of ψ).

(2) It is not hard to see, that the Uχ(g)-modules T := M⊗kN (constructed via 2.1.30(1))

and Infgn(M) ⊗k Infgh(N) (the tensor product of two inflated g-modules, see 4.2.2)

are isomorphic. Recall that the rank variety of g is given by V (g) = V (n) × V (h)

(see 2.5.20(1)). Thus, we have (observing 2.5.7(3))

V (g)T = V (g)Infgn(M) ∩ V (g)Infgh(N)

= (V (n)M × V (h)) ∩ (V (n)× V (h)N)

= V (n)M × V (h)N .

We proceed by recalling several facts about the structure of reduced enveloping alge-

bras of sl(2) and gl(2). Denote by

h1 := ( 1 0
0 0 ), e := ( 0 1

0 0 ), f := ( 0 0
1 0 ), h2 := ( 0 0

0 1 )

and

h := h1 − h2, e, f
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the standard basis of gl(2) and sl(2), respectively. We will also consider the correspond-

ing dual basis (h∗1, e
∗, f ∗, h∗2), (h∗, e∗, f ∗) of the dual spaces gl(2)∗ and sl(2)∗. The group

GL(2) acts on sl(2) and gl(2) by conjugation.

(i) The standard trace form of the gl(2)-module V

γ : gl(2)× gl(2)→ k, (x, y) 7→ tr(xy)

is non-degenerate and GL(2)-invariant. Thus, we identify the GL(2)-modules gl(2)

and gl(2)∗. A matrix ( a bc d ) ∈ gl(2) then corresponds to the linear form ah∗1 + ce∗+

bf ∗ + dh∗2 ∈ gl(2)∗.

(ii) Since γ|sl(2)×sl(2) is still non-degenerate, we can also identify the GL(2)-modules

sl(2) and sl(2)∗. A matrix ( a b
c −a ) ∈ sl(2) then corresponds to the linear form

2ah∗ + ce∗ + bf ∗ ∈ sl(2)∗.

The GL(2)-orbits (see 2.5.5) of its action on the dual spaces sl(2)∗ and gl(2)∗ are thus

given by Jordan canonical forms. In case of sl(2), the structure of the relevant algebras

with a non-zero linear form has been determined in [28, Proposition 2.3] while that

of U0(sl(2)) has been analyzed in [26]. Below, we will give for each non-zero normal

form an overview. To that end, we denote by bsl(2) = kh ⊕ ke the borel subalgebra of

sl(2) consisting of upper triangular matrices. Let χ ∈ sl(2)∗ be a linear form such that

χ(e) = 0 and put Λχ := {λ ∈ k : λp − χ(h)p − χ(h) = 0} as well as

Zχ,sl(2)(λ) := Uχ(sl(2))⊗Uχ(bsl(2)) kλ ∀λ ∈ Λχ,

the so-called baby Verma module with highest weight λ. Note that if λ(h) = 0, then

Λχ = Fp.

Lemma 5.3.2. Let 0 6= χ ∈ sl(2)∗ be in its normal form relative to the action of GL(2).

(a) If χ = ( 0 1
0 0 ), then Uχ(sl(2)) has p+1

2
blocks, each consisting of a single simple module,

represented by Zχ,sl(2)(λ) for some suitable λ ∈ Λχ. The block corresponding to the

Steinberg module Zχ,sl(2)(p−1) is a simple algebra. All other blocks are isomorphic

to Matp(k[X]/(X2)) (see also [12, 3.3(2)]).

(b) If χ = ( a 0
0 −a ) for some a ∈ k \ {0}, then Uχ(sl(2)) is semi-simple and {Zχ,sl(2)(λ) :

λ ∈ Λχ} is a complete set of simple modules.

We will also be able to give corresponding types of reduced enveloping algebras of

gl(2).

Lemma 5.3.3. The following statements hold:
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(1) gl(2) = t⊕sl(2) is a direct product of restricted Lie algebras, where t := k(h1 +h2) ⊆
gl(2) denotes the torus of scalar matrices. In particular, the algebra Uχ(gl(2)) is

isomorphic to p copies of the algebra Uχ(sl(2)) for all χ ∈ gl(2)∗.

(2) Let 0 6= χ ∈ gl(2)∗ be in its normal form relative to the action of GL(2).

(a) If χ = ( a 1
0 a ) for a ∈ k, then Uχ(gl(2)) is isomorphic to p copies of the algebra

described in 5.3.2(a).

(b) If χ = ( a 0
0 b ) for some (a, b) ∈ k2 \ {0}, then Uχ(gl(2)) is semi-simple with p2

simple modules of dimension p.

Proof. Since (2) follows from (1) and 5.3.2, we need to prove (1). The direct sum decom-

position gl(2) = t ⊕ sl(2) is clear (the point is that t ∩ sl(2) = (0) since char(k) 6= 2).

Since the p-dimensional algebra Uχ(t) admits p one-dimensional modules parametrized

by the set Λt,χ := {λ ∈ k : λp − λ− χ(h1 + h2)p = 0}, it follows that Uχ(t) is a product

of p copies of the ground field. Now apply 5.3.1(1).

Let now χ ∈ g ∗ (s ∗). Recall that we write χ = (χV , χgl(2)) ((χV , χsl(2))) with χV :=

χ|V ∈ V ∗, χgl(2) = χ|gl(2) ∈ gl(2)∗ (χsl(2) = χ|sl(2) ∈ sl(2)∗). In addition to (i), (ii) from

the sequel above 5.3.2 we make the following identification:

(iii) The GL(2)-module V ∗ is isomorphic to the twist V τ where τ(g) = (g−1)
t

for all

g ∈ GL(2). Here a vector ( αβ ) ∈ V τ corresponds to the linear form αr∗+βs∗ ∈ V ∗,
where r = ( 1

0 ), s = ( 0
1 ) is the standard basis of V and (r∗, s∗) the corresponding

dual basis of V ∗.

Recall from 2.5.27, that the group (G2
a o GL(2))(k) acts on the dual spaces g ∗ and

s ∗. We recall that, given h ∈ {gl(2), sl(2)}, the map ψ = ψV is given by

ψ : V × V ∗ → h∗, (v, λ) 7→ (x 7→ (x.λ)(v) = −λ(x.v)).

A direct computation shows:

Lemma 5.3.4. Let v = ( v1
v2 ) ∈ G2

a(k). Then the following statements hold:

(1) Let χ = (χV , χsl(2)) ∈ s ∗ be a linear form. Writing χV = ( αβ ) ∈ V τ ∼= V ∗, we have

v.χ = (χV , χsl(2) − ψ(v, χV )) =

(
χV , χsl(2) +

(αv1−βv2

2
βv1

αv2 −αv1−βv2

2

))
.

(2) Let χ = (χV , χgl(2)) ∈ g ∗ be a linear form. Writing χV = ( αβ ) ∈ V τ ∼= V ∗, we have

v.χ = (χV , χgl(2) − ψ(v, χV )) =

(
χV , χgl(2) +

(
αv1 βv1

αv2 βv2

))
.

118



5 APPLICATIONS

Lemma 5.3.5. Let v := ( 0
1 ) ∈ V τ .

(1) The stabilizers of v ∈ V τ relative to GL(2) (its Lie algebra; here the twist is given

by τ(x) = −xt for x ∈ gl(2)) are given by

StabGL(2)(v) = {( x y0 1 ) | x ∈ k×, y ∈ k}, Stabgl(2)(v) = {( a b0 0 ) | a, b ∈ k}

(In particular, Stabgl(2)(v) = Lie(StabGL(2)(v))).

(2) Given an invertible matrix g = ( x y0 1 ) ∈ StabGL(2)(v) and A = ( a 0
c 0 ) ∈ gl(2), we have

gAg−1 =
1

x

(
ax+ cy −y(ax+ cy)

c −cy

)
.

Given h ∈ {gl(2), sl(2)}, we let OV = OV,h be the open subset of the affine variety

h
∗

= (V o h)∗ consisting of linear forms, which do not vanish on V . The group G :=

G2
a o GL(2) stabilizes OV . In view of 2.5.5, it is useful to compute a full set of orbit

representatives relative to this action.

Lemma 5.3.6. Let G := G2
a oGL(2). Then the following statements hold:

(1) The group G(k) acts on OV,sl(2) with two orbits, which are represented by((
0

1

)
,

(
1
2

0

1 −1
2

))
,

((
0

1

)
,

(
1
2

0

0 −1
2

))
.

Thus, for every χ ∈ OV,sl(2) there is exactly one such representative, which we will

call the normal form of χ.

(2) The group G(k) acts on OV,gl(2) with infinitely many orbits. A complete set of orbit-

representatives is given by

χa :=

((
0

1

)
,

(
a 0

0 0

))
(a ∈ k), χs :=

((
0

1

)
,

(
0 0

1 0

))
.

Thus, for every χ ∈ OV,gl(2) there is exactly one such representative, which we will

call the normal form of χ.

Proof. (1) Let χ = (χV , ( a b
c −a )) ∈ OV,sl(2) (see 5.3.4). As GL(2) acts transitively on

V τ \ {0}, we can assume that χV = ( 0
1 ). Then 5.3.4 implies, that the element

(−b, a− 1) ∈ G2
a(k) takes χ to((

0

1

)
,

(
1
2

0

c −1
2

))
.
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If c 6= 0, then the diagonal matrix ( c 0
0 1 ) ∈ StabGL(2)(( 0

1 )) takes χ to((
0

1

)
,

(
1
2

0

1 −1
2

))
.

We are left to show, that the two linear forms

χ′ :=

((
0

1

)
,

(
1
2

0

1 −1
2

))
, χ :=

((
0

1

)
,

(
1
2

0

0 −1
2

))
are not equivalent under the action of the group G(k). Assume that there is vg ∈
G(k) such that vg.χ = χ′. Then (see 5.3.4, 5.3.5), we must have

g ∈ StabGL(2)(( 0
1 )) = {( a b0 1 ) : a ∈ k×, b ∈ k}.

Thus, there are a ∈ k×, b ∈ k such that g = ( a b0 1 ). It follows, that(
1
2

0

1 −1
2

)
= χ′sl(2) = g.χsl(2) +

(
−v2

2
v1

0 v2

2

)
=

(
1
2
−b

0 −1
2

)
+

(
−v2

2
v1

0 v2

2

)
.

Hence 0 = 1, which is absurd. Thus, χ and χ′ are not equivalent.

(2) Let χ ∈ OV,gl(2). As GL(2) acts transitively on V τ \ {0}, we can assume that

χV = ( 0
1 ). Now write χgl(2) = ( a bc d ). After acting by ( −b−d ) ∈ G2

a(k), we can assume

χgl(2) = ( a 0
c 0 ). If c 6= 0, we put g := ( c −a0 1 ) ∈ StabGL(2)(( 0

1 )) and v := ( 0
−a ) ∈ G2

a,

then (see 5.3.5)

(vg).χ =

((
0

1

)
,

(
a+ c−a

c
a(a− a) + 0

c
c

a− a

))
=

((
0

1

)
,

(
0 0

1 0

))
.

We are left to show, that for a 6= b ∈ k, we have χa � χb, as well as χa � χs. Let

vg ∈ G(k), then we have (vg.χa)|V = g.( 0
1 ). Thus, vg.χa = χb or vg.χa = χs implies

g ∈ StabGL(2)(( 0
1 )). Thus, in any case, there is x ∈ k×, y ∈ k such that g = ( x y0 1 ).

Then (see again 5.3.5)

vg.χa =

((
0

1

)
,

(
a −ya+ v1

0 v2

))
.

As a 6= b, the right-hand side cannot equal χb and, obviously, it does not equal χs.

We can now determine the reduced enveloping algebras Uχ(V o h) up to Morita

equivalence for h ∈ {gl(2), sl(2)} and χ ∈ OV,h. Therefore we need the following lemmas.
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Lemma 5.3.7. Let b = kh ⊕ ke be the unique non-abelian two-dimensional restricted

Lie algebra with bracket and p-map determined by [h, e] = e, h[p] = h, e[p] = 0. Let χ ∈ b∗

be a linear form. If χ(e) 6= 0, then Uχ(b) ∼= Matp(k) is a simple algebra.

Proof. Put u := ke E b. In view of 2.5.6(2), the algebra Uχ(u) ∼= U0(u) is local with

unique simple module being kχ with action given by e.1 = χ(e).1. We consider the p-

dimensional Uχ(b)-module S := Indb
u(kχ, χ). As Uχ(b) is a p2-dimensional algebra, the

assertion will follow from Wedderburn’s theorem if S is simple. We give two arguments

for that, the first one is direct, the second general theory:

(a) Let B := (vm := hm ⊗ 1 | 0 ≤ m ≤ p − 1) be the standard basis of S. By the

Cartan Weyl formula [25, I.1.3(4)], we have ehm = (
∑m

j=0 αm,jh
j)e, where αm,j =

(−1)m−j
(
m
j

)
6= 0. Hence, we get

e.vm = χ(e)
m∑
j=0

αm,jvj.

Since αm,m = 1, it follows that the matrix representating the endomorphism (e −
χ(e).idS) : S → S relative B is strictly upper triangular, hence has a one-dimensional

kernel. Since v0 = 1⊗ 1 lies in this kernel, we get that

kv0 = {s ∈ S | e.s = χ(e).s} = SocUχ(u)(S).

Let now X ⊆ S be a non-zero Uχ(b)-submodule, then X must contain a simple

Uχ(u)-submodule. By the above, we get 1⊗ 1 ∈ X. Hence S = Uχ(b).1⊗ 1 ⊆ X.

(b) It is well-known that the dimension of a simple modules for a solvable Lie algebra

in positive characteristic p is always of the form pn for n ∈ N0 (see [25, Corollary

V.8.5]). For dimension reasons, only the cases p or p0 = 1 can occur in our context.

But in the latter case, 2.5.6(1) would imply the existence of a linear form λ ∈ b∗

with the property 0 = λ([b, b]) = λ(u) and

0 = 0− 0 = λ(e)p − λ(e[p]) = χ(e)p.

Since χ(e) 6= 0, we obtain a contradiction.

Theorem 5.3.8. Consider the restricted Lie algebras g := V o gl(2), s := V o sl(2),

where V denotes the natural representation. Then the following statements hold:

(1) Let χ ∈ OV,sl(2) = {χ ∈ s ∗ : χ(V ) 6= 0} be a linear form.

(a) The algebra Uχ(s) admits exactly one simple module Sχ of dimension p2.
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(b) The module Sχ is not projective, its projective cover Pχ of Sχ is p3-dimensional

and [Pχ : Sχ] = p. We have Pχ ∼= Inds
sl(2)(L, χ) where L is any simple Uχ(sl(2))

module.

(c) Uχ(s) is isomorphic to the Nakayama algebra Matp2(k[X]/(Xp)).

(d) {χ ∈ s ∗ : Uχ(s) is representation-finite} = OV,sl(2)

(2) Let χ ∈ OV,gl(2) be a linear form.

(a) If χ ∼ χs, then Uχ(g) admits exactly one simple module of dimension p3 up to

isomorphism. In particular, Uχ(g) is a simple algebra.

(b) Let χ ∼ χa for some a ∈ k, then the algebra Uχ(g) is Morita equivalent to

the Nakayama algebra kÃp,0/(kÃp,0)≥p, where Ãp,0 is the oriented circle with

p vertices and (kÃp,0)≥p denotes the subspace generated by all paths of length

≥ p. The simple Uχ(g)-modules and their projective covers are given as follows:

Consider the p-subalgebra b := kh1 ⊕ ke of gl(2), as well as the subset

Λχ = Λχ(b, V ) := {λ ∈ b∗V : 0 = λ(e) = λ(r), 1 = λ(s), λ(h1)p−λ(h1) = χ(h1)p}

of the dual space (Vob)∗ = b∗V , which has cardinality p. Then the p2-dimensional

modules Sλ := Indg
bV

(λ, χ) for λ ∈ Λχ give a complete list of simple Uχ(g)-

modules up to isomorphism. The projective cover Pλ of Sλ is a uniserial p3-

dimensional Uχ(g)-module of length p; we have Radi(P )/Radi+1(P ) ∼= Sλ(i),

where λ(i)(h1) = λ(h1) + i for all 0 ≤ i ≤ p− 1.

(c) {χ ∈ g ∗ : Uχ(gl(2)V ) is representation-finite} = OV,gl(2).

Proof. (1) In view of 2.5.5, we may throughout assume that there exists β ∈ {0, 1} such

that χ = βe∗+h∗+s∗ ∈ OV is in its normal form in the sense of 5.3.6. In particular,

we have χ(r) = 0 and χ(s) = 1.

(a) We wish to give an application of Theorem 4.3.1. Direct computation shows

h := s χ = ke⊕ ks⊕ kr

is a p-trivial Heisenberg algebra. As χ vanishes on its central element r, it

admits exactly one simple module with character χ; namely kχ with underlying

vector space k and operation given by

x.α = χ(x).α ∀x ∈ h, α ∈ kχ.

Now 4.3.1 implies that the p2-dimensional module Sχ := Inds
h(kχ, χ) is the unique

simple Uχ(s)-module.
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(b) The first two statements follow for dimension reasons. Let L be a simple

Uχ(sl(2))-module. Then L is projective and p-dimensional (see 5.3.2(a)). Hence

Inds
sl(2)(L, χ) is projective and its dimension coincides with the dimension of Pχ.

Hence they must be isomorphic.

(c) A basis of Sχ = Inds
h(kχ) is given by {vn,m := fnhm ⊗ 1 | 0 ≤ n,m ≤ p − 1}.

Using the Cartan Weyl-formula (see [25, Proposition I.1.3]), direct computation

shows that the operation of V = kr ⊕ ks is determined by

� r.vn,m =

{
−nχ(s)

∑m
j=0

(
m
j

)
vn−1,j n 6= 0

0 n = 0

� s.vn,m = χ(s)
∑m

j=0

(
m
j

)
vn,j.

We will use these formulas below.

Consider the U0(h)-module M(χ) := k−χ⊗kSχ. By [11, Lemma 2.1(1), Corollary

2.5], we have natural isomorphisms

ExtnUχ(s)(Sχ, Sχ) ∼= ExtnUχ(h)(kχ, Sχ) ∼= Hn(U0(h),M(χ)), ∀n ≥ 0 (∗)

We want to show the U0(V )-projectivity of M(χ). Taking a look at the chain

(0) ⊂ V ⊂ h ⊂ s of subalgebras, we see that h ∈ PSχ(χ, χ) is a polarization in

the sense of [13, Def. 2.1]. The central element r ∈ h satisfies the condition of

[13, Proposition 3.6(1)] (direct computation shows Rad(βχ) = k(e + r + 2βs)).

Hence Sχ is Uχ(kr)-projective, so that M(χ) is U0(kr)-projective (see 2.5.4(6)).

By [13, Lemma 3.1], M(χ)kr is p-dimensional. As the p linearly independent

vectors (1⊗ v0,m | 0 ≤ m ≤ p− 1) get annihilated by r, we conclude

Mr(χ) := M(χ)kr = 〈(1⊗ v0,m | 0 ≤ m ≤ p− 1)〉k.

Moreover, we have

s.1⊗ v0,m = 1⊗ s.v0,m + s.1⊗ v0,m = 1⊗
m∑
j=0

(
m

j

)
v0,j − 1⊗ v0,m

=
m−1∑
j=0

(
m

j

)
︸ ︷︷ ︸
6=0

1⊗ v0,j.

Therefore the corresponding matrix representing the action of s on Mr(χ) is

strictly upper triangular with each element on the off-diagonal being non-zero.

Consequently the matrix is of rank p − 1 and Mr(χ) is the unique principal

indecomposable U0(ks)-module, hence free of rank 1. Moreover, again by [13,

Lemma 3.1], the space Mr(χ)ks is one-dimensional (it is given by k(1⊗v0,0)). But
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since Mr(χ)ks = (M(χ)kr)
ks

= M(χ)V coincides with the space of V -invariants

of M(χ), [13, Lemma 3.1] now yields the U0(V )-projectivity of M(χ). Therefore

the spectral sequence

Hr(U0(h/V ), Hs(U0(V ),M(χ))⇒ Hn(U0(h),M(γ))

collapses to isomorphisms

Hn(U0(h/V ), k(1⊗ v0,0) = M(χ)V ) ∼= Hn(U0(h),M(χ)) ∀n ≥ 0.

Since h/V = k(e+ V ) ∼= e1 is isomorphic to the elementary abelian Lie algebra

of dimension 1, the restricted enveloping algebra U0(h/V ) is isomorphic to the

truncated polynomial ring k[X]/(Xp). Now 2.1.40 in conjunction with (∗) and

[12, Lemma 2.1] show that cxUχ(s)(Sχ) ≤ 1. Since Sχ is not projective, we get

cxUχ(s)(Sχ) = 1. The assertion now follows from (b) and [12, Theorem 3.3(2)].

(d) We have seen, that every algebra Uχ(s) for χ ∈ OV is representation-finite. If

χ(V ) = 0, then the two-dimensional variety V is contained in the rank variety

V (s)S of every simple Uχ(s)-module S (see 4.2.4(1)). Thus, S is not periodic

(see 2.5.7(5)), so that Uχ(s) cannot be representation-finite.

(2) (a) We can assume that χ = χs. We already computed that Stabgl(2)(( 0
1 )) = b =

kh1 ⊕ ke. Thus, 4.3.1 shows that simple Uχ(gl(2)V )-modules are induced by

simple Uχ(bV )-modules and that this correspondence is one-one. As kr E bV is

a unipotent ideal and χ(r) = 0, simple Uχ(bV )-modules can be viewed as simple

Uχ(g)-modules (see 4.2.2), where g := bV /kr is a three-dimensional Lie algebra

with basis (h1, e, s) (by abuse of notation), bracket and p-map determined by

[h1, e] = e, [e, s] = 0, [h1, s] = 0, h
[p]
1 = h1, 0 = e[p] = s[p].

Thus, we write

g = b⊕ ks ∼= b⊕ e1

as a direct sum of restricted Lie algebras. Hence, simple Uχ(g)-modules are

simple Uχ(b)⊗k Uχ(ks)-modules (see 5.3.1(1)). As χ(e) 6= 0, the algebra Uχ(b)

has exactly one simple module, which is of dimension p (see 5.3.7) and Uχ(ks)

admits exactly one of dimension 1. In view of 2.1.30(2), the algebra Uχ(bV ) also

has exactly one simple module T , which is of dimension p. As an upshot of the

above, it follows that the p3-dimensional module S := Indg
bV

(T, χ) is the unique

simple Uχ(g)-module. As Uχ(g) is p3 ·p3 = p6-dimensional, the assertion follows.

(b) Let χ = χa for some a ∈ k. It again follows from Theorem 4.3.1, that all

simple Uχ(gl(2)V )-modules are induced by simple Uχ(bV )-modules and that this
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correspondence is one-one. The first derived subalgebra [bV , bV ] = kr⊕ keE bV
is unipotent. As 0 = χ(r) = χ(e), it follows that simple Uχ(bV )-modules can

be viewed as simple Uχ(l)-modules (see 4.2.2), where l := bV /(kr ⊕ ke) is a

two-dimensional abelian Lie algebra with basis (h1, s) and p-map determined by

h
[p]
1 = h and s[p] = 0. Thus, l = t ⊕ e1 is a direct sum of the torus t := kh1

and the one-dimensional elementary abelian Lie algebra e1 = ks. Hence, every

simple Uχ(l)-module is one-dimensional and corresponds to some linear form

λ : l→ k such that λ(h1)p − λ(h1) = χ(h1)p and λ(s) = χ(s) = 1 (see 2.5.6(1)).

We have shown that {Sλ := Indg
bV

(kλ, χ) | λ ∈ Λχ} is a complete set of simple

Uχ(g)-modules up to isomorphism.

Note that the restriction map g ∗ → s ∗ maps OV,gl(2) to OV,sl(2). Let λ ∈ Λχ.

Since V (g) = V (s) = V × V (sl(2)) (see 5.1.5(2), 4.2.8(2)), (1) shows that

V (g)Sλ = V (s)T is one-dimensional (here T denotes the unique simple Uχ(s)-

module). Consequently, cxUχ(g)(Sλ) = 1 (see 2.5.7(5)). We can now collect all

missing assertions from [12, Theorem 3.2], 2.1.39 and the following: Let

µ : Uχ(g)→ Uχ(g), g 3 x 7→ x+ tr(ad(x)).1

be the Nakayama automorphism of Uχ(g). As µ(e) = e, µ(h1) = h1 + 1, we

see that 1 ⊗ 1 7→ 1 ⊗ 1 defines via Frobenius reciprocity a homomorphism

Sµ
i

λ → Sλ(−i) which is surjective by simplicity and hence bijective for dimension

reasons.

(c) Proceed as in (1)(d).

We can now apply Lemma 4.3.3 and get, as stated in the beginning, the following

Corollary 5.3.9. Let g = V o gl(2), s = V o sl(2), where V denotes the natural repre-

sentation. Then the following statements hold:

(1) The algebra Uχ(g) is connected for every linear form χ ∈ g ∗.

(2) The algebra Uχ(s) is connected for every linear form χ ∈ s ∗.

5.4 Gabriel quivers in the remaining cases

We wish to compute the Gabriel quivers of reduced enveloping algebras of s, g explicitly

where the defining linear form vanishes on V = k2. We already know from Theorem

4.2.7 that these quivers are precisely generalized McKay quivers relative to the natural

representation V of sl(2), gl(2). We begin with the case of s = V o sl(2).
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Put u+ := kr ⊕ ke, u− := ks ⊕ kf and observe that this defines a triangular de-

composition s = u− ⊕ t ⊕ u+ with torus t = kh and unipotent constitutients u±.

This allows us to define a standard class of modules having a character vanishing on

u+: Let χ ∈ s ∗ a linear form such that χ(u+) = 0, put b := t ⊕ u+ and denote for

λ ∈ Λχ := {λ ∈ k | λp − λ − χp(h) = 0} by kλ the one-dimensional b = u+ o t-module

with action given by

u+.1 = (0), h.1 = λ.1.

The induced module Zχ(λ) := Inds
b(kλ, χ) is then referred to as a reduced Verma module

with highest weight λ. Recall that we have introduced the corresponding construction

for sl(2) leading to Verma modules Zχ(λ) := Ind
sl(2)
kh⊕ke(kλ, χ) with highest weight λ ∈ Λχ

where χ ∈ sl(2)∗ with χ(e) = 0. Note that if λ ∈ Λχ, then Λχ = λ+ Fp.

In analogy to 5.2.8, one can show

Lemma 5.4.1. Let χ ∈ s ∗ such that χ(u+) = 0. The restriction of Zχ(λ) to Uχ(sl(2))

is isomorphic to
⊕

λ∈Λχ
Zχ(λ).

Let now χ ∈ s ∗ such that χ(V ) = (0). Owing to 2.5.27, the coadjoint orbits under our

group G(k) are then given by the Jordan canonical form of χsl(2). We therefore consider

the following three types of linear forms:

� The form χ = 0. This case has already been treated.

� The forms χ = χs with χs(h) 6= 0 and 0 = χs(kf ⊕ ke⊕ V ).

� The form χn with χs(f) = 1 and 0 = χs(kh⊕ ke⊕ V ).

Lemma 5.4.2. Let χ ∈ sl(2)∗ be a linear form such that χ(e) = 0. Then the Uχ(sl(2))-

module L(i)⊗k Zχ(λ) possesses a filtration with factors

{Zχ(µ) : µ ∈ {λ+ i− 2s | 0 ≤ s ≤ i}}.

In particular, if 0 = χ(ke⊕ kf), then L(i)⊗k Zχ(λ) ∼=
⊕

µ∈{λ+i−2s|0≤s≤i} Zχ(µ).

Proof. The h-weights of L(i) ⊗k kλ are given by {λ + i − 2s | 0 ≤ s ≤ i} (cf. [26, p.12

above]). Considering the Borel subalgebra bsl(2) = ke o kh, 4.2.4(2c) shows that the

composition factors of the bsl(2)-module L(i)⊗k kλ are given by

{kµ : µ ∈ {λ+ i− 2s | 0 ≤ s ≤ i}}.

In view of the tensor identity Ind
sl(2)
bsl(2)

(L(i)⊗kkλ, χ) ∼= L(i)⊗kZχ(λ) (see [40, 1.12(1)]), the

assertion follows from the exactness of the induction functor. The additional statement

is clear, since Uχ(sl(2)) is semi-simple in case χ(ke⊕ kf) = 0 (see 5.3.2).
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For every linear form χ ∈ s ∗ such that χ(V ) = 0, simple Uχ(s)-modules correspond

to Uχ(sl(2))-modules in the sense that they are inflations of the latter (see 4.2.4). First,

we take a look at a form of type χs. Here Uχ(sl(2)) is semi-simple with p simple modules

given by {Zχ(λ) : λ ∈ Λχ} (see 5.3.2). We put S(λ) := Inf(Zχ(λ)).

Theorem 5.4.3. Let χ ∈ s ∗ be of type χs.

(a) The modules S(λ) (λ ∈ Λχ) form a complete set of representatives for the isomor-

phism classes of simple Uχ(s)-modules. The projective cover of S(λ) is given by

Q(λ) ∼= U0(L(1))⊗k Zχ(λ). We have [Q(λ) : S(µ)] = p for all µ ∈ Λχ.

(b) The Jacobson radical of Uχ(s) is given by the ideal I = Uχ(s)U0(V )† generated by

V .

(c) We have dimk Ext1
Uχ(s)(S(λ), S(µ)) =

{
1 µ ∈ {λ± 1}
0 otherwise.

Proof. (a) The first two statements follow from 4.2.4. Since the torus T ⊆ SL(2) sta-

bilizes the form χs, it follows that the algebra Uχ(s) inherits a X(T ) = Z-grading,

which by the PBW theorem satisfies the requirements of [37, 2.1]. Using 5.4.1, the

Cartan matrix of Uχ(s) can now be obtained as in 5.2.11(b).

(b) See 4.2.4(2e).

(c) In view of 4.2.7, we have

dimk Ext1
Uχ(s)(S(λ), S(µ)) = dimk Homsl(2)(L(1)⊗k Zχ(λ), Zχ(µ)).

The statement now follows from the isomorphism L(1) ⊗k Zχ(λ) ∼= Zχ(λ − 1) ⊕
Zχ(λ+ 1) (see 5.4.2).

Now we consider the form χ = χn. The Verma modules are also simple in this case,

but

Zχ(λ) ∼= Zχ(µ)⇐⇒ λ = p− 2− µ

The modules Zχ(i) with 0 ≤ i ≤ p−3
2

and Zχ(p − 1) form a complete set of simple

Uχ(sl(2))-modules. The Steinberg module Zχ(p − 1) is projective. Moreover, we have

dimk Ext1(Zχ(i), Zχ(j)) = δi,j for 0 ≤ i, j ≤ p−3
2

and the (up to some scalar) unique self

extension of Zχ(i) is given by its 2p-dimensional projective cover P (i).
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Lemma 5.4.4. Let χ ∈ sl(2)∗ be the unique linear form such that χ(f) = 1 and χ(kh⊕
ke) = 0. Then we have the following isomorphism of Uχ(sl(2))-modules:

L(1)⊗k Zχ(i) ∼=


Zχ(p−3

2
)⊕ Zχ(p−3

2
− 1), i = p−3

2

P (0), i = p− 1

Zχ(p− 1)⊕ Zχ(1), i = 0

Zχ(i− 1)⊕ Zχ(i+ 1), 1 ≤ i ≤ p−3
2
− 1.

Proof. Put T (i) := L(1) ⊗k Zχ(i) ∈ mod(Uχ(sl(2))). Starting with the obvious exact

sequence

0 −→ k1 −→ L(1) −→ k−1 −→ 0

in U0(bsl(2))-modules, the arguments in the proof of 5.4.2 yield an exact sequence

0 −→ Zχ(i+ 1) −→ T (i) −→ Zχ(i− 1) −→ 0

of Uχ(sl(2))-modules. Assume first that 0 ≤ i ≤ p−3
2

. Then Zχ(i− 1) � Zχ(i+ 1) as

p− 2− (i− 1) = i+ 1⇐⇒ p− 2 = 2i

which can not be the case (as p ≥ 3 is odd). Consequently, the above sequence splits.

Observing

� Zχ(p−3
2

+ 1) ∼= Zχ(p−3
2

),

� Zχ(−1) = Zχ(p− 1),

we get the assertion for all those i. Now let i = p − 1. As Zχ(p − 1) is projective, we

conclude that the 2p-dimensional module T (p− 1) is projective and the above sequence

shows that Zχ(p) = Zχ(0) lies in its socle. Hence it must be P (0).

We put S(i) := Inf(Zχ(i)) for all 0 ≤ i ≤ p−3
2

as well as S(p− 1) := Inf(Zχ(p− 1)).

Theorem 5.4.5. Let χ = χn ∈ s ∗.

(a) The algebra Uχ(s) has exactly p+1
2

simple modules S(0), . . . , S(p−3
2

), S(p − 1) up to

isomorphism. The projective cover of S(i) is given by Q(i) = U0(L(1))⊗k P (i).

(b) We have dimk Ext1
Uχ(s)(S(i), S(j)) =


δj,0 i = p− 1

δj,p−1 + δj,1 i = 0

δj,i−1 + δj,i+1 1 ≤ i ≤ p−3
2
− 1

δj,i−1 i = p−3
2

for i 6= j and
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dimk Ext1
Uχ(s)(S(i), S(i)) =


0 i = p− 1

1 0 ≤ i ≤ p−3
2
− 1

2 i = p−3
2
.

(c) Uχ(s) is of wild representation type.

Proof. (a) See 4.2.4(1),(2b).

(b) This follows from 4.2.7 and our above lemma.

(c) Since the rank variety V (s)S(0) = V × ke of S(0) is three-dimensional (see 4.2.8(2)),

this is a consequence of [19, Theorem 4.1].

The Gabriel quivers of reduced enveloping algebra Uχ(g) such that χ(V ) = 0 can

be obtained in a similar fashion from our above computations. One reduces again to

linear forms of three types, namely 0, the ’nilpotent’ linear forms and the ’semi-simple’

ones (see 5.3.2). By way of example, we do this for the form χ = 0, it should be clear

afterwards how one can proceed in the other cases.

Since we have a direct sum decomposition gl(2) = t⊕ sl(2), where t := k(h1 + h2), we

obtain U0(gl(2)) ∼= U0(sl(2)) ⊗k U0(t). The simple U0(t) are the ki for 0 ≤ i ≤ p − 1,

where the action of t on ki = k is given by (h1 + h2).1 = i.1. Thus, by 2.1.30, we

get that the modules L(i, j) := L(i) ⊗k kj for 0 ≤ i, j ≤ p − 1 form a complete set

of simple U0(gl(2))-modules up to isomorphism. The projective cover of L(i, j) is then

given by P (i, j) := P (i)⊗k kj, where P (i) is the projective cover of L(i) over U0(sl(2)).

In this notation, the natural representation V is exactly L(1, 1). We denote by S(i, j)

the inflation of L(i, j) to U0(g).

Theorem 5.4.6. We have

dimk Ext1
U0(g)(S(i, j), S(k, l)) = 2δj,lδi+k,p−2 + δl,j+1 ·


δk,1, i = 0

δ|i−k|,1, 1 ≤ i ≤ p− 2

δk,p−2, i = p− 1

for all 0 ≤ i, j, k, l ≤ p− 1.

Proof. By 4.2.7, we have

Ext1
U0(g)(S(i, j), S(k, l)) ∼= Homgl(2)(L(1, 1)⊗kL(i, j), L(k, l)) ⊕ Ext1

U0(gl(2))((L(i, j), L(k, l)).
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Now 5.2.4 implies that

L(1, 1)⊗k L(i, j) ∼= (L(1)⊗k L(i))⊗k (k1 ⊗k kj) ∼= (L(1)⊗k L(i))⊗k kj+1

∼=


L(1, j + 1) i = 0

L(i− 1, j + 1)⊕ L(i+ 1, j + 1) 1 ≤ i ≤ p− 2

P (p− 2, j + 1) i = p− 1.

,

Combining dimk Ext1
U0(gl(2))((L(i, j), L(k, l)) = 2δj,lδi+k,p−2 with the above, we get the

claim.
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